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Question:

How often Does Jensen’s
iInequality work In the

direction that Is opposite
to the one you wish?



My Answer:

Much more often than not..



Reverse Jensen’s Inequalities

Jebara & Pentland (2000).

Budimir, Dragomir, & Pecari¢ (2001).

Simic (2009).

Dragomir (2010, 2013).

Khan, Khan & Chu (2020).

Wunder, Grog, Fritschek, & Schaefer (2021).
Ali, Budak & Zhang (2021).

Budak, Ali & Tarhanaci (2021).

In most of these works, the bounds depend merely on

global properties of the given convex/concave function.
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Reverse Jensen’s Inequalities

Jebara & Pentland (2000).
Budimir, Dragomir, & Pecari¢ (2001).
Simic (2009).
Dragomir (2010, 2013).
Khan, Khan & Chu (2020).
© Wunder, Grog, Fritschek, & Schaefer (2021).
Ali, Budak & Zhang (2021).
Budak, Ali & Tarhanaci (2021).

The blue work is an exception in that sense.
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Starting Point

Lemma [WGFS21]: Let f : R™ — IR be concave with f(x) > f(0)
Vr > 0. Let X > 0, E{X} = u. Then,

B{F(X)} 2 sup | X pa)+ (1 £) ) - PO g 7x s |

a>0

~~

q(a) |

In [WGFS21], ¢(a) is upper bounded by combining the Markov

and Holder inequalities:

g(a) < inf {(E{Xp})l/p. (g)l_”p},

- p>1

The first factor is weak for large p and

the second factor is weak for small p.
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Our Approaches

& Chernoff: E {X - Z[X > a]} < E{Xe*X "} = ¢7 50 I E{e5X ),
& Chernoff’: E{X - Z|X > a]} < E{ae* X~} = ae 5*E{e*X}, s > 1/a.

# Chebychev-Cantelli: B {X - T[X > af} < Bl o <,
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Our Approach (Cont’d)

Chebycheff—Cantelli

B(x) = 4555

s <a

Chernoft’
B(z) =a-e@9)
s>1/a
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When X = Sum of I.1.D. RV’s

For concave f, the Chernoff approach yields:

E{f (z”: Y)} . nfcfa) [MY B Sigfo{e_sa[%(s)]n | dln;DZ(S) H
2 >

and we can take a = n(uy + ¢).

The Chebycheff-Cantelli approach gives:

S| .|
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Example - Gaussian Channel with Random SNR

Consider a complex Gaussian channel whose SNR Z is a RV.
The capacity is given by C = E{In(1 + gZ)}, where g is a gain factor.

Z 1s distributed exponentially, i.e.,

Here,

and
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capacity bounds

Example (Cont’d)
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More Examples in the Paper

{ Guesswork.

& Moments of parameter estimation error.

¢ Universal source coding.

{> Ergodic capacity of the Rayleight SIMO channel.

{> Differential entropy the generalized multivariate Cauchy distribution.

... and more.
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Discussion

The maximization over a is not eally necessary.

Assumption f(z) > 0 can be replaced by 3 A >0 f(z) + Az > f(0).
Convex functions - by flipping the signs.

Easy to extend to functions that are neither convex nor concave.

Extension to multivariate convex/concave functions.
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Summary of Main Contributions

Significant improvement relative to [WGFS21].
Relaxing some assumptions on f.

A more natural analogous result for convex functions.
Extension to bivariate (and multivariate) functions.

Providing examples of information-theoretic relevance.
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