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Abstract

A source sequence is to be guessed with some fidelity based on a rate-limited description of an observed sequence

with which it is correlated. The trade-off between the description rate and the exponential growth rate of the least

power mean of the number of guesses is characterized.
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I. INTRODUCTION

Our problem can be viewed as the guessing analogue of the Remote Sensing problem in lossy source coding [1],

[2], [3]. As in that problem, the description of a source sequence is indirect: the rate-limited description is based

only on a noisy version of the sequence. The problems differ, however, in their objectives: in the Remote Sensing

problem the source sequence is estimated (with the least expected distortion), whereas in our problem it is guessed

to within some distortion (with the least power mean of the number of required guesses). Our problem thus relates

to Arıkan and Merhav’s guessing-subject-to-distortion problem [4] in much the same way that the Remote Sensing

problem relates to Shannon’s lossy source coding problem [5].

To put our problem in context, recall that in the guessing problem pioneered by Massey [6] and Arıkan [7], a

guesser seeks to recover a finite-valued chance variable X ∈ X by sequentially producing guesses of the form

“Is X = x1?”

“Is X = x2?”

...

where x1, x2, . . . ∈ X , and each guess is answered truthfully with “Yes” or “No.” The number of guesses taken

until the first “Yes,” i.e., until X is revealed, depends on the guesser’s strategy G (the order in which the elements
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of X are guessed) and is denoted G(X). Given the probability mass function (PMF) PX of X and some ρ > 0,

Arıkan showed [7] that the least achievable ρ-th moment of the number of guesses E[G(X)ρ] required to recover

X is closely related to its Rényi entropy:

1

(1+log|X |)ρ
2ρH1/(1+ρ)(PX)≤min

G
E[G(X)ρ]≤2ρH1/(1+ρ)(X), (1)

where H1/(1+ρ)(PX) denotes the order-1/(1 + ρ) Rényi entropy of X . When guessing a length-n random se-

quence Xn , (X1, . . . , Xn) whose components are independent and identically distributed (IID) according to PX ,

Inequality (1) implies that

lim
n→∞

1

n
log
(

min
G

E[G(Xn)ρ]
)

= ρH1/(1+ρ)(PX), (2)

so the Rényi entropy of X fully characterizes (up to the factor ρ) the exponential growth rate of the least ρ-th

moment of the number of guesses required to recover Xn.

Our problem differs from Massey’s and Arıkan’s in the following two ways:

1) Instead of recovering Xn, the guesser need only produce a guess X̂n ∈ X̂n that is close to Xn in the sense

that
1

n

n∑
i=1

d(Xi, X̂i) ≤ D, (3)

where the distortion measure d(·, ·) : X × X̂ → R≥0 and the maximal-allowed distortion level D > 0 are

prespecified. We assume that, for every xn ∈ Xn, (3) is satisfied by some x̂n ∈ X̂n; this guarantees the

existence of a guessing strategy that eventually succeeds.

2) Prior to guessing, the guesser is provided with a rate-limited description f(Y n) ∈ {0, 1}nR of a noisy

observation Y n ∈ Yn of Xn. Based on f(Y n), the guesser sequentially guesses elements X̂n of X̂n until

(3) is satisfied. (The guesser’s strategy G thus depends on f(Y n).)

We show that when (X1, Y1), . . . , (Xn, Yn) are IID according to PXY , the exponential growth rate of the least ρ-th

moment of the number of guesses—optimized over the description function f and the guessing strategy G—satisfies

the variational characterization (13) of Theorem 1 ahead.

Along the lines of [8], this theorem can be used to assess the resilience of a password Xn against an adversary

who has access to nR bits of a correlated password Y n and is content with guessing only a fraction 1−D of the

symbols of Xn. (In this application, the distortion function is the Hamming distance.)

Since our guessing problem is an extension of the guessing-subject-to-distortion problem studied by Merhav and

Arıkan [4], their suggested motivation (accounting for the computational complexity of a rate-distortion encoder

as measured by the number of metric calculations) and proposed applications (betting games, pattern matching,

and database search algorithms) also extend to our setup. Further applications include sequential decoding [7],

compression [9], and task encoding [10], [11].

Numerous other variations on the Massey-Arıkan guessing problem were studied over the years. In [12], Sundare-

san derived an expression for the smallest guessing moment when the source distribution is only partially known

to the guesser; in [13], [14], the authors constructed and analyzed optimal decentralized guessing strategies (for

multiple guessers that cannot communicate); in [15], Weinberger and Shayevitz quantified the value of a single bit
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of side-information provided to the guesser prior to guessing; in [16], the authors studied the guessing problem

using an information-geometric approach; and in [17] and [11] the authors studied the distributed guessing problem

on Gray-Wyner and Stelpian-Wolf networks.

The above distributed settings dealt, however, only with “lossless” guessing, where the guessing has to be exact.

Our present setting maintains, to some degree, a distributed flavor, but allows for “lossy” guessing, i.e., with some

fidelity.

II. PROBLEM STATEMENT AND NOTATION

Consider n pairs {(Xi, Yi)}ni=1 that are drawn independently, each according to a given PMF PXY on the finite

Cartesian product X × Y:

{(Xi, Yi)}ni=1 ∼ IIDPXY . (4)

Define the sequences

Xn , {Xi}ni=1, Y
n , {Yi}ni=1, (5)

with {Xi}ni=1 being IIDPX , where PX is the X-marginal of PXY , and likewise {Yi}ni=1 being IIDPY . By possibly

redefining X and Y , we assume without loss of generality that PX and PY are positive. A guesser wishes to produce

a sequence X̂n, taking values in a finite n-fold Cartesian product set X̂n, that is “close” to Xn in the sense that

d̄(Xn, X̂n) ≤ D, (6)

where D > 0 is some prespecified maximally-allowed distortion, and

d̄(xn, x̂n) ,
1

n

n∑
i=1

d(xi, x̂i) (7)

with

d: X × X̂ → R≥0 (8)

some prespecified distortion function. We assume that d(·, ·) and D are such that for each xn ∈ Xn there exists

some x̂n ∈ X̂n for which (6) is satisfied,

∀xn ∈ Xn ∃x̂n ∈ X̂n : d̄(xn, x̂n) ≤ D. (9)

This guarantees that such X̂n can be found and in no-more-than |X̂ |n guesses.

Courtesy of a “helper” fn : Yn → {0, 1}nR, the guesser is provided, prior to guessing, with an nR-bit description

fn(Y n) of Y n. Based on fn(Y n), the guesser produces a “guessing strategy” (also called a “guessing function”)

Gn
(
· |fn(Y n)

)
: {1, . . . , |X̂n|} → X̂n, (10)

with the understanding that its first guess is Gn
(
1
∣∣fn(Y n)

)
, followed by Gn

(
2|fn(Y n)

)
, etc. Thus, the guesser first

asks

“Does Gn
(
1
∣∣fn(Y n)

)
satisfy (6)?”
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If the answer is “yes,” the guessing terminates and Gn
(
1
∣∣fn(Y n)

)
∈ X̂n is produced. Otherwise the guesser asks

“Does Gn
(
2
∣∣fn(Y n)

)
satisfy (6)?”

etc. Since guessing the same sequence twice is pointless, we assume (without loss of optimality) that, for every

value of fn(yn), the mapping Gn( · |fn(yn)) is injective and hence—since its domain and codomain are of equal

cardinality—bijective. This and Assumption (9), allow us to define

Gn
(
xn
∣∣fn(yn)

)
, min

{
i ≥ 1: d̄(xn,Gn

(
i
∣∣fn(yn)

)
≤ D

}
(11)

as the number of required guesses when Xn = xn and fn(Y n) = fn(yn).

Given a positive constant ρ, we seek the least exponential growth rate in n of the ρ-th moment of the number

of guesses E[Gn(Xn | fn(Y n))ρ]:

lim
n→∞

1

n
log
(

min
fn

min
Gn

E[Gn(Xn | fn(Y n))ρ]
)

(12)

(when the limit exists), where the minima in (12) are over all maps fn : Yn → {0, 1}nR and all guessing

strategies Gn. Theorem 1 below asserts that the limit exists and provides a variational characterization for it.

To state the theorem, we need some additional notation. Given finite sets V and W , let P(V) denote the family

of PMFs on V , and P(V | W) the family of PMFs on V indexed by W: for every P (· | ·) ∈ P(V | W) and every

w ∈ W , we have P (· | w) ∈ P(V). Given PMFs PW ∈ P(W) and PV |W ∈ P(V | W), we use PW PV |W to

denote the joint PMF PW (w) PV |W (v | w) on W × V (in this context, PV |W (· | ·) is the conditional PMF of V

given W .)

Theorem 1. The limit in (12) exists and equals

sup
QY

inf
QU|Y :I(QY ;U )≤R

sup
QX|Y U

(
ρRd,D(QX|U )

−D(QXY U‖PXYQU |Y )
)
, (13)

where the optimization is over QY ∈ P(Y), QU |Y ∈ P(U | Y), QX|Y U ∈ P(X | Y×U), and the choice of the finite

set U; where I(QY ;U ) is the mutual information between Y and U ; Rd,D(QX|U ) is the conditional rate-distortion

(R-D) function of X given U :

Rd,D(QX|U ) , min
QX̂|X,U : E[d(X,X̂)]≤D

I(QX;X̂|U ), (14)

where I(QX;X̂|U ) is the conditional mutual information between X and X̂ given U ; and D(·‖·) denotes relative

entropy. All the expressions in (13) are evaluated w.r.t. to QXY U = QYQU |YQX|Y U , and those in (14) are

w.r.t. QX̂|X,UQXU , with QXU being the (X,U)-marginal of QYQU |YQX|Y U .

Remark 1. As shown in Appendix B, restricting U to take values in a set of cardinality |Y|+1 does not alter (13).

Consequently, the suprema and infimum can be replaced by maxima and minimum respectively.

Remark 2. In the special case where the help is direct, i.e., when Y equals X under PXY so

(x 6= y) =⇒
(
PXY (x, y) = 0

)
, (15)
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Theorem 1 recovers Theorem 2 of [18].

Proof of Remark 2: This can be seen by first noting that the relative entropy in (13) is finite only when

QXY U � PXYQU |Y , whence QXY � PXY .1 This and (15) imply that the inner supremum in (13) is attained

when X and Y are equal also under QXY U , and

QX|Y U (x | y, u) = I(x = y). (16)

Using (16) and denoting expectation w.r.t. QXY U by EQXYU , we simplify D(QXY U‖PXYQU |Y ) as follows:

D(QXY U‖PXYQU |Y )

= D(QYQU |YQX|Y U‖PXYQU |Y ) (17)

= EQXYU

[
log

(
QY (Y )QU |Y (U | Y )QX|Y U (X | Y, U)

PXY (X,Y )QU |Y (U | Y )

)]
(18)

= EQXYU

[
log

(
QY (Y )QX|Y U (X | Y,U)

PXY (X,Y )

)]
(19)

= EQXYU

[
log

(
QY (y) I(X = Y )

PX(X) I(Y = X)

)]
(20)

=
∑

(x,y)∈X×Y

QY (y) I(x = y) log

(
QY (y) I(x = y)

PX(x) I(y = x)

)
. (21)

To continue from (21), note that, by (16),

QY (y) I(x = y) = QX(x) I(y = x), (22)

so (21) implies that

D(QXY U‖PXYQU |Y )

=
∑

(x,y)∈X×Y

QX(x) I(y = x) log

(
QX(x) I(y = x)

PX(x) I(y = x)

)
(23)

=
∑
x∈X

QX(x) log

(
QX(x)

PX(x)

)
(24)

= D(QX‖PX). (25)

Having dispensed with the inner supremum in (13), we note that, because X and Y are equal under QXY U , we

can replace the outer supremum in (13) with one over QX , and the infimum with one over QU |X . From this and

(25) we conclude that (13) reduces to

sup
QX

inf
QU|X :I(QX;U )≤R

(
ρRd,D(QX|U )−D(QX‖PX)

)
, (26)

which recovers Theorem 2 of [18].

1We use Q� P to indicate that Q is absolutely continuous w.r.t. P .
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Remark 3. When the help is useless because R is zero or because X and Y are independent (under PXY ),

Theorem 1 reduces to Corollary 1 of [4].

Proof of Remark 3: To show this, we begin by considering the choice of U as deterministic and thus establish

that (13) is upper bounded by

sup
QX

(
ρRd,D(QX)−D(QX‖PX)

)
, (27)

which is the expression in Corollary 1 of [4]. It remains to show that, when R = 0 or when X and Y are

independent, this is also a lower bound.

We begin with R = 0. In this case, the constraint in the infimum in (13) implies that Y and U are independent

under QXY U , so

QXY U = QY QU QX|Y U . (28)

A lower bound results when we restrict the inner supremum to QX|Y U (x|y, u) that is determined by x and y, so

that QXY U has the form QUQXY . With this form, the objective function in (13) reduces to(
ρRd,D(QX)−D(QXY ‖PXY )

)
(29)

which depends on QXY U only via its marginal QXY . This allows us to dispense with the infimum to obtain

sup
QXY

(
ρRd,D(QX)−D(QXY ‖PXY )

)
, (30)

which is attained when QY |X equals PY |X , whence it is equal to (27).

Having established that (27) is a lower bound on (13) when R = 0, we now show that it is also a lower bound

on (13) when X and Y are independent. In this case we obtain the lower bound by restricting the inner supremum

to be over QX|Y U (x|y, u) that are determined by x alone, so that QXY U has the form QXQUY . With this form

(and with X and Y being independent under PXY ), the objective function in (13) reduces to(
ρRd,D(QX)−D(QXQY U‖PXPYQU |Y )

)
(31)

which simplifies to (
ρRd,D(QX)−D(QXQY ‖PXPY )

)
. (32)

Again U disappears, and we are back at (30), which evaluates to the desired lower bound.

III. ACHIEVABILITY

In this section, we prove the direct part of Theorem 1, namely, that when {(Xi, Yi)}ni=1 are IID according to

PXY , then for every ε > 0 there exists a sequence of rate-R helpers {fn} and guessing strategies {Gn} satisfying

lim sup
n→∞

1

n
log(E[Gn(Xn | fn(Y n))ρ])

≤ sup
QY

inf
QU|Y :I(QY ;U )≤R

sup
QX|Y U

(
ρRd,D(QX|U )

−D(QXY U‖PXYQU |Y )
)

+ ε. (33)
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Proof. Since we are only interested in the behavior of E[Gn(Xn | fn(Y n))ρ] as n tends to infinity, we shall only

consider large values of n.

We begin by constructing the helper fn. To do so, we shall use the Type-Covering lemma [19, Lemma 1], [20,

Lemma 9.1], [21, Lemma 2.34] that we restate here for the reader’s convenience. Given finite sets V and W , let

Pn(V) denote the family of “types of denominator n” on V , i.e., the PMFs P (·) ∈ P(V) for which nP (v) is an

integer for all v ∈ V . By a “conditional type on V given W” we refer to a conditional PMF P (· | ·) ∈ P(V | W)

for which P (· | w) is a type (of some denominator n(w)) for every w ∈ W . Given a sequence vn ∈ Vn, the

“empirical distribution of vn” is the (unique) type P ∈ Pn(V) for which P (v′) = 1
n |{i : vi = v′}| for every v′ ∈ V .

And given P ∈ Pn(V), we use T (n)(P ) to denote the “type class” of P , i.e., the set of all sequences vn ∈ Vn

whose empirical distribution is P .

Lemma 1 (Type-Covering lemma). Let V and W be finite sets. For every ε > 0 there exists some n0(ε) such that

for all n exceeding n0(ε) the following holds: For every QV ∈ Pn(V) and every conditional type QW |V for which

QVQW |V ∈ Pn(V ×W), there exists a codebook C ⊆ Wn satisfying

|C| ≤ 2n(I(QV ;W )+ε) (34)

and

∀vn∈T (n)(QV )∃wn∈C : (vn, wn) ∈ T (n)(QVQW |V ). (35)

Lemma 1 is applied as follows: For every QY ∈ Pn(Y), we first define

Q∗U |Y (QY ) , arg min
QU|Y :I(QU;Y )≤R−ε′

max
QX|Y U

Rd,D(QX|U ), (36)

(provided the minimum exists) where the optimization is over choice of the finite set U , and types QU |Y and QX|Y U

for which QYQU |YQX|Y U ∈ Pn(Y×U×X ); where I(QU ;Y ) and Rd,D(QX|U ) are computed w.r.t. QYQU |YQX|Y U ;

and where ε′ is a small positive constant (to be specified later). If the minimum in (36) does not exist, we let

R∗(QY ) , inf
QU|Y :I(QU;Y )≤R−ε′

max
QX|Y U

Rd,D(QX|U ), (37)

where the optimization is under the same conditions as in (36), and instead define Q∗U |Y (QY ) as a conditional type

satisfying

max
QX|Y U

Rd,D(QX|U ) ≤ R∗(QY ) + ε′′ (38)

where the maximum is over all conditional types QX|Y U for which QYQ
∗
U |YQX|Y U ∈ Pn(Y × U × X ); where

Rd,D(QX|U ) is computed w.r.t. QYQ∗U |YQX|Y U ; and where ε′′ is a small positive constant (also to be specified

later).

To construct the helper fn, we invoke Lemma 1 (assuming that n is sufficiently large) with QV ← QY , QW |V ←

Q∗U |Y (QY ), and ε← ε′ to obtain a codebook C(QY ) ⊆ Un used by fn to produce the index of some Un ∈ C(QY )

such that (Un, Y n) ∈ T (n)(QYQ
∗
U |Y (QY )).

We next construct a guessing strategy Gn. Let Un ∈ C(QY ) be the codeword provided by the helper and that hence

satisfies (Y n, Un) ∈ T (n)(QYQ
∗
U |Y (QY )). Let QXY U denote the empirical joint distribution of (Xn, Y n, Un).

We first argue that the guesser can be assumed cognizant of QXY U . To that end, we need the following lemma:



8

Lemma 2 (Interlaced-Guessing lemma [22, Lemma 5]). Let V , W , and Z be finite-valued chance variables and

let ρ be nonnegative. Given any guessing strategy G for guessing V based on W and Z, there exists a guessing

strategy G̃ based on W only such that

E[G̃(V |W )ρ] ≤ E[G(V |W,Z)ρ]|Z|ρ. (39)

Invoking Lemma 2 with V ← Xn, W ← Un, and Z ← QXY U , we see that

min
Gn

E[G(Xn | Un)ρ]

≤ min
Gn

E[G(Xn | Un, QXY U )ρ]
∣∣P(n)(X × Y × U)

∣∣ρ, (40)

where the guessing strategy on the RHS of (40) depends on both the helper’s description fn(Y n) of Y n and the

empirical joint distribution QXY U of (Xn, Y n, Un). Since
∣∣P(n)(X × Y × U)

∣∣ grows subexponentially with n,

lim
n→∞

1

n
log
∣∣P(n)(X × Y × U)

∣∣ρ = 0. (41)

Thus, by (40) and (41),

lim sup
n→∞

1

n
min
Gn

E[G(Xn | Un)ρ]

≤ lim sup
n→∞

1

n
min
Gn

E[G(Xn | Un, QXY U )ρ]. (42)

Since the RHS of (42) cannot exceed its LHS, (42) must hold with equality, and we shall hence for the remainder

of the proof assume that QXY U is known to the guesser.

Our guessing strategy Gn will thus depend on both the helper’s description Un of Y n and the empirical joint

distribution QXY U of (Xn, Y n, Un). To construct Gn, we will use of the following corollary [18, Lemma 2] which

follows from the conditional version of Lemma 1:

Corollary 1. Let V , W and Z be finite sets, let d(·, ·) be a distortion function on V ×W , let d̄(·, ·) be its extension

to sequences, and let D be positive. For every ε > 0 there exists some n0(ε) such that for all n exceeding n0(ε)

the following holds: For every QV Z ∈ Pn(V × Z) and every zn ∈ T (n)(QZ) there exists a codebook C ⊆ Wn

that satisfies

|C| ≤ 2n(Rd,D(QV |Z)+ε) (43)

and

∀vn ∈ T (n)(QV |Z |zn)∃wn ∈ C : d̄(vn, wn) ≤ D. (44)

We invoke Corollary 1 with QV Z ← QXU , zn ← Un, W ← X̂ , and ε ← ε′′, where ε′′ is some small

nonnegative constant (to be specified later) to obtain the codebook C(QXY U ) ⊆ X̂n. The guessing strategy Gn is

then chosen such that Gn|{1,...,|C(QXYU )|} is a bijection from {1, . . . , |C(QXY U )|} to C(QXY U ), i.e., such the first

|C(QXY U )| guesses are those in C(QXY U ) in some arbitrary order. Note that (44) guarantees that some X̂n in

Gn|{1,...,|C(QXYU )|} satisfies (6), and thus the guesser succeeds after at most |C(QXY U )| guesses.
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We now show that (33) holds for our proposed helper fn and guessing strategy Gn:

E[Gn(Xn | fn(Y n))ρ]

(a)
= E[Gn(Xn | Un)ρ] (45)

(b)
=
∑
QY

∑
QX|Y U

(
Pr[Y n ∈ T (n)(QY )]

Pr[Xn ∈ T (n)(QX|Y U ) | Y n ∈ T (n)(QY )]

E[Gn(Xn | Un)ρ

| (Xn, Y n, Un) ∈ T (n)(QYQ
∗
U |Y (QY )QX|Y U )]

)
(46)

(c)

≤
∑
QY

∑
QX|Y U

(
Pr[Y n ∈ T (n)(QY )]

Pr[Xn ∈ T (n)(QX|Y U ) | Y n ∈ T (n)(QY )]

2nρ(Rd,D(QX|U ))+ε′′)
)

(47)

(d)

≤
∑
QY

∑
QX|Y U

(
2−nD(QY ‖PY )2−nD(QX|Y U‖PX|Y )

2nρ(Rd,D(QX|U )+ε′′)
)

(48)

(e)

≤ max
QY

max
QX|Y U

(
2−nD(QY ‖PY )2−nD(QX|Y U‖PX|Y )

2nρ(Rd,D(QX|U )+ε′′)
)∣∣P(n)(X × Y × U)

∣∣ρ (49)

(f)
= max

QY
min

QU|Y :I(QU;Y )≤R−ε′
max
QX|Y U

(
2−nD(QY ‖PY )

2−nD(QX|Y U‖PX|Y )2nρ(Rd,D(QX|U )+ε′′)∣∣P(n)(X × Y × U)
∣∣ρ) (50)

(g)

≤ sup
QY

inf
QU|Y :I(QU;Y )≤R−ε′

sup
QX|Y U

(
2−nD(QY ‖PY )

2−nD(QX|Y U‖PX|Y )2nρ(Rd,D(QX|U )+ε′′)2nδn
)∣∣P(n)(X × Y × U)

∣∣ρ (51)

(h)

≤ sup
QY

inf
QU|Y :I(QU;Y )≤R

sup
QX|Y U

(
2−nD(QY ‖PY )

2−nD(QX|Y U‖PX|Y )2nρRd,D(QX|U )2nδn2nε
)∣∣P(n)(X × Y × U)

∣∣ρ, (52)

where (a) holds because we have assumed that the empirical distribution QY of Y n is known to the guesser who

can thus recover Un from fn(Y n) and C(QY ); in (b) we have used the law of total expectation, averaging over

the types QY ∈ Pn(Y) and conditional types QX|Y U for which QYQU |YQX|Y U ∈ Pn(Y × U × X ) (recall that

QU |Y = Q∗U |Y (QY ) is fixed by fn); (c) is due to (43); (d) follows from [23, Theorem 11.1.4]; in (e) we have

upper-bounded the sum by the largest term times the number of terms (the number of terms is the number of types

QY and QX|Y U that we have in turn upper-bounded by the number of types QXY U ); (f) is due to (36); in (g)
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we have lifted the constraint on QY , Q∗U |Y (QY ), and QX|Y U to be types at a cost of at most 2nδn , where δn ↓ 0

as n → ∞, and where the step is justified because any PMF can be approximated arbitrarily well by a type of

sufficiently large denominator; and in (h) we have used the fact that all exponents are continuous functions of their

respective arguments, and that ε′ and ε′′ were chosen sufficiently small.

Dividing the log of (52) by n, taking the lim sup as n tends to infinity, and applying (41) yields (33).

IV. CONVERSE

In this section we prove the converse part of Theorem 1, namely, that when {(Xi, Yi)}ni=1 are IID according to

PXY , then for any sequence of rate-R helpers {fn} and guessing strategies {Gn},

lim inf
n→∞

1

n
log(E[Gn(Xn | fn(Y n))ρ])

≥ sup
QY

inf
QU|Y :I(QY ;U )≤R

sup
QX|Y U

(
ρRd,D(QX|U )

−D(QXY U‖PXYQU |Y )
)
. (53)

Proof. Fix a sequence of helpers {fn} and guessing strategies {Gn}. We begin by observing that for any probability

law Q of (Xn, Y n)-marginal QXnY n ,

EPXnY n [Gn(Xn | fn(Y n))ρ]

≥ 2ρEQ[log(Gn(X
n|fn(Y n)))]−D(QXnY n‖PXnY n ), (54)

where EP denotes expectation w.r.t. the PMF P . Indeed,

EPXnY n [Gn(Xn | fn(Y n))ρ]

=
∑

(xn,yn)∈Xn×Yn
PXn,Y n(xn, yn)Gn(xn | fn(yn))ρ (55)

=
∑

(xn,yn)∈Xn×Yn
QXn,Y n(xn, yn)Gn(xn | fn(yn))ρ

PXn,Y n(xn, yn)

QXn,Y n(xn, yn)
(56)

=
∑

(xn,yn)∈Xn×Yn
QXn,Y n(xn, yn) 2

log

(
Gn(x

n|fn(yn))ρ
PXn,Y n (xn,yn)

QXn,Y n (xn,yn)

)
(57)

(a)

≥ 2

∑
xn,yn QXn,Y n log

(
Gn(x

n|fn(yn))ρ
PXn,Y n (xn,yn)

QXn,Y n (xn,yn)

)
(58)

= 2ρEQ[log(Gn(X
n|fn(Y n)))]−D(QXnY n‖PXnY n ), (59)

where (a) follows from Jensen’s inequality.

To describe the law Q to which we shall apply (54), let [1 : n] denote the set {1, . . . , n} and define the auxiliary

variables

M , fn(Y n) (60)

Ui , (Xi−1, Y i−1,M), i ∈ [1 : n] (61)



11

taking values in the sets

M , {0, 1}nR (62)

and

Ui , X i−1 × Yi−1 ×M, i ∈ [1 : n]. (63)

Given any QY ∈ P(Y) and any n Markov kernels {QXi|YiUi}ni=1, define the law QXnY nMUnX̂n on Yn × Xn ×

M×
∏n
i=1 Ui × X̂n as

QXnY nMUnX̂n , Q×nY PM |Y n
n∏
i=1

(
QUi|Xi−1Y i−1MQXi|YiUi

)
PX̂n|MXn , (64a)

where PM |Y n is specified by the helper as

PM |Y n(m | yn) = I(m = fn(yn)), (64b)

QUi|Xi−1Y i−1M is specified through the definition of Ui in (61) as

QUi|Xi−1Y i−1M (ui | xi−1yi−1m) = I(ui = (xi−1, yi−1,m)), (64c)

and PX̂n|MXn is determined by the guessing strategy as

PX̂n|MXn(x̂n | m,xn) = I(x̂n = Gn(Gn(xn | m))). (64d)

Thus,

QXnY nMUnX̂n(yn, xn,m, un, x̂n)

= Q×nY (yn) I(m = fn(yn))

n∏
i=1

(
I(ui = (xi−1, yi−1,m))QXi|YiUi(xi | yi, ui)

)
I(x̂n = Gn(Gn(xn | m))), (64e)

where Gn(·) is defined in (11).

Note that (64a) implies that

Xi−1 → (M,Y i−1)→ Yi under Q (65)

because the (Xi−1, Y n,M,U i−1)-marginal of Q can be written as

QXi−1Y nMUi−1 = Q×nY (yn)PM |Y n
i−1∏
j=1

(
QUj |Xj−1Y j−1MQXj |YjUj

)
, (66)

which impies that

(Xi−1, U i−1)→ (M,Y i−1)→ Y ni under Q (67)

because the product is a function of (m, yi−1) and (xi−1, ui−1), and the pre-product Q×nY (yn)PM |Y n is a function

of (m, yi−1) and yni .

Next define for every i ∈ [1 : n]

Di , E[d(Xi, X̂i)], (68)
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where the expectation is w.r.t. to the PMF QXnY nMUnX̂n . Under the latter, x̂n = Gn(Gn(xn | m)) so d̄(xn, x̂n) ≤

D for every xn ∈ Xn and, also in expectation (over QXnY nMUnX̂n )

1

n

n∑
i=1

Di ≤ D. (69)

Further define

Q∗
X̂′i|MXi

, arg min
QX̂′

i
|MXi :

E[d(Xi,X̂
′
i)]≤Di

I(Xi; X̂
′
i |M,Xi−1), (70)

where the minimum is over all conditional PMFs QX̂′i|MXi ∈ P(X̂ | M × X i), and where I(Xi; X̂
′
i | M,Xi−1)

and E[d(Xi, X̂
′
i)] are evaluated w.r.t. QX̂′i|MXiQMXi , with QMXi being the (M,Xi)-marginal of QXnY nMUnX̂n .

Using {Q∗
X̂′i|MXi

}ni=1, we extend QXnY nMUnX̂n to a law Q on Yn×Xn×M×
∏n
i=1 Ui×X̂n×X̂n as follows:

Q , QXnY nMUnX̂n

n∏
i=1

Q∗
X̂′i|MXi

. (71)

Note that the factorization in (71) implies that

X̂ ′i → (M,Xi)→ Y i−1 (72)

because it implies that—conditional on (M,Xi)—X̂ ′i is independent of the tuple (Xn, Y n,M,Un, X̂n) and hence

also of Y i−1 (which is a function of this tuple). For the remainder of this section we shall assume that, unless

stated otherwise, all expectations and information-theoretic quantities are evaluated w.r.t. Q. To study (54) for this

Q, we begin by lower-bounding E[log(Gn(Xn |M))] using the conditional R-D function. To this end, we note that,

conditional on M = m, there is a one-to-one correspondence between Gn(Xn | M) and X̂n so, by the Reverse

Wyner inequality of Corollary 2 in Appendix A,

E[log(Gn(Xn |M)) |M = m] ≥ H(X̂n |M = m)− nδn (73)
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with δn tending to zero as n tends to infinity. Averaging over M ,

E[log(Gn(Xn |M))]

≥ H(X̂n |M)− nδn (74)

≥ I(X̂n;Xn |M)− nδn (75)

=

n∑
i=1

(
H(Xi |M,Xi−1)−H(Xi |M, X̂n, Xi−1)

)
− nδn (76)

≥
n∑
i=1

(
H(Xi |M,Xi−1)−H(Xi |M, X̂i, X

i−1)
)
− nδn (77)

=

n∑
i=1

I(Xi; X̂i |M,Xi−1)− nδn (78)

(a)

≥
n∑
i=1

I(Xi; X̂
′
i |M,Xi−1)− nδn (79)

=

n∑
i=1

(
H(X̂ ′i |M,Xi−1)−H(X̂ ′i |M,Xi)

)
− nδn (80)

≥
n∑
i=1

(
H(X̂ ′i |M,Xi−1, Y i−1)−H(X̂ ′i |M,Xi)

)
− nδn (81)

(b)
=

n∑
i=1

(
H(X̂ ′i |M,Xi−1, Y i−1)−H(X̂ ′i |M,Xi, Y i−1)

)
(82)

− nδn

(c)
=

n∑
i=1

(
H(X̂ ′i | Ui)−H(X̂ ′i | Ui, Xi)

)
− δn (83)

=

n∑
i=1

I(Xi; X̂
′
i | Ui)− nδn, (84)

where in (a) we have replaced X̂i by X̂ ′i , and the inequality hence follows from (70); (b) follows from (72); and

in (c) we have identified the auxiliary variable Ui defined in (61). To continue from (84), let T be equiprobable

over [1 : n], independent of (Y n,M,Xn, Un, (X̂ ′)n), and define the chance variable

(Y,X,U, X̂ ′) , (YT , XT , UT , X̂
′
T ) (85)

taking values in the set Y×X×(∪ni=1Ui)×X̂ . Note that, since the sets {Ui} of (63) are disjoint, T is a deterministic

function of U , and we can define ι(·) as mapping each u ∈ ∪ni=1Ui to the unique i ∈ [1 : n] for which u ∈ Ui.

With this definition, the PMF of (Y,X,U, X̂ ′) can be expressed as

Q̃Y XUX̂′(y, x, u, x̂
′) ,

1

n
QYι(u)Xι(u)Uι(u)X̂′ι(u)

(y, x, u, x̂′), (86)

where QYiXiUiX̂′i
is the (Yi, Xi, Ui, X̂

′
i)-marginal of Q. We next observe that, under Q̃, E[d(X, X̂ ′)] is upper-
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bounded by D. Indeed,

EQ̃[d(X, X̂ ′)] =
1

n

n∑
i=1

EQ[d(Xi, X̂
′
i)] (87)

≤ 1

n

n∑
i=1

Di (88)

≤ D, (89)

where the first inequality follows from the constraint in the optimization on the RHS of (70) and the second

from (69). Also note that, since T is a deterministic function of U , the RHS of (84) can be expressed in terms of

(Y,X,U, X̂ ′) as

n I(X; X̂ ′ | U)− nδn, (90)

so,

EQ[log(Gn(Xn |M))] ≥ n I(X; X̂ ′ | U)− nδn, (91)

where the conditional mutual information on the RHS is w.r.t. Q̃. Using (89), we can lower-bound the RHS of (91)

in terms of the conditional R-D function (14),

n I(X; X̂ ′ | U)− nδn ≥ nRd,D(Q̃X|U )− nδn, (92)

and, using (92) and (91), we obtain the desired lower bound

EQ[log(Gn(Xn |M))] ≥ nRd,D(Q̃X|U )− nδn. (93)

We next return to (54) and derive a single-letter expression for D(QXnY n‖PXnY n), where QXnY n is the (Xn, Y n)-

marginal of Q, and

PXnY n = P×nXY . (94)

We first express it as

D(QXnY n‖PXnY n) = D(QXnY nPM |Y nQUn|XnY nM‖PXnY nPM |Y nQUn|XnY nM ), (95)

and then observe that QXnY nPM |Y nQUn|XnY nM is (a factorization of) the (Xn, Y n,M,Un)-marginal of Q, which

can be expressed as

QXnY nPM |Y nQUn|XnY nM = Q×nY

( n∏
i=1

QXi|YiUi

)
PM |Y nQUn|XnY nM , (96)

because, by (64a) (or (61)),

QUn|XnY nM =

n∏
i=1

QUi|Xi−1Y i−1M . (97)

From (94), (96) and (95)

D(QXnY n‖PXnY n) = D(QXnY nPM |Y nQUn|XnY nM‖PXnY nPM |Y nQUn|XnY nM ) (98)

= D

(
Q×nY

( n∏
i=1

QXi|YiUi

)
PM |Y nQUn|XnY nM

∥∥∥∥∥P×nXY PM |Y nQUn|XnY nM
)
. (99)
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We now continue the derivation of a single-letter expression for D(QXnY n‖PXnY n) by studying the RHS of (99):

D(QXnY n‖PXnY n)

= D

(
Q×nY

n∏
i=1

QXi|YiUiPM |Y nQUn|XnY nM

∥∥∥∥∥P×nXY PM |Y nQUn|XnY nM
)

(100)

(a)
= EQ

[
log

(
Q×nY (Y n)

∏n
i=1QXi|YiUi(Xi | Yi, Ui)PM |Y n(M | Y n)QUn|XnY nM (Un | Xn, Y n,M)

P×nXY (Xn, Y n)PM |Y n(M | Y n)QUn|XnY nM (Un | Xn, Y n,M)

)]
(101)

= EQ

[
log

(
Q×nY (Y n)

∏n
i=1QXi|YiUi(Xi | Yi, Ui)
P×nXY (Xn, Y n)

)]
(102)

(b)
=

n∑
i=1

EQXiYiUi

[
log

(
QY (Yi)QXi|YiUi(Xi | Yi, Ui)

PXY (Xi, Yi)

)]
(103)

=

n∑
i=1

∑
(xi,yi,ui)∈X×Y×Ui

QXiYiUi(xi, yi, ui) log

(
QY (yi)QXi|YiUi(xi | yi, ui)

PXY (xi, yi)

)
(104)

(c)
=

n∑
i=1

∑
(xi,yi,ui)∈X×Y×Ui

QXiYiUi(xi, yi, ui) log

(
QYi(yi)QXi|YiUi(xi | yi, ui)

PXY (xi, yi)

)
(105)

= n

n∑
i=1

∑
(xi,yi,ui)∈X×Y×Ui

1

n
QXiYiUi(xi, yi, ui) log

(
QYi(yi)QUi|Yi(ui | yi)QXi|YiUi(xi | yi, ui) 1

n

PXY (xi, yi)QUi|Yi(ui | yi) 1
n

)
(106)

(d)
= n

n∑
i=1

∑
(xi,yi,ui)∈X×Y×Ui

Q̃(xi, yi, ui) log

(
Q̃(xi, yi, ui)

PXY (xi, yi)Q̃U |Y (ui | yi)

)
(107)

= n
∑

(x,y,u)∈X×Y×(∪ni=1Ui)

Q̃(x, y, u) log

(
Q̃(x, y, u)

PXY (x, y)Q̃U |Y (u | y)

)
(108)

= nD(Q̃XY U‖PXY Q̃U |Y ), (109)

where (a) follows from the definition of the relative entropy and the fact that Q×nY
∏n
i=1QXi|YiUiPM |Y nQUn|XnY nM

is (a factorization of) the (Xn, Y n,M,Un)-marginal of Q; in (b) we have used that for nonnegative x and y,

log(xy) = log(x)+log(y), and we used QXiYiUi to denote the (Xi, Yi, Ui)-marginal of Q; (c) holds because under

Q, Y n ∼ IIDQY ; and in (d) we have identified 1
nQXiYiUi as the (X,Y, U)-marginal of Q̃.

We next show that, IQ̃(Y ;U)— the mutual information between Y and U under Q̃—is upper-bounded by R. To

that end first observe that by definition of Q̃ (in (85) and (86)) we can express IQ̃(Y ;U) as

IQ̃(Y ;U) =
1

n

n∑
i=1

(
HQ(Yi)−HQ(Yi | Ui)

)
. (110)
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So continuing from the RHS of (110), with all information-theoretic quantities implicitly evaluated w.r.t. Q:

1

n

n∑
i=1

(
H(Yi)−H(Yi | Ui)

)
=

1

n

n∑
i=1

(
H(Yi)−H(Yi | Xi−1, Y i−1,M)

)
(111)

(a)
=

1

n

n∑
i=1

(
H(Yi)−H(Yi | Y i−1,M)

)
(112)

(b)
=

1

n

n∑
i=1

(
H(Yi | Y i−1)−H(Yi | Y i−1,M)

)
(113)

=
1

n

n∑
i=1

I(Yi;M | Y i−1) (114)

=
1

n
I(Y n;M) (115)

≤ 1

n
H(M) (116)

(c)

≤ R, (117)

where (a) holds because, under Q, Xi−1 → (Y i−1,M)→ Yi (65); (b) holds because Y n is IID under Q; and (c)

holds because M can assume at most 2nR distinct values.

We now use (54), (92), (109), and (117) to derive the converse part of Theorem 1 as stated in (53). Starting with

(54), we use (92) and (109) to obtain

EPXnY n [Gn(Xn | fn(Y n))ρ]

≥ 2n(ρRd,D(Q̃X|U )−D(Q̃XYU‖PXY Q̃U|Y )−δn), (118)

where the PMF Q̃ on the RHS of (118) is defined in (86). Taking the logarithm and dividing by n on both sides,

1

n
log(E[Gn(Xn | fn(Y n)ρ])

≥ ρRd,D(Q̃X|U )−D(Q̃XY U‖PXY Q̃U |Y )− δn. (119)

Since the choice of QY and {QXi|YiUi}ni=1 in (64a) is arbitrary, so is that of Q̃Y and Q̃X|Y U in the (X,Y, U)-

marginal Q̃XY U = Q̃Y Q̃U |Y Q̃X|Y U of Q̃ (86). We are therefore at liberty to choose those so as to obtain the tightest

bound. Things are different with regard to Q̃U |Y , because it is influenced by the helper fn, and we must ensure

that the bound is valid for all helpters. Ostensibly, we should therefore consider the choice of Q̃U |Y that yields

the loosest bound. However, Q̃U |Y cannot be arbitrary: irrespective of our choice of Q̃Y , the mutual information

IQ̃(U ;Y ) must be upper bounded by R (117).

These considerations allow to infer form (119) that

1

n
log(E[Gn(Xn | fn(Y n)ρ])

≥ sup
Q̃Y

inf
QŨ|Y : I(Q̃Y ;U )≤R

sup
Q̃X|Y U

(
ρRd,D(Q̃X|U )−D(Q̃XY U‖PXY Q̃U |Y )

)
− δn, (120)

which, upon taking n to infinity, yields (53).
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APPENDIX A

Lemma 3. Let X be a chance variable taking values in the finite set X according to some PMF P , and let f be

a bijection from X to [1 : |X |]. Then, for X ∼ P ,

E[log(f(X))] ≥ H(X)− log(ln(|X |) + 3/2). (121)

Proof. Outcomes of zero probability contribute neither to the LHS nor to the RHS of (121), and we therefore

assume w.l.g. that P (x) > 0 for every x ∈ X . We then have

E[log(f(X))] =
∑
x∈X

P (x) log(f(x)) (122)

=
∑
x∈X

P (x) log

(
f(x)P (x)

P (x)

)
(123)

= H(X) +
∑
x

P (x) log(f(x)P (x)) (124)

= H(X)−
∑
x

P (x) log

(
1

f(x)P (x)

)
(125)

(a)

≥ H(X)− log

(∑
x

1

f(x)

)
(126)

(b)
= H(X)− log

 |X |∑
i=1

1

i

 (127)

(c)

≥ H(X)− log(ln(|X |) + 3/2), (128)

where (a) follows from Jensen’s inequality; (b) holds because f maps onto [1 : |X |]; and (c) holds because
∑n
i=1 1/i

is upper-bounded by ln(n) + 3/2.

Corollary 2. Let X be a finite set, and let f be a bijection from Xn to [1 : |X |n]. Then, for any chance variable

Xn on Xn,

E[log(f(Xn))] ≥ H(Xn)− nδn, (129)

where δn = δn(|X |) and for every fixed |X |,

δn → 0. (130)

Proof. The corollary follows from Lemma 3 and the fact that when |X | is fixed,

lim
n→∞

log(ln(|Xn|) + 3/2)

n
= 0. (131)

APPENDIX B

We prove that restricting U to take values in a set of cardinality |Y| + 1 does not alter (13). To that end, we

first express the objective function in (13) as an expectation over U of a quantity Ψ(QY |U=u, QX|Y U=u) that
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depends explicitly on QY |U=u, QX|Y U=u and implicitly on the given joint PMF PXY and the PMF QY (which is

determined in the outer maximization). Specifically,

ρRd,D(QX|U )−D(QXY U‖PXYQU |Y ) =
∑
u∈U

QU (u) Ψ(QY |U=u, QX|Y U=u), (132a)

with

Ψ(QY |U=u, QX|Y U=u) = ρRd,D(QX|U=u) +H(QY )−H(QY |U=u)−D(QY |U=uQX|Y,U=u||PXY ) (132b)

where Rd,D(QX|U=u) is determined by QY |U=u and QX|Y U=u via the relation

QX|U=u(x|u) =
∑
y∈Y

QY |U=u(y|u)QX|Y U=u(x|y, u). (133)

Indeed, (132) follow from

D(QXY U‖PXYQU |Y )

= EQXYU

[
log

(
QXY |U (XY | U)QU (U)

PXY (X,Y )QU |Y (U | Y )

)]
(134)

= −H(QU ) +H(QU |Y ) + EQXYU

[
log

(
QXY |U (XY |U)

PXY (X,Y )

)]
(135)

= −H(QY ) +H(QY |U ) + EQXYU

[
log

(
QXY |U (XY |U)

PXY (X,Y )

)]
(136)

= −H(QY ) +H(QY |U ) + EQXYU

[
log

(
QY |U (Y | U)QX|Y U (X | Y U)

PXY (X,Y )

)]
(137)

= −
∑
u∈U

QU (u)

H(QY )−H(QY |U=u)−
∑

(x,y)∈X×Y

QY |U=uQX|Y U=u(x|y, u) log
QY |U (y | u)QX|Y U=u(x | y, u)

PXY (x, y)

 . (138)

The representation (132) shows that the inner maximization in (13) can be performed separately for every u.

Defining

Ψ∗(QY |U=u) = max
QX|Y U=u

Ψ(QY |U=u, QX|Y U=u) (139)

we can express (13) as

sup
QY

inf
QU|Y :I(QY ;U )≤R

∑
u∈U

QU (u) Ψ∗(QY |U=u). (140)

We next view the inner minimization above as being over all pairs (QU , QY |U ) with the objective function being∑
u∈U

QU (u) Ψ∗(QY |U=u); (141)

with the constraint on the Y -marginal∑
u∈U

QU (u)QY |U (y|u) = QY (y), ∀y ∈ Y; (142)

and the constraint on the mutual information∑
u∈U

QU (u)H(QY |U=u) ≥ H(QY )−R. (143)
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Since the objective function and constraints are linear in QU , it follows from Carathéodory’s theorem (for connected

sets) that the cardinality of U can be restricted to |Y|+ 1.
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