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Background and Motivation

& Separate lossless comp. + joint decoding of corr. sources — revisited.
& Unlike in other code ensembles, S—W binning dist. is always uniform.
& Variable—rate S-W (VRSW) ensembles improve, but still — uniform.

& We address the question: why is that always the case?

& Partial answer: the ensemble is in the “compressed domain”.

& Satisfactory answer in terms of achievable rates.

& Not for trade-offs between err. probability and excess-length prob.
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Model Setting

We consider a more general random binning as follows:
Given the two source vectors, ¢ = (z1,...,zn) and y = (y1,...,Yn),
randomly select resp. ‘bins’ u = (u1,...,un) and v = (vy,...,vn)

using conditional distributions — random binning channels (RBCs):

A(ulx) and B(v|y)

and finally compress uw and v (separately) to their entropies.

Decoder recovers (u, v); outputs the most likely (x, y) with bins (u, v).

We assume

Aulz) = exp{—nF(Puzx)}; B(vly) = exp{—nG(Pvy)}.

Analyzable using the MoT and still rather general.
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Discussion

We allow, not only non—uniform distributions, but also

dependence on the source vectors.

Let A(u|x) x Z{dy(x,u) < 1}.

Suppose y has already been decoded, and we now decode .

The decoder knows that « must satisfy dg (e, u) < 1.

In other words, u serves as side info, in addition to y.

Q: Can dependence between u and x can help?
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Discussion

We allow, not only non—uniform distributions, but also

dependence on the source vectors.

Let A(u|x) x Z{dy(x,u) < 1}.
Suppose y has already been decoded, and we now decode .
The decoder knows that « must satisfy dg (e, u) < 1.
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A: Unfortunately, no!

Robustness to unavailability of the other source to the decoder:

Trading off error prob., excess—length prob., and distortion.
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Formulation

Let A(u|z) = exp{—nF(Puz)} and B(v|y) = exp{—nG(Pvy)}
be used for randomly drawing bins for every x and y.

Denote v = f(x) and v = g(y).

Consider the ML decoder
x,y) = hlu,v| =ar max Plx,y).
(&:9) = hlu.v] =219 v r e, gy=vy | oY)

Let Perr(F, G) = Pr{h[f(X),q(Y)] # (X,Y)} and

define the error exponent as:

Eerr(F,G) = lim [—

n—oo

log Perr(F, G) ]
n
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Formulation (Cont’d)

We assume that « and v are compressed to their empirical entropies.

The excess code—length probability is

Poo(F,G) = Pr{H(Pu) > Rx, H(Pv) > Ry},

and the excess code—length exponent is defined as

Fea(F.G) = lim_|-

n—oo

log Pgg|(F), G)]
n

Every (F, G) incudes a point (Eerr(F, G), Egq(F, G)) in the plane.

We are interested in the optimal tradeoff between them, e.g.,

E Ep) = E F, G).
err( 0) {(F,G):Erell?ch,G)on} err(7 )
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Optimal RBCs

Since

Y AW@r)= > exp{-nF(Puz)} <1

ueT(u|lx ueT(u|x)
it follows that
F(pum) > ﬁuaz(U\X) V Puz,

with equality for at least one Py, 4, for every Pr.
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Optimal RBCs (Cont’d)

Since both exponents are “monotonically increasing with F7,

. Huz(U|X) forone Py iz = Qux
00 elsewhere

Similar statements apply to B and G.

In other words,

1
A* (’U,‘{U) — T (Qu|x|T)] U c T(QU|X|m)
0 elsewhere

1
cT
B*('v|y) — T (QvivIY)] u (QV|Y|y>
elsewhere
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Error Exponents for Given ();; x and Qy |y

Eerr(Qu|x,Qvy) = min{E1(Qpx), E2(Qyy), Es(Qp x, Qv yv)}

E1(Quix) = min {D(Qxy||Pxy)+ Ho(U[X) —

Ho(U|X,Y) + [Ho(U|X) — Ho(XY,U)l+},
E2(Qyy) = min {D(Qxy||Pxy)+ Ho(V[Y) —

VXY

Ho(VIX,Y) + [Ho(V[Y) — Ho(Y[X,V)]+},
E3(Quix,Qvyy) =  min {D(@Q@xvy|Pxy)+

Ho(UIX) + Ho(V|Y) — Ho(U, V|X,Y) +
[Ho(U|X)+ Ho(V]Y) — Ho(X,Y|U, V)| }.

Dependencies seem to have a mixed impact on the error exponent...
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Main Result

For a given Q x (resp. Qy) and any associated conditional distribution,
Qu|x (resp. Qyy), let Qu (resp. Qv ) be the induced marginal. Then,

Eecl(Qu,Qv) = Eea(Quix,Qvy);
Eerr(Qu,Qv) = Eerr(Qux,Qv|y)
Eerr(Qu,Qv) = min{FE1(Qu), E2(Qv), E3(Qu,Qv)}
E1(Qu) = én;g{D(QXYHPXY) +
[Ho(U) — Ho(X|Y)]+}
Ex(Qy) = én;g{D(QXYHPXY) +
[Hq (V) — Ho(Y[X)]+}
E3(Qu,Qv) = én;g{D<QXY||PXY> +

[Ho(U) + Hg(V) — Ho(X,Y)]+},

where Hg(U) and Hg (V') denote the entropies of Q¢ and Qv .
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Trading off with Distortion

It makes sense to create dependencies, Q;x and Qv |y,
if we wish to maintain distortion constraints, e.g.,

max Eerr(Qux,®
Qux,Qv|y ( ulx V|Y)

subject to the constraints:

1V
=
=)

Eeol(Qu|x: Qvy)

> Qux(w,z)dx(u,z) < Dx

IA
-
b.<

Z QVY (’U, y)dY (’U, y)
v,y

Limiting the distortion compromises the tradeoft.
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