

On More General Distributions of Random Binning for Slepian–Wolf Encoding

Neri Merhav

The Viterbi Faculty of Electrical and Computer Engineering
Technion – Israel Institute of Technology
Haifa 3200003, Israel

ISIT 2021, Melbourne, Victoria, Australia, July 2021

Background and Motivation

- ♣ Separate lossless comp. + joint decoding of corr. sources – revisited.
- ♣ Unlike in other code ensembles, S–W binning dist. is always **uniform**.
- ♣ Variable–rate S–W (VRSW) ensembles improve, but still – uniform.
- ♣ We address the question: why is that always the case?
- ♣ Partial answer: the ensemble is in the “compressed domain”.
- ♣ Satisfactory answer in terms of achievable rates.
- ♣ Not for trade-offs between err. probability and excess-length prob.

Model Setting

We consider a more general random binning as follows:

Given the two source vectors, $\mathbf{x} = (x_1, \dots, x_n)$ and $\mathbf{y} = (y_1, \dots, y_n)$, randomly select resp. ‘bins’ $\mathbf{u} = (u_1, \dots, u_n)$ and $\mathbf{v} = (v_1, \dots, v_n)$ using conditional distributions – **random binning channels** (RBCs):

$$A(\mathbf{u}|\mathbf{x}) \text{ and } B(\mathbf{v}|\mathbf{y})$$

and finally compress \mathbf{u} and \mathbf{v} (separately) to their entropies.

Decoder recovers (\mathbf{u}, \mathbf{v}) ; outputs the most likely (\mathbf{x}, \mathbf{y}) with bins (\mathbf{u}, \mathbf{v}) .

We assume

$$A(\mathbf{u}|\mathbf{x}) \doteq \exp\{-nF(\hat{P}_{\mathbf{u}\mathbf{x}})\}; \quad B(\mathbf{v}|\mathbf{y}) \doteq \exp\{-nG(\hat{P}_{\mathbf{v}\mathbf{y}})\}.$$

Analyzable using the MoT and still rather general.

Discussion

We allow, not only non-uniform distributions, but also dependence on the source vectors.

Example:

Let $A(\mathbf{u}|\mathbf{x}) \propto \mathcal{I}\{d_H(\mathbf{x}, \mathbf{u}) \leq 1\}$.

Suppose \mathbf{y} has already been decoded, and we now decode \mathbf{x} .

The decoder knows that \mathbf{x} **must** satisfy $d_H(\mathbf{x}, \mathbf{u}) \leq 1$.

In other words, \mathbf{u} **serves as side info**, in addition to \mathbf{y} .

Q: Can dependence between \mathbf{u} and \mathbf{x} help?

Discussion

We allow, not only non-uniform distributions, but also dependence on the source vectors.

Example:

Let $A(\mathbf{u}|\mathbf{x}) \propto \mathcal{I}\{d_H(\mathbf{x}, \mathbf{u}) \leq 1\}$.

Suppose \mathbf{y} has already been decoded, and we now decode \mathbf{x} .

The decoder knows that \mathbf{x} **must** satisfy $d_H(\mathbf{x}, \mathbf{u}) \leq 1$.

In other words, \mathbf{u} **serves as side info**, in addition to \mathbf{y} .

Q: Can dependence between \mathbf{u} and \mathbf{x} help?

A: Unfortunately, no!

Discussion

We allow, not only non-uniform distributions, but also dependence on the source vectors.

Example:

Let $A(\mathbf{u}|\mathbf{x}) \propto \mathcal{I}\{d_H(\mathbf{x}, \mathbf{u}) \leq 1\}$.

Suppose \mathbf{y} has already been decoded, and we now decode \mathbf{x} .

The decoder knows that \mathbf{x} **must** satisfy $d_H(\mathbf{x}, \mathbf{u}) \leq 1$.

In other words, \mathbf{u} **serves as side info**, in addition to \mathbf{y} .

Q: Can dependence between \mathbf{u} and \mathbf{x} help?

A: Unfortunately, no!

Additional motivation:

Robustness to unavailability of the other source to the decoder:

Trading off error prob., excess-length prob., and distortion.

Formulation

Let $A(\mathbf{u}|\mathbf{x}) \doteq \exp\{-nF(\hat{P}_{\mathbf{u}\mathbf{x}})\}$ and $B(\mathbf{v}|\mathbf{y}) \doteq \exp\{-nG(\hat{P}_{\mathbf{v}\mathbf{y}})\}$ be used for randomly drawing bins for every \mathbf{x} and \mathbf{y} .

Denote $\mathbf{u} = f(\mathbf{x})$ and $\mathbf{v} = g(\mathbf{y})$.

Consider the ML decoder

$$(\hat{\mathbf{x}}, \hat{\mathbf{y}}) = h[\mathbf{u}, \mathbf{v}] = \arg \max_{\{(\mathbf{x}, \mathbf{y}): f(\mathbf{x}) = \mathbf{u}, g(\mathbf{y}) = \mathbf{v}\}} P(\mathbf{x}, \mathbf{y}).$$

Let $P_{\text{err}}(F, G) = \Pr\{h[f(\mathbf{X}), g(\mathbf{Y})] \neq (\mathbf{X}, \mathbf{Y})\}$ and define the **error exponent** as:

$$\mathbf{E}_{\text{err}}(F, G) = \lim_{n \rightarrow \infty} \left[-\frac{\log P_{\text{err}}(F, G)}{n} \right].$$

Formulation (Cont'd)

We assume that u and v are compressed to their empirical entropies.
The excess code-length probability is

$$P_{\text{ecl}}(F, G) = \Pr\{H(\hat{P}_u) \geq \tilde{R}_X, H(\hat{P}_v) \geq \tilde{R}_Y\},$$

and the **excess code-length exponent** is defined as

$$\mathbf{E}_{\text{ecl}}(F, G) = \lim_{n \rightarrow \infty} \left[-\frac{\log P_{\text{ecl}}(F, G)}{n} \right].$$

Every (F, G) includes a point $(\mathbf{E}_{\text{err}}(F, G), \mathbf{E}_{\text{ecl}}(F, G))$ in the plane.

We are interested in the optimal tradeoff between them, e.g.,

$$E_{\text{err}}(E_0) = \max_{\{(F, G): \mathbf{E}_{\text{ecl}}(F, G) \geq E_0\}} \mathbf{E}_{\text{err}}(F, G).$$

Optimal RBCs

Since

$$\sum_{\mathbf{u}' \in \mathcal{T}(\mathbf{u}|\mathbf{x})} A(\mathbf{u}'|\mathbf{x}) = \sum_{\mathbf{u}' \in \mathcal{T}(\mathbf{u}|\mathbf{x})} \exp\{-nF(\hat{P}\mathbf{u}\mathbf{x})\} \leq 1$$

it follows that

$$F(\hat{P}\mathbf{u}\mathbf{x}) \geq \hat{H}\mathbf{u}\mathbf{x}(U|X) \quad \forall \hat{P}\mathbf{u}\mathbf{x},$$

with equality for **at least one** $\hat{P}_{\mathbf{u}|\mathbf{x}}$, for every $\hat{P}\mathbf{x}$.

Optimal RBCs (Cont'd)

Since both exponents are “monotonically increasing with F ”,

$$F^*(\hat{P}_{\mathbf{u}|\mathbf{x}}) = \begin{cases} \hat{H}_{\mathbf{u}|\mathbf{x}}(U|X) & \text{for one } \hat{P}_{\mathbf{u}|\mathbf{x}} = Q_{U|X} \\ \infty & \text{elsewhere} \end{cases}$$

Similar statements apply to B and G .

In other words,

$$A^*(\mathbf{u}|\mathbf{x}) = \begin{cases} \frac{1}{|\mathcal{T}(Q_{U|\mathbf{x}}|\mathbf{x})|} & \mathbf{u} \in \mathcal{T}(Q_{U|\mathbf{x}}|\mathbf{x}) \\ 0 & \text{elsewhere} \end{cases}$$

$$B^*(\mathbf{v}|\mathbf{y}) = \begin{cases} \frac{1}{|\mathcal{T}(Q_{V|\mathbf{y}}|\mathbf{y})|} & \mathbf{u} \in \mathcal{T}(Q_{V|\mathbf{y}}|\mathbf{y}) \\ 0 & \text{elsewhere} \end{cases}$$

Error Exponents for Given $Q_{U|X}$ and $Q_{V|Y}$

$$\mathbf{E}_{\text{err}}(Q_{U|X}, Q_{V|Y}) = \min\{\mathbf{E}_1(Q_{U|X}^*), \mathbf{E}_2(Q_{V|Y}^*), \mathbf{E}_3(Q_{U|X}^*, Q_{V|Y}^*)\}$$

$$\begin{aligned}\mathbf{E}_1(Q_{U|X}) &= \min_{Q_{UXY}} \{D(Q_{XY} \| P_{XY}) + \textcolor{red}{H}_Q(U|X) - \\ &\quad \textcolor{blue}{H}_Q(U|X, Y) + [\textcolor{red}{H}_Q(U|X) - \textcolor{blue}{H}_Q(X|Y, U)]_+\},\end{aligned}$$

$$\begin{aligned}\mathbf{E}_2(Q_{V|Y}) &= \min_{Q_{VXY}} \{D(Q_{XY} \| P_{XY}) + \textcolor{red}{H}_Q(V|Y) - \\ &\quad \textcolor{blue}{H}_Q(V|X, Y) + [\textcolor{red}{H}_Q(V|Y) - \textcolor{blue}{H}_Q(Y|X, V)]_+\},\end{aligned}$$

$$\begin{aligned}\mathbf{E}_3(Q_{U|X}, Q_{V|Y}) &= \min_{Q_{UVXY}} \{D(Q_{XY} \| P_{XY}) + \\ &\quad \textcolor{red}{H}_Q(U|X) + \textcolor{red}{H}_Q(V|Y) - \textcolor{blue}{H}_Q(U, V|X, Y) + \\ &\quad [\textcolor{red}{H}_Q(U|X) + \textcolor{red}{H}_Q(V|Y) - \textcolor{blue}{H}_Q(X, Y|U, V)]_+\}.\end{aligned}$$

Dependencies seem to have a mixed impact on the error exponent...

Main Result

For a given Q_X (resp. Q_Y) and any associated conditional distribution, $Q_{U|X}$ (resp. $Q_{V|Y}$), let Q_U (resp. Q_V) be the induced marginal. Then,

$$\begin{aligned}\mathbf{E}_{\text{ecl}}(Q_U, Q_V) &= \mathbf{E}_{\text{ecl}}(Q_{U|X}, Q_{V|Y}), \\ \mathbf{E}_{\text{err}}(Q_U, Q_V) &\geq \mathbf{E}_{\text{err}}(Q_{U|X}, Q_{V|Y}), \\ \mathbf{E}_{\text{err}}(Q_U, Q_V) &= \min\{E_1(Q_U), E_2(Q_V), E_3(Q_U, Q_V)\} \\ \mathbf{E}_1(Q_U) &= \min_{Q_{XY}} \{D(Q_{XY} \| P_{XY}) + \\ &\quad [H_Q(U) - H_Q(X|Y)]_+\} \\ \mathbf{E}_2(Q_V) &= \min_{Q_{XY}} \{D(Q_{XY} \| P_{XY}) + \\ &\quad [H_Q(V) - H_Q(Y|X)]_+\} \\ \mathbf{E}_3(Q_U, Q_V) &= \min_{Q_{XY}} \{D(Q_{XY} \| P_{XY}) + \\ &\quad [H_Q(U) + H_Q(V) - H_Q(X, Y)]_+\},\end{aligned}$$

where $H_Q(U)$ and $H_Q(V)$ denote the entropies of Q_U and Q_V .

Trading off with Distortion

It makes sense to create dependencies, $Q_{U|X}$ and $Q_{V|Y}$, if we wish to maintain distortion constraints, e.g.,

$$\max_{Q_{U|X}, Q_{V|Y}} \mathbf{E}_{\text{err}}(Q_{U|X}, Q_{V|Y})$$

subject to the constraints:

$$\mathbf{E}_{\text{ecl}}(Q_{U|X}, Q_{V|Y}) \geq E_0$$

$$\sum_{u,x} Q_{UX}(u, x) d_X(u, x) \leq D_X$$

$$\sum_{v,y} Q_{VY}(v, y) d_Y(v, y) \leq D_Y$$

Limiting the distortion compromises the tradeoff.