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Typical Random Codes

Traditional random coding error exponents are defined as

Er(R) = lim
n→∞

»

−
lnEPe(Cn)

n

–

.

We define typical–code error exponents as

Etyp(R) = lim
n→∞

»

−
ElnPe(Cn)

n

–

.

By Jensen’s inequality, Etyp(R) ≥ Er(R).

Er(R) – dominated by bad codes; Etyp(R) – dominated by typical codes.

Let GE = {Cn : Pe(Cn)
·
= e−nE}.

Pe(Cn)
·
=

X

E

P (GE) · e−nE ·
= P (G∗

E) · e−nE∗

.

Otoh, Etyp(R) =
P

E P (GE)·E = E0, where P [GE0
] → 1.
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Motivation

Etyp(R) is never worse than Er(R).

Code selected once and for all: no LLN to support EPe(Cn).

Once selected, w.h.p. Pe(Cn) ∼ e−nE0 , forever.

Theoretical framework for random–like codes (Battail, 1995).

Analogy: physics of disordered sys. – quenched vs. annealed average.

Q: With all these motivations, why wasn’t it explored much more before?

A: Not so easy to analyze (also in physics) ....
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Related Work

Barg & Forney (’02): i.i.d. random coding, BSC:

At low rates: Etyp(R) = Eex(2R) + R.

Nazari (’11); Nazari, Anastasopoulos & Pradhan (’14):

upper and lower bounds for the α–decoder.

Stat. phys. literature: Kabashima (’08), Mora & Riviore (’06), ...:

LDPC codes - replica analysis and cavity method.

Battail (’95):

random–like codes.

Merhav (’18): fixed–composition rand. coding, DMC, gen. likelihood dec.

Exact error exponent of the typical random code (TRC).
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Contributions

Deriving the error exponent of the typical random trellis code for:

A general DMC (not just MBIOS).

A general rational coding rate (not only 1/n).

A general random selection of a time–varying code.

The analysis method (based on the MoT) provides insights on:

Structure of the typical random trellis code.

Dominant error events.

Additional extensions:

Channels with finite input memory (ISI).

Mismatched decoding metric.
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Problem Setting

D D D

ft

xt

ut−k+1ut

yt ût

W (yt|xt) decoder

{ut} – m–vectors of purely random bits.

ft : {0, 1}mk → Xn randomly selected according to Qn.

Coding rate: R = m/n; constraint length: K = mk.

For convolutional codes, {ft} are linear.

W = DMC.

Asymptotic regime: k → ∞ while m and n are held fixed.
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Background

Traditional performance metric: E(R,Q) = lim infK→∞[− log EPe]/K.

E(R,Q) =

(

R0(Q)/R R < R0(Q)

E0(ρ, Q)/R R > R0(Q)

where ρ satifies: ρR = E0(R,Q).
For R > R0(Q): ∃ matching converse.
For R < R0(Q): improvement by an expurgated bound,

R0(Q)/R → Ecex(R,Q)
△
= Ex(ρ, Q)/R

with ρR = Ex(ρ,Q).
In [Viterbi & Odenwalder, 1969]: for at least half of the convolutional codes

Pe ≤

„

2L

1 − 2−ǫ/ρR

«ρ

· exp{−KEcex(R,Q)}.

If 2L is replaced by 100L, the bound applies to 99% of the codes.
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Objectives

Studying the typical ensemble performance,

Etrtc(R, Q) = lim inf
K→∞

−E log Pe
K

as well as Etrcc(R,Q) defined similarly for convolutional codes.

Deriving both “Csiszár–style” and “Gallager–style” expressions.

Comparing to the random coding exponent and expurgated exponent.

Comparing to typical random block codes of the same complexity.

– p. 8/14



Main Result

For R < R0(Q):

Etrtc(R,Q) ≥ Etrtc(R,Q)
△
=

Ex(ρ,Q)

R
,

where ρ satisfies

Ex(ρ, Q)

2ρ − 1
= R.

Also,

Etrcc(R, Q) ≥ Ecex(R,Q).
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Figure 1:
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Characterizing the Typical Codes

The probability of error

Pe(C) ≤
X

ℓ≥1

2−mℓ
X

{P
XX′}

Nℓ(PXX′) exp{−n(k + ℓ)∆(PXX′)}.

For typical codes, all {Nℓ(PXX′)} that have a small expectation, vanish

simultaneously w.h.p.

This amounts to the condition

2ℓR < (k + ℓ)D(PXX′‖Q × Q).

Joint types that are “too far” from Q × Q are not populated.

For populated joint types,

Nℓ(PXX′) ∼ exp{m[2ℓ − (k + ℓ)D((PXX′‖Q × Q)/R]}.
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An Alternative Expression

Etrtc(R,Q) = inf
R̂<R

inf
{P

XX′ : D(P
XX′‖Q×Q)<2R̂}

EP dB(X, X ′) + R̂

R − R̂
.

Dominant error events:

A sub–exponential number of paths with joint type,

PXX′(x, x′) =
Q(x)Q(x′) exp{−dB(x, x′)/ρ}

Z

and critical length of

k + ℓ =
kR

2R − D(PXX′‖Q × Q)
.
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A Numerical Example: BSC with p = 0.1
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Figure 2:
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Two Words Regarding an Extension

The paper contains also an extension to a channel with mismatch and input

memory (ISI),

W (y|x) =
Y

t

W (yt|xt, xt−1).

Ex(ρ, Q) is now replaced by −ρ log λ, where λ is the Perron-Frobenius

eigenvalue of a certain matrix that depends on the Q and on the channel

single–letterly (details – in the paper).
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