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Abstract

Typical random codes (TRC) in a communication scenario of source coding with side in-
formation at the decoder is the main subject of this work. We study the semi-deterministic
code ensemble, which is a certain variant of the ordinary random binning code ensemble.
In this code ensemble, the relatively small type classes of the source are deterministically
partitioned into the available bins in a one-to-one manner. As a consequence, the error
probability decreases dramatically. The random binning error exponent and the error ex-
ponent of the TRC are derived and proved to be equal to one another in a few important
special cases. We show that the performance under optimal decoding can be attained also by
certain universal decoders, e.g., the stochastic likelihood decoder with an empirical entropy
metric. Moreover, we discuss the trade-offs between the error exponent and the excess–
rate exponent for the typical random semi-deterministic code and characterize its optimal
rate function. We show that for any pair of correlated information sources, both error and
excess–rate probabilities are exponentially vanishing when the blocklength tends to infinity.

Index Terms: Slepian–Wolf coding, variable–rate coding, error exponent, excess–rate ex-
ponent, typical random code.
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1 Introduction

As is well known, the random coding error exponent is defined by

Er(R) = lim
n→∞

{
− 1
n logE [Pe(Cn)]

}
, (1)

where R is the coding rate, Pe(Cn) is the error probability of a codebook Cn, and the expectation

is with respect to (w.r.t.) the randomness of Cn across the ensemble of codes. The error exponent

of the typical random code (TRC) is defined as [1]

Etrc(R) = lim
n→∞

{
− 1
nE [logPe(Cn)]

}
. (2)

We believe that the error exponent of the TRC is the more relevant performance metric as it

captures the most likely error exponent of a randomly selected code, as opposed to the random

coding error exponent, which is dominated by the relatively poor codes of the ensemble, rather

than the channel noise, at relatively low coding rates. In addition, since in random coding

analysis, the code is selected at random and remains fixed, it seems reasonable to study the

performance of the very chosen code instead of directly considering the ensemble performance.

To the best of our knowledge, not much is known on TRCs. In [2], Barg and Forney

considered TRCs with independently and identically distributed codewords as well as typical

linear codes, for the special case of the binary symmetric channel with maximum likelihood

(ML) decoding. It was also shown that at a certain range of low rates, Etrc(R) lies between

Er(R) and the expurgated exponent, Eex(R). In [3] Nazari et al. provided bounds on the

error exponents of TRCs for both discrete memoryless channels (DMC) and multiple–access

channels. In a recent article by Merhav [1], an exact single–letter expression has been derived

for the error exponent of typical, random, fixed composition codes, over DMCs, and a wide class

of (stochastic) decoders, collectively referred to as the generalized likelihood decoder (GLD).

Later, Merhav has studied error exponents of TRCs for the colored Gaussian channel [4], typical

random trellis codes [5], and a Lagrange–dual lower bound to the TRC exponent [6]. Large

deviations around the TRC exponent was studied in [7].

While originally defined for pure channel coding [1]-[3], the notion of TRCs has natural

analogues in other settings as well, like source coding with side information at the decoder

[8]. Typical random Slepian–Wolf (SW) codes of a certain variant of the ordinary variable–

rate random binning code ensemble are the main theme of this work. The random coding
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error exponent of SW coding, based on fixed–rate (FR) random binning, was first addressed

by Gallager in [9], and improved later on by the expurgated bound in [10] and [11]. Variable–

rate (VR) SW coding received less attention in the literature; VR codes under average rate

constraint have been studied in [12] and proved to outperform FR codes in terms of error

exponents. Optimum trade-offs between the error exponent and the excess–rate exponent in

VR coding were analyzed in [13]. Sphere-packing upper bounds for source coding with side

information in the FR and VR regimes have been studied in [9] and [12], respectively. More

works where exponential error bounds in source coding have been studied are [14]-[18].

It turns out that both the FR and VR ensembles suffer from an intrinsic deficiency, caused

by statistical fluctuations in the sizes of the bins that are populated by the relatively small type

classes of the source. This fundamental problem of the ordinary ensembles is alleviated in some

variant of the ordinary VR ensemble – the semi–deterministic (SD) code ensemble, which has

already been proposed and studied in its FR version in [18]. In the SD code ensemble, for source

type classes which are exponentially larger than the amount of available bins, we just randomly

assign each source sequence into one of the bins, as being done in ordinary random binning.

Otherwise, for relatively small type classes, we deterministically order each source sequence

into a different bin, which provides a one–to–one mapping. This way, all these relatively small

source type classes do not contribute to the probability of error. The main results concerning

the SD code are the following:

1. The random binning error exponent and the error exponent of the TRC are derived in

Theorems 1 and 2, respectively, and proved in Theorem 3 to be equal to one another in

a few important special cases, that includes the matched likelihood decoder, the MAP

decoder, and the universal minimum entropy decoder. To the best of our knowledge,

this phenomenon has not been seen elsewhere before, since the TRC exponent usually

improves upon the random coding exponent. As a byproduct, we are able to provide a

relatively simple expression for the TRC exponent.

2. We prove in Theorem 4 that the error exponent of the TRC under MAP decoding is also

attained by two universal decoders: the minimum entropy decoder and the stochastic

entropy decoder, which is a GLD with an empirical conditional entropy metric. As far as

we know, this result is first of its kind in source coding; in other scenarios, the random
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coding bound is attained also by universal decoders, but here, we find that the TRC

exponent is also universally achievable. Moreover, while the likelihood decoder and the

MAP decoder have similar error exponents [19], here we prove a similar result, but for

two universal decoders (one stochastic and one deterministic) that share the same metric.

3. We discuss the trade-offs between the error exponent and the excess–rate exponent for

a typical random SD code, similarly to [13], but with a different notion of the excess–

rate event, which takes into account the available side information. In Theorem 5, we

provide an expression for the optimal rate function that guarantees a required level for

the error exponent of the typical random SD code. Analogously, Theorem 6 proposes an

expression for the optimal rate function that guarantees a required level for the excess-

rate exponent. Furthermore, we find that for any pair of correlated information sources,

the typical random SD code attains both exponentially vanishing error and excess–rate

probabilities.

The remaining part of the paper is organized as follows. In Section 2, we establish notation

conventions. In Section 3, we formalize the model, the coding technique, the main objectives of

this work, and we review some background. In Section 4, we provide the main results concerning

error exponents and universal decoding in the SD ensemble, and in Section 5, we discuss the

trade-offs between the error exponent and the excess-rate exponent.

2 Notation Conventions

Throughout the paper, random variables will be denoted by capital letters, realizations will be

denoted by the corresponding lower case letters, and their alphabets will be denoted by calli-

graphic letters. Random vectors and their realizations will be denoted, respectively, by bold-

face capital and lower case letters. Their alphabets will be superscripted by their dimensions.

Sources and channels will be subscripted by the names of the relevant random variables/vectors

and their conditionings, whenever applicable, following the standard notation conventions, e.g.,

QU , QV |U , and so on. When there is no room for ambiguity, these subscripts will be omitted.

For a generic joint distribution QUV = {QUV (u, v), u ∈ U , v ∈ V}, which will often be abbre-

viated by Q, information measures will be denoted in the conventional manner, but with a

subscript Q, that is, HQ(U) is the marginal entropy of U , HQ(U |V ) is the conditional entropy
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of U given V , and IQ(U ;V ) = HQ(U) − HQ(U |V ) is the mutual information between U and

V . The Kullback–Leibler divergence between two probability distributions, QUV and PUV , is

defined as

D(QUV ‖PUV ) =
∑

(u,v)∈U×V

QUV (u, v) log
QUV (u, v)

PUV (u, v)
, (3)

where logarithms, here and throughout the sequel, are understood to be taken to the natural

base. The probability of an event E will be denoted by P{E}, and the expectation operator

w.r.t. a probability distribution Q will be denoted by EQ[·], where the subscript will often be

omitted. For two positive sequences, {an} and {bn}, the notation an
.
= bn will stand for equality

in the exponential scale, that is, limn→∞(1/n) log (an/bn) = 0. Similarly, an
·
≤ bn means that

lim supn→∞(1/n) log (an/bn) ≤ 0, and so on. The indicator function of an event A will be

denoted by 1{A}. The notation [t]+ will stand for max{0, t}.

The empirical distribution of a sequence u ∈ Un, which will be denoted by P̂u, is the vector

of relative frequencies, P̂u(u), of each symbol u ∈ U in u. The type class of u ∈ Un, denoted

T (u), is the set of all vectors u′ with P̂u′ = P̂u. When we wish to emphasize the dependence of

the type class on the empirical distribution P̂ , we will denote it by T (P̂ ). The set of all types

of vectors of length n over U will be denoted by Pn(U), and the set of all possible types over

U will be denoted by P(U)
4
=
⋃∞
n=1 Pn(U). Information measures associated with empirical

distributions will be denoted with ‘hats’ and will be subscripted by the sequences from which

they are induced. For example, the entropy associated with P̂u, which is the empirical entropy of

u, will be denoted by Ĥu(U). Similar conventions will apply to the joint empirical distribution,

the joint type class, the conditional empirical distributions and the conditional type classes

associated with pairs (and multiples) of sequences of length n. Accordingly, P̂uv would be the

joint empirical distribution of (u,v) = {(ui, vi)}ni=1, T (P̂uv) will denote the joint type class of

(u,v), T (P̂u|v|v) will stand for the conditional type class of u given v, Ĥuv(U |V ) will be the

empirical conditional entropy, and so on. Likewise, when we wish to emphasize the dependence

of empirical information measures upon a given empirical distribution Q, we denote them using

the subscript Q, as described above.
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3 Problem Formulation and Background

3.1 Problem Formulation

Let (U ,V ) = {(Ut, Vt)}nt=1 be n independent copies of a pair of random variables, (U, V ) ∼ PUV ,

taking on values in finite alphabets, U and V, respectively. The vector U will designate the

source vector to be encoded and the vector V will serve as correlated side information, available

to the decoder. In ordinary VR binning, the coding rate is not fixed for every u ∈ Un, but

depends on its empirical distribution. Let us denote a rate function by R(·), which is a given

continuous function from the probability simplex of U to the set of nonnegative reals. In that

manner, for every type QU ∈ Pn(U), all source sequences in T (QU ) are randomly partitioned

into enR(QU ) bins. Every source sequence is encoded by its bin index, denoted by B(u), along

with a header that indicates its type index, which requires only a negligible extra rate when n

is large enough.

The SD code ensemble is a refinement of the ordinary VR code: for types with HQ(U) ≥

R(QU ), i.e., type classes which are exponentially larger than the amount of available bins, we

just randomly assign each source sequence into one out of the enR(QU ) bins. For the other types,

we deterministically order each member of T (QU ) into a different bin. This way, all type classes

with HQ(U) < R(QU ) do not contribute to the probability of error. The entire binning code of

source sequences of block–length n, i.e., the set {B(u)}u∈Un , is denoted by Bn. A sequence of

SW codes, {Bn}n≥1, indexed by the block length n, will be denoted by B.

The decoder estimates u based on the bin index B(u), the type index T (u), and the side

information sequence v, which is a realization of V . The optimal (MAP) decoder estimates u

according to

û = arg max
u′∈B(u)∩T (u)

P (u′,v). (4)

As in [1], [20], we consider here the GLD. The GLD estimates u stochastically, using the

bin index B(u), the type index T (u), and the side information sequence v, according to the

following posterior distribution

P
{
Û = u′

∣∣∣v,B(u), T (u)
}

=
exp{nf(P̂u′v)}∑

ũ∈B(u)∩T (u) exp{nf(P̂ũv)}
, (5)

where P̂uv is the empirical distribution of (u,v) and f(·) is a given continuous, real valued
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functional of this empirical distribution. The GLD provides a unified framework which covers

several important special cases, e.g., matched decoding, mismatched decoding, MAP decod-

ing, and universal decoding (similarly to the α–decoders described in [11]). A more detailed

discussion is given in [20].

The probability of error is the probability of the event {Û 6= U}. For a given binning code

Bn, the probability of error is given by

Pe(Bn) =
∑
u,v

P (u,v) · 1
{
Ĥu(U) ≥ R(P̂u)

}
·
∑

u′∈B(u)∩T (u),u′ 6=u exp{nf(P̂u′v)}∑
ũ∈B(u)∩T (u) exp{nf(P̂ũv)}

. (6)

For a given rate function, we derive the random binning exponent of this ensemble, which is

defined by

Er(R(·)) = lim
n→∞

{
− logE[Pe(Bn)]

n

}
, (7)

and compare it to the TRC exponent, which is

Etrc(R(·)) = lim
n→∞

{
−E[logPe(Bn)]

n

}
. (8)

Although it is unclear that the limits in (7) and (8) exist a priori, it will be evident from the

analyses in Appendixes A and B, respectively.

One way to define the excess–rate probability is as P{R(P̂U ) ≥ R}, where R is some target

rate [13]. Due to the availability of side information at the decoder, it makes sense to require

a target rate which depends on the pair (u,v). Since the lowest possible compression rate in

this setting is given by HP (U |V ) [8], then, given U = u and V = v, it is reasonable to adopt

Ĥuv(U |V ) as a reference rate. Hence, an alternative definition of the excess–rate probability of

a code Bn, is as per(Bn, R(·),∆) = P{R(P̂U ) ≥ ĤUV (U |V ) + ∆}, where ∆ > 0 is a redundancy

threshold (Note that the entire analysis remains intact if we allow a more general redundancy

threshold as ∆ = ∆(P̂uv). This covers other alternatives for the excess–rate probability, e.g.,

P{R(P̂U ) ≥ R} or P{R(P̂U ) ≥ αĤU (U)}, α ∈ (0, 1)). Accordingly, the excess–rate exponent

function, achieved by a sequence of codes B, is defined as

Eer(B, R(·),∆) = lim inf
n→∞

− 1

n
log per(Bn, R(·),∆). (9)

The main mission is to characterize the optimal trade–off between the error exponent and the

excess–rate exponent for the typical random SD code, and the optimal rate function that attains

a prescribed value for the error exponent of the typical random SD code.
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3.2 Background

In pure channel coding, Merhav [1] has derived a single–letter expression for the error exponent

of the typical random fixed composition code,

Etrc(R,QX) = lim
n→∞

{
− 1
nE [logPe(Cn)]

}
. (10)

In order to present the main result of [1], we define first a few quantities. Consider a DMC,

W = {W (y|x), x ∈ X , y ∈ Y}, where X and Y are the finite input/output alphabets. Define

α(R,QY ) = max
{QX̃|Y : IQ(X̃;Y )≤R, QX̃=QX}

{g(QX̃Y )− IQ(X̃;Y )}+R, (11)

where the function g(·), which is the decoding metric, is a continuous function that maps joint

probability distributions over X × Y to real numbers. Also define

Γ(QXX′ , R) = min
QY |XX′

{D(QY |X‖W |QX) + IQ(X ′;Y |X)

+ [max{g(QXY ), α(R,QY )} − g(QX′Y )]+}, (12)

where D(QY |X‖W |QX) is the conditional divergence between QY |X and W , averaged by QX .

A brief intuitive explanation on the term Γ(QXX′ , R) can be found in [7](Section 4.1). Having

defined the above quantities, the error exponent of the TRC is given by [1]

Etrc(R,QX) = min
{QX′|X : IQ(X;X′)≤2R, QX′=QX}

{Γ(QXX′ , R) + IQ(X;X ′)−R}. (13)

Returning to the SW model, several articles have been written on error exponents for the

FR and the VR codes. Here, we mention only those results that are directly relevant to the

current work. The random binning and expurgated bounds of the FR ensemble in the SW

model are given, respectively, by [11](Section VI, Theorem 2), [10](Appendix I, Theorem 1)

Efr
r (R) = min

QU

{
D(QU‖PU ) + Er(QU , PV |U , HQ(U)−R)

}
, (14)

Efr
ex(R) = min

QU

{
D(QU‖PU ) + Eex(QU , PV |U , HQ(U)−R)

}
, (15)

where Er(QU , PV |U , S) and Eex(QU , PV |U , S) are, respectively, the random coding and expur-

gated bounds associated with the channel PV |U w.r.t. the ensemble of fixed composition code

of rate S, whose composition is QU . The exponent function Er(QU , PV |U , S) is given by

Er(QU , PV |U , S) = min
QV |U
{D(QV |U‖PV |U |QU ) + [IQ(U ;V )− S]+}, (16)

8



and Eex(QU , PV |U , S) is given by

Eex(QU , PV |U , S) = min
{QU′|U : IQ(U ;U ′)≤S, QU′=QU}

{EQUU′ [dPV |U (U,U ′)] + IQ(U ;U ′)− S}, (17)

where

dPV |U (u, u′) = − log

[∑
v∈V

√
PV |U (v|u)PV |U (v|u′)

]
. (18)

The exact error exponent of VR random binning is given by [13](Equation (34))

Evr
r (R(·)) = min

QUV

{D(QUV ‖PUV ) + [R(QU )−HQ(U |V )]+} . (19)

4 Error Exponents and Universal Decoding

To present some of the results, we need a few more definitions. The minimum conditional

entropy (MCE) decoder estimates u, using the bin index B(u) and the side information vector

v, according to

û = arg min
u′∈B(u)∩T (u)

Ĥu′v(U |V ). (20)

The stochastic conditional entropy (SCE) decoder estimates u according to the following pos-

terior distribution

P
{
Û = u′

∣∣∣v,B(u), T (u)
}

=
exp{−nĤu′v(U |V )}∑

ũ∈B(u)∩T (u) exp{−nĤũv(U |V )}
. (21)

First, we present random binning error exponents, which are modifications of (19) to this

ensemble. Define the expression

E(QUV , R(·)) = min
QU′|V

[
R(QU )−HQ(U ′|V ) + [f(QUV )− f(QU ′V )]+

]
+

(22)

and the exponent functions:

Er,GLD(R(·)) = min
{QUV : HQ(U)≥R(QU )}

{D(QUV ‖PUV ) + E(QUV , R(·))} , (23)

and

Er,MAP(R(·)) = min
{QUV : HQ(U)≥R(QU )}

{D(QUV ‖PUV ) + [R(QU )−HQ(U |V )]+} . (24)

The following result is proved in Appendix A.
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Theorem 1. Let R(·) be a given rate function. Then, for the SD ensemble,

1. Er(R(·)) = Er,GLD(R(·)) for the GLD,

2. Er(R(·)) = Er,MAP(R(·)) for the MAP and MCE decoders.

As a matter of fact, a special case of the second part of Theorem 1 has already been proved

in [18] for the FR regime, while here, we prove a stronger result, according to which, the

MCE decoder attains the same random binning error exponent as the MAP decoder, in the

VR coding regime too. The first part of Theorem 1 is completely new; it proposes a single

letter expression for the random binning error exponent, for a wide family of stochastic and

deterministic decoders. Also, note that an analogous result to the first part of Theorem 1

has been proved in [20]. Comparing the expressions in (19) and (24), namely, the random

binning error exponents of the ordinary VR and the SD VR ensembles, respectively, we find

that they differ at relatively high coding rates, since these minimization problems share the

same objective but (24) also has the constraint HQ(U) ≥ R(QU ). The origin of this constraint

is the deterministic coding of the relatively small type classes.

Next, we provide a single–letter expression for the error exponent of the TRCs in this

ensemble. We define

γ(R(·), QU , QV ) = max{
QŨ|V : QŨ=QU ,

HQ(Ũ |V )≥R(QŨ )

}{f(QŨV ) +HQ(Ũ |V )} −R(QŨ ) (25)

and

Ψ(R(·), QUU ′V ) = [max{f(QUV ), γ(R(·), QU , QV )} − f(QU ′V )]+ . (26)

Furthermore, define

Λ(QUU ′ , R(QU )) = min
QV |UU′

{
Ψ(R(QU ), QUU ′V )−HQ(V |U,U ′)− EQ[logP (V |U)]

}
, (27)

and the following exponent function

Etrc,GLD(R(·)) = min{
QUU′ : QU′=QU ,
HQ(U)≥R(QU )

}{Λ(QUU ′ , R(QU ))− EQ[logP (U)]−HQ(U,U ′) +R(QU )
}
.

(28)

Then, the following theorem is proved in Appendix B.
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Theorem 2. Let R(·) be a given rate function. Then, for the SD ensemble,

Etrc(R(·)) = Etrc,GLD(R(·)). (29)

As explained before, an analogous result has already been proved in pure channel coding

[1], and one can find a high degree of similarity between the expressions in (25)-(28) and the

expressions in Subsection 3.2. While in channel coding, the coding rate is fixed, here, on the

other hand, we allow the rate to depend on the type class of the source. In order to optimize

the rate function, we constrain the problem by introducing the excess–rate exponent (9), which

is the exponential rate of decay of the probability that the compression rate will be higher than

some predefined level. A detailed discussion on optimal rate functions and optimal trade–offs

between these two exponents can be found in Section 5.

The definition of the error exponent of the TRC as in (8) should not be taken for granted.

The reason for that is the following. It turns out that the definition in (8) and the value of

− 1
n logPe(Bn) for the highly probable codes in the ensemble may not be the same, and they

coincide if and only if the ensemble does not contain both zero error probability codes and

positive error probability codes. For example, the FR ensemble in SW coding contains the

one-to-one code (which obviously attains Pe(Bn) = 0) as long as R ≥ log |U|, but it is definitely

not a typical code, at least when ordinary random binning is considered. Hence, in this case, we

conclude that − 1
nE[logPe(Bn)] = ∞, while the value of − 1

n logPe(Bn) for the highly probable

codes is still finite. As for the SD code ensemble, the definition in (8) indeed provides the error

exponent of the highly probable codes in the ensemble, which is explained by the following

reasoning. For any given rate function such that R(QU ) < HQ(U) for at least one type class,

then all the type classes with R(QU ) < HQ(U) are encoded by random binning, thus, all the

codes in the ensemble have a strictly positive error probability, which implies that the value of

− 1
n logPe(Bn) concentrates around the error exponent of the TRC, as defined in (8).

The proof of Theorem 2 follows exactly the same lines as the proof of [1](Theorem 1), except

for one main modification: when we introduce the type class enumerator N(QUU ′) (see below)

and sum over joint types, the summation set becomes {QUU ′ : QU ′ = QU , HQ(U) ≥ R(QU )},

where the constraint HQ(U) ≥ R(QU ) is due to the indicator function in (6). Afterwards, the

analysis of the type class enumerator yields the constraint HQ(U,U ′) ≥ R(QU ), which becomes

redundant and thus omitted. This constraint is analogous to the constraint IQ(X;X ′) ≤ 2R in
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the minimization of (13). The origin of HQ(U,U ′) ≥ R is the following. Define

N(QUU ′) =
∑

(u,u′)∈T (QUU′ )

1
{
B(u′) = B(u)

}
, (30)

which enumerate pairs of source sequences. Then, one of the main steps in the proof of Theorem

2 is deriving the high probability value of N(QUU ′), which is 0 if HQ(U,U ′) < R (a relatively

small set of source pair and relatively large number of bins) and exp{n[HQ(U,U ′) − R]} for

HQ(U,U ′) ≥ R (a large set of source sequence pair and a small number of bins). One should

note that the analysis of N(QUU ′) is not trivial, since it is not a binomial random variable,

i.e., the enumerator N(QUU ′) is given by the sum of dependent binary random variables. For

a sum N of independent binary random variables, ordinary tools from large deviation theory

(e.g., the Chernoff bound) can be invoked for assessing the exponential moments E[N s], s ≥ 0,

or the large deviation rate function of P{N ≥ enσ}, σ ∈ IR. For sums of dependent binary

random variables, like N(QUU ′) in the current problem, this can no longer be done by the same

techniques, and it requires more advanced tools (see, e.g., [1], [4]–[6]).

It is possible to compare (23) and (28) analytically in the special cases of the matched or the

mismatched likelihood decoders and the MCE decoder. In the following theorem, the choice

f(QUV ) = βEQ[log P̃ (U, V )], where P̃ (U, V ) is a possibly different source distribution than

P (U, V ), corresponds to a family of stochastic mismatched decoders. We have the following

result, the proof of which is given in Appendix D.

Theorem 3. Consider the SD ensemble and a given rate function R(·). Then,

1. For a GLD with the decoding metric f(Q) = βEQ[log P̃ (U, V )], for a given β > 0,

Etrc,GLD(R(·)) = Er,GLD(R(·)). (31)

2. For the MCE decoder,

Etrc,MCE(R(·)) = Er,MCE(R(·)). (32)

This result is quite surprising at first glance, since one expects the error exponent of the

TRC to be strictly better than the random binning error exponent, as in ordinary channel

coding at relatively low coding rates [2], [1]. This phenomenon is due to the fact that part

of the source type classes are deterministically partitioned into bins in a one–to–one fashion,
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and hence do not affect the probability of error (notice that the constraint HQ(U) ≥ R(QU )

appears in both the random binning and the TRC exponents, while in the latter, it made the

original constraint HQ(U,U ′) ≥ R(QU ) redundant). In the cases of FR or ordinary VR binning,

these relatively “thin” type classes dominated the error probability at relatively high binning

rates, but now, by encoding them deterministically into the bins, other mechanisms dominate

the error event, like the channel noise (between U and V ) or the random binning of the type

classes with HQ(U) ≥ R(QU ). The result of the second part of Theorem 3 is also nontrivial,

since it establishes an equality between the error exponent of the TRC and the random binning

error exponent, but now for a universal decoder.

Concerning universal decoding, it is already known [21](Exercise 3.1.6), [13] that the random

binning error exponents under optimal MAP decoding in both the FR and VR codes, given

by (14) and (19), respectively, are also attained by the MCE decoder. Furthermore, a similar

result for the SD ensemble has been proved here in Theorem 1. The natural question that arises

is whether the error exponent of the TRC is also universally attainable. The following result,

which is proved in Appendix E, provides a positive answer to this question.

Theorem 4. Consider the SD ensemble and a given rate function R(·). Then, the error

exponents of the TRC under the MAP, the MCE, and the SCE decoders are all equal, i.e.,

Etrc,MAP(R(·)) = Etrc,MCE(R(·)) = Etrc,SCE(R(·)). (33)

Theorem 4 asserts that the error exponent of the typical random SD code is not affected

if the optimal MAP decoder is replaced by a certain universal decoder, that must not even

be deterministic. While the left hand equality in (33) follows immediately from the results of

Theorems 1 and 3, the right hand equality in (33) is far less trivial, since the SCE decoder is

both universal and stochastic, and hence, its TRC exponent is expected to be inferior w.r.t. the

TRC exponent under MAP decoding, but nevertheless, they turn out to be equal. Comparing

to channel coding, it has been recently proved in [22] that the error exponent of the typical

random fixed composition code (given in (13)) is the same for the ML and the maximum mutual

information decoder, but on the other hand, numerical evidence shows that a GLD which is

based on an empirical mutual information metric attains a strictly lower exponent.
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5 Optimal Trade-off Functions

In this section, we study the optimal trade–off between the threshold ∆, the error exponent of

the TRC, and the excess–rate exponent. Since both exponents depend on the rate function, we

wish to characterize rate functions that are optimal w.r.t. this trade–off. Since a single–letter

characterization of the error exponent of the TRC has already been given in (28), we next

provide a single-letter expression for the excess–rate exponent. Define the following exponent

function:

Eer(R(·),∆) = min
{QUV : R(QU )≥HQ(U |V )+∆}

D(QUV ‖PUV ). (34)

Then, we have the following.

Proposition 1. Fix ∆ > 0 and let R(·) be any rate function. Then,

Eer(B, R(·),∆) = Eer(R(·),∆). (35)

Proof. The excess–rate probability is given by:

P{R(P̂U ) ≥ ĤUV (U |V ) + ∆}

=
∑
QUV

1{R(QU ) ≥ HQ(U |V ) + ∆} · P{(U ,V ) ∈ T (QUV )} (36)

.
=

∑
{QUV : R(QU )≥HQ(U |V )+∆}

exp {−nD(QUV ‖PUV )} (37)

.
= exp

{
−n · min

{QUV : R(QU )≥HQ(U |V )+∆}
D(QUV ‖PUV )

}
, (38)

which proves the desired result. �

Since Proposition 1 is proved by the method of types [21], we conclude that the excess–rate

event is dominated by one specific type class T (QUV ), whose respective rate R(QU ) has been

chosen too large w.r.t. the value of HQ(U |V )+∆. One extreme case is when the rate function is

given by HQ(U), which obviously provides a one-to-one mapping, since the size of each T (QU )

is upper-bounded by enHQ(U). In this case, the probability of error is zero, while the excess–rate

probability is one, at least when ∆ is not too large. In Subsection 5.2, we prove that the optimal

rate function is indeed upper-bounded by HQ(U), but can also be strictly smaller, especially

when the requirement on the error exponent is not too stringent.
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One way to explore the trade–off between the error exponent of the TRC and the excess–

rate exponent, that will be presented in Subsection 5.1, is to require the excess–rate exponent

to exceed some value Er > 0, then solve Eer(R(·),∆) ≥ Er for an optimal rate function R∗(QU ),

and then to substitute this optimal rate function back into the error exponents in (24) and (28)

to give expressions for the optimal trade–off function Ee(Er,∆). In Subsection 5.2, we present

an alternative option to characterize this trade–off, which is to require the error exponent of

the TRC to exceed some value Ee > 0, to solve Ee(R(·)) ≥ Ee in order to extract an optimal

rate function, and then to substitute it back into the excess–rate exponent in (34) to provide

an expression for the optimal trade–off function Eer(Ee,∆).

5.1 Constrained Excess–Rate Exponent

Relying on the exponent function in (34), the following theorem proposes a rate function, whose

optimality is proved in Appendix F.

Theorem 5. Let Er > 0 be fixed. Then, the constraint Eer(R(·),∆) ≥ Er implies that

R(QU ) ≤ J(QU ,Er,∆)
4
= min
{QV |U : D(QUV ‖PUV )≤Er}

{HQ(U |V ) + ∆} . (39)

This means that we have a dichotomy between two kinds of source types. Each type class

that is associated with an empirical distribution that is relatively close to the source distribution,

i.e., when D(QUV ‖PUV ) ≤ Er for some QV |U , is partitioned into enJ(QU ,Er,∆) bins, and the rest

of the type classes, those that are relatively distant from PU , are encoded by a one–to–one

mapping. Two extreme cases should be considered here. First, when Er is relatively small,

then only the types closest to PU are encoded with a rate approximately HP (U |V ) + ∆, which

can be made arbitrarily close to the SW limit [8], and each a–typical source sequence is allocated

with n · log2 |U| bits. This coding scheme is the one related to VR coding with an average rate

constraint, like the one discussed in [12]. Second, when Er is extremely large, then each type

class is encoded to exp{n∆} bins, which is equivalent to FR coding.

Following the first part of Theorem 3, let us denote the error exponent of the TRC under

MAP decoding by Ee(·). Upon substituting the optimal rate function of Theorem 5 back into

(24) and (28) and using the fact that Ee(·) is monotonically increasing, we find that the optimal
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trade–off function for the typical random SD code is given by

Ee(Er,∆) = min
{QUV : HQ(U)≥J(QU )}

{D(QUV ‖PUV ) + [J(QU )−HQ(U |V )]+} , (40)

or, alternatively,

Ee(Er,∆) = min{
QUU′ : QU′=QU ,
HQ(U)≥J(QU )

}{Λ(QUU ′ , J(QU ))− EQ[logP (U)]−HQ(U,U ′) + J(QU )
}
, (41)

where J(QU ) = J(QU ,Er,∆) is given in (39). The dependence of Ee(Er,∆) on Er is as follows.

Let Q∗UU ′(∆) and Q∗V |U be the respective minimizers of the problems which are similar to (39)

and (41), except that the constraint D(QUV ‖PUV ) ≤ Er is removed from (39). Furthermore,

let Q∗U (∆) be the marginal distribution of Q∗UU ′(∆). Now, when Er is sufficiently large, i.e.,

when Er ≥ D(Q∗U (∆) × Q∗V |U‖PUV ), Ee(Er,∆) reaches a plateau and is the lowest possible.

It follows from the fact that the stringent requirement on the excess–rate forces the encoder

to encode each type class QU to its target rate ∆, thus all of them affect the error event.

Otherwise, when Er < D(Q∗U (∆) × Q∗V |U‖PUV ), the constraint D(QUV ‖PUV ) ≤ Er is active

and Ee(Er,∆) is a monotonically non–increasing function of Er. The reason for that is the fact

that as Er decreases, more and more type classes are encoded with n · log2 |U| bits, and hence

do not contribute to the error event. When Er = 0, necessarily QU = PU , only the typical set

is encoded, and Ee(0,∆) is the highest possible. In this case, J(QU ) = HP (U |V ) + ∆ and the

constraint set in (41) becomes empty when ∆ > IP (U ;V ), and then Ee(0,∆) =∞.

5.2 Constrained Error Exponent

Based on (24), the following theorem proposes a rate function, whose optimality is proved in

Appendix G.

Theorem 6. Let Ee > 0 be fixed. Then, the constraint Ee(R(·)) ≥ Ee implies that

R(QU ) ≥ Ω(QU ,Ee)
4
= min {HQ(U), G(QU ,Ee)} , (42)

where,

G(QU ,Ee) = max
{QV |U : D(QUV ‖PUV )≤Ee}

{HQ(U |V ) + Ee −D(QUV ‖PUV )}. (43)
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The dependence of G(QU ,Ee) on Ee is as follows. For any given QU , let Q̃V |U be the

minimizer of D(QUV ‖PUV ). Then, as long as Ee < D(QU × Q̃V |U‖PUV ), the constraint set in

(43) is empty, and R(QU ) can vanish, which practically means that in this range, the entire type

class T (QU ) can be totally ignored, while still achieving Pe ≈ e−nEe . Only for the unique type

QU = PU , G(PU ,Ee) > 0 for all Ee ≥ 0, and specifically, we find that G(PU , 0) = HP (U |V ).

Furthermore, let Q∗V |U be the maximizer in the unconstrained problem

max
QV |U

{HQ(U |V )−D(QUV ‖PUV )} . (44)

Then, as long as Ee ∈ [D(QU×Q̃V |U‖PUV ), D(QU×Q∗V |U‖PUV )), G(QU ,Ee) is a monotonically

non–decreasing function of Ee. When Ee ≥ D(QU × Q∗V |U‖PUV ), the maximization in (43)

reaches its unconstrained optimum, and G(QU ,Ee) increases without bound in an affine fashion

as Ee +HQ∗(U |V )−D(QU ×Q∗V |U‖PUV ). As can be seen in (42), Ω(QU ,Ee) finally reaches a

plateau at the level of HQ(U).

Upon substituting Ω(QU ,Ee) back into (34) and using the fact that Eer(·,∆) is monotonically

non–increasing, we find that the trade–off function is given by

Eer(Ee,∆) = min
{QUV : Ω(QU ,Ee)≥HQ(U |V )+∆}

D(QUV ‖PUV ). (45)

Since Ω(QU ,Ee) is monotonically non–decreasing in Ee for every QU , Eer(Ee,∆) is monotonically

non–increasing in Ee, which is not very surprising. The dependence of Eer(Ee,∆) on Ee and ∆ is

as follows. At Ee = 0, notice that Ω(QU , 0) = −∞ for any QU 6= PU while Ω(PU , 0) = HP (U |V ).

Thus, Eer(0,∆) = 0 as long as ∆ = 0, and it follows from the monotonicity that Eer(Ee, 0) = 0

everywhere. Otherwise, if ∆ > 0, {QUV : Ω(QU ,Ee) ≥ HQ(U |V ) + ∆} is empty as long as

Ee < E∗e(∆), where an expression for E∗e(∆) can be found by solving

max
QUV

{Ω(QU ,Ee)−HQ(U |V )} ≤ ∆, (46)

and then Eer(Ee,∆) =∞ in this range. In the other extreme case of a very large Ee, Ω(QU ,Ee)

reaches a plateau at a level of HQ(U). Then, if ∆ ≤ HP (U)−HP (U |V ) = IP (U ;V ), Eer(Ee,∆)

reaches zero for a sufficiently large Ee. Else, if ∆ > IP (U ;V ), Eer(Ee,∆) reaches a strictly

positive plateau, given by

min
{QUV : IQ(U ;V )≥∆}

D(QUV ‖PUV ), (47)
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which is a monotonically non–decreasing function of ∆. Particularly, it means that in this range,

the typical random SD code attains both an exponentially vanishing excess–rate probability as

well as Pe ≈ 0.

It is interesting to relate this to the expurgated bound of the FR code in the SW model,

which is given by (15). Comparing Efr
ex(R) and Ee(∞,∆) analytically is rather difficult. Thus,

we examined these two exponent functions numerically. Consider the case of a double binary

source with alphabets U = V = {0, 1}, and joint probabilities given by PUV (0, 0) = 0.75,

PUV (0, 1) = 0.1, PUV (1, 0) = 0, and PUV (1, 1) = 0.15. We already mentioned before, that in

the special case of Er = ∞, the rate function is given by the threshold ∆, hence we choose

∆ = R in order to have a fair comparison. Graphs of the functions Efr
ex(R) and Ee(∞, R) are

presented in Fig. 1.

R
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

0

0.2

0.4

0.6

0.8

Ee(R)

Efr
ex(R)

Figure 1: Graphs of the functions Efr
ex(R) and Ee(∞, R).

As can be seen in Fig. 1, both Efr
ex(R) and Ee(∞, R) tend to infinity as R tends to log 2 ≈

0.693. For relatively high binning rates, Efr
ex(R) is strictly higher than Ee(∞, R), which can

be explained in the following way: Referring to the analogy between SW coding and channel

coding, one can think of each bin as containing a channel code. In general, a channel code

behaves well if it does not contain pairs of relatively “close” codewords. Since we randomly

assign the source vectors into the bins (even if the populations of the bins are totally equal,

which can be attained by randomly partitioning each type class into exp{nR} subsets), it is
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reasonable to assume that some bins will contain relatively bad codebooks. On the other hand,

in the expurgated SW code [11], each type class T (QU ) is partitioned into exp{nR} “balanced”

subsets in some sense (referring to the enumerators N(QUU ′) in (30), they are equally populated

in all of the bins), such that the codebooks contained in the bins have approximately equal error

probabilities. Moreover, we conclude from (15) that each bin contains a codebook with a quality

of an expurgated channel code. This code is certainly better than the TRCs in the SD ensemble.

In channel coding, it is known [23] that the random Gilbert–Varshamov ensemble has an

exact random coding error exponent which is as high as the maximum between (16) and (17).

In SW source coding, on the other hand, it seems to be a more challenging problem to define an

ensemble, such that the error exponent of its TRCs is as high as Efr
ex(R) of (15). Since the gap

between Efr
ex(R) and Ee(∞, R) is not necessarily very significant, as can be seen in Fig. 1, we

conclude that the SD ensemble may be more attractive because the amount of computations

needed for drawing a code from it are much lower than the amount of computations required

for having an expurgated SW code. In addition, it is important to note that the probability of

drawing a SD code with an exponent much lower than Ee(∞, R) decays exponentially fast, in

analogy to the result in pure channel coding [7].

Appendix A

Proof of Theorem 1

By definition, we have

E[Pe(Bn)] = E

[∑
u′∈B(U),u′ 6=U exp{nf(P̂u′V )}∑

ũ∈B(U) exp{nf(P̂ũV )}

]
. (A.1)

Step 1: Averaging Over the Random Code

We first condition on the true source sequences (U = u,V = v) and take the expectation only

w.r.t. the random binning. We get

E[Pe(Bn)|u,v]

= E

[ ∑
u′∈B(u),u′ 6=u exp{nf(P̂u′v)}

exp{n · f(P̂uv)}+
∑

u′∈B(u),u′ 6=u exp{nf(P̂u′v)}

]
(A.2)
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=

∫ 1

0
P

{ ∑
u′∈B(u),u′ 6=u exp{nf(P̂u′v)}

exp{n · f(P̂uv)}+
∑

u′∈B(u),u′ 6=u exp{nf(P̂u′v)}
≥ s

}
ds (A.3)

=

∫ ∞
0

ne−nξ · P

{ ∑
u′∈B(u),u′ 6=u exp{nf(P̂u′v)}

exp{n · f(P̂uv)}+
∑

u′∈B(u),u′ 6=u exp{nf(P̂u′v)}
≥ e−nξ

}
dξ (A.4)

=

∫ ∞
0

ne−nξ · P

(1− e−nξ)
∑

u′∈B(u),u′ 6=u

exp{nf(P̂u′v)} ≥ e−nξ exp{nf(P̂uv)}

 dξ (A.5)

.
=

∫ ∞
0

ne−nξ · P

 ∑
u′∈B(u),u′ 6=u

exp{nf(P̂u′v)} ≥ exp{n[f(P̂uv)− ξ]}

 dξ, (A.6)

where (A.4) follows by changing the integration variable in (A.3) according to s = e−nξ. Define

Nu,v(QU |V ) =
∑

u′∈B(u),u′ 6=u

1{u′ ∈ T (QU |V |v)}, (A.7)

such that the probability in (A.6) is given by

P

 ∑
u′∈B(u),u′ 6=u

exp{nf(P̂u′v)} ≥ exp{n[f(P̂uv)− ξ]}


= P

 ∑
QU′|V

Nu,v(QU ′|V ) exp{nf(QU ′V )} ≥ exp{n[f(P̂uv)− ξ]}

 (A.8)

.
= P

{
max
QU′|V

Nu,v(QU ′|V ) exp{nf(QU ′V )} ≥ exp{n[f(P̂uv)− ξ]}

}
(A.9)

= P
⋃

QU′|V

{
Nu,v(QU ′|V ) exp{nf(QU ′V )} ≥ exp{n[f(P̂uv)− ξ]}

}
(A.10)

.
=
∑
QU′|V

P
{
Nu,v(QU ′|V ) ≥ exp{n[f(P̂uv)− f(QU ′V )− ξ]}

}
, (A.11)

where QU ′V = QU ′|V × P̂v. Let us denote B0 = f(P̂uv) − f(QU ′V ). Now, given u and v,

Nu,v(QU ′|V ) is a binomial sum of |T (QU ′|V |v)| .= enHQ(U ′|V ) trials and success rate of the

exponential order of e−nR(QU ). Therefore, using the techniques of [24](Section 6.3),

− 1

n
logP

{
Nu,v(QU ′|V ) ≥ exp{n[B0 − ξ]}

}
=

{
[R(QU )−HQ(U ′|V )]+ [HQ(U ′|V )−R(QU )]+ ≥ B0 − ξ
∞ [HQ(U ′|V )−R(QU )]+ < B0 − ξ

(A.12)

=

{
[R(QU )−HQ(U ′|V )]+ ξ ≥ B0 − [HQ(U ′|V )−R(QU )]+
∞ ξ < B0 − [HQ(U ′|V )−R(QU )]+

, (A.13)
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and so,∫ ∞
0

e−nξ · P
{
Nu,v(QU |V ) ≥ exp{n[B0 − ξ]}

}
dξ

.
=

∫ ∞
[B0−[HQ(U ′|V )−R(QU )]+]

+

e−nξ · e−n[R(QU )−HQ(U ′|V )]+dξ (A.14)

.
= exp

{
−n
(

[R(QU )−HQ(U ′|V )]+ +
[
B0 − [HQ(U ′|V )−R(QU )]+

]
+

)}
(A.15)

= exp

{
−n
(
R(QU )−HQ(U ′|V ) + [B0]+ R(QU ) ≥ HQ(U ′|V )
[R(QU )−HQ(U ′|V ) +B0]+ R(QU ) < HQ(U ′|V )

)}
(A.16)

= exp

{
−n
(

[R(QU )−HQ(U ′|V ) + [B0]+]+ R(QU ) ≥ HQ(U ′|V )

[R(QU )−HQ(U ′|V ) + [B0]+]+ R(QU ) < HQ(U ′|V )

)}
(A.17)

= exp
{
−n ·

[
R(QU )−HQ(U ′|V ) + [B0]+

]
+

}
. (A.18)

Finally, we have that

∑
QU′|V

∫ ∞
0

e−nξ · P
{
Nu,v(QU |V ) ≥ exp{n[B0 − ξ]}

}
dξ (A.19)

.
= max

QU′|V
exp

{
−n ·

[
R(QU )−HQ(U ′|V ) + [B0]+

]
+

}
(A.20)

= exp

{
−n · min

QU′|V

[
R(QU )−HQ(U ′|V ) + [B0]+

]
+

}
, (A.21)

thus,

E(u,v) = min
QU′|V

[
R(QU )−HQ(U ′|V ) + [f(P̂uv)− f(QU ′V )]+

]
+
. (A.22)

Step 2: Averaging Over U and V

Notice that the exponent function E(u,v) depends on (u,v) only via the empirical distribution

P̂uv. Averaging over the source and the side information sequences, now yields

E {Pe(Bn)} =
∑
u,v

P (u,v) · 1
{
Ĥu(U) ≥ R(P̂u)

}
· exp

{
−n · E(P̂uv)

}
(A.23)

.
=

∑
{QUV : HQ(U)≥R(QU )}

e−n·D(QUV ‖PUV ) · exp {−n · E(QUV )} (A.24)

.
= exp

{
−n · min

{QUV : HQ(U)≥R(QU )}
[D(QUV ‖PUV ) + E(QUV )]

}
, (A.25)

which proves the first point of Theorem 1.
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Step 3: Moving from Stochastic to Deterministic Decoding

In order to transform the GLD into the general deterministic decoder of

û = arg max
u′∈B(u)

f(P̂u′v), (A.26)

we just have to multiply f(·), in

E(QUV ) = min
QU′|V

[
R(QU )−HQ(U ′|V ) + [f(QUV )− f(QU ′V )]+

]
+
, (A.27)

by β ≥ 0, and then let β → ∞. We find that the overall error exponent of the SD ensemble

with the general deterministic decoder of (A.26) is given by

E(P ) = min
{QUV : HQ(U)≥R(QU )}

[
D(QUV ‖PUV ) + Ẽ(QUV )

]
, (A.28)

where,

Ẽ(QUV ) = min
{QU′|V : f(QU′V )≥f(QUV )}

[
R(QU )−HQ(U ′|V )

]
+
. (A.29)

Step 4: A Fundamental Limitation on the Error Exponent

Note that the minimum in (A.29) can be upper–bounded by choosing a specific distribution in

the feasible set. In (A.29), we take QU ′|V = QU |V and then

Ẽ(QUV ) ≤ [R(QU )−HQ(U |V )]+ . (A.30)

Hence, the overall error exponent is upper–bounded as

E(P ) ≤ min
{QUV : HQ(U)≥R(QU )}

[
D(QUV ‖PUV ) + [R(QU )−HQ(U |V )]+

]
. (A.31)

Step 5: An Optimal Universal Decoder

We prove that the upper bound of (A.31) is attainable by choosing the universal decoding

metric f(QUV ) = −HQ(U |V ). Now, we get for (A.29)

Ẽ(QUV ) = min
{QU′|V : f(QU′V )≥f(QUV )}

[
R(QU )−HQ(U ′|V )

]
+

(A.32)

= min
{QU′|V : HQ(U |V )≥HQ(U ′|V )}

[
R(QU )−HQ(U ′|V )

]
+

(A.33)

= [R(QU )−HQ(U |V )]+ , (A.34)

which completes the proof of Theorem 1.
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Appendix B

Proof of Theorem 2

Lower Bound on the Error Exponent

Our starting point is the following inequality, for any ρ > 0,

E[logPe(Bn)] ≤ log
(
E[Pe(Bn)]1/ρ

)ρ
, (B.1)

which is due to the following considerations. First, for a positive random variable X, the

function

f(ρ) = log
(
E
[
X1/ρ

])ρ
(B.2)

is monotonically decreasing, and second, by L’Hospital’s rule,

lim
ρ→∞

log
(
E
[
X1/ρ

])ρ
= E[logX]. (B.3)

Recall that the error probability is given by

Pe(Bn) =
∑
u,v

P (u,v) · 1
{
Ĥu(U) ≥ R(P̂u)

}
·
∑

u′∈B(u)∩T (u),u′ 6=u exp{nf(P̂u′v)}∑
ũ∈B(u)∩T (u) exp{nf(P̂ũv)}

. (B.4)

Let

Zu(v) =
∑

ũ∈B(u)∩T (u),ũ6=u

exp{nf(P̂ũv)}, (B.5)

fix ε > 0 arbitrarily small, and for every u ∈ Un and v ∈ Vn, define the set

Bε(u,v) =
{
Bn : Zu(v) ≤ exp{nα(R+ ε, P̂u, P̂v)}

}
. (B.6)

Following the result of [20](Appendix B), we prove the following modification in Appendix C.

Lemma 1. Let ε > 0 be arbitrarily small. Then, for every u ∈ Un and v ∈ Vn,

P
{
Zu(v) ≤ exp{nα(R+ ε, P̂u, P̂v)}

}
≤ exp{−enε + nε+ 1}. (B.7)

So, by the union bound,

P

{ ⋃
u∈Un

⋃
v∈Vn

Bε(u,v)

}
4
= P {Bε} ≤

∑
u∈Un

∑
v∈Vn

P {Bε(u,v)} (B.8)

≤
∑
u∈Un

∑
v∈Vn

exp{−enε + nε+ 1} (B.9)

= |U × V|n · exp{−enε + nε+ 1}, (B.10)
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which still decays double–exponentially fast. Recall that Q = {QUU ′ : QU = QU ′}. Then, for

any ρ ≥ 1

E
{

[Pe(Bn)]1/ρ
}

= E
{
Pe(Bn)1/ρ · 1{Bc

ε}
}

+ E
{
Pe(Bn)1/ρ · 1{Bε}

}
(B.11)

≤ E


[∑
u,v

P (u,v)1
{
Ĥu(U) ≥ R(P̂u)

} ∑
u′∈B(u)∩T (u),u′ 6=u exp{nf(P̂u′v)}

exp{nf(P̂uv)}+ Zu(v)

]1/ρ

1{Bc
ε}


+ P{Bε} (B.12)

≤ E


∑

u,v

∑
u′∈B(u)∩T (u),u′ 6=u

P (u,v)1
{
Ĥu(U) ≥ R(P̂u)

}

×min

{
1,

exp{nf(P̂u′v)}
exp{nf(P̂uv)}+ exp{nα(R+ ε, P̂u, P̂v)}

}]1/ρ


+ |U × V|n · exp{−enε + nε+ 1} (B.13)

.
= E


∑

u

∑
u′∈B(u)∩T (u),u′ 6=u

P (u)1
{
Ĥu(U) ≥ R(P̂u)

}

×
∑
v

P (v|u) exp
{
−n ·

[
max{f(P̂uv), α(R+ ε, P̂u, P̂v)} − f(P̂u′v)

]
+

}]1/ρ
 (B.14)

.
= E


∑

u

∑
u′∈B(u)∩T (u),u′ 6=u

P (u) · 1
{
Ĥu(U) ≥ R(P̂u)

}
· exp

{
−n · Λ(P̂uu′ , R+ ε)

}1/ρ


(B.15)

= E


 ∑
{QUU′∈Q: HQ(U)≥R(QU )}

N(QUU ′) · enEQ[logP (U)] · exp {−n · Λ(QUU ′ , R+ ε)}

1/ρ

(B.16)

.
=

∑
{QUU′∈Q: HQ(U)≥R(QU )}

E
{

[N(QUU ′)]
1/ρ
}
· en(EQ[logP (U)])/ρ · exp {−n · Λ(QUU ′ , R+ ε)/ρ} ,

(B.17)

where (B.13) is due to Lemma 1, (B.15) is by the method of types and the definition of

Λ(QUU ′ , R) in (27), and in (B.16) we used the definition of N(QUU ′) in (30). Therefore, our

next task is to evaluate the 1/ρ–th moment of N(QUU ′). Let us define

Nu(QU ′|U ) =
∑

u′∈T (QU′|U |u)

1
{
B(u′) = B(u)

}
. (B.18)
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For a given ρ ≥ 1, let s ∈ [1, ρ]. Then,

E
{

[N(QUU ′)]
1/ρ
}

= E


 ∑
u∈T (QU )

Nu(QU ′|U )

1/ρ
 (B.19)

= E



 ∑
u∈T (QU )

Nu(QU ′|U )

1/s

s/ρ
 (B.20)

≤ E


 ∑

u∈T (QU )

[
Nu(QU ′|U )

]1/ss/ρ
 (B.21)

≤

E

 ∑
u∈T (QU )

[
Nu(QU ′|U )

]1/s
s/ρ

(B.22)

=

 ∑
u∈T (QU )

E
{[
Nu(QU ′|U )

]1/s}s/ρ

, (B.23)

where (B.22) follows from Jensen’s inequality. Now, Nu(QU ′|U ) is a binomial random variable

with |T (QU ′|U |u)| .= enHQ(U ′|U) trials and success rate which is of the exponential order of

e−nR. We have that [24](Section 6.3)

E
{[
Nu(QU ′|U )

]1/s} .
=

{
exp{n[HQ(U ′|U)−R]/s} HQ(U ′|U) ≥ R
exp{n[HQ(U ′|U)−R]} HQ(U ′|U) < R

, (B.24)

and so,

E
{

[N(QUU ′)]
1/ρ
}
≤ enHQ(U)·s/ρ ·

(
E
{[
Nu(QU ′|U )

]1/s})s/ρ
(B.25)

.
= enHQ(U)·s/ρ ·

{
exp{n[HQ(U ′|U)−R]/ρ} HQ(U ′|U) ≥ R
exp{n[HQ(U ′|U)−R]s/ρ} HQ(U ′|U) < R

(B.26)

=

{
exp{n[HQ(U) · s+HQ(U ′|U)−R]/ρ} HQ(U ′|U) ≥ R
exp{n[HQ(U) +HQ(U ′|U)−R]s/ρ} HQ(U ′|U) < R

(B.27)

=

{
exp{n[HQ(U) · s+HQ(U ′|U)−R]/ρ} HQ(U ′|U) ≥ R
exp{n[HQ(U,U ′)−R]s/ρ} HQ(U ′|U) < R

. (B.28)

After optimizing over s, we get

1

n
logE

{
[N(QUU ′)]

1/ρ
}

≤ min
1≤s≤ρ


[HQ(U) · s+HQ(U ′|U)−R] /ρ HQ(U ′|U) ≥ R
[HQ(U,U ′)−R] s/ρ HQ(U ′|U) < R,HQ(U,U ′) ≥ R
[HQ(U,U ′)−R] s/ρ HQ(U ′|U) < R,HQ(U,U ′) < R

(B.29)
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=


[HQ(U) +HQ(U ′|U)−R] /ρ HQ(U ′|U) ≥ R
[HQ(U,U ′)−R] /ρ HQ(U ′|U) < R,HQ(U,U ′) ≥ R
[HQ(U,U ′)−R] ρ/ρ HQ(U ′|U) < R,HQ(U,U ′) < R

(B.30)

=

{
[HQ(U,U ′)−R] /ρ HQ(U,U ′) ≥ R
[HQ(U,U ′)−R] HQ(U,U ′) < R

, (B.31)

which gives, after raising to the ρ–th power,(
E
{

[N(QUU ′)]
1/ρ
})ρ
≤
{

exp{n [HQ(U,U ′)−R]} HQ(U,U ′) ≥ R
exp{n [HQ(U,U ′)−R] · ρ} HQ(U,U ′) < R

(B.32)

= exp{n([HQ(U,U ′)−R]+ − ρ[R−HQ(U,U ′)]+)}. (B.33)

Let us denote F (Q,R, ρ) = [HQ(U,U ′)−R]+−ρ[R−HQ(U,U ′)]+. Continuing now from (B.17),(
E
{

[Pe(Bn)]1/ρ
})ρ

·
≤

 ∑
{QUU′∈Q: HQ(U)≥R(QU )}

E
{

[N(QUU ′)]
1/ρ
}
· en[EQ logP (U)]/ρ · exp {−n · Λ(QUU ′ , R+ ε)/ρ}

ρ

(B.34)

.
=

∑
{QUU′∈Q: HQ(U)≥R(QU )}

(
E
{

[N(QUU ′)]
1/ρ
})ρ
· enEQ logP (U) · exp {−n · Λ(QUU ′ , R+ ε)}

(B.35)

≤
∑

{QUU′∈Q: HQ(U)≥R(QU )}

exp{n(F (Q,R, ρ) + EQ[logP (U)]− Λ(QUU ′ , R+ ε))} (B.36)

.
= exp

{
−n · min

{QUU′∈Q: HQ(U)≥R(QU )}
(Λ(QUU ′ , R+ ε)− F (Q,R, ρ)− EQ[logP (U)])

}
. (B.37)

where (B.36) follows from (B.33). Finally, it follows by (B.1) that

lim inf
n→∞

− 1

n
E[logPe(Bn)]

≥ lim inf
n→∞

− 1

n
log
(
E[Pe(Bn)]1/ρ

)ρ
(B.38)

≥ min
{QUU′∈Q: HQ(U)≥R(QU )}

(Λ(QUU ′ , R+ ε)− F (Q,R, ρ)− EQ[logP (U)]). (B.39)

Letting ρ grow without bound yields that

lim inf
n→∞

− 1

n
E[logPe(Bn)]

≥ min
{QUU′∈Q: HQ(U)≥R(QU ), HQ(U,U ′)≥R(QU )}

(Λ(QUU ′ , R+ ε)−HQ(U,U ′) +R(QU )− EQ[logP (U)])

(B.40)

= min
{QUU′∈Q: HQ(U)≥R(QU )}

(Λ(QUU ′ , R+ ε)−HQ(U,U ′) +R(QU )− EQ[logP (U)]). (B.41)
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Due to the arbitrariness of ε > 0, we have proved that

lim inf
n→∞

− 1

n
E[logPe(Bn)]

≥ min
{QUU′∈Q: HQ(U)≥R(QU )}

(Λ(QUU ′ , R)−HQ(U,U ′) +R(QU )− EQ[logP (U)]). (B.42)

completing half of the proof of Theorem 2.

Upper Bound on the Error Exponent

Consider a joint distributionQUU ′ , that satisfiesHQ(U,U ′) > R, and define the event E(QUU ′) =

{Bn : N(QUU ′) < exp{n[HQ(U,U ′) − R − ε]}}. We want to show that P{E(QUU ′)} is small.

Consider the following:

P{E(QUU ′)} = P{N(QUU ′) < exp{n[HQ(U,U ′)−R− ε]}} (B.43)

= P{N(QUU ′) < e−nε · E{N(QUU ′)}} (B.44)

= P
{

N(QUU ′)

E{N(QUU ′)}
− 1 < −(1− e−nε)

}
(B.45)

≤ P

{[
N(QUU ′)− E{N(QUU ′)}

E{N(QUU ′)}

]2

> (1− e−nε)2

}
(B.46)

≤ Var{N(QUU ′)}
(1− e−nε)2 · E2{N(QUU ′)}

. (B.47)

Let us use the shorthand notations I(u,u′) = 1 {B(u′) = B(u)}, K = |T (QUU ′)|, and p =

e−nR. Concerning the variance of N(QUU ′), we have the following

Var{N(QUU ′)}

= E{N2(QUU ′)} − E2{N(QUU ′)} (B.48)

= E


 ∑

(u,u′)∈T (QUU′ )

I(u,u′)

×
 ∑

(ũ,û)∈T (QUU′ )

I(ũ, û)

− (Kp)2 (B.49)

=
∑

(u,u′)∈T (QUU′ )

∑
(ũ,û)∈T (QUU′ )

E
{
I(u,u′)I(ũ, û)

}
− (Kp)2 (B.50)

=
∑

(u,u′)∈T (QUU′ )

E
{
I2(u,u′)

}
+

∑
(u,u′),(ũ,û)∈T (QUU′ )

(u,u′)6=(ũ,û)

E
{
I(u,u′)I(ũ, û)

}
− (Kp)2 (B.51)

= Kp+K(K − 1)p2 − (Kp)2 (B.52)

= Kp(1− p) (B.53)

.
= exp{n[HQ(U,U ′)−R]}, (B.54)
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and hence,

P{E(QUU ′)}
·
≤

exp{n[HQ(U,U ′)−R]}
exp{n[2HQ(U,U ′)− 2R]}

(B.55)

= exp{−n[HQ(U,U ′)−R]}, (B.56)

which decays to zero since we have assumed that HQ(U,U ′) > R. Furthermore, if HQ(U,U ′) ≥

R + ε, then P{E(QUU ′)} tends to zero at least as fast as e−nε. Now, for a given ε > 0, and a

given joint type QUU ′V , such that HQ(U,U ′) ≥ R+ ε, let us define

Zuu′(v) =
∑

ũ∈B(u)∩T (u),ũ 6=u,u′

exp{nf(P̂ũv)}, (B.57)

and

Gn(QUU ′V ) =

{
Bn :

∑
(u,u′)∈T (QUU′ )

1{B(u′) = B(u)}×

∑
v∈T (QV |UU′ |u,u′)

1

{
Zuu′(v) ≤ en[α(R−2ε,QU ,QV )+ε]

}
≥

exp{n[HQ(U,U ′)−R− 3ε/2]} · |T (QV |UU ′ |u,u′)|

}
, (B.58)

where (u,u′) in the expression |T (QV |UU ′ |u,u′)| should be understood as any pair of source

sequences in T (QUU ′). Next, we define

Gn =
⋂

{QUU′V : HQ(U,U ′)≥R+ε}

[Gn(QUU ′V ) ∩ Ec(QUU ′)]. (B.59)

We start by proving that P{Gn} → 1 as n → ∞, or equivalently, that P{Gc
n} → 0 as n → ∞.

Now,

P{Gc
n} = P

 ⋃
{QUU′V : HQ(U,U ′)≥R+ε}

[Gc
n(QUU ′V ) ∪ E(QUU ′)]

 (B.60)

≤
∑

{QUU′V : HQ(U,U ′)≥R+ε}

P {Gc
n(QUU ′V ) ∪ E(QUU ′)} (B.61)

=
∑

{QUU′V : HQ(U,U ′)≥R+ε}

[P {E(QUU ′)}+ P {Gc
n(QUU ′V ) ∩ Ec(QUU ′)}]. (B.62)

The last summation contains a polynomial number of terms. If we prove that the summand

tends to zero exponentially with n, then P{Gc
n} → 0 as n→∞. The first term in the summand,
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P {E(QUU ′)}, has already been proved to be upper bounded by e−nε. Concerning the second

term, we have the following

P {Gc
n(QUU ′V ) ∩ Ec(QUU ′)}

= P

[ ∑
(u,u′)∈T (QUU′ )

1{B(u′) = B(u)} ·
∑

v∈T (QV |UU′ |u,u′)

1

{
Zuu′(v) ≤ en[α(R−2ε,QU ,QV )+ε]

}
<

exp{n[HQ(U,U ′)−R− 3ε/2]} · |T (QV |UU ′ |u,u′)|,

N(QUU ′) ≥ exp{n[HQ(U,U ′)−R− ε]}

]
(B.63)

= P

[ ∑
(u,u′)∈T (QUU′ )

1{B(u′) = B(u)} ·
∑

v∈T (QV |UU′ |u,u′)

1

{
Zuu′(v) > en[α(R−2ε,QU ,QV )+ε]

}
>

[N(QUU ′)− exp{n[HQ(U,U ′)−R− 3ε/2]}] · |T (QV |UU ′ |u,u′)|,

N(QUU ′) ≥ exp{n[HQ(U,U ′)−R− ε]}

]
(B.64)

≤ P

[ ∑
(u,u′)∈T (QUU′ )

1{B(u′) = B(u)} ·
∑

v∈T (QV |UU′ |u,u′)

1

{
Zuu′(v) > en[α(R−2ε,QU ,QV )+ε]

}
>

[exp{n[HQ(U,U ′)−R− ε]} − exp{n[HQ(U,U ′)−R− 3ε/2]}] · |T (QV |UU ′ |u,u′)|,

N(QUU ′) ≥ exp{n[HQ(U,U ′)−R− ε]}

]
(B.65)

≤ P

[ ∑
(u,u′)∈T (QUU′ )

1{B(u′) = B(u)} ·
∑

v∈T (QV |UU′ |u,u′)

1

{
Zuu′(v) > en[α(R−2ε,QU ,QV )+ε]

}
>

[exp{n[HQ(U,U ′)−R− ε]} − exp{n[HQ(U,U ′)−R− 3ε/2]}] · |T (QV |UU ′ |u,u′)|

]
(B.66)

≤
E
{∑

(u,u′)∈T (QUU′ )
1{B(u′) = B(u)} ·

∑
v∈T (QV |UU′ |u,u′)

1
{
Zuu′(v) > en[α(R−2ε,QU ,QV )+ε]

}}
[exp{n[HQ(U,U ′)−R− ε]} − exp{n[HQ(U,U ′)−R− 3ε/2]}] · |T (QV |UU ′ |u,u′)|

(B.67)

·
≤
|T (QUU ′)| · |T (QV |UU ′ |u,u′)| · P

{
B(u′) = B(u), Zuu′(v) > en[α(R−2ε,QU ,QV )+ε]

}
exp{n[HQ(U,U ′)−R− ε]} · |T (QV |UU ′ |u,u′)|

(B.68)

.
=

exp{nHQ(U,U ′)} · P {B(u′) = B(u)} · P
{
Zuu′(v) > en[α(R−2ε,QU ,QV )+ε]

}
exp{n[HQ(U,U ′)−R− ε]}

(B.69)

= enε · P
{
Zuu′(v) > en[α(R−2ε,QU ,QV )+ε]

}
, (B.70)

where (B.65) follows by using the second event N(QUU ′) ≥ exp{n[HQ(U,U ′)−R−ε]} to increase

the first event inside the probability in (B.64), (B.66) is true since the second event in (B.65)

was omitted, (B.67) follows from Markov’s inequality, and (B.69) is due to the independence
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between the two events inside the probability in (B.68). As for the probability in (B.70),

P
{
Zuu′(v) > en[α(R−2ε,QU ,QV )+ε]

}
= P

∑
QU|V

N(QUV )enf(QUV ) > en[α(R−2ε,QU ,QV )+ε]

 (B.71)

.
= max

QU|V
P {N(QUV ) > exp{n[α(R− 2ε,QU , QV ) + ε− f(QUV )]}} (B.72)

.
= e−nE , (B.73)

where N(QUV ) is the number of source sequences within B(u), other than u and u′, that fall in

the conditional type class T (QU |V |v), which is a binomial random variable with enHQ(U |V ) − 2

trials and success rate of exponential order e−nR, and hence,

E = min
QU|V

{
[R−HQ(U |V )]+ f(QUV ) + [HQ(U |V )−R]+ ≥ α(R− 2ε,QU , QV ) + ε
∞ f(QUV ) + [HQ(U |V )−R]+ < α(R− 2ε,QU , QV ) + ε

(B.74)

= min
{QU|V : f(QUV )+[HQ(U |V )−R]+≥α(R−2ε,QU ,QV )+ε}

[R−HQ(U |V )]+. (B.75)

By definition of the function α(R,QU , QV ), the set {QU |V : f(QUV ) + [HQ(U |V ) − R]+ ≥

α(R− 2ε,QU , QV ) + ε} is a subset of {QU |V : HQ(U |V ) ≤ R− 2ε}. Thus,

E ≥ min
{QU|V : HQ(U |V )≤R−2ε}

[R−HQ(U |V )]+ ≥ 2ε, (B.76)

and hence, P
{
Zuu′(v) > en[α(R−2ε,QU ,QV )+ε]

} ·
≤ e−2nε, which provides

P {Gc
n(QUU ′V ) ∩ Ec(QUU ′)}

·
≤ enε · e−2nε = e−nε, (B.77)

which proves that P{Gn} → 1 as n→∞. Now, for a given Bn ∈ Gn(QUU ′V ), we define the set

K(Bn, QUU ′V ) = {(u,u′,v) : Zuu′(v) ≤ exp{n[α(R− 2ε,QU , QV ) + ε]}}, (B.78)

as well as

K(Bn, QUU ′V |u,u′) = {v : (u,u′,v) ∈ K(Bn, QUU ′V )}. (B.79)

Then, by definition, for any Bn ∈ Gn(QUU ′V ),

∑
(u,u′)∈T (QUU′ )

1{B(u′) = B(u)} ·
|T (QV |UU ′ |u,u′) ∩ K(Bn, QUU ′V |u,u′)|

|T (QV |UU ′ |u,u′)|

≥ exp{n[HQ(U,U ′)−R− 3ε/2]}, (B.80)
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where we have used the fact that T (QV |UU ′ |u,u′) has exponentially the same cardinality for

all (u,u′) ∈ T (QUU ′). Wrapping all up, we get that for any Bn ∈ Gn,

Pe(Bn)

=
∑
u,v

P (u,v)1
{
Ĥu(U) ≥ R(P̂u)

} ∑
u′∈B(u)∩T (u),u′ 6=u exp{nf(P̂u′v)}

exp{nf(P̂uv)}+ exp{nf(P̂u′v)}+ Zuu′(v)
(B.81)

≥
∑

{QUU′ : HQ(U,U ′)≥R+ε,HQ(U)≥R(QU )}

∑
(u,u′)∈T (QUU′ )

1{B(u′) = B(u)} · exp{nEQ logP (U)}

×
∑

QV |UU′

∑
v∈T (QV |UU′ |u,u′)∩K(Bn,QUU′V |u,u′)

exp{nEQ logP (V |U)}

× exp{nf(QU ′V )}
exp{nf(QUV )}+ exp{nf(QU ′V )}+ Zuu′(v)

(B.82)

≥
∑

{QUU′ : HQ(U,U ′)≥R+ε,HQ(U)≥R(QU )}

∑
(u,u′)∈T (QUU′ )

1{B(u′) = B(u)} · exp{nEQ logP (U)}

×
∑

QV |UU′

∑
v∈T (QV |UU′ |u,u′)∩K(Bn,QUU′V |u,u′)

exp{nEQ logP (V |U)}

× exp{nf(QU ′V )}
exp{nf(QUV )}+ exp{nf(QU ′V )}+ exp{n[α(R− 2ε,QU , QV ) + ε]}

(B.83)

.
=

∑
{QUU′ : HQ(U,U ′)≥R+ε,HQ(U)≥R(QU )}

∑
(u,u′)∈T (QUU′ )

1{B(u′) = B(u)}

×
∑

QV |UU′

|T (QV |UU ′ |u,u′) ∩ K(Bn, QUU ′V |u,u′)|
|T (QV |UU ′ |u,u′)|

· |T (QV |UU ′ |u,u′)| · enEQ logP (U,V )

× exp{−n · [max{f(QUV ), α(R− 2ε,QU , QV ) + ε} − f(QU ′V )]+} (B.84)

.
=

∑
{QUU′V : HQ(U,U ′)≥R+ε,HQ(U)≥R(QU )}

∑
(u,u′)∈T (QUU′ )

1{B(u′) = B(u)}

×
|T (QV |UU ′ |u,u′) ∩ K(Bn, QUU ′V |u,u′)|

|T (QV |UU ′ |u,u′)|
· enHQ(V |U,U ′) · enEQ logP (U,V )

× exp{−n · [max{f(QUV ), α(R− 2ε,QU , QV ) + ε} − f(QU ′V )]+} (B.85)

≥
∑

{QUU′V : HQ(U,U ′)≥R+ε,HQ(U)≥R(QU )}

exp{n[HQ(U,U ′)−R− 3ε/2]} · enHQ(V |U,U ′)

× enEQ logP (U,V ) · exp{−n · [max{f(QUV ), α(R− 2ε,QU , QV ) + ε} − f(QU ′V )]+} (B.86)

.
= exp

{
−n · min

{QUU′V : HQ(U,U ′)≥R+ε,HQ(U)≥R(QU )}
{−HQ(U,U ′) +R+ 3ε/2−HQ(V |U,U ′)

− EQ[logP (U, V )] + [max{f(QUV ), α(R− 2ε,QU , QV ) + ε} − f(QU ′V )]+}} (B.87)

4
= exp{−nEtrc(R, ε)}, (B.88)
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where (B.83) follows from the definition of the set K(Bn, QUU ′V |u,u′) in (B.79) and (B.86) is

due to (B.80). Consider the following:

E
[
− 1

n
logPe(Bn)

]
=
∑
Bn

P{Bn}
(
− 1

n
logPe(Bn)

)
(B.89)

=
∑
Bn∈Gn

P{Bn}
(
− 1

n
logPe(Bn)

)
+
∑
Bn∈Gcn

P{Bn}
(
− 1

n
logPe(Bn)

)
(B.90)

≤
∑
Bn∈Gn

P{Bn}
(
− 1

n
log e−nEtrc(R,ε)

)
+
∑
Bn∈Gcn

P{Bn}
(
− 1

n
log e−nEsp(R)

)
(B.91)

= P{Gn}Etrc(R, ε) + P{Gc
n}Esp(R), (B.92)

which implies that

lim sup
n→∞

E
[
− 1

n
logPe(Bn)

]
≤ Etrc(R, ε). (B.93)

It follows from the arbitrariness of ε that

lim sup
n→∞

E
{
− 1

n
log [Pe(Bn)]

}
≤ min
{QUU′V : HQ(U,U ′)≥R,HQ(U)≥R(QU )}

{−HQ(U,U ′) +R−HQ(V |U,U ′)

− EQ[logP (U, V )] + [max{f(QUV ), α(R,QU , QV )} − f(QU ′V )]+} (B.94)

= min
{QUU′V : HQ(U)≥R(QU )}

{−HQ(U,U ′) +R−HQ(V |U,U ′)

− EQ[logP (U, V )] + [max{f(QUV ), α(R,QU , QV )} − f(QU ′V )]+} (B.95)

= min
{QUU′∈Q: HQ(U)≥R(QU )}

{Λ(QUU ′ , R)−HQ(U,U ′) +R(QU )− EQ[logP (U)]}, (B.96)

which completes the proof of Theorem 2.

Appendix C

Proof of Lemma 1

Let N(T (QU |V |v),B(u)) be defined as

N(T (QU |V |v),B(u)) =
∑

u′∈T (QU|V |v)

1
{
B(u′) = B(u)

}
. (C.1)
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First, note that

Zu(v) =
∑

ũ∈B(u)∩T (u),ũ6=u

exp{nf(P̂ũv)} =
∑

QU|V ∈S(P̂u,P̂v)

N(T (QU |V |v),B(u))enf(QUV ), (C.2)

where S(P̂u, P̂v) = {QU |V : (P̂v×QU |V )U = P̂u}. Thus, taking the randomness of {B(u)}u∈Un

into account,

P
{
Zv(u) ≤ exp{nα(R+ ε, P̂u, P̂v)}

}
= P


∑

QU|V ∈S(P̂u,P̂v)

N(T (QU |V |v),B(u))enf(QUV ) ≤ exp{nα(R+ ε, P̂u, P̂v)}

 (C.3)

≤ P

{
max

QU|V ∈S(P̂u,P̂v)
N(T (QU |V |v),B(u))enf(QUV ) ≤ exp{nα(R+ ε, P̂u, P̂v)}

}
(C.4)

= P
⋂

QU|V ∈S(P̂u,P̂v)

{
N(T (QU |V |v),B(u))enf(QUV ) ≤ exp{nα(R+ ε, P̂u, P̂v)}

}
(C.5)

= P
⋂

QU|V ∈S(P̂u,P̂v)

{
N(T (QU |V |v),B(u)) ≤ exp{n[α(R+ ε, P̂u, P̂v)− f(QUV )]}

}
. (C.6)

Now, N(T (QU |V |v),B(u)) is a binomial random variable with |T (QU |V |v)| .= enHQ(U |V ) tri-

als and success rate which is of the exponential order of e−nR. We prove that by the very

definition of the function α(R + ε, P̂u, P̂v), there must exist some conditional distribution

Q∗U |V ∈ S(P̂u, P̂v) such that for Q∗UV = P̂v×Q∗U |V , the two inequalities HQ∗(U |V ) ≥ R+ ε and

HQ∗(U |V ) − R − ε ≥ α(R + ε, P̂u, P̂v) − f(Q∗UV ) hold. To show that, we assume conversely,

i.e., that for every conditional distribution QU |V ∈ S(P̂u, P̂v), which defines QUV = P̂v×QU |V ,

either HQ(U |V ) < R+ ε or HQ(U |V )−R− ε < α(R+ ε, P̂u, P̂v)− f(QUV ), which means that

for every distribution QU |V ∈ S(P̂u, P̂v)

HQ(U |V )− ε < max{R,R+ α(R+ ε, P̂u, P̂v)− f(QUV )} (C.7)

= R+ [α(R+ ε, P̂u, P̂v)− f(QUV )]+. (C.8)

Writing it slightly differently, for every QU |V ∈ S(P̂u, P̂v) there exists some real number t ∈ [0, 1]

such that

HQ(U |V )− ε < R+ t[α(R+ ε, P̂u, P̂v)− f(QUV )], (C.9)
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or equivalently,

α(R+ ε, P̂u, P̂v) > max
QU|V ∈S(P̂u,P̂v)

min
t∈[0,1]

f(QUV ) +
HQ(U |V )−R− ε

t
(C.10)

= max
QU|V ∈S(P̂u,P̂v)

{
f(QUV ) +HQ(U |V )−R− ε HQ(U |V ) ≥ R+ ε
−∞ HQ(U |V ) < R+ ε

(C.11)

= max
{QU|V ∈S(P̂u,P̂v): HQ(U |V )≥R+ε}

[f(QUV ) +HQ(U |V )]−R− ε (C.12)

≡ α(R+ ε, P̂u, P̂v), (C.13)

which is a contradiction. Let the conditional distribution Q∗U |V be as defined above. Then,

P
⋂

QU|V ∈S(P̂u,P̂v)

{
N(T (QU |V |v),B(u)) ≤ exp{n[α(R+ ε, P̂u, P̂v)− f(QUV )]}

}
(C.14)

≤ P
{
N(T (Q∗U |V |v),B(u)) ≤ exp{n[α(R+ ε, P̂u, P̂v)− f(Q∗UV )]}

}
. (C.15)

Now, we know that both of the inequalities HQ∗(U |V ) ≥ R + ε and HQ∗(U |V ) − R − ε ≥

α(R + ε, P̂u, P̂v) − f(Q∗UV ) hold. By the Chernoff bound, the probability of (C.15) is upper

bounded by

exp
{
− enHQ∗ (U |V )D(e−an‖e−bn)

}
, (C.16)

where a = HQ∗(U |V )+f(Q∗UV )−α(R+ε, P̂u, P̂v) and b = R, and whereD(α‖β), for α, β ∈ [0, 1],

is the binary divergence function, that is

D(α‖β) = α log
α

β
+ (1− α) log

1− α
1− β

. (C.17)

Since a− b ≥ ε, the binary divergence is lower bounded as follows [24](Section 6.3):

D(e−an‖e−bn) ≥ e−bn
{

1− e−(a−b)n[1 + n(a− b)]
}

(C.18)

≥ e−nR[1− e−nε(1 + nε)], (C.19)

where in the second inequality, we invoked the decreasing monotonicity of the function f(t) =

(1 + t)e−t for t ≥ 0. Finally, we get that

P
{
N(T (Q∗U |V |v),B(u)) ≤ exp{n[α(R+ ε, P̂u, P̂v)− f(Q∗UV )]}

}
(C.20)

≤ exp
{
− enHQ∗ (U |V ) · e−nR[1− e−nε(1 + nε)]

}
(C.21)

≤ exp
{
− enε[1− e−nε(1 + nε)]

}
(C.22)

= exp
{
− enε + nε+ 1

}
. (C.23)

This completes the proof of Lemma 1.

34



Appendix D

Proof of Theorem 3

By definition of the error exponents, it follows that Etrc,GLD(R(·)) ≥ Er,GLD(R(·)). We now

prove the other direction. The expression in (28) can also be written as

Etrc,GLD(R(·))

= min{
QUU′ : QU′=QU ,
HQ(U)≥R(QU )

}{Λ(QUU ′ , R(QU ))− EQ[logP (U)]−HQ(U,U ′) +R(QU )
}

(D.1)

= min{
QUU′ : QU′=QU ,
HQ(U)≥R(QU )

}
{

min
QV |UU′

{
Ψ(R(QU ), QUU ′V )−HQ(V |U,U ′)− EQ[logP (V |U)]

}
− EQ[logP (U)]−HQ(U,U ′) +R(QU )

}
(D.2)

= min{
QUU′V : QU′=QU ,
HQ(U)≥R(QU )

}{Ψ(R(QU ), QUU ′V )−HQ(U,U ′, V )− EQ[logP (U, V )] +R(QU )
}

(D.3)

= min{
QUU′V : QU′=QU ,
HQ(U)≥R(QU )

}{Ψ(R(QU ), QUU ′V ) +D(QUV ‖PUV )−HQ(U ′|U, V ) +R(QU )
}

(D.4)

= min
Q

{
D(QUV ‖PUV ) +R(QU )−HQ(U ′|U, V )

+ [max{f(QUV ), γ(R(QU ), QU , QV )} − f(QU ′V )]+
}
, (D.5)

with the set Q given by Q = {QUU ′V : QU ′ = QU , HQ(U) ≥ R(QU )}, and where,

γ(R(·), QU , QV ) = max{
QŨ|V : QŨ=QU ,

HQ(Ũ |V )≥R(QŨ )

}{f(QŨV ) +HQ(Ũ |V )} −R(QU ). (D.6)

We upper–bound the minimum in (D.5) by decreasing the feasible set; we add to Q the con-

straint that U ↔ V ↔ U ′ form a Markov chain in that order and denote the new feasible set

by Q̃. We get that

Etrc,GLD(R(·)) ≤ min
Q̃

{
D(QUV ‖PUV ) +R(QU )−HQ(U ′|U, V )

+ [max{f(QUV ), γ(R(QU ), QU , QV )} − f(QU ′V )]+
}

(D.7)

= min
Q̃

{
D(QUV ‖PUV ) +R(QU )−HQ(U ′|V )

+ [max{f(QUV ), γ(R(QU ), QU , QV )} − f(QU ′V )]+
}

(D.8)

= min
{QUV : HQ(U)≥R(QU )}

{
D(QUV ‖PUV ) + min

QU′|V ∈Q̂
{R(QU )−HQ(U ′|V )

+ [max{f(QUV ), γ(R(QU ), QU , QV )} − f(QU ′V )]+}
}
, (D.9)
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where Q̂ = {QU ′|V : QU ′ = QU}. In order to upper–bound the inner minimum in (D.9), we split

into two cases, according to the maximum between f(QUV ) and γ(R(QU ), QU , QV ). This is

legitimate when the inner minimum and this maximum can be interchanged, which is possible at

least in the special cases of the matched/mismatched decoding metrics f(Q) = βEQ[log P̃ (U, V )]

for some β > 0, since if f(Q) is linear, then the entire expression inside the inner minimum in

(D.9) is convex in QU ′|V . On the one hand, if the maximum is given by f(QUV ), then the inner

minimum in (D.9) is just

min
QU′|V ∈Q̂

{
R(QU )−HQ(U ′|V ) + [f(QUV )− f(QU ′V )]+

}
. (D.10)

On the other hand, if the maximum is given by γ(R(QU ), QU , QV ), let Q∗ = Q∗
Ũ |V be the

maximizer in (D.6), and then

min
QU′|V ∈Q̂

{
R(QU )−HQ(U ′|V ) + [γ(R(QU ), QU , QV )− f(QU ′V )]+

}
= min

QU′|V ∈Q̂

{
R(QU )−HQ(U ′|V ) +

[
f(Q∗

ŨV
) +HQ∗(Ũ |V )−R(QU )− f(QU ′V )

]
+

}
(D.11)

≤ R(QU )−HQ∗(U
′|V ) +

[
f(Q∗

ŨV
) +HQ∗(Ũ |V )−R(QU )− f(Q∗U ′V )

]
+

(D.12)

= R(QU )−HQ∗(U
′|V ) +

[
HQ∗(Ũ |V )−R(QU )

]
+

(D.13)

= R(QU )−HQ∗(U
′|V ) +HQ∗(Ũ |V )−R(QU ) (D.14)

= 0, (D.15)

where (D.12) is because we choose Q∗U ′|V = Q∗
Ũ |V instead of minimizing over all QU ′|V ∈ Q̂ and

(D.14) is true since HQ∗(Ũ |V ) ≥ R(QU ) by the definition of γ(R(QU ), QU , QV ). Combining

(D.10) and (D.15), we find that (D.9) is upper–bounded by

Etrc,GLD(R(·)) ≤ min
{QUV : HQ(U)≥R(QU )}

{D(QUV ‖PUV )

+ max

{
min

QU′|V ∈Q̂

{
R(QU )−HQ(U ′|V ) + [f(QUV )− f(QU ′V )]+

}
, 0

}}
(D.16)

= min
{QUV : HQ(U)≥R(QU )}

{D(QUV ‖PUV )

+

[
min

QU′|V ∈Q̂

{
R(QU )−HQ(U ′|V ) + [f(QUV )− f(QU ′V )]+

}]
+

 (D.17)

= min
{QUV : HQ(U)≥R(QU )}

{D(QUV ‖PUV )
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+ min
QU′|V ∈Q̂

{[
R(QU )−HQ(U ′|V ) + [f(QUV )− f(QU ′V )]+

]
+

}}
(D.18)

= Er,GLD(R(·)), (D.19)

which proves the first point of the theorem. Moving forward, consider the following:

Etrc,MAP(R(·))
(a)
= Er,MAP(R(·))

(b)
= Er,MCE(R(·))

(c)
≤ Etrc,MCE(R(·))

(d)
≤ Etrc,MAP(R(·)), (D.20)

where (a) follows from the first point in this theorem by using the matched decoding metric

f(Q) = βEQ[logP (U, V )] and letting β → ∞. Equality (b) is due to the second point of

Theorem 1, which ensures that the random binning error exponents of the MAP and the MCE

decoders are equal. Passage (c) is thanks to the fact that for any decoder, the error exponent

of the typical random code is always at least as high as the random coding error exponent and

(d) is due to the fact that the MAP decoder is optimal. Finally, the leftmost and the rightmost

sides of (D.20) are the same, which implies that passages (c) and (d) must hold with equalities.

The equality in passage (c) concludes the second point of the theorem.

Appendix E

Proof of Theorem 4

The left equality in (33) is implied by the proved equality in passage (d) in (D.20). In order

to prove the right equality in (33), first note that Etrc,SCE(R(·)) ≤ Etrc,MAP(R(·)) by the opti-

mality of the MAP decoder. For the other direction, consider the universal decoding metric of

f(QUV ) = −HQ(U |V ). Then, trivially,

γ(R(·), QU , QV ) = max{
QŨ|V : QŨ=QU ,

HQ(Ũ |V )≥R(QŨ )

}{f(QŨV ) +HQ(Ũ |V )} −R(QU ) = −R(QU ), (E.1)

as well as

Ψ(R(·), QUU ′V ) = [max{f(QUV ), γ(R(·), QU , QV )} − f(QU ′V )]+ (E.2)

=
[
max{−HQ(U |V ),−R(QU )}+HQ(U ′|V )

]
+

(E.3)

=
[
HQ(U ′|V )−min{HQ(U |V ), R(QU )}

]
+

(E.4)

≥
[
HQ(U ′|U, V )−min{HQ(U |V ), R(QU )}

]
+
. (E.5)
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We have the following

Etrc,SCE(R(·))

= min
Q

{
D(QUV ‖PUV ) +R(QU )−HQ(U ′|U, V )

+ [max{f(QUV ), γ(R(QU ), QU , QV )} − f(QU ′V )]+
}

(E.6)

≥ min
Q

{
D(QUV ‖PUV ) +R(QU )−HQ(U ′|U, V )

+
[
HQ(U ′|U, V )−min{HQ(U |V ), R(QU )}

]
+

}
(E.7)

= min
Q

{
D(QUV ‖PUV )−min{HQ(U |V ), HQ(U ′|U, V ), R(QU )}+R(QU )

}
(E.8)

≥ min
Q

{
D(QUV ‖PUV )−min{HQ(U |V ), HQ(U ′), R(QU )}+R(QU )

}
(E.9)

= min
{QUV : HQ(U)≥R(QU )}

{D(QUV ‖PUV )−min{HQ(U |V ), HQ(U), R(QU )}+R(QU )} (E.10)

= min
{QUV : HQ(U)≥R(QU )}

{D(QUV ‖PUV )−min{HQ(U |V ), R(QU )}+R(QU )} (E.11)

= min
{QUV : HQ(U)≥R(QU )}

{D(QUV ‖PUV ) + max{R(QU )−HQ(U |V ), 0}} (E.12)

= min
{QUV : HQ(U)≥R(QU )}

{D(QUV ‖PUV ) + [R(QU )−HQ(U |V )]+} (E.13)

= Etrc,MAP(R(·)), (E.14)

which completes the proof of the theorem.

Appendix F

Proof of Theorem 5

We start by writing the expression in (34) in a slightly different way using min{Q: g(Q)≤0} f(Q) =

minQ sups≥0{f(Q) + s · g(Q)}:

Eer(R(·),∆) = min
{QUV : R(QU )≥HQ(U |V )+∆}

D(QUV ‖PUV ) (F.1)

= min
QUV

sup
σ≥0
{D(QUV ‖PUV ) + σ · (HQ(U |V ) + ∆−R(QU ))}. (F.2)

Now, the requirement Eer(R(·),∆) ≥ Er is equivalent to

min
QUV

sup
σ≥0
{D(QUV ‖PUV ) + σ · (HQ(U |V ) + ∆−R(QU ))} ≥ Er (F.3)

or,

∀QUV , ∃σ ≥ 0, D(QUV ‖PUV ) + σ · (HQ(U |V ) + ∆−R(QU )) ≥ Er (F.4)
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or,

∀QU , ∀QV |U , ∃σ ≥ 0, R(QU ) ≤ HQ(U |V ) + ∆ +
D(QUV ‖PUV )− Er

σ
(F.5)

or that for any QU ∈ P(U),

R(QU ) ≤ min
QV |U

sup
σ≥0

{
HQ(U |V ) + ∆ +

D(QUV ‖PUV )− Er
σ

}
(F.6)

= min
QV |U

{
HQ(U |V ) + ∆ D(QUV ‖PUV ) ≤ Er
∞ D(QUV ‖PUV ) > Er

(F.7)

= min
{QV |U : D(QUV ‖PUV )≤Er}

{HQ(U |V ) + ∆} , (F.8)

with the understanding that a minimum over an empty set equals infinity.

Appendix G

Proof of Theorem 6

It follows by the identities min{Q: g(Q)≤0} f(Q) = minQ sups≥0{f(Q) + s · g(Q)} and [A]+ =

maxµ∈[0,1] µA that (24) can also be written as

Ee(R(·)) = min
QU

min
QV |U

max
µ∈[0,1]

sup
σ≥0
{D(QUV ‖PUV ) + µ · (R(QU )−HQ(U |V ))

+ σ · (R(QU )−HQ(U))}, (G.1)

such that Ee(R(·)) ≥ Ee is equivalent to

∀QU , ∀QV |U , ∃µ ∈ [0, 1], ∃σ ≥ 0 :

D(QUV ‖PUV ) + µ · (R(QU )−HQ(U |V )) + σ · (R(QU )−HQ(U)) ≥ Ee, (G.2)

or,

∀QU , ∀QV |U , ∃µ ∈ [0, 1], ∃σ ≥ 0 :

R(QU ) ≥
µ ·HQ(U |V ) + σ ·HQ(U) + Ee −D(QUV ‖PUV )

µ+ σ
, (G.3)
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or that for any QU ∈ P(U),

R(QU ) ≥ max
QV |U

min
µ∈[0,1]

inf
σ≥0

{
µ ·HQ(U |V ) + σ ·HQ(U) + Ee −D(QUV ‖PUV )

µ+ σ

}
(G.4)

= max
QV |U

min
µ∈[0,1]

min

{
HQ(U), HQ(U |V ) +

Ee −D(QUV ‖PUV )

µ

}
(G.5)

= max
QV |U

min

{
HQ(U), min

µ∈[0,1]

{
HQ(U |V ) +

Ee −D(QUV ‖PUV )

µ

}}
(G.6)

= max
QV |U

{
min{HQ(U), HQ(U |V ) + Ee −D(QUV ‖PUV )} Ee ≥ D(QUV ‖PUV )
−∞ Ee < D(QUV ‖PUV )

(G.7)

= max
{QV |U : D(QUV ‖PUV )≤Ee}

min{HQ(U), HQ(U |V ) + Ee −D(QUV ‖PUV )} (G.8)

= min

{
HQ(U), max

{QV |U : D(QUV ‖PUV )≤Ee}
{HQ(U |V ) + Ee −D(QUV ‖PUV )}

}
, (G.9)

and the proof is complete.
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