

On Error Exponents of Encoder–Assisted Communication Systems

Neri Merhav

The Viterbi Faculty of Electrical and Computer Engineering
Technion – Israel Institute of Technology
Haifa 3200003, Israel

ISIT 2021, Melbourne, Victoria, Australia, July 2021

Encoder–Assisted Communication

- ♣ Encoder \Rightarrow additive noise channel \Rightarrow decoder
- ♣ Helper \Rightarrow rate-limited description of the noise \Rightarrow encoder
- ♣ Similar, but not identical, to Gel'fand–Pinsker ('80).
- ♣ Motivation: helper = interfering transmitter; noise = his codeword.
- ♣ Lapidoth & Marti ('20): AWGN capacity = ord. capacity + help rate.
- ♣ Achievability – **flash help**: high res. compression of a small segment.
- ♣ This work: **error exponents**

Formulation

AWGN channel:

$$Y_i = X_i + Z_i, \quad Z_i \sim \mathcal{N}(0, \sigma^2), \quad i = 1, 2, \dots, n$$

Helper:

$$T = T(Z^n), \quad T : \mathbb{R}^n \rightarrow \mathcal{T} = \{0, 1, \dots, \exp\{nR_h\} - 1\}.$$

Encoder:

$$X^n = \phi(m, T(Z^n)), \quad \phi : \mathcal{M} \times \mathcal{T} \rightarrow \mathcal{C} \subset \mathbb{R}^n, \quad \mathcal{M} = \{0, 1, \dots, e^{nR} - 1\}.$$

$$\|X^n\|^2 \leq nP$$

Decoder:

$$\hat{m} = \psi(Y^n), \quad \psi : \mathbb{R}^n \rightarrow \mathcal{M}.$$

Error probability: $P_e(\phi, T, \psi) = \Pr\{\psi(\phi(m, T(Z^n)) + Z^n) \neq m\}.$

Formulation (Cont'd)

R = achievable–rate:

$$\forall \epsilon > 0 \exists \text{ suff. large } n \text{ s.t. } \min_{\phi, T, \psi} P_{\mathbf{e}}(\phi, T, \psi) \leq \epsilon.$$

Capacity:

$$C \triangleq \sup. \text{ of achievable rates} = C_0 + R_h \text{ (Lapidoth \& Marti, 2020).}$$

where $C_0 = \frac{1}{2} \log(1 + \gamma)$, $\gamma \triangleq \frac{P}{\sigma^2}$.

Reliability function:

$$E(R) = \lim_{n \rightarrow \infty} \left[-\frac{1}{n} \log \min_{\phi, T, \psi} P_{\mathbf{e}}(\phi, T, \psi) \right].$$

Main Theorem

Lower bound (achievability):

$$E(R) \geq E_L(R) \triangleq \begin{cases} \infty & R < R_h \\ E_{\mathbf{a}}(R - R_h) & R_h < R \leq R_h + C_0 \\ 0 & R \geq R_h + C_0 \end{cases}$$

Upper bound (“converse”):

$$E(R) \leq E_U(R) \triangleq \begin{cases} \infty & R < R_h \\ E_{\mathbf{wsp}}(R - R_h) & R_h < R \leq R_h + C_0 \\ 0 & R \geq R_h + C_0 \end{cases}$$

where

$$E_{\mathbf{wsp}}(R) = \frac{1}{2} \left[\frac{e^{2C_0} - 1}{e^{2R} - 1} - \ln \left(\frac{e^{2C_0} - 1}{e^{2R} - 1} \right) - 1 \right].$$

Discussion

- ♣ Both bounds: $= \infty$ below R_h ; $= 0$ beyond $C_0 + R_h$; finite in between.
- ♣ The bounds are “compatible” from a qualitative viewpoint ...
- ♣ Inherent phase transition at $R = R_h$.
- ♣ Helper - equivalent to a **noiseless bit pipe** of capacity R_h .
- ♣ Achievability: using the flash–help approach.
- ♣ Fixed–rate helper: arbitrarily large exponent for $R < R_h$.
- ♣ Variable–rate helper: $P_e = 0$ for $R < R_h$.

The Achievability Scheme

Helper uses all nR_h bits to describe **only** Z^t , $t = n\tau$, $0 < \tau \ll 1$:

If $Z^t \in \mathcal{B}(\sqrt{t\sigma^2(1 + s)})$, quantize uniformly with step size Δ s.t.

$$nR_h = \log \left(\frac{\text{Vol}\{\mathcal{B}(\sqrt{t\sigma^2(1 + s)})\}}{\Delta^t} \right)$$

which yields

$$\Delta \approx \sqrt{2\pi e \sigma^2(1 + s)} \cdot \exp\{-R_h/\tau\}.$$

During this segment, the encoder transmits $x^t(m) - [z^t]_Q$.

The corresponding received signal is

$$y^t = x^t(m) + z^t - [z^t]_Q \stackrel{\triangle}{=} x^t(m) + \tilde{z}^t, \quad \tilde{z}^t \in \left[-\frac{\Delta}{2}, \frac{\Delta}{2}\right]^t$$

The Achievability Scheme (Cont'd)

where $\{x^t(m)\} \in$ cubic lattice code with step-size Δ ,
supporting rates up to

$$nR' = \log \left(\frac{\text{Vol}\{\mathcal{B}(\sqrt{n}P)\}}{\Delta^t} \right) \approx nR_h + \frac{n\tau}{2} \log \frac{2\pi e P}{\sigma^2(1+s)} \approx nR_h$$

An error occurs in the short segment **only** if $Z^t \geq t\sigma^2(1+s)$,
which happens with probability of about

$$\exp \left\{ -n \cdot \frac{\tau}{2} [s - \ln(1+s)] \right\}.$$

For τ however small, s can always be taken sufficiently large
to make this exponential rate **arbitrarily fast**.

The remaining rate, $R - R_h$, is encoded in the complementary segment
of $n(1 - \tau)$ and error exponent $\approx E_a(R - R_h)$.

The Converse Bound

Difficulty: Due to the helper, X^n depends on Z^n in an arbitrary manner.

Consequence: sphere-packing bound is based on a change of measures:

$$Z_i \sim \mathcal{N}(0, \sigma^2) \rightarrow \mathcal{N}(0, \tilde{\sigma}^2) \text{ s.t. } \frac{1}{2} \log \left(1 + \frac{P}{\tilde{\sigma}^2} \right) + R_h = R$$

rather than

$$Z_i \sim \mathcal{N}(0, \sigma^2) \rightarrow \mathcal{N}(\theta x_i, \tilde{\sigma}^2)$$

for the worst $(\theta, \tilde{\sigma}^2)$ over channels of capacity $\leq R$.

The result is the weaker version of the sphere-packing bound.

More in the Full Article:

- ♠ General continuous-alphabet additive channels.
- ♠ The modulo-additive channel:
 - ◊ Fixed-rate helper
 - ◊ Variable-rate helper
- ♠ The Gaussian MAC with a given total help rate for both encoders.