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Abstract

We consider the problem of guessing a random, finite—alphabet, secret n—vector, where the
guesses are transmitted via a noisy channel. We provide a single-letter formula for the best
achievable exponential growth rate of the p—th moment of the number of guesses, as a function
of n. This formula exhibits a fairly clear insight concerning the penalty due to the noise. We
describe two different randomized schemes that achieve the optimal guessing exponent. One of
them is fully universal in the sense of being independent of source (that governs the vector to
be guessed), the channel (that corrupts the guesses), and the moment power p. Interestingly, it
turns out that, in general, the optimal guessing exponent function exhibits a phase transition
when it is examined either as a function of the channel parameters, or as a function of p: as long
as the channel is not too distant (in a certain sense to be defined precisely) from the identity
channel (i.e., the clean channel), or equivalently, as long p is larger than a certain critical value,
Pe, there is no penalty at all in the guessing exponent, compared to the case of noiseless guessing.

Index Terms: guessing exponent, randomized guessing, noisy channels, phase transitions.



1 Introduction

Consider the problem of guessing the realization of a finite—alphabet random vector X = (X1,..., X},)
using a series of yes/no questions of the form: “Is X = x17”, “Is X = «?”, and so on, until a
positive response is received. Given a distribution on X, a commonly used performance metric for
the guessing problem is the expected number of guessing trials required until X is guessed correctly,

or more generally, a general moment of this number.

The quest for guessing strategies designed in order to minimize the moments of the number
of guesses has several motivations and applications in information theory and related areas. One
of them, for example, is sequential decoding, as shown by Arikan [1], who based his work on the
earlier work of Massey [3], and related the asymptotic exponent of the best achievable guessing
moment to the Rényi entropy. More recent applications of the guessing problem focus on aspects of
information security, in particular, brute—force attacks of guessing passwords or decrypting messages
protected by random keys. For example, one may submit a sequence of guessing queries in attempt
to crack passwords — see, e.g., [5, Introduction| (as well as [6] and other references therein) for
a fairly comprehensive review on guessing and information security, as well as for some historical
perspective of earlier research work on the problem of guessing in general, along with its large

variety of forms and extensions.

In this paper, we consider the guessing problem where the guesser (henceforth, Bob) submits his
guesses to the party that examines the guesses (henceforth, Alice) via a noisy discrete memoryless
channel (DMC). In other words, the problem is informally defined as follows: Alice randomly draws
an n—vector Y from a discrete memoryless source (DMS) P of a finite alphabet ). Bob submits
a sequence of guesses, x; € X", i = 1,2,..., but each guess x; is transmitted through a DMC W,
defined by a matrix single-letter transition probabilities, {W (y|z), x € X, y € Y}, before arriving
to Alice. Let Y1,Yo,..., Y, € V" ¢ =1,2,..., be the corresponding noisy versions of the guesses.
Alice checks the noisy guesses sequentially, and returns an affirmative feedback to Bob upon the
first perfect match, Y; =Y. The questions we are studying, in this paper, are similar to those that
were studied in earlier works on the guessing problem, namely: (i) what is the minimum achievable
asymptotic exponent of E{G"} (i.e., the guessing exponent), where G is the number of guesses

until the first success, and p is an arbitrary given positive real? In particular, what is the penalty



caused by the channel noise in terms of the possible increase in the guessing exponent, compared

to the noiseless case of [1]? (ii) how can one achieve this minimum guessing exponent?

Our main result is a single-letter formula of the best achievable guessing exponent, i.e., the
exponential growth rate of the p—th moment of the number of guesses, as a function of n. In
particular, we provide two equivalent expressions of the optimal guessing exponent. One of these
expressions immediately suggests an optimal (randomized) guessing strategy. The other expression
exhibits a fairly clear insight concerning the penalty due to the noise. We describe two different
randomized schemes that achieve the optimal guessing exponent. One of them is fully universal
in the sense of being independent of source P (that governs the vector Y to be guessed), the
channel W (that corrupts the guesses), and the power p. Obviously, the existence of a randomized
guessing scheme that achieves the optimal guessing exponent implies (albeit, not constructively)
the existence of a deterministic guessing scheme, exactly like in standard random coding arguments.

Having said that, randomized schemes have some advantages, as was discussed in [5].

Interestingly, it turns out that, in general, the optimal guessing exponent function exhibits a
phase transition when it is examined either as a function of the channel parameters, {W(y|z)},
or as a function of p: as long as the channel is not too distant (in a certain sense to be defined
precisely in the sequel) from the identity channel (i.e., the clean channel), or equivalently, as long p
is larger than a certain critical value, p., there is no penalty whatsoever in the guessing exponent,

compared to the case of noiseless guessing.

There are several motivations for studying this problem of noisy guesses.

1. Since Alice and Bob might be physically remote from each other, it is conceivable that the
channel that links Bob to Alice would be noisy, and coding/decoding may not be an option

in applications where Alice has no incentive to cooperate with Bob.

2. Alice may wish to apply a jammer as a mean of defense against a (detected) brute—force

attack conducted by Bob.

3. We wish to explore aspects of robustness of the guessing performance to errors in the guessing

mechanism.

4. We believe that the results are fairly interesting and some of them are even quite surprising,



for example, the phase transitions, and the full universality of two of the proposed guessing

schemes, in P, W and p, as described in the previous paragraphs.

5. It enriches the variety of perspectives and the plethora of technical analysis tools used in the
guessing problem. While the guessing problem, in its ordinary, noiseless form, has an intimate
relationship to source coding, and hence can be solved on the basis of source coding results,
this is no longer the case in the noisy setting. Indeed, as we shall see, the analysis techniques

are very different from those of noiseless guessing [1].

The outline of the remaining part of this paper is as follows. In Section 2, we establish notation
conventions. In Section 3, we formally define the problem and the objectives. In Section 4, we

present our main results and discuss them. Finally, in Section 5, we prove our main theorem.

2 Notation Conventions

Throughout the paper, random variables will be denoted by capital letters, specific values they may
take will be denoted by the corresponding lower case letters, and their alphabets will be denoted by
calligraphic letters. Random vectors and their realizations will be denoted, respectively, by capital
letters and the corresponding lower case letters, both in the bold face font. Their alphabets will be
superscripted by their dimensions. For example, the random vector X = (X7,...,X,,), (n — positive
integer) may take a specific vector value © = (z1,...,x,) in X", the n—th order Cartesian power of
X, which is the alphabet of each component of this vector. Sources and channels will be denoted by
the letters P, @, V and W, subscripted by the names of the relevant random variables/vectors and
their conditionings, if applicable, following the standard notation conventions, e.g., Qx, Py|x, and
so on. When there is no room for ambiguity, these subscripts will be omitted. The probability of
an event £ will be denoted by Pr{€}, and the expectation operator will be denoted by E{-}. The
entropy of a random variable X with a generic distribution Qx (or @, for short) will be denoted
by H(Q) or H(Qx), or Ho(X), and the Kullback-Leibler divergence between two distributions,
P and @, on the same alphabet, will be denoted by D(Q|P). Likewise, for a pair of random
variables (X,Y), jointly distributed according to Q, Hg(X,Y), Ho(X|Y), Io(X;Y) will denote
the joint entropy, the condition entropy of X given Y, and the mutual information between X and Y,

respectively. Similar notation conventions will apply to other information measures, including those



that involve more than two random variables. The weighted divergence between two conditional

distributions, Qy|x and Py |x, with weighting Qx, is defined as

D(Qy x| Py x|@Qx) = ZQX ZQY\X ylz) In YlX( i ) (1)

z€X yey (y‘x)

For two positive sequences a,, and b,,, the notation a,, = b,, will stand for equality in the exponential
scale, that is, limn_ﬂx, log 32 dn — (. Similarly, a, S b, means that lim sup,,_, %log ‘;—: <0, and so

on. The indicator function Of an event £ will be denoted by Z{E}. The notation [x]4 will stand

for max{0, z}.

The empirical distribution of a sequence @ € X", which will be denoted by Pg, is the vector of
relative frequencies Pg(z) of each symbol z € X in @. The type class of & € X", denoted T (x),
is the set of all vectors @’ with Py = Pr. When we wish to emphasize the dependence of the
type class on a generic empirical distribution, say, Qx, we will denote it by 7(Qx). Information
measures associated with empirical distributions will be denoted with ‘hats’ and will be subscripted
by the sequences from which they are induced. For example, the entropy associated with Pr,
which is the empirical entropy of x, will be denoted by Hy (X). An alternative notation, following
the conventions described in the previous paragraph, is H (]333) Similar conventions will apply
to the joint empirical distribution, the joint type class, the conditional empirical distributions
and the conditional type classes associated with pairs (and multiples) of sequences of length n.
The conditional type class of @ given y w.r.t. a conditional distribution Q) x|y will be denoted by
T(Qxyly)- ﬁmy(X, Y') will designate the empirical joint entropy of  and vy, ﬁmy(X|Y) will be
the empirical conditional entropy, jajy(X ;Y) will denote empirical mutual information, and so on.
Also, sometimes we will use the subscript @ (like in Hg(X|Y') and Io(X;Y)) when it is understood

that @ is the joint empirical distribution associated with (x,y).

3 Problem Formulation

We consider the following scenario: Alice draws a random n—vector, Y = (Y1,...,Y},), from a
discrete memoryless source (DMS), P, of a finite alphabet, ). Bob, who is unaware of the realization
of Y, sequentially submits to Alice a (possibly, infinite) sequence of guesses, 1, 9, . . ., where each

x; is a vector of length n, whose components take on values in a finite alphabet, X'. Before arriving



to Alice, each guess, x;, undergoes a discrete memoryless channel (DMC), defined by a matrix of
single-letter input—output transition probabilities, W = {W (y|z), x € X, y € V}. Let Y1,Yo,...
be the corresponding noisy versions of @1, xs,..., after being corrupted by the DMC, W. Alice
sequentially examines the noisy guesses and she returns to Bob an affirmative feedback upon the

first perfect match, Y; = Y. Clearly, the number of guesses, GG, until the first successful guess, is a

random variable that depends on the source vector Y and the guesses, Y1,Y2,..... It is given by
[e'e) k—1
G=G(Y,Y1,Yy,..)=) k-Z{Y, =Y} - [[0 - Z{Y: = Y}]. (2)
k=1 =
For a given list of guesses, G, = {x1,x2,...}, ¢; € X", i =1,2,..., the p~th moment of G is given
by
k—1
Eg {G'}= > P Zk:p (ylzw) - [T = W (ylai)], (3)
Yyeyn i=1
where
W(y‘x) - W(yh v 7yn‘x1a s 7xn) = H W(yt’xt) (4)
t=1

Randomized guessing lists (where the deterministic guesses, {x;}, are replaced by random ones,

{X;}) are allowed as well. In this case, eq. (3) would include also an expectation w.r.t. the

randomness of the guesses. For a given sequence of lists, G = G1,Go, ..., we define
B, {Gr)
E5(p) = liminf TS (5)
In Eg {G*
E5(p) = lmsup 2 E0AS ©)
n—00 n
and
€7(p) = & (p) (7)
€%(p) = mf&(p). (8)

Our objectives, in this paper, are as follows.

1. To show that £~ (p) = £T(p). The distinction between these two functions will then disappear
and both of them will be denoted by &(p).

2. To find a single-letter formula for £(p), which depends on the source P and the channel W,
in addition to the moment order, p. To characterize the loss in the guessing performance due

to the noise (compared to the case of noiseless guessing).



3. To derive a (possibly randomized) guessing scheme that achieves &(p).

In fact, all three objectives will essentially be accomplished in a joint manner. We will define
a certain single-letter function, E(p), and show that £*(p) < E(p) < & (p), where the first
inequality is the direct part and the second inequality is the converse part. Using the obvious fact

that £ (p) > £ (p) by their definitions, all inequalities are in fact, equalities.

A comment about the notation is in order. When we wish to emphasize the dependence of E(p)
on the channel W as well, we may expand the notation to E(p, W). The second argument, W, may
also be replaced by a certain parameter that completely defines W, like the crossover probability ¢

in case of the binary symmetric channel (BSC).

4 Main Results

Let P, W, and p > 0 be given. To present the main result, we first need a few definitions. For two

given distributions, Q@ x and Qy, defined on X and ), respectively, define

I'(Qx,Qy) = nf{D(Qy|xIW|Qx) : (Qx ® Qyx)y = Qv}, 9)

where the notation (Qx ® Qy‘ x)y = Qy means that the Y—marginal induced by the given Qx and

by Qy|X is constrained to be the given Qy, ie., > QX(x)Qy|X(y|:c) = Qy(y) for all y € V.
Next, define

L(Qy) = gl)fr(Q)ﬁQY) = Qiil‘fYD(QwXHW@X)- (10)
Finally, we define
E(p) = sup {p[H(Qy) LTy - D(QyHP)}- (1)

Theorem 1 below states that E(p) is, in fact, a single-letter formula for both £*(p) and £~ (p).
It also provides an alternative, equivalent expression for E(p), which is simpler to calculate in

practice.

Theorem 1 Let P, W, and p > 0 be given and consider the problem setting defined in Section 3.
Assume that W is such that Winax = max, , W(y|z) < 1. Then,

1. (Converse part): £ (p) > E(p).



2. (Direct part): £ (p) < E(p).

3. The function E(p) can also be expressed as follows:

B(p)=In | inf " Py) (12)

e VW ()]

where the infimum w.r.t. V is taken across the simplex of all probability distributions over X,

i.e., over all vectors of dimension |X| whose components are non—negative and sum to unity.

The proof appears in Section 5. The remaining part of this section is devoted to a discussion on

Theorem 1.

1. The assumption Wy, < 1. This technical regularity condition is needed for the proof of the
converse part. At a first glance, it seems to be rather restrictive. A closer look, however, reveals
that this restriction is not too severe. Suppose that this condition is violated, namely, there exist
pairs (z,y) with W(y|z) = 1. Let ' = YN {y: max, W(y|z) = 1}. Now, for any type Qy whose
support is ), and for every y € T(Qy), we can find @ such that W(y|x) = 1, and the problem of
guessing within such a type boils down to the problem of noiseless guessing: whenever one wishes to
guess a certain y, he or she should guess instead an x for which W (y|x) = 1. For every Qy whose
support is not included in )’, and every y € T(Qy), there exists at least one letter y; for which
W 2 max, W (yi|lz) <1 and hence W (ylx) = [[;; W(yilzi) < W < 1, which is still acceptable for
the derivation of the converse proof (with W replacing W} ).

2. The penalty due to the noise and phase transitions. As can be seen from the first
expression of E(p) (eq. (11)), the term I'(Qy) expresses the unavoidable, minimum achievable
penalty that Bob must suffer due to the noise. Interestingly, there might be situations, where there
is no penalty at all as far as the guessing exponent is concerned. These situations can be identified
even more easily from the second expression of E(p). First, observe that in the noiseless case,
where W' is the clean channel, eq. (12) boils down to E(p) = In(infg >, P(y)/[Q(y)]?) (Q being a
probability distribution over )), which is achieved by the distribution @*(y) that is proportional to
[P(y)]l/ (1+0) | Eq. (12) can be thought of as the same minimization problem, except that now Q is



constrained to lie in the convex hull of {W(-|z), x € X'}. Generally speaking, good channels have
a relatively large convex hull, whereas bad channels have a relatively small one. In the extreme
case of the clean channel, this convex hull is the entire simplex of probability distributions over ).
In the other extreme, where the channel is completely useless, all {IWW (-|z), x € X'} coincide with a
single distribution over ). In this case, the convex hull of W is a singleton. Returning to the case
of a general channel, W, if the above-mentioned distribution Q* happens to lie within this convex
hull, then no penalty is incurred in the guessing exponent. Interestingly, this implies that in general
there might be a phase transition in the behavior of the guessing exponent as a function of the noise
level, or as a function of p. For a given source P and a given moment order p, consider a family of
channels defined by a single parameter. For example, consider the binary case (X =Y = {0,1}),
where the binary source is defined by the parameter p = Pr{X; = 1} and the family of channels are
the binary symmetric channels (BSCs) with a crossover parameter ¢ € [0,0.5]. Assume also that
p = 1. If we increase ¢q gradually from 0 to 0.5, we see that as long as ¢ < q. = VP! (VP + V1 =),
the guessing exponent is the same as in the noiseless case, independently of q. However, as ¢
crosses the critical value ¢, the guessing exponent starts to grow with q. The graph of the guessing
exponent, here denoted F(p,q), is depicted in Fig. 1, for p = 0.25 and p = 1, where ¢. = 0.366.
Likewise, it is possible to examine the behavior of the guessing exponent as a function of p for
fixed ¢. In the case of the BSC, the convex hull of W is always a symmetric interval around 0.5,
i.e., the interval [¢,1 — g]. The optimal distribution @Q*, defined above is a binary distribution
with probabilities, p*/(40) /[pl/ (1) 4 (1 — p)V/(A+2)] and (1 — p)/(+0) /[pt/ (A+e) 4 (1 — p)t/(+e)],
As p grows, this distribution approaches the symmetric distribution, (0.5,0.5). Therefore, there is
critical value of p beyond which this distribution falls in the convex hull of {¢g,1 — ¢}. This critical

value is given by

[1>2

In[(1—p)/p]
=l —ga ML

Fig. 2 depicts the guessing exponent as a function of p, with p = 0.25 and ¢ = 0.35, where
p. = 0.7747.

3. Operative significance of the alternative expression (12). Quite obviously, the alterna-
tive expression of E(p), given in eq. (12), is easier to calculate in practice, than that of eq. (11).

However, the advantage of (12) goes considerably beyond this point, as it has a simple operative
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interpretation. The denominator (without the power of p) is clearly the i.i.d. channel output distri-
bution induced by an i.i.d. channel input distribution V' and the channel W. If we use randomized
guessing and draw all our guesses according to the memoryless source V(x) = [}, V(z¢), then
the noisy guesses will also be random guesses distributed according to Q(y) = [[}; Q(y:), where
Qy) = >, V(z)W(y|z). As is well known from previous work (see, e.g., [5], [6]), randomized
guessing according to an i.i.d. distribution () yields a guessing exponent of ln(zy P(y)/[Qw)]").
But since @ is constrained to have the form Q(y) = >, V()W (y|x), for a given W, the best one
can do is to minimize this expression over V', which is exactly what eq. (12) tells us to do. It follows
that the achievability of F(p) is conceptually simple, thanks to eq. (12): find the channel input
distribution V* that achieves the minimum in (12) and then generate random guesses according
to V*(x) = [[;=; V*(x¢). It should be pointed out, however, that the optimal V* depends, in
general, on P, W and p, and therefore, this achievability scheme is not universal, as it requires the

knowledge of these ingredients.

4. A universal guessing scheme. While F(p) was argued in item 3 to be achievable by a non—
universal guessing scheme, it turns out that E(p) can also be achieved by a universal scheme that
is independent of P, W and p. Such a scheme is proposed in the direct part (part 2) of Theorem
1. This scheme is randomized: it is based on independent random selection of {x;} according to
the same universal distribution that was proposed in [5], namely,

Pla) - _CPLnz(X))
Y exp{—nflz(X)}

where Hy (X) is the empirical entropy associated with . The fact that this universal distribution

(13)

continues to be asymptotically optimal even in the noisy case considered here, is not quite trivial,
and it is even fairly surprising (at least to the author). It enhances even further the powerful
properties of this distribution. We should mention also that random selection according to this

distribution can be implemented efficiently in practice, as was shown in [5].

5. Side information. Suppose that Bob is equipped with a side information sequence z that
is correlated with the sequence y to be guessed. More precisely, we assume that the sequence

pair (y,z) is drawn from a pair of correlated memoryless sources, P(y,z) = [[;_; P(ys, zt), but

11



only z is available to Bob. It turns out that our results extend straightforwardly to this setting.
Conceptually, once we condition on the given z, we are essentially back to the same setting as before.
Thus, everything should be first conditioned on the side information, and finally, one should take

the expectation w.r.t. the side information. As a result, the expressions of F(p) extend as follows:

E(p) = gup{p[HQ(Y\Z) +I(Qyz)] — D(Qyz||P)], (14)
where
['(Qyz) = Q;I‘%ZD(QY|XZHW|QXZ% (15)
and

. P(y|z
Floy=1n Z:P(Z)mvmzyz[va<x|(f>‘v3<y\x>]p | 16)

The universal guessing distribution defined in item 4 would be replaced by

exp{-—nHzz(X|2)}
> g exp{-—nHgz(X]2)}
where Hz»(X|Z) is the empirical conditional entropy of X given Z, induced by the pair (z, z) (see
also [5]).

P(x|z) = (17)

6. Sources and channels with memory. Another possible extension of our results addresses
sources and channels with memory. In particular, our setting can essentially be extended to a class

of sources and channels that obey the following fading memory conditions for some B > 0 (see also

[2] and [7]).
P{IlmP(y1,.. ,ykly—e,---,y0) —InP(y1,...,yx)| > B} =0 Vk,leN (18)

and

W{]an(yl,...,yk|xg,...,xk,yg,...,yo) —

InW(y1,...,yklz1,...,21)| > B

x_g,...,xk}zo Vi, L e N (19)

Such sources and channels (like Markov sources and channels under certain conditions) can be
approximated by block—i.i.d. probability measures and then the same derivations as before apply

w.r.t. the super-alphabets of blocks. While one cannot expect single—letter formulas in this case,

12



the point is that the universal probability distribution that is associated with the empirical entropy
associated with these blocks can be replaced (and slightly improved) by the universal probability
distribution, P(z) < 2~ “4(®) where LZ(x) is the length (in bits) of the compressed version of @
by the Lempel-Ziv (LZ78) algorithm [8], as was shown in [5]. Therefore, this universal distribution
is asymptotically optimal in terms of the guessing exponent whenever the source and the channel

have fading memory in the above defined sense.
5 Proof of Theorem 1

5.1 Proof of Part 1 — the Converse Part

We begin from a simple preparatory step: let 7(Qy) be a given type class of y—vectors, and let
x € T(Qx) be given. Then,

WIT@y)lx] = > Wyl

YeT(Qy)

= > [T (Qy|x|z)| - exp{—n[Ho(Y|X) + D(Qyx[[W|Qx)]}
T(Qy | x|)CT(Qy)

= > exp{nHqo(V|X)} - exp{—n[Ho(Y|X) + D(Qyx [W|Qx)[}
T(Qy | x|T)CT(Qy)

- o {_n {Qyx: (nggy\x)y:@y} D(QY|XHW|QX)}

= exp{—nl'(Qx,Qy)}, (20)

and so,
Jnax WIT (Qy)|x] = exp{—n gl)ff(QX, Qy)} = exp{—nI'(Qy)}. (21)

Now, let ¢ > 0 be an arbitrary constant, independent of n (say, ¢ = 1), and for a given Qy, define

¢ [T(Qy)|
maxgexn W[T (Qy)|x]

kQy) = { ] = exp{n[Ho(¥) + T(Qy)]}. (22)

13



We next derive a lower bound to E{G*|Y € T(Qy)} for a given T(Qy).

E{G’lY e T(Qy)} = [K(@Qy))-Pr{G>k(Qy)]Y € T(Qy)}

k(Qy)
= [k(Qy)] Z H [1— W (y|z;)]
yET Qy) =1
e
= [k(Qy)]’- exp In[1 — W(y|z;)]
Ty i=1

—~

Qy)

(b) 1 : W (y|z;)
> [k(QY)]pm > eXP{ > T W(ulz)

Y YeT(Qy) i=1 W(y|ml)

© ) 1 1 k(Qy)
2O gy 3 ey o 3 Wk

YeT(Qy) Wiiax
s [k(Qy)]peXp{l‘lm -’T 7 Z > Wya:z}
max i=1 YeT(Qy)
E(Qy)
= [k(QY)]pexp{ = \T O] Z T(Qy)|xi] }
> QnPen |- _W(Q;E,(Qyﬂ e WT <@y>|w]}
2 menrer] - g
¢ |T(Qy)] masge WIT(Qy)l]

<maxwexn T(Qv)la] “) T@Qv) }
B 1 maxger WIT(Qy)la]
- [’“(QY”%XP{H—WI%&X | <C+ T@y) >}
(f) c+1
9 [k(@ynpexp{ 1—W;;ax}
= exp{nplHo(Y) +T(Qv)]}, (23)

where (a) follows from Markov’s inequality, (b) stems from the chain

x S x 1
— x
l—z/) =~ 1-2’ ’

(c) is implied by the assumption that Wipax = max,, W(y|lz) < 1, (d) is by Jensen’s inequality,

In(1 —z) = —In <1+

applied to the exponential function f(z) = e™*, (e) is by the definition of k(Qy ), and (f) is because

14



maxgexn W[T(Qy)|x] <1 and |T(Qy)| > 1 for any non—empty type class. Finally,
E{G’} = > P[T(Qv)]-E{G’|Y € T(Qv)}
Qy

S 3 exp{—nD(@yIP)} - explnplHo(Y) + T(Qy )
Qy

= exp{n %E?/X(,O[HQ(Y) +I(Qy)) = D(Qy|P))}

= P, (24)
5.2 Proof of Part 2 — the Direct Part

Consider a sequence of randomized guesses, all drawn independently from the universal distribution,

Plx) = exp{—nﬁm({()}
> wrexn exp{—nHg (X)}

for all * € X™. This induces the following distribution on the y—vectors:

7 (25)

Qy) = > exp{—nHg(X)} W(y|z)

xrexn

= Y T@xyly)-exp{—n[Ho(X) + Ho(Y|X) + D(Qyx[|W|Qx)]}
T@xv1Y)

= ax exp{n[Ho(X|Y) — Ho(X) + Ho(Y|X) + D(Qyx||[W|Qx)]}

= exp{-nHq(Y)}- pax exp{—nD(Qy|x[[W[Qx)]}
XY
= exp{-n[Ho(Y) + I'(Qy)]}- (26)
Owing to [5, Lemma 1] and [4], for any given y € T(Qy), the p—th moment of the number
of guesses w.r.t. the randomized guessing, would then be of the exponential order of 1/[Q(y)]? =
exp{np[Hg(Y)+T(Qy)]}. Finally, upon averaging this quantity with weights P[T(Qy)] = exp{—nD(Qy||P)},

we clearly obtain an expression of the exponential order of e™®(). This completes the proof of the

direct part.
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5.3 Proof of Part 3 — the Alternative Expression
Consider the following chain of equalities:

E(p) = sup inf [pH(Qy)+ pD(Qyx|W|Qx) - D(Qy|P)]

Qy Qx|v

= s ot [ pZQY )InQy (y +p§QXY($7y) In Iﬁ;{;ﬂ!? t
2, @ Qy(y))]

= sup inf [— pzy:Qy(y) InQy (y) +p§Qxy($» )In Q;/((y;g)xcgi((i’?) -
ZQy(y) In 5;2(2)]

P o

= s i ins [,OZQXY z,y)In Vm +%:QY(y) 8 ny((yzi)

= supipf gl [p;ﬂ” ) 2. o 0

= suplnf [ ,OZQY ) In (ZV Wylz) > +ZQY@) . ;%j)
@ 1nfsup[ pZQY In (ZV y|:c>

= infln Py)
- (Z >V W(ymv’)

T

= In(in Py)
= (v@[Z Vi W(y!x)]”)’ 27)

xT

where the equality (a) is due to the convexity in V' and the concavity in Qy of the objective

function. This completes the proof of Theorem 1.
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