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Abstract

A source sequence is to be guessed with some fidelity based on a rate-limited description of an observed sequence
with which it is correlated. The trade-off between the description rate and the exponential growth rate of the least

power mean of the number of guesses is characterized.
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I. INTRODUCTION

Our problem can be viewed as the guessing analogue of the Remote Sensing problem in lossy source coding [1],
[2], [3]. As in that problem, the description of a source sequence is indirect: the rate-limited description is based
only on a noisy version of the sequence. The problems differ, however, in their objectives: in the Remote Sensing
problem the source sequence is estimated (with the least expected distortion), whereas in our problem it is guessed
to within some distortion (with the least power mean of the number of required guesses). Our problem thus relates
to Arikan and Merhav’s guessing-subject-to-distortion problem [4] in much the same way that the Remote Sensing
problem relates to Shannon’s lossy source coding problem [5].

To put our problem in context, recall that in the guessing problem pioneered by Massey [6] and Arikan [7], a

guesser seeks to recover a finite-valued chance variable X € X by sequentially producing guesses of the form

“Is X =217
“Is X = xo7”
where z1,x2,... € X, and each guess is answered truthfully with “Yes” or “No.” The number of guesses taken

until the first “Yes,” i.e., until X is revealed, depends on the guesser’s strategy G (the order in which the elements



of X' are guessed) and is denoted G(X). Given the probability mass function (PMF) Px of X and some p > 0,
Arikan showed [7] that the least achievable p-th moment of the number of guesses E[G(X)”] required to recover
X is closely related to its Rényi entropy:

1
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where Hj (14, (Px) denotes the order-1/(1 + p) Rényi entropy of X. When guessing a length-n random se-
quence X™ 2 (X4,..., X,) whose components are independent and identically distributed (IID) according to Py,
Inequality (1) implies that

: 1 : n
lim — log (mglnE[G(X )”]) = pHy 140 (Px), 2)

n—oo N
so the Rényi entropy of X fully characterizes (up to the factor p) the exponential growth rate of the least p-th
moment of the number of guesses required to recover X".

Our problem differs from Massey’s and Arikan’s in the following two ways:

1) Instead of recovering X", the guesser need only produce a guess X" € X" that is close to X" in the sense

that

n

=1

where the distortion measure d(-,-): X X X — R>¢ and the maximal-allowed distortion level D > 0 are
prespecified. We assume that, for every =z € X", (3) is satisfied by some " € X™; this guarantees the
existence of a guessing strategy that eventually succeeds.

2) Prior to guessing, the guesser is provided with a rate-limited description f(Y™) € {0,1}"% of a noisy
observation Y™ € Y™ of X™. Based on f(Y™), the guesser sequentially guesses elements X" of X™ until

(3) is satisfied. (The guesser’s strategy G thus depends on f(Y™).)

We show that when (X1,Y7),...,(X,,Y,) are IID according to Pxy, the exponential growth rate of the least p-th
moment of the number of guesses—optimized over the description function f and the guessing strategy G—satisfies
the variational characterization (13) of Theorem 1 ahead.

Along the lines of [8], this theorem can be used to assess the resilience of a password X" against an adversary
who has access to nR bits of a correlated password Y™ and is content with guessing only a fraction 1 — D of the
symbols of X™. (In this application, the distortion function is the Hamming distance.)

Since our guessing problem is an extension of the guessing-subject-to-distortion problem studied by Merhav and
Arikan [4], their suggested motivation (accounting for the computational complexity of a rate-distortion encoder
as measured by the number of metric calculations) and proposed applications (betting games, pattern matching,
and database search algorithms) also extend to our setup. Further applications include sequential decoding [7],
compression [9], and task encoding [10], [11].

Numerous other variations on the Massey-Arikan guessing problem were studied over the years. In [12], Sundare-
san derived an expression for the smallest guessing moment when the source distribution is only partially known
to the guesser; in [13], [14], the authors constructed and analyzed optimal decentralized guessing strategies (for

multiple guessers that cannot communicate); in [15], Weinberger and Shayevitz quantified the value of a single bit



of side-information provided to the guesser prior to guessing; in [16], the authors studied the guessing problem
using an information-geometric approach; and in [17] and [11] the authors studied the distributed guessing problem
on Gray-Wyner and Stelpian-Wolf networks.

The above distributed settings dealt, however, only with “lossless” guessing, where the guessing has to be exact.
Our present setting maintains, to some degree, a distributed flavor, but allows for “lossy” guessing, i.e., with some

fidelity.

II. PROBLEM STATEMENT AND NOTATION

Consider n pairs {(X;,Y;)}?_, that are drawn independently, each according to a given PMF Pxy on the finite

Cartesian product X x ):

{(Xi, Yi) oy ~ 1ID Pxy. )
Define the sequences
Xn é {Xi}»?:h Yn é {}/7/}?:1’ (5)

with {X;}?_, being IID Py, where Py is the X -marginal of Pxy, and likewise {Y;}?_; being IID Py . By possibly
redefining X and )/, we assume without loss of generality that Px and Py are positive. A guesser wishes to produce

a sequence Xn, taking values in a finite n-fold Cartesian product set X", that is “close” to X™ in the sense that
d(x™,X") < D, (6)

where D > 0 is some prespecified maximally-allowed distortion, and

1

n

d(z™, &™) 2 =S d(as, 2 7
(2", ") n; (i, 1) )

with
d: X x X = Rsg ®)

some prespecified distortion function. We assume that d(-,-) and D are such that for each 2™ € X™ there exists
some 2" € X" for which (6) is satisfied,
Va" € X" 3" e X" d(a™, 2") < D. 9)

This guarantees that such X" can be found and in no-more-than |)E' | guesses.
Courtesy of a “helper” f,,: Y™ — {0,1}"%, the guesser is provided, prior to guessing, with an n R-bit description

fn(Y™) of Y™, Based on f,(Y™), the guesser produces a “guessing strategy” (also called a “guessing function™)
G ([ fa(Y™): {1, |X" ]} — &7, (10)

with the understanding that its first guess is G, (1| fn(Y”)), followed by G, (2| fn(Y”)), etc. Thus, the guesser first
asks

“Does Gy, (1] f(Y™)) satisty (6)2”



If the answer is “yes,” the guessing terminates and gn(1| fn(Y”)) € X" is produced. Otherwise the guesser asks
“Does Gr, (2] fn(Y™)) satisfy (6)?”

etc. Since guessing the same sequence twice is pointless, we assume (without loss of optimality) that, for every
value of f,(y"), the mapping G, (- |f.(y™)) is injective and hence—since its domain and codomain are of equal

cardinality—bijective. This and Assumption (9), allow us to define
G (2" fn(y™)) £ min {i > 1: d(2",Gn (i|fa(¥")) < D} (11)

as the number of required guesses when X™ = 2™ and f,,(Y™) = f,.(y").
Given a positive constant p, we seek the least exponential growth rate in n of the p-th moment of the number

of guesses E[G, (X" | fn(Y™))"]:

lim - log (minminE[Gn(X" | fn(Y“))f’]> (12)

n—oo 7 fn Gn
(when the limit exists), where the minima in (12) are over all maps f,: V" — {0,1}"% and all guessing
strategies G,,. Theorem 1 below asserts that the limit exists and provides a variational characterization for it.

To state the theorem, we need some additional notation. Given finite sets V and W, let P(V) denote the family
of PMFs on V, and P(V | W) the family of PMFs on V indexed by W: for every P(- | -) € P(V | W) and every
w € W, we have P(- | w) € P(V). Given PMFs Py € P(W) and Py € P(V | W), we use Py Pyw to
denote the joint PMF Py (w) Py w (v | w) on W x V (in this context, Py |y (- | -) is the conditional PMF of V/

given W.)
Theorem 1. The limit in (12) exists and equals

sup inf sup (de,D(QX )
Qy Quiv:l(Q@viv)SRQxyy |

- D(QXYUHPXYQU\Y)>a (13)

where the optimization is over Qy € P(Y), Quiy € PU | V), Qxyu € P(X | Y xU), and the choice of the finite
set U; where 1(Qy,v) is the mutual information between Y and U; Ra,p(Qx|u) is the conditional rate-distortion

(R-D) function of X given U:

Rap(Qxv) £ min  HQy,x ), (14)
Qxx,v: Bld(X,X)]<D

where I(Q x ;) is the conditional mutual information between X and X given U; and D(-||-) denotes relative
entropy. All the expressions in (13) are evaluated w.rt. to Qxyu = QyQuyQxyu, and those in (14) are

W.L.L. QX\X,UQXU’ with Qxu being the (X,U)-marginal of Qy Quy Qx|yu-

Remark 1. As shown in Appendix B, restricting U to take values in a set of cardinality |Y|+ 1 does not alter (13).

Consequently, the suprema and infimum can be replaced by maxima and minimum respectively.

Remark 2. In the special case where the help is direct, i.e., when Y equals X under Pxy so

(z#y) = (Pxy(z,y) =0), (15)



Theorem 1 recovers Theorem 2 of [18].

Proof of Remark 2: This can be seen by first noting that the relative entropy in (13) is finite only when
Qxyvr < nyQU‘Y, whence Qxy < Pxy.! This and (15) imply that the inner supremum in (13) is attained

when X and Y are equal also under ) xyy, and

Qxpyulz |y, u) =1z =1y). (16)

Using (16) and denoting expectation w.r.t. Qxyu by Eq,,» we simplify D(Qxvyuv | PxyQujy) as follows:

D(@xvullPxyQuy)

=D(QvQuyQxvulPxyQuyy) (17
= EqQuve :IOg (QY(Y);@E((ITEI/QI?QYUU'(; Y, U)) a8
= Equr| l0g (Qy(Yﬁ);(y;g)| Y, U)) "
=By -log (1?;(()1?)%1((); — %) (20)
= Y Qr(z=y)log (W) : @)

(z,y)€EXXY

To continue from (21), note that, by (16),

Qy(y) Iz =y) = Qx(z)(y = z), (22)

so (21) implies that

D(@QxvyullPxyQuy)

= X = x) lo W

) wy%«nyX( M= atos <PX($) I(y = w)) 23)

- L oo (55
rzeX

= D(Qx||Px). 05)

Having dispensed with the inner supremum in (13), we note that, because X and Y are equal under Qxyy, we
can replace the outer supremum in (13) with one over Qx, and the infimum with one over Q| x. From this and

(25) we conclude that (13) reduces to

sup

inf R —D(Qx|Px)), 26
D <R (P 4,0(Qxv) Qx| X)) (26)

which recovers Theorem 2 of [18]. |

'We use Q < P to indicate that @ is absolutely continuous w.r.t. P.



Remark 3. When the help is useless because R is zero or because X and Y are independent (under Pxy ),

Theorem 1 reduces to Corollary 1 of [4].

Proof of Remark 3: To show this, we begin by considering the choice of U as deterministic and thus establish

that (13) is upper bounded by
sup (PRd,D(QX) - D(QXHPX))» 27

Qx

which is the expression in Corollary 1 of [4]. It remains to show that, when R = 0 or when X and Y are
independent, this is also a lower bound.

We begin with R = 0. In this case, the constraint in the infimum in (13) implies that Y and U are independent
under Q xyy, SO

Qxyvu = Qy Qu Qx|yu- (28)

A lower bound results when we restrict the inner supremum to ) X|YU(;1:|y7 u) that is determined by z and y, so

that Q xyy has the form QuQ xy. With this form, the objective function in (13) reduces to

(p Ra,p(@x) — D(@xy ||PXY)) (29)

which depends on @ xyy only via its marginal ) xy. This allows us to dispense with the infimum to obtain

sup (pRa.p(Qx) ~ D(@xy [Pxy)), (30)

QXY

which is attained when Qy|x equals Py|x, whence it is equal to (27).

Having established that (27) is a lower bound on (13) when R = 0, we now show that it is also a lower bound
on (13) when X and Y are independent. In this case we obtain the lower bound by restricting the inner supremum
to be over Q x|y y(z|y, u) that are determined by x alone, so that Qxyy has the form QxQuy. With this form

(and with X and Y being independent under Pxy-), the objective function in (13) reduces to

(Pde(QX) - D(QXQYUHPXPYQU\Y)) (€1))

which simplifies to
(P Ra,p(@Qx) — D(QXQY||PXPY)>~ (32)
Again U disappears, and we are back at (30), which evaluates to the desired lower bound. [ ]

III. ACHIEVABILITY

In this section, we prove the direct part of Theorem 1, namely, that when {(X;,Y;)}? , are IID according to

Pxvy, then for every e > 0 there exists a sequence of rate-R helpers {f,} and guessing strategies {G, } satisfying

lim sup 1 log(E[Gn(X™ | fn(Y™)"])

n—oo TN

< sup inf sup ( Ra,p(Qx v
Qy QU|Y:I(QY:U)SRQX|YU P ( | )

- D(QXYUHPXYQU|Y)) +e. (33)



Proof. Since we are only interested in the behavior of E[G,,(X™ | f,(Y™))?] as n tends to infinity, we shall only
consider large values of n.

We begin by constructing the helper f,. To do so, we shall use the Type-Covering lemma [19, Lemma 1], [20,
Lemma 9.1], [21, Lemma 2.34] that we restate here for the reader’s convenience. Given finite sets )V and W, let
Pn(V) denote the family of “types of denominator n” on V, i.e., the PMFs P(-) € P(V) for which nP(v) is an
integer for all v € V. By a “conditional type on V given W we refer to a conditional PMF P(- | -) € P(V | W)
for which P(- | w) is a type (of some denominator n(w)) for every w € W. Given a sequence v" € V", the
“empirical distribution of v™” is the (unique) type P € P, (V) for which P(v') = 1 |{i: v; = v'}| for every v/ € V.
And given P € P,(V), we use T (P) to denote the “type class” of P, i.., the set of all sequences v" € V"

whose empirical distribution is P.

Lemma 1 (Type-Covering lemma). Let V and W be finite sets. For every € > 0 there exists some ng(e) such that
for all n exceeding ny(e€) the following holds: For every Qv € P, (V) and every conditional type Qyy|v for which
QvQw|v € Pn(V x W), there exists a codebook C C W™ satisfying

c] < gn@vwitg (34)

and
Vo € TM(Qy) Fw™eC: (v, w") € T(")(QVQW‘V). (35)
Lemma 1 is applied as follows: For every Qy € P, ()), we first define
Quy(Qy) = arg min max R p(Qxv), (36)
Quy:I(Qu,v)<R—¢ Qx|yu
(provided the minimum exists) where the optimization is over choice of the finite set /, and types Quy and Q x|yu

for which Qy Quy Q@x|yu € Pn(YxUxX); where I(Qu,y) and Rg,p(Q x|7) are computed w.r.t. Qy Qu iy Q x|y us

and where ¢’ is a small positive constant (to be specified later). If the minimum in (36) does not exist, we let

R*(Qy) & inf max Rg p(Qx|v), (37)

QUlY:I(QlU:Y)SR—CI Qxvu
where the optimization is under the same conditions as in (36), and instead define Q;}‘Y(Qy) as a conditional type
satisfying

max Ry p(Qxjw) < R (Qy) +€’ (38)

X|yU
where the maximum is over all conditional types @ x|yy for which QyQ{,‘YQ xlyu € Pn(Y xU x X); where
Ra,p(Qx|v) is computed w.r.t. QYQ?HYQXWU; and where ¢’ is a small positive constant (also to be specified
later).

To construct the helper f,, we invoke Lemma 1 (assuming that n is sufficiently large) with Qv « Qy, Qw v
Q*U‘Y(Qy), and € < ¢’ to obtain a codebook C(Qy) C U™ used by f,, to produce the index of some U™ € C(Qy)
such that (U™, Y™) € T(")(QyQ*Uly(Qy)).

We next construct a guessing strategy G,,. Let U™ € C(Qy ) be the codeword provided by the helper and that hence
satisfies (Y",U") € T"(QyQjyy(Qy)). Let Qxyy denote the empirical joint distribution of (X™, Y™, U™).

We first argue that the guesser can be assumed cognizant of () xy . To that end, we need the following lemma:



Lemma 2 (Interlaced-Guessing lemma [22, Lemma 5]). Let V, W, and Z be finite-valued chance variables and
let p be nonnegative. Given any guessing strategy G for guessing V' based on W and Z, there exists a guessing

strategy G based on W only such that
E[G(V | W)| <E[G(V | W, 2)]| 2. (39)
Invoking Lemma 2 with V < X", W < U", and Z + Qxyuy, we see that

HglinE[G(X" | U™)]

n

< min B[G(X" [ U7, Qxyvv)’)|[P"M(x x Y xu)|! (40)

where the guessing strategy on the RHS of (40) depends on both the helper’s description f,,(Y"™) of Y™ and the

empirical joint distribution Q xyy of (X™, Y™ U™). Since |’P(")(X x Y X Z/I)‘ grows subexponentially with n,

lim & log |[P™(X x Y xU)|” =0. 1

n—oo n

Thus, by (40) and (41),

lim sup 1 min E[G(X™ | U™)”]

n—oo N Un

1
<limsup — minE[G(X" | U™, Qxvyuv)”]- (42)

n—oo T Gn
Since the RHS of (42) cannot exceed its LHS, (42) must hold with equality, and we shall hence for the remainder
of the proof assume that () xyy is known to the guesser.
Our guessing strategy G,, will thus depend on both the helper’s description U™ of Y™ and the empirical joint
distribution Q xyy of (X™, Y™, U™). To construct G,,, we will use of the following corollary [18, Lemma 2] which

follows from the conditional version of Lemma 1:

Corollary 1. Let V, W and Z be finite sets, let d(-,-) be a distortion function on V x W, let d(-,) be its extension
to sequences, and let D be positive. For every € > 0 there exists some no(e) such that for all n exceeding ng(e)
the following holds: For every Qv z € Pn(V x Z) and every 2™ € T™(Qy) there exists a codebook C C W™

that satisfies

|C| < 2”(Rd,D(QV\Z)+6) 43)

and

Vo' e T (Qv|z]z") Fw™ € C: d(v™, w™) < D. (44)

We invoke Corollary 1 with Qvz + Qxy, 2™ «+ U™, W «+ X, and € + ¢, where ¢’ is some small
nonnegative constant (to be specified later) to obtain the codebook C(Qxyr) C X", The guessing strategy G, is
then chosen such that G, |1, . |c(oxyo)} 18 @ bijection from {1,...,|C(Qxyv)|} to C(Qxyv), i.e., such the first
|C(Qxyu)| guesses are those in C(Qxyy) in some arbitrary order. Note that (44) guarantees that some X" in

Gnl{1,...|c(Qxyv)|} Satisfies (6), and thus the guesser succeeds after at most [C(Qxyy)| guesses.



We now show that (33) holds for our proposed helper f,, and guessing strategy G,,:

E[Gn(X™ | fu(Y™))"]

@ E[G (X" | U")] @3)
Y (Pr[Y" e T (Qy)]
Qy Qx|yu

PrX" € T (@Qxpyu) | Y™ € TM(Qy)]

E[G, (X" [U")”

(XY™, U") € TO(Qy Qpy (Qv)Qx1ver)]) (46)
Y Y (P e TQy)
Qy Qx|yu

Pr[X" € T"(Qxyv) | Y™ € T (Qy)]
27LP(R<1,D(QX|U))+€”)) 47)

(i) Z Z (2—n D(Qy [[Py)9—nD(@xvullPx|v)

Qy Qx|yu
QHP(Rd,,D(waHE”)) (48)
(2) max max (2*”D(QYHPY)2*”D(QX\YUHPX\Y)
T Qy Qxjyu
2"9<Rd,D(wa>+e”>) PO (X x Y xU)|’ (49)
P max min max (2*”D(Qy|\PY)
Qy Quyy: I(QU Y)<R ¢ Qx|yu

9—nD(@xvu HPX\Y)QNP(Rd,D(QX\U)+€”)

[POIX =Y xu)|) 0
(i) sup inf sup (TnD(QYHPy)

Qy Qujv: I(QU v)SR—€ Qx|yu
27 P@xivulPxi)gnelRe.p(@xi)+<)9n8 ) [P (0 x Y x U)|” 51)
(2) sup inf sup (2—n D(Qy || Py)

Qy Quiv: I(QU VISR Qx|yu

2—nD(QX\YUHPX\Y)in)Rd,D(wa)QWSn2"6) !7)(")()( X Y x u) 4

(52)

where (a) holds because we have assumed that the empirical distribution )y of Y™ is known to the guesser who
can thus recover U” from f,(Y™) and C(Qy); in (b) we have used the law of total expectation, averaging over
the types Qy € P,n()) and conditional types Q x|y y for which QyQuyQx|yu € Pn(Y x U x X) (recall that
Quiy = Q*UlY(Qy) is fixed by f,); (c) is due to (43); (d) follows from [23, Theorem 11.1.4]; in (¢) we have
upper-bounded the sum by the largest term times the number of terms (the number of terms is the number of types

Qy and Qx|yy that we have in turn upper-bounded by the number of types Qxyv); (f) is due to (36); in (g)
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we have lifted the constraint on Qy, Q;}lY(Qy), and Q) x|yy to be types at a cost of at most 2M9n where 6, | 0
as n — oo, and where the step is justified because any PMF can be approximated arbitrarily well by a type of
sufficiently large denominator; and in (h) we have used the fact that all exponents are continuous functions of their
respective arguments, and that ¢ and ¢’ were chosen sufficiently small.

Dividing the log of (52) by n, taking the lim sup as n tends to infinity, and applying (41) yields (33). O

IV. CONVERSE
In this section we prove the converse part of Theorem 1, namely, that when {(X;,Y;)}? ; are IID according to

Pxy, then for any sequence of rate-R helpers {f,} and guessing strategies {G, },

lim inf % log(E[Gn(X™ | fn(Y™)?])

n—oo

> sup inf sup (de,D(QX\U)
Qy QuiviIlQvu)SRQx|yu

— D(@Qxyu[PxyQuiv))- (53)

Proof. Fix a sequence of helpers { f,,} and guessing strategies {G,, }. We begin by observing that for any probability
law @ of (X™,Y™)-marginal Qxnyn,

EPX”Y" [Gn(Xn | fn(Yn))p]

> 9P Blloa(Gn (X" |2 (Y )] =D(@xnynl| Pxnyn) (54)

where Ep denotes expectation w.r.t. the PMF P. Indeed,

Epryuyn [Gn(Xn | fn(Yn))p]

= Y Pryel@ )Gl | faly™)” (55)

(zn l’yn)EX'rL X yn

p Pxcn yn (2", y")

— QX"’Y”' :'L,TI/’yTL Gn .,L,TL fn y"L (56)
(:E" yn)ez)(n xymn ( ) ( ‘ ( )> QX"L7Y"L (zn’ yn)
o8 (G 1 47 2
= Z QX",Y"(-rn7yn)20g< (™ fn(y™)) Qxn yn(@™y )) (57)
(I”’,y"’)GX” xyn
(ll) ZT” n Qxn yn ]og(Gn(zﬂr‘fn(yn))P%>
> g T 58)
= 2 Bolog(Gn (X" |fn(Y"II=D(Qxnyn || Pxnyn) (59)

where (a) follows from Jensen’s inequality.
To describe the law @ to which we shall apply (54), let [1 : n] denote the set {1,...,n} and define the auxiliary

variables
M2 g (v (60)

U 2 (XL y =t M), ie[l:n] (61)
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taking values in the sets

M2 {0, 1} (62)
and
U 22X YT M, ielnl (63)

Given any Qy € P()) and any n Markov kernels {Qx,|v,u, }7—. define the 1aw Q y.yn ppm gn 0N Y7 X X7 X

M x T U x X™ as

A
Qxnynpyngn = Qv " Pujyn | I (QUI»\X'FWPIMQX,-mUi)P;zn|MXm (64a)
=1

where Py7y~ is specified by the helper as
Pagpyn(m [ y") =1(m = fu(y")), (64b)
Qu,|xi-1yi-1 18 specified through the definition of U; in (61) as
Qu, xi-1yi-1a(u; | 2y hm) = I(u; = (271 ' m)), (64¢)
and Pan Mmxn 18 determined by the guessing strategy as
Pgonnrxn (@" | m,z™) = 1(&" = Go(Gn(z™ | m))). (64d)
Thus,

QX”Y”MU“X“ (yn; xna m, unv i'n)
n

= Q5" (") I(m = foly™) ] (T(wi = &1y ™ m)Qx, v, (i | i i)

i=1
I(2" = Gn(Gr(z™ | m))), (64e)
where G, (+) is defined in (11).
Note that (64a) implies that
XU 5 (M, Y"1 = Y; under Q (65)

because the (X~ Y™ M, U’ !)-marginal of ) can be written as

i—1
Qxirynwior = Q¥ (5" Paryn [ [ (Quyixo-1vi-1m@x,v,0,), (66)
j=1
which impies that
(XL U - (M, YY) = Y™ under Q (67)

because the product is a function of (m,y*~') and (z*~!,w'~'), and the pre-product Q3" (y™) Py~ is a function
of (m,y"~') and y.
Next define for every i € [1 : n]
D; £ Eld(X;, X;)], (68)
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where the expectation is w.r.t. to the PMF Q v,y /7n ¢ - Under the latter, 2" = G, (G (2™ | m)) so d(z™,2") <

D for every x™ € X™ and, also in expectation (over Q ynyn prpm gn)

1 n
- Z D; < D. (69)
n “
1=1
Further define
Q% arx: 2 argmin  [(X; X! | M, XY, (70)
‘ XImxi

E[d(X;,X))]<D;
where the minimum is over all conditional PMFs Q ¢,/ € P(X | M x X7), and where I(X;; X! | M, X" 1)
and E[d(X;, X{)] are evaluated w.r.t. QX{lMXZQMXi, with Q/x: being the (M, X*)-marginal of Q y.yn prprn n-

Using {Q*X’\MXY'}?:P we extend Q ynynpymgn 10 alaw Q on Y7 x XM X M x [T, U x X" x X" as follows:

n
Ay *
Q - QX?LY?LMU?LXTL H Q ””AIXZ'« (71)
i=1

Note that the factorization in (71) implies that
X| = (M, X") —»Yy"! (72)

because it implies that—conditional on (M, X*)—X! is independent of the tuple (X™, Y™, M,U™, X™) and hence
also of Y?~! (which is a function of this tuple). For the remainder of this section we shall assume that, unless
stated otherwise, all expectations and information-theoretic quantities are evaluated w.r.t. ). To study (54) for this
@, we begin by lower-bounding E[log(G,,(X™ | M))] using the conditional R-D function. To this end, we note that,
conditional on M = m, there is a one-to-one correspondence between G, (X™ | M) and X™ s0, by the Reverse

Wyner inequality of Corollary 2 in Appendix A,

Ellog(G,(X™ | M)) | M =m] > H(X™ | M = m) — nd, (73)
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with §,, tending to zero as n tends to infinity. Averaging over M,

Ellog(Gn (X" [ M))]

> H(X" | M) —né, (74)

> (X" X" | M) = nd, (75)

= (H(Xi | M, X~ H(X; | M, X",Xi—l)) ~nd, (76)
=1

>3 (HOG | MXT) = HOG | M, X, XY ) = nd, )
1=1

= ZI(XZ»;XZ- | M, X1 —né, (78)
=1

(@) & ) .

>3 I(X; X[ | M, X = nd, (79)
=1

= (H(X; | M, XY — H(X] | M, Xi)) — né, (80)
1=1

>3 (H(Xg | M, XYY (X | M, Xi)) — ndn 81)
=1

O3 (M XLy S H M XY ) (82)
=1
—nd,

O3 (B 0) — HX] | U3 X)) = d (83)
=1

= 1(X;; X] | U;) — néy, (84)
=1

where in (a) we have replaced Xi by X{ , and the inequality hence follows from (70); (b) follows from (72); and
in (c) we have identified the auxiliary variable U; defined in (61). To continue from (84), let T" be equiprobable
over [1 : n], independent of (Y™, M, X™ U™, (X’)"), and define the chance variable

(Y, X,U,X") 2 (Yp, X7, Ur, X} (85)

taking values in the set ) x X' x (U_,14;) x X. Note that, since the sets {i4; } of (63) are disjoint, T is a deterministic
function of U, and we can define ¢(-) as mapping each u € U ;U; to the unique ¢ € [1 : n] for which u € U;.

With this definition, the PMF of (Y, X, U, X/ ) can be expressed as

u

N R 1 )
QYXUX’ (yv Z, U, J)/) £ EQYL(u)XL(u)UL(u)X:( >(ya z,u, 37/), (86)

where Qy. x ;. ¢/ is the (Y;, Xi, Ui,f(lf)-marginal of Q. We next observe that, under Q, E[d(X, X’)] is upper-



14

bounded by D. Indeed,

n

A 1 A
Egld(X, X)] = — > Eold(X;, X7)] (87)
i=1
<3 n, (88)
i=1
<D, (39)

where the first inequality follows from the constraint in the optimization on the RHS of (70) and the second
from (69). Also note that, since 7" is a deterministic function of U, the RHS of (84) can be expressed in terms of
(Y, X,U,X') as

nI(X; X" | U) — né,, (90)

SO,

Eg[log(Gn(X™ | M))] > nI(X; X' | U) — ndy, 1)

where the conditional mutual information on the RHS is w.r.t. Q Using (89), we can lower-bound the RHS of (91)

in terms of the conditional R-D function (14),

nI(X; X' | U) = ndn > nRa.p(Qxv) — ndn, 92)
and, using (92) and (91), we obtain the desired lower bound

Eq[log(Gn(X™ | M))] = nRa,p(Qx|v) — 1. (93)

We next return to (54) and derive a single-letter expression for D(Q xnyn || Pxnyn ), where Qxnyn is the (X", Y™)-
marginal of ), and

We first express it as

D(Qxry

PXnyn) = D(QXnYnP]V[lynQUnIXnYn]\/[||PXnYnPM'YnQUannYnM), (95)

and then observe that Q x»y« Pysjy»Qun|xn»yns is (a factorization of) the (X", Y™, M, U™)-marginal of @, which

can be expressed as

n
Qxryn PrjynQurixryny = Q3" (H QXi|Y,L-Ui)PJW\Y"QU"\X"Y"Mv (96)
i=1

because, by (64a) (or (61)), .
Qun|xnyny = H Qu,|xi-1yi-1- Cn)

i=1

From (94), (96) and (95)

D(Qxnyn|[Pxnyn) = D(Qxnyn Pajy» Qunixnyn || Pxnyn Parjyn Qunxnynis) (98)

=D ( ;f'n (H QX'i‘YL.U’L.>PM|YTLQU77‘IX/"’Y/"/M

i=1

P§$PMY"QU"X“'Y”'N[> . 99)
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We now continue the derivation of a single-letter expression for D(Q xnyn||Pxny=) by studying the RHS of (99):
D(Qxnyn|Pxnyn)

=D (Q;X/" H Qx,1v,v, Prjy»Qun|xnynm

i=1

PXX?/PMW"QU"X”Y”M) (100)

(é) EQ 10g ;N(Yn) H?:l QX1|Y7.U1 (Xz | Y;7Ui)PM\Y7l (M I Yn)QUn'XnYnM(Un | X7L,Yn7M) (101)
Py (X, Y™) Parpyn (M | Y™)Quon xnynpe (U™ | X7, Y™, M)
Y™ T v (X | Y, U
i [ (O Qs (5 Yo U) o
Pey(Xm,Ym)
®) — Qy (Ys)Qx,v,u, (Xi | Y3, Us)
\0) E 1 | YiUsq 103
; Qx,v,U; |:Og ( ny(Xi,Yi) ( )
- Z Z Qx,vu, (i, Yis u;) log < z PX “E;J N (104)
=1 (z;,y;,ui ) EX XY XU; Xy \Fi, Yi
n
c Qv, ) Qx,vu, (Ti | Yi, uq
2 Z Z Qx,v,u, (Ti, Yir ui) log ( 4 )Pjy)(/xU- (y-) | ) (105)

i=1 (x,Yi,u: ) EX XY XU;

- 1 lllzzazl
=n), 2L Qg u) log (QYZ(y oy | 90 v, (@1 | y u)"> (106)

i=1 (2i,y:,u:) EX XY XU; Pxy (i, y1) Qui v, (ui yl)%

Cnd Y Qyw)les < Az g, ) ) (107)
=1 (i) € X X VXU Pxy (w4,9:)Quyy (wi | yi)

=n > Q(z,y,u)log ( Az 9,u) ) (108)

(0,0 EX <Y X (U s) Pxy (z,y)Quiy (u | y)

= nD(QXYUHPXYQU\Y)a (109)

where (a) follows from the definition of the relative entropy and the fact that Q3" H?:l Qx,1viv, PrupynQun | xnynm
is (a factorization of) the (X™, Y™, M,U™)-marginal of @Q; in (b) we have used that for nonnegative = and y,
log(zy) = log(x)+log(y), and we used Q x,v,u, to denote the (X;,Y;, U;)-marginal of Q; (c) holds because under
Q, Y™ ~IID Qy; and in (d) we have identified %meUi as the (X, Y, U)-marginal of Q.

We next show that, I (Y; U)— the mutual information between Y and U under Q—is upper-bounded by R. To
that end first observe that by definition of Q (in (85) and (86)) we can express IQ(Y; U) as

I5(Y;U) = %Z(HQ(YZ.)—HQ(E | Ui)). (110)
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So continuing from the RHS of (110), with all information-theoretic quantities implicitly evaluated w.r.t. Q:

(D) — B | XY ) (111)

TR

N
Il
-

Ly () - i ) =

S

—~
S
g

S

(1Y) - HY; | Y=L M) (112)

(HOG 1Y) =BG YL M) (113)

I
S|

©
Il
=

- %ZI(Yi;M 1Yl (114)
=1
~ Loy (115)
n
< Luouy (116)
n
< (117)

where (a) holds because, under Q, X*~1 — (Y =1 M) — Y; (65); (b) holds because Y™ is IID under Q; and (c)

holds because M can assume at most 2% distinct values.

We now use (54), (92), (109), and (117) to derive the converse part of Theorem 1 as stated in (53). Starting with

(54), we use (92) and (109) to obtain

Epgnyn[Gn(X™ | fu(Y"))"]

> QH(PRd,D(QX\U)*D(QXyUHPXYQU\Y)*%)7 (118)

where the PMF Q on the RHS of (118) is defined in (86). Taking the logarithm and dividing by n on both sides,
1
> pRa,p(Qxv) — D(QxvullPxyQupy) — 6n. (119)

Since the choice of Qy and {Qx,y,u, }i—; in (64a) is arbitrary, so is that of Qy and QX‘YU in the (X,Y,U)-
marginal Q XYU = QYQU‘YQ x|yu of Q (86). We are therefore at liberty to choose those so as to obtain the tightest
bound. Things are different with regard to QU|y, because it is influenced by the helper f,,, and we must ensure
that the bound is valid for all helpters. Ostensibly, we should therefore consider the choice of QU|Y that yields
the loosest bound. However, QU‘Y cannot be arbitrary: irrespective of our choice of Qy, the mutual information
I5(U;Y) must be upper bounded by R (117).

These considerations allow to infer form (119) that
1
S10g(E[Ga (X" | fu(Y")"))

> sup inf sup (PRd,D(Q)qU) - D(QXYUHPXYQUw)) — On, (120)
Qv Qoiy: I(QY?U)SRQXWU

which, upon taking n to infinity, yields (53).
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APPENDIX A

Lemma 3. Let X be a chance variable taking values in the finite set X according to some PMF P, and let f be
a bijection from X to |1 : |X|]. Then, for X ~ P,

Eflog(f(X))] = H(X) — log(In(|X]) + 3/2). (121)

Proof. Outcomes of zero probability contribute neither to the LHS nor to the RHS of (121), and we therefore

assume w.l.g. that P(z) > 0 for every z € X. We then have

Ellog(f ZP )log(f(z)) (122)
reX

N pioy o ({@P@)
_;p( )log< s > (123)
+ZP ) log(f(x)P(x)) (124)
-2 P@)log (f(m)lP(w)) =
(2) H(X) — log (Z (196 ) (126)

| x|

D H(X) - log Z (127)
< HX) = log(n(|X]) + 3/2), (128)

where (a) follows from Jensen’s inequality; (b) holds because f maps onto [1 : |X|]; and (c) holds because > | 1/i

is upper-bounded by In(n) + 3/2. O

Corollary 2. Let X be a finite set, and let f be a bijection from X™ to [1 : |X|"]. Then, for any chance variable
X" on X",

Eflog(f(X™))] > H(X™) — nd,, (129)
where 6, = 6,(|X|) and for every fixed | X|,

6y — 0. (130)

Proof. The corollary follows from Lemma 3 and the fact that when |X| is fixed,

o 105X +3/2)

n—00 n

=0. (131)

APPENDIX B

We prove that restricting U to take values in a set of cardinality |Y| + 1 does not alter (13). To that end, we

first express the objective function in (13) as an expectation over U of a quantity \IJ(QY\U:anX|YU:u) that
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depends explicitly on Qy|y—y, @ x|yv—. and implicitly on the given joint PMF Pxy and the PMF Qy (which is

determined in the outer maximization). Specifically,

pRap(Qxw) — D(@xvulPxyQuyy) = Z Qu(u) ¥(Qy|v=u, Qx|yU=u)> (132a)

uel
with

V(Qy|v=us @x|yUu=u) = PRa,D(Qx|jv=u) + H(Qy) — H(Qy|v=u) — D(Qy|u=uQx|v,u=ul|Pxy) (132b)

where Ry p(Qx|y=.) is determined by Qy|y—, and Qx|yy—, Via the relation

Qx[v=u(zlu) = ZQY\U w(Ylw) Qxyu=u(z|y, u). (133)

yey
Indeed, (132) follow from

D(@xvul|PxyQujy)
. [1 (QXYU<XY |U) QU<U>)
= LQxyu| 108

Pxy(X,Y)Quy (U |Y)

[ (Qxyw(XYU)
10g< PXY(X7Y) >

*H(QU) =+ H(QUlY) + EQXYU

[ XY|\U
—H(QY) +H(QY|U) +EQXYU IOg (%)
log (

(
Qviv(Y |U)Qxjyu(X | YU))

—H(Qy) +H(QY|U) +EQXYU ny(X Y)

QY|U(y | u) QX\YU:u(x |y, u)

= - Z Qu(u) | HQy) — H(Qyjw=u) — Z Qy|v=u Qx|yv=u(z|y, u)log

ued (z,y)EX XY PXY($7Z/)

The representation (132) shows that the inner maximization in (13) can be performed separately for every w.

Defining
U (Qyju=u) = max Y(Qy|u=u; @x|yv=u) (139)
Qx|yu=u
we can express (13) as
o ¢ (140)
Qf@vw I(QYU)<RZQU (Qyr=u)-

We next view the inner minimization above as being over all pairs (Qu, Qy|y) with the objective function being

> Quu) T (Qyr—u); (141)
uel
with the constraint on the Y-marginal
D Quw) Qviu(ylu) = Qv (y),  Vye; (142)

ueU

and the constraint on the mutual information

> Qu(u) HQyjy—u) > HQy) - (143)

ueU

(134)

(135)

(136)

(137)

.(138)
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Since the objective function and constraints are linear in @y, it follows from Carathéodory’s theorem (for connected

sets) that the cardinality of U can be restricted to | V| + 1.
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