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The Guessing Problem

Alice generates a finite–alphabet random vector,

X = (X1, . . . ,Xn) ∼ P.

Bob submits a sequence of guesses (yes/no questions):

Is X = x1?

Is X = x2?

· · ·
until the first hit.

Given a guessing list, G = {x1,x2, . . .}, let G(X) = min{i : xi = X}.

Ordering the guesses according to: P (x1) ≥ P (x2) ≥ · · ·
minimizes E{f [G(X)]} for every non–decreasing f .

Basic question no. 1: single–letter formula of minG E{[G(X)]ρ}.

Basic question no. 2: what if P is unknown?
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Motivations

♣ Relation to source coding (large deviations).

♣ Natural operational significance for the Rényi entropy.

♣ Sequential decoding (Arikan ‘96).

♣ List decoding.

♣ Security – guessing passwords.

♣ Guessing with distortion (Arikan & M, ‘98) - rate–distortion coding.
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Related Work (Partial List Only)

♦ Massey (‘94) – introduced the notion of guessing.

♦ Arikan (‘96) – bounds on guessing moments (Rényi’s entropy).

♦ Arikan & Merhav (‘98) – guessing with a fidelity criterion; univerality.

♦ Malone & Sullivan (‘04) – Markov sources.

♦ Pfitser & Sullivan (‘04) – stationary sources.

♦ Hanawal & Sundaresan (‘11) – large deviations.

♦ Sundaresan (‘07) – guessing under source uncertainty.

♦ Christiansen et al. (‘13) – guessing passwords over a channel.

♦ Christiansen et al. (‘15) – a multiuser scanrio.

♦ Beirami et al. (‘15) – inscrutability.

♦ Salamatian et al. (‘17, ‘19) – multi-agent guessing.

♦ Merhav & Cohen (‘20): universal randomized guessing.

♦ Merhav (‘20): universal guessing individual sequences using FSM’s.
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Noisy Guessing

In our setting, Alice receives Bob’s guesses via a noisy channel.

Formuation:

♣ Alice randomly draws Y = (Y1, . . . , Yn) ∼ P (DMS).

♣ Bob submits a sequence of guesses, x1,x2, . . ..

♣ Each guess, xi undergoes a DMC W , to become a noisy guess, Y i.

♣ A guess is successful as soon as Y i = Y .

The number of guesses is

G = min{i : Y i = Y }.

Goal: characterize E{Gρ} for the best strategy.

Results: 2 optimal randomized strategies, one is universal in (P,W, ρ).
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Motivations

♠ Remote connection might be noisy (no coding).

♠ Alice may wish to apply a jammer for defense against attacks by Bob.

♠ Exploring properties of robustness to errors.

♠ Some of the results may be surprising...

♠ Introducing new tools: not relying on source coding for the converse.
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Main Result

Define Γ(QY ) = inf
QX|Y

D(QY |X‖W |QX)

and E(ρ) = sup
QY

{

ρ[H(QY ) + Γ(QY )]−D(QY ‖P )

}

= ln



inf
V

∑

y∈Y

P (y)
[
∑

x∈X V (x)W (y|x)
]ρ





Theorem: ∀ guessing strategy: lim inf
n→∞

lnE{Gρ}
n

≥ E(ρ).

∃ guessing strategy: lim sup
n→∞

lnE{Gρ}
n

≤ E(ρ).
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The Penalty due to the Noise

E(ρ) = sup
QY

{

ρ[H(QY ) + Γ(QY )]−D(QY ‖P )

}

= ln



inf
V

∑

y∈Y

P (y)
[
∑

x∈X V (x)W (y|x)
]ρ





Γ(QY ), in the first formula, designates the penalty due to noise.

Looking at the second formula, note that in the absence of noise,

E(ρ) = ln



inf
Q

∑

y∈Y

P (y)

Qρ(y)



 .

Here, the minimization is limited to CH{W (·|x), x ∈ X}.

Conclusion: If Q∗ ∈ CH{W (·|x), x ∈ X}, there is no penalty!
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Example

P = binary source, {p = 0.25, 1− p = 0.75}.

W = BSC with crossover parameter, q < 1
2
.

We present graphs of the guessing exponent:

♥ as a function of q for ρ = 1. Φ–transition at:

q = qc =

√
p

√
p+

√
1− p)

.

♥ as a function of ρ for q = 0.35. Φ–transition at:

ρ = ρc =

[

ln[(1− p)/p]

ln[(1− q)/q]
− 1

]

+

.
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Guessing Exponent as a Function of q
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Guessing Exponent as a Function of ρ
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Achievability

The formula

E(ρ) = ln



inf
V

∑

y∈Y

P (y)
[
∑

x∈X V (x)W (y|x)
]ρ





suggests a conceptually simple achievability scheme:

Draw the guesses independently at random according to

V ∗(x) =

n
∏

i=1

V ∗(xi),

where V ∗ attains E(ρ).

Disadvantage: the optimal V ∗ depends on P , W , and ρ.

∃ universal scheme, independent of (P,W, ρ), that attains E(ρ)?
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Achievability (Cont’d)

Consider the following random guessing distribution,

V (x) =
exp{−nĤx(X)}

∑

x′∈Xn exp{−nĤx′(X)}
,

where Ĥx(X) is the empirical entropy associated with x.

Draw independent guesses under V , which is independent of (P,W, ρ).

♠ It is easy to show (using the method of types) that E(ρ) is achieved.

♠ V (x) can be implemented sequentially [Merhav & Cohen (‘20)].

♠ Easy to extend to sources with memory and to availability of side info.
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A Word About the Converse (Time Permits)

Different from the noiseless case – no source coding considerations.

1. Begin by conditioning on Y ∈ T (QY ).

2. Use Chebychev’s inequality,

E{Gρ|Y ∈ T (QY )} ≥ kρPr{G > k|Y ∈ T (QY )}.

3. Use the relations:

Pr{G > k|Y = y} =

k
∏

i=1

[1−W (y|xi)] = exp

{

k
∑

i=1

ln[1−W (y|xi)]

}

.

4. Apply the inequality, ln(1− w) ≥ w
1−w .

5. Apply Jensen’s inequality to pass the expectation to the exponent.

6. Choose k properly.

7. Average over all types.
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Thank You!
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