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Background and Motivation

♣ Separate lossless comp. + joint decoding of corr. sources – revisited.

♣ Unlike in other code ensembles, S–W binning dist. is always uniform.

♣ Variable–rate S-W (VRSW) ensembles improve, but still – uniform.

♣ We address the question: why is that always the case?

♣ Partial answer: the ensemble is in the “compressed domain”.

♣ Satisfactory answer in terms of achievable rates.

♣ Not for trade-offs between err. probability and excess-length prob.
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Model Setting

We consider a more general random binning as follows:

Given the two source vectors, x = (x1, . . . , xn) and y = (y1, . . . , yn),

randomly select resp. ‘bins’ u = (u1, . . . , un) and v = (v1, . . . , vn)

using conditional distributions – random binning channels (RBCs):

A(u|x) and B(v|y)

and finally compress u and v (separately) to their entropies.

Decoder recovers (u,v); outputs the most likely (x,y) with bins (u,v).

We assume

A(u|x)
·
= exp{−nF (P̂ux)}; B(v|y)

·
= exp{−nG(P̂vy)}.

Analyzable using the MoT and still rather general.
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Discussion

We allow, not only non–uniform distributions, but also

dependence on the source vectors.

Example:

Let A(u|x) ∝ I{dH(x,u) ≤ 1}.

Suppose y has already been decoded, and we now decode x.

The decoder knows that x must satisfy dH(x,u) ≤ 1.

In other words, u serves as side info, in addition to y.

Q: Can dependence between u and x can help?
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Discussion

We allow, not only non–uniform distributions, but also

dependence on the source vectors.

Example:

Let A(u|x) ∝ I{dH(x,u) ≤ 1}.

Suppose y has already been decoded, and we now decode x.

The decoder knows that x must satisfy dH(x,u) ≤ 1.

In other words, u serves as side info, in addition to y.

Q: Can dependence between u and x can help?

A: Unfortunately, no!

Additional motivation:

Robustness to unavailability of the other source to the decoder:

Trading off error prob., excess–length prob., and distortion.

– p. 6/??



Formulation

Let A(u|x)
·
= exp{−nF (P̂ux)} and B(v|y)

·
= exp{−nG(P̂vy)}

be used for randomly drawing bins for every x and y.

Denote u = f(x) and v = g(y).

Consider the ML decoder

(x̂, ŷ) = h[u,v] = arg max
{(x,y): f(x)=u, g(y)=v}

P (x,y).

Let Perr(F,G) = Pr{h[f(X), g(Y )] 6= (X,Y )} and

define the error exponent as:

Eerr(F,G) = lim
n→∞

[

−
logPerr(F,G)

n

]

.
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Formulation (Cont’d)

We assume that u and v are compressed to their empirical entropies.

The excess code–length probability is

Pecl(F,G) = Pr{H(P̂u) ≥ R̃X , H(P̂v) ≥ R̃Y },

and the excess code–length exponent is defined as

Eecl(F,G) = lim
n→∞

[

−
logPecl(F,G)

n

]

.

Every (F,G) incudes a point (Eerr(F,G),Eecl(F,G)) in the plane.

We are interested in the optimal tradeoff between them, e.g.,

Eerr(E0) = max
{(F,G): Eecl(F,G)≥E0}

Eerr(F,G).
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Optimal RBCs

Since

∑

u′∈T (u|x

A(u′|x) =
∑

u′∈T (u|x)

exp{−nF (P̂ux)} ≤ 1

it follows that

F (P̂ux) ≥ Ĥux(U |X) ∀ P̂ux,

with equality for at least one P̂u|x, for every P̂x.
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Optimal RBCs (Cont’d)

Since both exponents are “monotonically increasing with F ”,

F
∗(P̂ux) =

{

Ĥux(U |X) for one P̂u|x = QU |X

∞ elsewhere

Similar statements apply to B and G.

In other words,

A
∗(u|x) =

{

1
|T (QU|X |x)|

u ∈ T (QU |X |x)

0 elsewhere

B
∗(v|y) =

{

1
|T (QV |Y |y)|

u ∈ T (QV |Y |y)

0 elsewhere
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Error Exponents for Given QU |X and QV |Y

Eerr(QU |X , QV |Y ) = min{E1(Q
∗
U |X),E2(Q

∗
V |Y ),E3(Q

∗
U |X , Q

∗
V |Y )}

E1(QU |X) = min
QUXY

{D(QXY ‖PXY ) +HQ(U |X)−

HQ(U |X,Y ) + [HQ(U |X)−HQ(X|Y, U)]+},

E2(QV |Y ) = min
QV XY

{D(QXY ‖PXY ) +HQ(V |Y )−

HQ(V |X,Y ) + [HQ(V |Y )−HQ(Y |X,V )]+},

E3(QU |X , QV |Y ) = min
QUV XY

{D(QXY ‖PXY ) +

HQ(U |X) +HQ(V |Y )−HQ(U, V |X,Y ) +

[HQ(U |X) +HQ(V |Y )−HQ(X,Y |U, V )]+}.

Dependencies seem to have a mixed impact on the error exponent...

– p. 11/??



Main Result

For a given QX (resp. QY ) and any associated conditional distribution,

QU |X (resp. QV |Y ), let QU (resp. QV ) be the induced marginal. Then,

Eecl(QU , QV ) = Eecl(QU |X , QV |Y ),

Eerr(QU , QV ) ≥ Eerr(QU |X , QV |Y ),

Eerr(QU , QV ) = min{E1(QU ), E2(QV ), E3(QU , QV )}

E1(QU ) = min
QXY

{D(QXY ‖PXY ) +

[HQ(U)−HQ(X|Y )]+}

E2(QV ) = min
QXY

{D(QXY ‖PXY ) +

[HQ(V )−HQ(Y |X)]+}

E3(QU , QV ) = min
QXY

{D(QXY ‖PXY ) +

[HQ(U) +HQ(V )−HQ(X,Y )]+},

where HQ(U) and HQ(V ) denote the entropies of QU and QV .
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Trading off with Distortion

It makes sense to create dependencies, QU |X and QV |Y ,

if we wish to maintain distortion constraints, e.g.,

max
QU|X ,QV |Y

Eerr(QU |X , QV |Y )

subject to the constraints:

Eecl(QU |X , QV |Y ) ≥ E0

∑

u,x

QUX(u, x)dX(u, x) ≤ DX

∑

v,y

QV Y (v, y)dY (v, y) ≤ DY

Limiting the distortion compromises the tradeoff.
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