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Abstract

We consider the problem of guessing a random, finite–alphabet, secret n–vector, where the
guesses are transmitted via a noisy channel. We provide a single–letter formula for the best
achievable exponential growth rate of the ρ–th moment of the number of guesses, as a function
of n. This formula exhibits a fairly clear insight concerning the penalty due to the noise. We
describe two different randomized schemes that achieve the optimal guessing exponent. One of
them is fully universal in the sense of being independent of source (that governs the vector to
be guessed), the channel (that corrupts the guesses), and the moment power ρ. Interestingly, it
turns out that, in general, the optimal guessing exponent function exhibits a phase transition
when it is examined either as a function of the channel parameters, or as a function of ρ: as long
as the channel is not too distant (in a certain sense to be defined precisely) from the identity
channel (i.e., the clean channel), or equivalently, as long ρ is larger than a certain critical value,
ρc, there is no penalty at all in the guessing exponent, compared to the case of noiseless guessing.

Index Terms: guessing exponent, randomized guessing, noisy channels, phase transitions.
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1 Introduction

Consider the problem of guessing the realization of a finite–alphabet random vector X = (X1, . . . , Xn)

using a series of yes/no questions of the form: “Is X = x1?”, “Is X = x?”, and so on, until a

positive response is received. Given a distribution on X, a commonly used performance metric for

the guessing problem is the expected number of guessing trials required until X is guessed correctly,

or more generally, a general moment of this number.

The quest for guessing strategies designed in order to minimize the moments of the number

of guesses has several motivations and applications in information theory and related areas. One

of them, for example, is sequential decoding, as shown by Arikan [1], who based his work on the

earlier work of Massey [3], and related the asymptotic exponent of the best achievable guessing

moment to the Rényi entropy. More recent applications of the guessing problem focus on aspects of

information security, in particular, brute–force attacks of guessing passwords or decrypting messages

protected by random keys. For example, one may submit a sequence of guessing queries in attempt

to crack passwords – see, e.g., [5, Introduction] (as well as [6] and other references therein) for

a fairly comprehensive review on guessing and information security, as well as for some historical

perspective of earlier research work on the problem of guessing in general, along with its large

variety of forms and extensions.

In this paper, we consider the guessing problem where the guesser (henceforth, Bob) submits his

guesses to the party that examines the guesses (henceforth, Alice) via a noisy discrete memoryless

channel (DMC). In other words, the problem is informally defined as follows: Alice randomly draws

an n–vector Y from a discrete memoryless source (DMS) P of a finite alphabet Y. Bob submits

a sequence of guesses, xi ∈ X n, i = 1, 2, . . ., but each guess xi is transmitted through a DMC W ,

defined by a matrix single–letter transition probabilities, {W (y|x), x ∈ X , y ∈ Y}, before arriving

to Alice. Let Y 1,Y 2, . . ., Y i ∈ Yn, i = 1, 2, . . ., be the corresponding noisy versions of the guesses.

Alice checks the noisy guesses sequentially, and returns an affirmative feedback to Bob upon the

first perfect match, Y i = Y . The questions we are studying, in this paper, are similar to those that

were studied in earlier works on the guessing problem, namely: (i) what is the minimum achievable

asymptotic exponent of E{Gρ} (i.e., the guessing exponent), where G is the number of guesses

until the first success, and ρ is an arbitrary given positive real? In particular, what is the penalty
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caused by the channel noise in terms of the possible increase in the guessing exponent, compared

to the noiseless case of [1]? (ii) how can one achieve this minimum guessing exponent?

Our main result is a single–letter formula of the best achievable guessing exponent, i.e., the

exponential growth rate of the ρ–th moment of the number of guesses, as a function of n. In

particular, we provide two equivalent expressions of the optimal guessing exponent. One of these

expressions immediately suggests an optimal (randomized) guessing strategy. The other expression

exhibits a fairly clear insight concerning the penalty due to the noise. We describe two different

randomized schemes that achieve the optimal guessing exponent. One of them is fully universal

in the sense of being independent of source P (that governs the vector Y to be guessed), the

channel W (that corrupts the guesses), and the power ρ. Obviously, the existence of a randomized

guessing scheme that achieves the optimal guessing exponent implies (albeit, not constructively)

the existence of a deterministic guessing scheme, exactly like in standard random coding arguments.

Having said that, randomized schemes have some advantages, as was discussed in [5].

Interestingly, it turns out that, in general, the optimal guessing exponent function exhibits a

phase transition when it is examined either as a function of the channel parameters, {W (y|x)},

or as a function of ρ: as long as the channel is not too distant (in a certain sense to be defined

precisely in the sequel) from the identity channel (i.e., the clean channel), or equivalently, as long ρ

is larger than a certain critical value, ρc, there is no penalty whatsoever in the guessing exponent,

compared to the case of noiseless guessing.

There are several motivations for studying this problem of noisy guesses.

1. Since Alice and Bob might be physically remote from each other, it is conceivable that the

channel that links Bob to Alice would be noisy, and coding/decoding may not be an option

in applications where Alice has no incentive to cooperate with Bob.

2. Alice may wish to apply a jammer as a mean of defense against a (detected) brute–force

attack conducted by Bob.

3. We wish to explore aspects of robustness of the guessing performance to errors in the guessing

mechanism.

4. We believe that the results are fairly interesting and some of them are even quite surprising,
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for example, the phase transitions, and the full universality of two of the proposed guessing

schemes, in P , W and ρ, as described in the previous paragraphs.

5. It enriches the variety of perspectives and the plethora of technical analysis tools used in the

guessing problem. While the guessing problem, in its ordinary, noiseless form, has an intimate

relationship to source coding, and hence can be solved on the basis of source coding results,

this is no longer the case in the noisy setting. Indeed, as we shall see, the analysis techniques

are very different from those of noiseless guessing [1].

The outline of the remaining part of this paper is as follows. In Section 2, we establish notation

conventions. In Section 3, we formally define the problem and the objectives. In Section 4, we

present our main results and discuss them. Finally, in Section 5, we prove our main theorem.

2 Notation Conventions

Throughout the paper, random variables will be denoted by capital letters, specific values they may

take will be denoted by the corresponding lower case letters, and their alphabets will be denoted by

calligraphic letters. Random vectors and their realizations will be denoted, respectively, by capital

letters and the corresponding lower case letters, both in the bold face font. Their alphabets will be

superscripted by their dimensions. For example, the random vector X = (X1, . . . , Xn), (n – positive

integer) may take a specific vector value x = (x1, . . . , xn) in X n, the n–th order Cartesian power of

X , which is the alphabet of each component of this vector. Sources and channels will be denoted by

the letters P , Q, V and W , subscripted by the names of the relevant random variables/vectors and

their conditionings, if applicable, following the standard notation conventions, e.g., QX , PY |X , and

so on. When there is no room for ambiguity, these subscripts will be omitted. The probability of

an event E will be denoted by Pr{E}, and the expectation operator will be denoted by E{·}. The

entropy of a random variable X with a generic distribution QX (or Q, for short) will be denoted

by H(Q) or H(QX), or HQ(X), and the Kullback–Leibler divergence between two distributions,

P and Q, on the same alphabet, will be denoted by D(Q‖P ). Likewise, for a pair of random

variables (X,Y ), jointly distributed according to Q, HQ(X,Y ), HQ(X|Y ), IQ(X;Y ) will denote

the joint entropy, the condition entropy ofX given Y , and the mutual information betweenX and Y ,

respectively. Similar notation conventions will apply to other information measures, including those
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that involve more than two random variables. The weighted divergence between two conditional

distributions, QY |X and PY |X , with weighting QX , is defined as

D(QY |X‖PY |X |QX) =
∑
x∈X

QX(x)
∑
y∈Y

QY |X(y|x) ln
QY |X(y|x)

PY |X(y|x)
. (1)

For two positive sequences an and bn, the notation an
·

= bn will stand for equality in the exponential

scale, that is, limn→∞
1
n log an

bn
= 0. Similarly, an

·
≤ bn means that lim supn→∞

1
n log an

bn
≤ 0, and so

on. The indicator function of an event E will be denoted by I{E}. The notation [x]+ will stand

for max{0, x}.

The empirical distribution of a sequence x ∈ X n, which will be denoted by P̂x, is the vector of

relative frequencies P̂x(x) of each symbol x ∈ X in x. The type class of x ∈ X n, denoted T (x),

is the set of all vectors x′ with P̂x′ = P̂x. When we wish to emphasize the dependence of the

type class on a generic empirical distribution, say, QX , we will denote it by T (QX). Information

measures associated with empirical distributions will be denoted with ‘hats’ and will be subscripted

by the sequences from which they are induced. For example, the entropy associated with P̂x,

which is the empirical entropy of x, will be denoted by Ĥx(X). An alternative notation, following

the conventions described in the previous paragraph, is H(P̂x). Similar conventions will apply

to the joint empirical distribution, the joint type class, the conditional empirical distributions

and the conditional type classes associated with pairs (and multiples) of sequences of length n.

The conditional type class of x given y w.r.t. a conditional distribution QX|Y will be denoted by

T (QX|Y |y). Ĥxy(X,Y ) will designate the empirical joint entropy of x and y, Ĥxy(X|Y ) will be

the empirical conditional entropy, Îxy(X;Y ) will denote empirical mutual information, and so on.

Also, sometimes we will use the subscript Q (like in HQ(X|Y ) and IQ(X;Y )) when it is understood

that Q is the joint empirical distribution associated with (x,y).

3 Problem Formulation

We consider the following scenario: Alice draws a random n–vector, Y = (Y1, . . . , Yn), from a

discrete memoryless source (DMS), P , of a finite alphabet, Y. Bob, who is unaware of the realization

of Y , sequentially submits to Alice a (possibly, infinite) sequence of guesses, x1,x2, . . ., where each

xi is a vector of length n, whose components take on values in a finite alphabet, X . Before arriving
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to Alice, each guess, xi, undergoes a discrete memoryless channel (DMC), defined by a matrix of

single–letter input–output transition probabilities, W = {W (y|x), x ∈ X , y ∈ Y}. Let Y 1,Y 2, . . .

be the corresponding noisy versions of x1,x2, . . ., after being corrupted by the DMC, W . Alice

sequentially examines the noisy guesses and she returns to Bob an affirmative feedback upon the

first perfect match, Y i = Y . Clearly, the number of guesses, G, until the first successful guess, is a

random variable that depends on the source vector Y and the guesses, Y 1,Y 2, . . . .. It is given by

G = G(Y ,Y 1,Y 2, . . .) =

∞∑
k=1

k · I{Y k = Y } ·
k−1∏
i=1

[1− I{Y i = Y }]. (2)

For a given list of guesses, Gn = {x1,x2, . . .}, xi ∈ X n, i = 1, 2, . . ., the ρ–th moment of G is given

by

EGn{Gρ} =
∑
y∈Yn

P (y) ·
∞∑
k=1

kρ ·W (y|xk) ·
k−1∏
i=1

[1−W (y|xi)], (3)

where

W (y|x) = W (y1, . . . , yn|x1, . . . , xn) =

n∏
t=1

W (yt|xt). (4)

Randomized guessing lists (where the deterministic guesses, {xi}, are replaced by random ones,

{Xi}) are allowed as well. In this case, eq. (3) would include also an expectation w.r.t. the

randomness of the guesses. For a given sequence of lists, G = G1,G2, . . ., we define

E−G (ρ) = lim inf
n→∞

lnEGn{Gρ}
n

(5)

E+
G (ρ) = lim sup

n→∞

lnEGn{Gρ}
n

, (6)

and

E−(ρ) = inf
G
E−G (ρ) (7)

E+(ρ) = inf
G
E+
G (ρ). (8)

Our objectives, in this paper, are as follows.

1. To show that E−(ρ) = E+(ρ). The distinction between these two functions will then disappear

and both of them will be denoted by E(ρ).

2. To find a single–letter formula for E(ρ), which depends on the source P and the channel W ,

in addition to the moment order, ρ. To characterize the loss in the guessing performance due

to the noise (compared to the case of noiseless guessing).
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3. To derive a (possibly randomized) guessing scheme that achieves E(ρ).

In fact, all three objectives will essentially be accomplished in a joint manner. We will define

a certain single–letter function, E(ρ), and show that E+(ρ) ≤ E(ρ) ≤ E−(ρ), where the first

inequality is the direct part and the second inequality is the converse part. Using the obvious fact

that E+(ρ) ≥ E−(ρ) by their definitions, all inequalities are in fact, equalities.

A comment about the notation is in order. When we wish to emphasize the dependence of E(ρ)

on the channel W as well, we may expand the notation to E(ρ,W ). The second argument, W , may

also be replaced by a certain parameter that completely defines W , like the crossover probability q

in case of the binary symmetric channel (BSC).

4 Main Results

Let P , W , and ρ ≥ 0 be given. To present the main result, we first need a few definitions. For two

given distributions, QX and QY , defined on X and Y, respectively, define

Γ(QX , QY ) = inf{D(Q̃Y |X‖W |QX) : (QX � Q̃Y |X)Y = QY }, (9)

where the notation (QX � Q̃Y |X)Y = QY means that the Y –marginal induced by the given QX and

by Q̃Y |X is constrained to be the given QY , i.e.,
∑

x∈X QX(x)Q̃Y |X(y|x) = QY (y) for all y ∈ Y.

Next, define

Γ(QY ) = inf
QX

Γ(QX , QY ) = inf
QX|Y

D(QY |X‖W |QX). (10)

Finally, we define

E(ρ) = sup
QY

{
ρ[H(QY ) + Γ(QY )]−D(QY ‖P )

}
. (11)

Theorem 1 below states that E(ρ) is, in fact, a single–letter formula for both E+(ρ) and E−(ρ).

It also provides an alternative, equivalent expression for E(ρ), which is simpler to calculate in

practice.

Theorem 1 Let P , W , and ρ ≥ 0 be given and consider the problem setting defined in Section 3.

Assume that W is such that Wmax = maxx,yW (y|x) < 1. Then,

1. (Converse part): E−(ρ) ≥ E(ρ).
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2. (Direct part): E+(ρ) ≤ E(ρ).

3. The function E(ρ) can also be expressed as follows:

E(ρ) = ln

inf
V

∑
y∈Y

P (y)[∑
x∈X V (x)W (y|x)

]ρ
 , (12)

where the infimum w.r.t. V is taken across the simplex of all probability distributions over X ,

i.e., over all vectors of dimension |X | whose components are non–negative and sum to unity.

The proof appears in Section 5. The remaining part of this section is devoted to a discussion on

Theorem 1.

1. The assumption Wmax < 1. This technical regularity condition is needed for the proof of the

converse part. At a first glance, it seems to be rather restrictive. A closer look, however, reveals

that this restriction is not too severe. Suppose that this condition is violated, namely, there exist

pairs (x, y) with W (y|x) = 1. Let Y ′ = Y ∩ {y : maxxW (y|x) = 1}. Now, for any type QY whose

support is Y ′, and for every y ∈ T (QY ), we can find x such that W (y|x) = 1, and the problem of

guessing within such a type boils down to the problem of noiseless guessing: whenever one wishes to

guess a certain y, he or she should guess instead an x for which W (y|x) = 1. For every QY whose

support is not included in Y ′, and every y ∈ T (QY ), there exists at least one letter yi for which

W
∆
= maxxW (yi|x) < 1 and hence W (y|x) =

∏n
i=1W (yi|xi) ≤W < 1, which is still acceptable for

the derivation of the converse proof (with W replacing Wn
max).

2. The penalty due to the noise and phase transitions. As can be seen from the first

expression of E(ρ) (eq. (11)), the term Γ(QY ) expresses the unavoidable, minimum achievable

penalty that Bob must suffer due to the noise. Interestingly, there might be situations, where there

is no penalty at all as far as the guessing exponent is concerned. These situations can be identified

even more easily from the second expression of E(ρ). First, observe that in the noiseless case,

where W is the clean channel, eq. (12) boils down to E(ρ) = ln(infQ
∑

y P (y)/[Q(y)]ρ) (Q being a

probability distribution over Y), which is achieved by the distribution Q∗(y) that is proportional to

[P (y)]1/(1+ρ). Eq. (12) can be thought of as the same minimization problem, except that now Q is
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constrained to lie in the convex hull of {W (·|x), x ∈ X}. Generally speaking, good channels have

a relatively large convex hull, whereas bad channels have a relatively small one. In the extreme

case of the clean channel, this convex hull is the entire simplex of probability distributions over Y.

In the other extreme, where the channel is completely useless, all {W (·|x), x ∈ X} coincide with a

single distribution over Y. In this case, the convex hull of W is a singleton. Returning to the case

of a general channel, W , if the above–mentioned distribution Q∗ happens to lie within this convex

hull, then no penalty is incurred in the guessing exponent. Interestingly, this implies that in general

there might be a phase transition in the behavior of the guessing exponent as a function of the noise

level, or as a function of ρ. For a given source P and a given moment order ρ, consider a family of

channels defined by a single parameter. For example, consider the binary case (X = Y = {0, 1}),

where the binary source is defined by the parameter p = Pr{Xi = 1} and the family of channels are

the binary symmetric channels (BSCs) with a crossover parameter q ∈ [0, 0.5]. Assume also that

ρ = 1. If we increase q gradually from 0 to 0.5, we see that as long as q < qc
∆
=
√
p/(
√
p+
√

1− p),

the guessing exponent is the same as in the noiseless case, independently of q. However, as q

crosses the critical value qc the guessing exponent starts to grow with q. The graph of the guessing

exponent, here denoted E(ρ, q), is depicted in Fig. 1, for p = 0.25 and ρ = 1, where qc = 0.366.

Likewise, it is possible to examine the behavior of the guessing exponent as a function of ρ for

fixed q. In the case of the BSC, the convex hull of W is always a symmetric interval around 0.5,

i.e., the interval [q, 1 − q]. The optimal distribution Q∗, defined above is a binary distribution

with probabilities, p1/(1+ρ)/[p1/(1+ρ) + (1− p)1/(1+ρ)] and (1− p)1/(1+ρ)/[p1/(1+ρ) + (1− p)1/(1+ρ)].

As ρ grows, this distribution approaches the symmetric distribution, (0.5, 0.5). Therefore, there is

critical value of ρ beyond which this distribution falls in the convex hull of {q, 1− q}. This critical

value is given by

ρc

∆
=

[
ln[(1− p)/p]
ln[(1− q)/q]

− 1

]
+

.

Fig. 2 depicts the guessing exponent as a function of ρ, with p = 0.25 and q = 0.35, where

ρc = 0.7747.

3. Operative significance of the alternative expression (12). Quite obviously, the alterna-

tive expression of E(ρ), given in eq. (12), is easier to calculate in practice, than that of eq. (11).

However, the advantage of (12) goes considerably beyond this point, as it has a simple operative
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Figure 1: The function E(ρ, q) vs. q for the BSS with parameter p = 0.25 and ρ = 1. The critical
value of q is qc =
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1− p) = 0.366.
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Figure 2: The function E(ρ, q) vs. ρ for the BSS with parameter p = 0.25 and the BSC with
parameter q = 0.35. The critical value of ρ is ρc = ln[(1− p)/p]/ ln[(1− q)/q]− 1 = 0.7747.

10



interpretation. The denominator (without the power of ρ) is clearly the i.i.d. channel output distri-

bution induced by an i.i.d. channel input distribution V and the channel W . If we use randomized

guessing and draw all our guesses according to the memoryless source V (x) =
∏n
t=1 V (xt), then

the noisy guesses will also be random guesses distributed according to Q(y) =
∏n
t=1Q(yt), where

Q(y) =
∑

x V (x)W (y|x). As is well known from previous work (see, e.g., [5], [6]), randomized

guessing according to an i.i.d. distribution Q yields a guessing exponent of ln(
∑

y P (y)/[Q(y)]ρ).

But since Q is constrained to have the form Q(y) =
∑

x V (x)W (y|x), for a given W , the best one

can do is to minimize this expression over V , which is exactly what eq. (12) tells us to do. It follows

that the achievability of E(ρ) is conceptually simple, thanks to eq. (12): find the channel input

distribution V ∗ that achieves the minimum in (12) and then generate random guesses according

to V ∗(x) =
∏n
t=1 V

∗(xt). It should be pointed out, however, that the optimal V ∗ depends, in

general, on P , W and ρ, and therefore, this achievability scheme is not universal, as it requires the

knowledge of these ingredients.

4. A universal guessing scheme. While E(ρ) was argued in item 3 to be achievable by a non–

universal guessing scheme, it turns out that E(ρ) can also be achieved by a universal scheme that

is independent of P , W and ρ. Such a scheme is proposed in the direct part (part 2) of Theorem

1. This scheme is randomized: it is based on independent random selection of {xi} according to

the same universal distribution that was proposed in [5], namely,

P (x) =
exp{−nĤx(X)}∑
x̃ exp{−nĤx̃(X)}

, (13)

where Ĥx(X) is the empirical entropy associated with x. The fact that this universal distribution

continues to be asymptotically optimal even in the noisy case considered here, is not quite trivial,

and it is even fairly surprising (at least to the author). It enhances even further the powerful

properties of this distribution. We should mention also that random selection according to this

distribution can be implemented efficiently in practice, as was shown in [5].

5. Side information. Suppose that Bob is equipped with a side information sequence z that

is correlated with the sequence y to be guessed. More precisely, we assume that the sequence

pair (y, z) is drawn from a pair of correlated memoryless sources, P (y, z) =
∏n
t=1 P (yt, zt), but
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only z is available to Bob. It turns out that our results extend straightforwardly to this setting.

Conceptually, once we condition on the given z, we are essentially back to the same setting as before.

Thus, everything should be first conditioned on the side information, and finally, one should take

the expectation w.r.t. the side information. As a result, the expressions of E(ρ) extend as follows:

E(ρ) = sup
QY Z

{ρ[HQ(Y |Z) + Γ(QY Z)]−D(QY Z‖P )], (14)

where

Γ(QY Z) = inf
QX|Y Z

D(QY |XZ‖W |QXZ), (15)

and

E(ρ) = ln

[∑
z

P (z) min
V

∑
y

P (y|z)
[
∑

x V (x|z)W (y|x)]ρ

]
. (16)

The universal guessing distribution defined in item 4 would be replaced by

P (x|z) =
exp{−nĤxz(X|Z)}∑
x̃ exp{−nĤx̃z(X|Z)}

, (17)

where Ĥxz(X|Z) is the empirical conditional entropy of X given Z, induced by the pair (x, z) (see

also [5]).

6. Sources and channels with memory. Another possible extension of our results addresses

sources and channels with memory. In particular, our setting can essentially be extended to a class

of sources and channels that obey the following fading memory conditions for some B ≥ 0 (see also

[2] and [7]).

P {| lnP (y1, . . . , yk|y−`, . . . , y0)− lnP (y1, . . . , yk)| ≥ B} = 0 ∀k, ` ∈ N (18)

and

W

{
| lnW (y1, . . . , yk|x−`, . . . , xk, y−`, . . . , y0)−

lnW (y1, . . . , yk|x1, . . . , xk)| ≥ B
∣∣∣∣x−`, . . . , xk} = 0 ∀k, ` ∈ N (19)

Such sources and channels (like Markov sources and channels under certain conditions) can be

approximated by block–i.i.d. probability measures and then the same derivations as before apply

w.r.t. the super-alphabets of blocks. While one cannot expect single–letter formulas in this case,
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the point is that the universal probability distribution that is associated with the empirical entropy

associated with these blocks can be replaced (and slightly improved) by the universal probability

distribution, P (x) ∝ 2−LZ(x), where LZ(x) is the length (in bits) of the compressed version of x

by the Lempel–Ziv (LZ78) algorithm [8], as was shown in [5]. Therefore, this universal distribution

is asymptotically optimal in terms of the guessing exponent whenever the source and the channel

have fading memory in the above defined sense.

5 Proof of Theorem 1

5.1 Proof of Part 1 – the Converse Part

We begin from a simple preparatory step: let T (QY ) be a given type class of y–vectors, and let

x ∈ T (QX) be given. Then,

W [T (QY )|x] =
∑

y∈T (QY )

W (y|x)

=
∑

T (QY |X |x)⊆T (QY )

|T (QY |X |x)| · exp{−n[HQ(Y |X) +D(QY |X‖W |QX)]}

·
=

∑
T (QY |X |x)⊆T (QY )

exp{nHQ(Y |X)} · exp{−n[HQ(Y |X) +D(QY |X‖W |QX)]}

·
= exp

{
−n inf
{QY |X : (QX�QY |X)Y =QY }

D(QY |X‖W |QX)

}
= exp{−nΓ(QX , QY )}, (20)

and so,

max
x∈Xn

W [T (QY )|x]
·

= exp{−n inf
QX

Γ(QX , QY )} = exp{−nΓ(QY )}. (21)

Now, let c > 0 be an arbitrary constant, independent of n (say, c = 1), and for a given QY , define

k(QY ) =

⌈
c · |T (QY )|

maxx∈Xn W [T (QY )|x]

⌉
·

= exp{n[HQ(Y ) + Γ(QY )]}. (22)
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We next derive a lower bound to E{Gρ|Y ∈ T (QY )} for a given T (QY ).

E{Gρ|Y ∈ T (QY )}
(a)

≥ [k(QY )]ρ · Pr{G ≥ k(QY )|Y ∈ T (QY )}

= [k(QY )]ρ · 1

|T (QY )|
∑

y∈T (QY )

k(QY )∏
i=1

[1−W (y|xi)]

= [k(QY )]ρ · 1

|T (QY )|
∑

y∈T (QY )

exp


k(QY )∑
i=1

ln[1−W (y|xi)]


(b)

≥ [k(QY )]ρ
1

|T (QY )|
∑

y∈T (QY )

exp

−
k(QY )∑
i=1

W (y|xi)
1−W (y|xi)


(c)

≥ [k(QY )]ρ · 1

|T (QY )|
∑

y∈T (QY )

exp

− 1

1−Wn
max

·
k(QY )∑
i=1

W (y|xi)


(d)

≥ [k(QY )]ρ exp

− 1

1−Wn
max

· 1

|T (QY )|

k(QY )∑
i=1

∑
y∈T (QY )

W (y|xi)


= [k(QY )]ρ exp

− 1

(1−Wn
max)|T (QY )|

k(QY )∑
i=1

W [T (QY )|xi]


≥ [k(QY )]ρ exp

{
− k(QY )

(1−Wn
max)|T (QY )|

max
x∈Xn

W [T (QY )|x]

}
(e)

≥ [k(QY )]ρ exp

{
− 1

(1−Wn
max)

×(
c · |T (QY )|

maxx∈Xn W [T (QY )|x]
+ 1

)
· maxx∈Xn W [T (QY )|x]

|T (QY )|

}
= [k(QY )]ρ exp

{
− 1

1−Wn
max

·
(
c+

maxx∈Xn W [T (QY )|x]

|T (QY )|

)}
(f)

≥ [k(QY )]ρ exp

{
− c+ 1

1−Wn
max

}
·

= exp{nρ[HQ(Y ) + Γ(QY )]}, (23)

where (a) follows from Markov’s inequality, (b) stems from the chain

ln(1− x) = − ln

(
1 +

x

1− x

)
≥ − x

1− x
, x < 1,

(c) is implied by the assumption that Wmax = maxx,yW (y|x) < 1, (d) is by Jensen’s inequality,

applied to the exponential function f(x) = e−x, (e) is by the definition of k(QY ), and (f) is because

14



maxx∈Xn W [T (QY )|x] ≤ 1 and |T (QY )| ≥ 1 for any non–empty type class. Finally,

E{Gρ} =
∑
QY

P [T (QY )] ·E{Gρ|Y ∈ T (QY )}

·
≥

∑
QY

exp{−nD(QY ‖P )} · exp{nρ[HQ(Y ) + Γ(QY )]}

·
= exp{nmax

QY

(ρ[HQ(Y ) + Γ(QY ))−D(QY ‖P ))}

= enE(ρ). (24)

5.2 Proof of Part 2 – the Direct Part

Consider a sequence of randomized guesses, all drawn independently from the universal distribution,

P (x) =
exp{−nĤx(X)}∑

x′∈Xn exp{−nĤx′(X)}
, (25)

for all x ∈ X n. This induces the following distribution on the y–vectors:

Q(y)
·

=
∑
x∈Xn

exp{−nĤx(X)} ·W (y|x)

·
=

∑
T (QX|Y |y)

|T (QX|Y |y)| · exp{−n[HQ(X) +HQ(Y |X) +D(QY |X‖W |QX)]}

·
= max

QX|Y
exp{n[HQ(X|Y )−HQ(X) +HQ(Y |X) +D(QY |X‖W |QX)]}

·
= exp{−nHQ(Y )} · max

QX|Y
exp{−nD(QY |X‖W |QX)]}

·
= exp{−n[HQ(Y ) + Γ(QY )]}. (26)

Owing to [5, Lemma 1] and [4], for any given y ∈ T (QY ), the ρ–th moment of the number

of guesses w.r.t. the randomized guessing, would then be of the exponential order of 1/[Q(y)]ρ
·

=

exp{nρ[HQ(Y )+Γ(QY )]}. Finally, upon averaging this quantity with weights P [T (QY )]
·

= exp{−nD(QY ‖P )},

we clearly obtain an expression of the exponential order of enE(ρ). This completes the proof of the

direct part.
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5.3 Proof of Part 3 – the Alternative Expression

Consider the following chain of equalities:

E(ρ) = sup
QY

inf
QX|Y

[
ρH(QY ) + ρD(QY |X‖W |QX)−D(QY ‖P )

]
= sup

QY

inf
QX|Y

[
− ρ

∑
y

QY (y) lnQY (y) + ρ
∑
x,y

QXY (x, y) ln
QY |X(y|x)

W (y|x)
+

∑
y

QY (y) ln
P (y)

QY (y)

]

= sup
QY

inf
QX|Y

[
− ρ

∑
y

QY (y) lnQY (y) + ρ
∑
x,y

QXY (x, y) ln
QY (y)QX|Y (x|y)

W (y|x)QX(x)
+

∑
y

QY (y) ln
P (y)

QY (y)

]

= sup
QY

inf
QX|Y

[
ρ
∑
x,y

QXY (x, y) ln
QX|Y (x|y)

W (y|x)QX(x)
+
∑
y

QY (y) ln
P (y)

QY (y)

]

= sup
QY

inf
QX|Y

inf
V

[
ρ
∑
x,y

QXY (x, y) ln
QX|Y (x|y)

W (y|x)V (x)
+
∑
y

QY (y) ln
P (y)

QY (y)

]

= sup
QY

inf
V

inf
QX|Y

[
ρ
∑
x,y

QXY (x, y) ln
QX|Y (x|y)

W (y|x)V (x)
+
∑
y

QY (y) ln
P (y)

QY (y)

]

= sup
QY

inf
V

[
−ρ
∑
y

QY (y) ln

(∑
x

V (x)W (y|x)

)
+
∑
y

QY (y) ln
P (y)

QY (y)

]
(a)
= inf

V
sup
QY

[
−ρ
∑
y

QY (y) ln

(∑
x

V (x)W (y|x)

)
+
∑
y

QY (y) ln
P (y)

QY (y)

]

= inf
V

ln

(∑
y

P (y)

[
∑

x V (x)W (y|x)]ρ

)

= ln

(
inf
V

∑
y

P (y)

[
∑

x V (x)W (y|x)]ρ

)
, (27)

where the equality (a) is due to the convexity in V and the concavity in QY of the objective

function. This completes the proof of Theorem 1.
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