

Noisy Guesses

Neri Merhav

The Andrew & Erna Viterbi Faculty of Electrical Engineering
Technion – Israel Institute of Technology
Haifa 3200003, Israel

ISIT 2020, June 21–26, 2020.

The Guessing Problem

Alice generates a finite-alphabet random vector,

$$\mathbf{X} = (X_1, \dots, X_n) \sim P.$$

Bob submits a sequence of guesses (yes/no questions):

Is $\mathbf{X} = \mathbf{x}_1$?

Is $\mathbf{X} = \mathbf{x}_2$?

...

until the first hit.

Given a **guessing list**, $\mathcal{G} = \{\mathbf{x}_1, \mathbf{x}_2, \dots\}$, let $G(\mathbf{X}) = \min\{i : \mathbf{x}_i = \mathbf{X}\}$.

Ordering the guesses according to: $P(\mathbf{x}_1) \geq P(\mathbf{x}_2) \geq \dots$

minimizes $\mathbf{E}\{f[G(\mathbf{X})]\}$ for every non-decreasing f .

Basic question no. 1: single-letter formula of $\min_{\mathcal{G}} \mathbf{E}\{[G(\mathbf{X})]^\rho\}$.

Basic question no. 2: what if P is unknown?

Motivations

- ♣ Relation to source coding (large deviations).
- ♣ Natural operational significance for the Rényi entropy.
- ♣ Sequential decoding (Arikan '96).
- ♣ List decoding.
- ♣ Security – guessing passwords.
- ♣ Guessing with distortion (Arikan & M, '98) - rate–distortion coding.

Related Work (Partial List Only)

- ◊ Massey ('94) – introduced the notion of guessing.
- ◊ Arikan ('96) – bounds on guessing moments (Rényi's entropy).
- ◊ Arikan & Merhav ('98) – guessing with a fidelity criterion; univerality.
- ◊ Malone & Sullivan ('04) – Markov sources.
- ◊ Pfitser & Sullivan ('04) – stationary sources.
- ◊ Hanawal & Sundaresan ('11) – large deviations.
- ◊ Sundaresan ('07) – guessing under source uncertainty.
- ◊ Christiansen *et al.* ('13) – guessing passwords over a channel.
- ◊ Christiansen *et al.* ('15) – a multiuser scanrio.
- ◊ Beirami *et al.* ('15) – inscrutability.
- ◊ Salamatian *et al.* ('17, '19) – multi-agent guessing.
- ◊ Merhav & Cohen ('20): universal randomized guessing.
- ◊ Merhav ('20): universal guessing individual sequences using FSM's.

Noisy Guessing

In our setting, Alice receives Bob's guesses via a **noisy channel**.

Formuation:

- ♣ Alice randomly draws $\mathbf{Y} = (Y_1, \dots, Y_n) \sim P$ (DMS).
- ♣ Bob submits a sequence of guesses, x_1, x_2, \dots
- ♣ Each guess, x_i undergoes a DMC W , to become a **noisy guess**, Y_i .
- ♣ A guess is **successful** as soon as $Y_i = \mathbf{Y}$.

The number of guesses is

$$G = \min\{i : Y_i = \mathbf{Y}\}.$$

Goal: characterize $E\{G^\rho\}$ for the best strategy.

Results: 2 optimal randomized strategies, one is universal in (P, W, ρ) .

Motivations

- ♠ Remote connection might be noisy (no coding).
- ♠ Alice may wish to apply a jammer for defense against attacks by Bob.
- ♠ Exploring properties of robustness to errors.
- ♠ Some of the results may be surprising...
- ♠ Introducing new tools: not relying on source coding for the converse.

Main Result

Define $\Gamma(Q_Y) = \inf_{Q_{X|Y}} D(Q_{Y|X} \| W|Q_X)$

$$\begin{aligned} \text{and } E(\rho) &= \sup_{Q_Y} \left\{ \rho[H(Q_Y) + \Gamma(Q_Y)] - D(Q_Y \| P) \right\} \\ &= \ln \left(\inf_V \sum_{y \in \mathcal{Y}} \frac{P(y)}{\left[\sum_{x \in \mathcal{X}} V(x) W(y|x) \right]^\rho} \right) \end{aligned}$$

Theorem: \forall guessing strategy: $\liminf_{n \rightarrow \infty} \frac{\ln \mathbf{E}\{G^\rho\}}{n} \geq E(\rho)$.

\exists guessing strategy: $\limsup_{n \rightarrow \infty} \frac{\ln \mathbf{E}\{G^\rho\}}{n} \leq E(\rho)$.

The Penalty due to the Noise

$$\begin{aligned} E(\rho) &= \sup_{Q_Y} \left\{ \rho[H(Q_Y) + \Gamma(Q_Y)] - D(Q_Y \| P) \right\} \\ &= \ln \left(\inf_{\textcolor{blue}{V}} \sum_{y \in \mathcal{Y}} \frac{P(y)}{\left[\sum_{x \in \mathcal{X}} \textcolor{blue}{V}(x) W(y|x) \right]^\rho} \right) \end{aligned}$$

$\Gamma(Q_Y)$, in the first formula, designates the penalty due to noise.

Looking at the second formula, note that in the absence of noise,

$$E(\rho) = \ln \left(\inf_{\textcolor{blue}{Q}} \sum_{y \in \mathcal{Y}} \frac{P(y)}{\textcolor{blue}{Q}^\rho(y)} \right).$$

Here, the minimization is limited to $\mathcal{CH}\{W(\cdot|x), x \in \mathcal{X}\}$.

Conclusion: If $Q^* \in \mathcal{CH}\{W(\cdot|x), x \in \mathcal{X}\}$, there is no penalty!

Example

P = binary source, $\{p = 0.25, 1 - p = 0.75\}$.

W = BSC with crossover parameter, $q < \frac{1}{2}$.

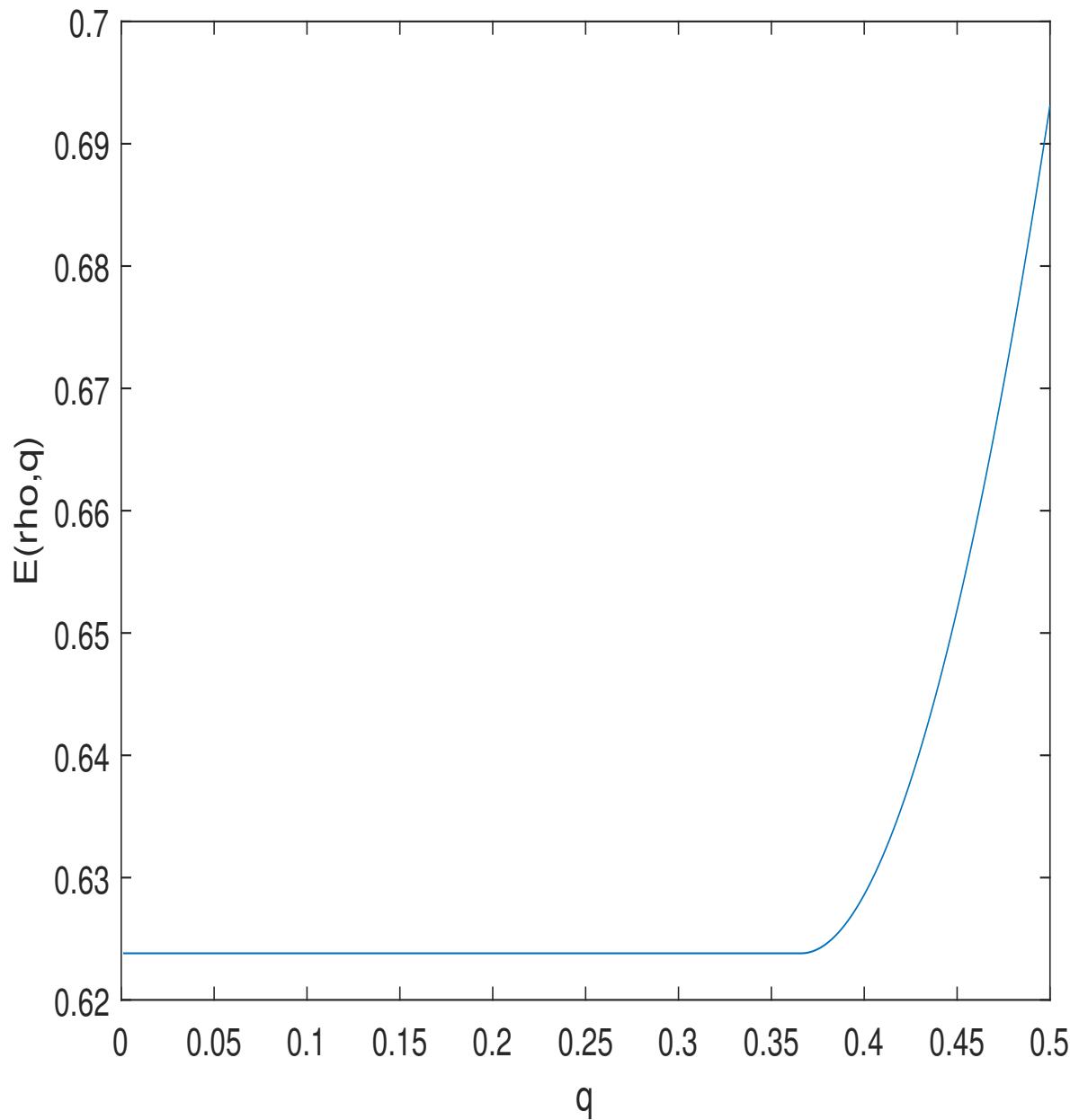
We present graphs of the guessing exponent:

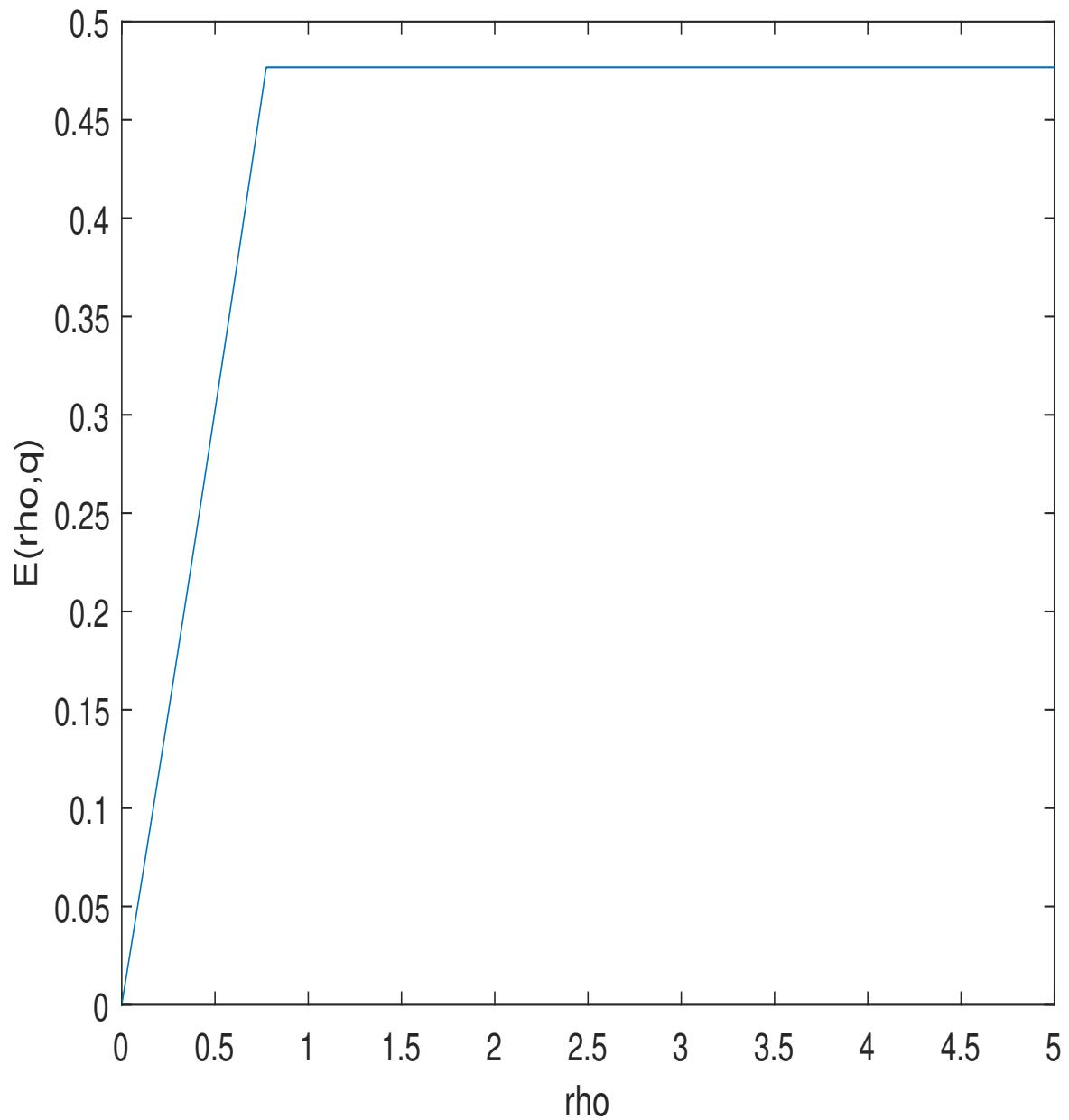
♡ as a function of q for $\rho = 1$. **Φ-transition** at:

$$q = q_c = \frac{\sqrt{p}}{\sqrt{p} + \sqrt{1 - p}}.$$

♡ as a function of ρ for $q = 0.35$. **Φ-transition** at:

$$\rho = \rho_c = \left[\frac{\ln[(1 - p)/p]}{\ln[(1 - q)/q]} - 1 \right]_+.$$





Achievability

The formula

$$E(\rho) = \ln \left(\inf_V \sum_{y \in \mathcal{Y}} \frac{P(y)}{\left[\sum_{x \in \mathcal{X}} V(x) W(y|x) \right]^\rho} \right)$$

suggests a conceptually simple achievability scheme:

Draw the guesses independently at random according to

$$V^*(\mathbf{x}) = \prod_{i=1}^n V^*(x_i),$$

where V^* attains $E(\rho)$.

Disadvantage: the optimal V^* depends on P , W , and ρ .

\exists universal scheme, independent of (P, W, ρ) , that attains $E(\rho)$?

Achievability (Cont'd)

Consider the following random guessing distribution,

$$V(\mathbf{x}) = \frac{\exp\{-n\hat{H}_{\mathbf{x}}(X)\}}{\sum_{\mathbf{x}' \in \mathcal{X}^n} \exp\{-n\hat{H}_{\mathbf{x}'}(X)\}},$$

where $\hat{H}_{\mathbf{x}}(X)$ is the empirical entropy associated with \mathbf{x} .

Draw independent guesses under V , which is independent of (P, W, ρ) .

- ♠ It is easy to show (using the method of types) that $E(\rho)$ is achieved.
- ♠ $V(\mathbf{x})$ can be implemented sequentially [Merhav & Cohen ('20)].
- ♠ Easy to extend to sources with memory and to availability of side info.

A Word About the Converse (Time Permits)

Different from the noiseless case – no source coding considerations.

1. Begin by conditioning on $\mathbf{Y} \in \mathcal{T}(Q_Y)$.
2. Use Chebychev's inequality,

$$\mathbf{E}\{G^\rho | \mathbf{Y} \in \mathcal{T}(Q_Y)\} \geq \mathbf{k}^\rho \Pr\{G > \mathbf{k} | \mathbf{Y} \in \mathcal{T}(Q_Y)\}.$$

3. Use the relations:

$$\Pr\{G > \mathbf{k} | \mathbf{Y} = \mathbf{y}\} = \prod_{i=1}^k [1 - W(\mathbf{y} | \mathbf{x}_i)] = \exp \left\{ \sum_{i=1}^k \ln[1 - W(\mathbf{y} | \mathbf{x}_i)] \right\}.$$

4. Apply the inequality, $\ln(1 - w) \geq \frac{w}{1-w}$.
5. Apply Jensen's inequality to pass the expectation to the exponent.
6. Choose k properly.
7. Average over all types.

Thank You!