

Reversing Jensen's Inequality for Information-Theoretic Analyses

Neri Merhav

The Viterbi Faculty of Electrical and Computer Engineering
Technion – Israel Institute of Technology
Haifa 3200003, Israel

ISIT 2022, Aalto University, Espoo, Finland, June–July 2022

Question:

How often Does Jensen's
inequality work in the
direction that is **opposite**
to the one you wish?

My Answer:

Much more often than not..

Reverse Jensen's Inequalities

- ♣ Jebara & Pentland (2000).
- ♣ Budimir, Dragomir, & Pečarić (2001).
- ♣ Simić (2009).
- ♣ Dragomir (2010, 2013).
- ♣ Khan, Khan & Chu (2020).
- ♣ Wunder, Groβ, Fritschek, & Schaefer (2021).
- ♣ Ali, Budak & Zhang (2021).
- ♣ Budak, Ali & Tarhanaci (2021).

In most of these works, the bounds depend merely on
global properties of the given convex/concave function.

Reverse Jensen's Inequalities

- ♣ Jebara & Pentland (2000).
- ♣ Budimir, Dragomir, & Pečarić (2001).
- ♣ Simić (2009).
- ♣ Dragomir (2010, 2013).
- ♣ Khan, Khan & Chu (2020).
- ♡ Wunder, Groβ, Fritschek, & Schaefer (2021).
- ♣ Ali, Budak & Zhang (2021).
- ♣ Budak, Ali & Tarhanaci (2021).

The blue work is an exception in that sense.

Starting Point

Lemma [WGFS21]: Let $f : \mathbb{R}^+ \rightarrow \mathbb{R}$ be concave with $f(x) \geq f(0)$

$\forall x \geq 0$. Let $X \geq 0$, $\mathbf{E}\{X\} = \mu$. Then,

$$\mathbf{E}\{f(X)\} \geq \sup_{a>0} \left[\frac{\mu}{a} \cdot f(a) + \left(1 - \frac{\mu}{a}\right) \cdot f(0) - \frac{f(a) - f(0)}{a} \cdot \underbrace{\mathbf{E}\{X \cdot \mathcal{I}[X > a]\}}_{q(a)} \right].$$

In [WGFS21], $q(a)$ is upper bounded by combining the Markov and Hölder inequalities:

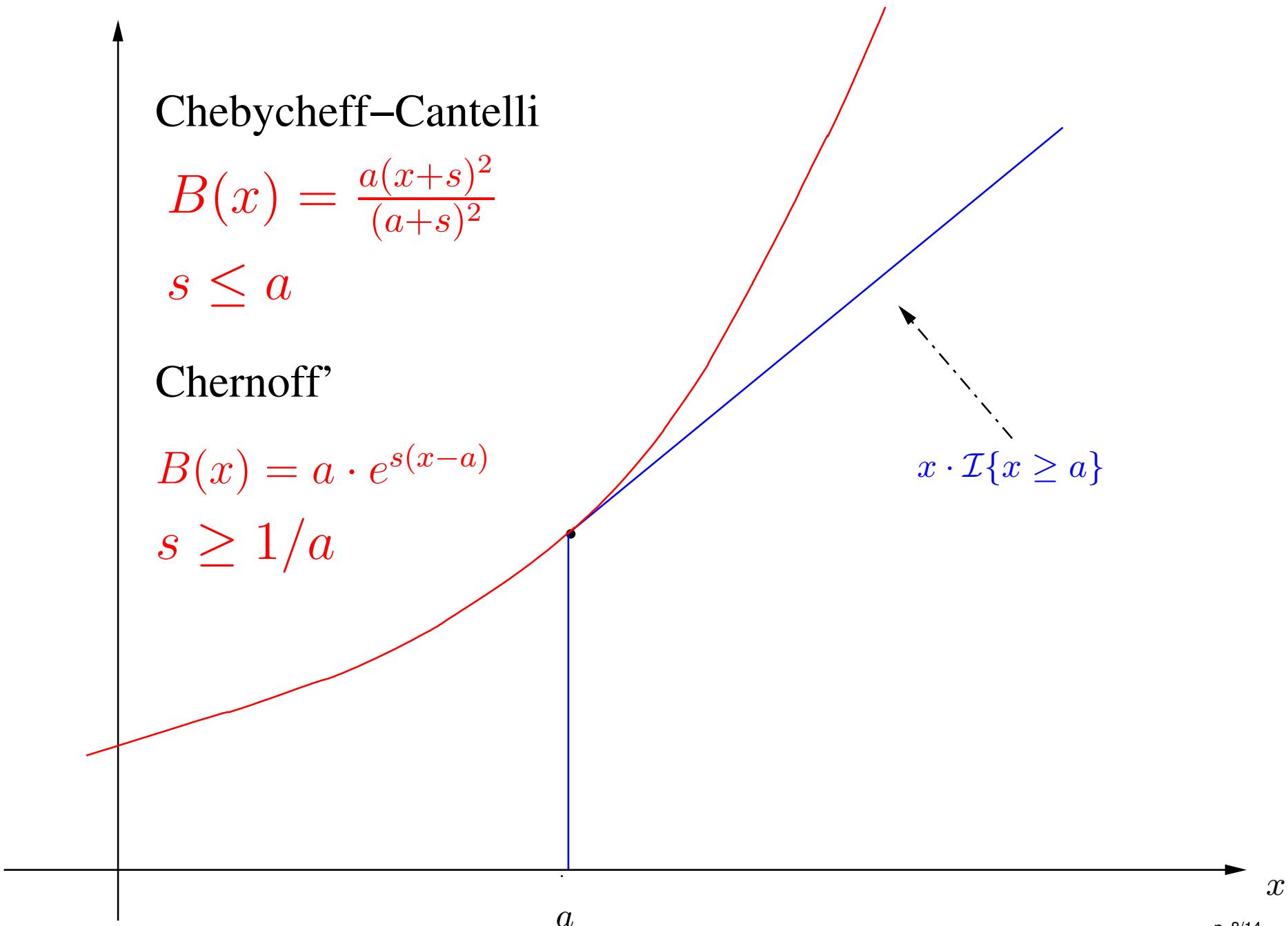
$$q(a) \leq \inf_{p>1} \left\{ (\mathbf{E}\{X^p\})^{1/p} \cdot \left(\frac{\mu}{a}\right)^{1-1/p} \right\}.$$

The first factor is weak for large p and
the second factor is weak for small p .

Our Approaches

- ♠ Chernoff: $\mathbf{E} \{X \cdot \mathcal{I}[X > a]\} \leq \mathbf{E}\{X e^{s(X-a)}\} = e^{-sa} \frac{\partial}{\partial s} \mathbf{E}\{e^{sX}\}.$
- ♠ Chernoff': $\mathbf{E} \{\mathcal{I}[X > a]\} \leq \mathbf{E}\{ae^{s(X-a)}\} = ae^{-sa} \mathbf{E}\{e^{sX}\}, s \geq 1/a.$
- ♠ Chebychev-Cantelli: $\mathbf{E} \{\mathcal{I}[X > a]\} \leq \frac{\mathbf{E}\{a(X+s)^2\}}{(a+s)^2}, s \leq a.$

Our Approach (Cont'd)



When $X = \text{Sum of I.I.D. RV's}$

For concave f , the Chernoff approach yields:

$$\mathbf{E} \left\{ f \left(\sum_{i=1}^n Y_i \right) \right\} \geq \frac{nf(a)}{a} \left[\mu_Y - \inf_{s \geq 0} \left\{ e^{-sa} [\Phi_Y(s)]^{\textcolor{red}{n}} \cdot \frac{d \ln \Phi_Y(s)}{ds} \right\} \right]$$

and we can take $a = n(\mu_Y + \epsilon)$.

The Chebycheff-Cantelli approach gives:

$$\mathbf{E} \left\{ f \left(\sum_{i=1}^n Y_i \right) \right\} \geq \frac{nf(a)}{a} \left[\mu_Y - \frac{\sigma_Y^2}{\sigma_Y^2 + \textcolor{red}{n}\epsilon^2} \right].$$

Example - Gaussian Channel with Random SNR

Consider a complex Gaussian channel whose SNR Z is a RV.

The capacity is given by $C = \mathbf{E}\{\ln(1 + gZ)\}$, where g is a gain factor.

Z is distributed exponentially, i.e.,

$$p_Z(z) = \theta e^{-\theta z}, \quad z \geq 0.$$

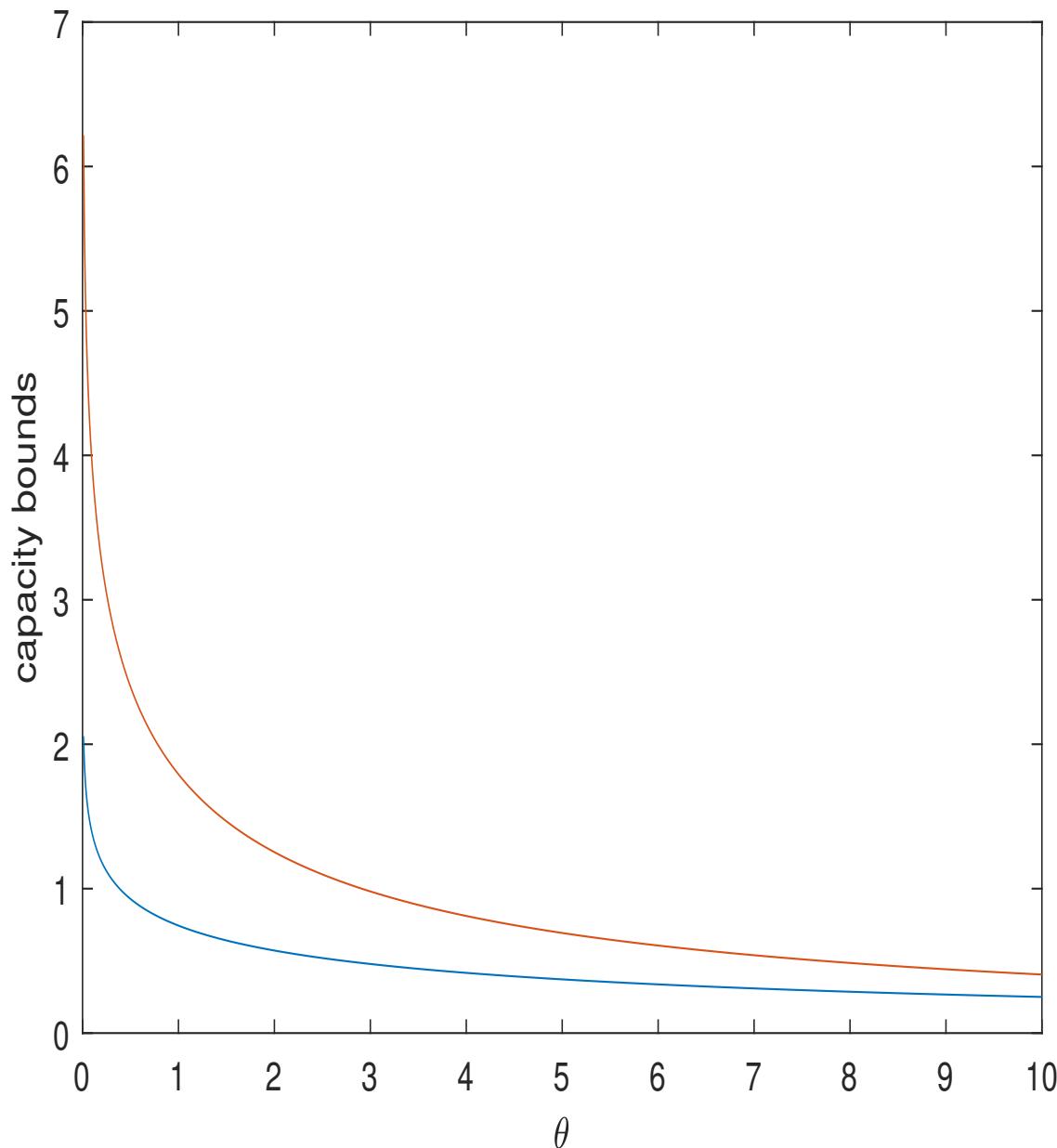
Here,

$$q(a) = \theta \cdot \int_a^{\infty} ze^{-\theta z} dz = \left(a + \frac{1}{\theta}\right) \cdot e^{-\theta a}$$

and

$$C \geq \sup_{s \geq 1} \left[\frac{1 - (s + 1)e^{-s}}{s} \right] \cdot \ln \left(1 + \frac{gs}{\theta} \right).$$

Example (Cont'd)



More Examples in the Paper

- ◊ Guesswork.
- ◊ Moments of parameter estimation error.
- ◊ Universal source coding.
- ◊ Ergodic capacity of the Rayleigh SIMO channel.
- ◊ Differential entropy the generalized multivariate Cauchy distribution.
- ◊ ... and more.

Discussion

- ♣ The maximization over a is not really necessary.
- ♣ Assumption $f(x) \geq 0$ can be replaced by $\exists \Delta > 0 \quad f(x) + \Delta x \geq f(0)$.
- ♣ Convex functions - by flipping the signs.
- ♣ Easy to extend to functions that are neither convex nor concave.
- ♣ Extension to multivariate convex/concave functions.

Summary of Main Contributions

- ♣ Significant improvement relative to [WGFS21].
- ♣ Relaxing some assumptions on f .
- ♣ A more natural analogous result for convex functions.
- ♣ Extension to bivariate (and multivariate) functions.
- ♣ Providing examples of information-theoretic relevance.