

Error Exponents of Typical Random Codes for the Colored Gaussian Channel

Neri Merhav

The Andrew & Erna Viterbi Faculty of Electrical Engineering
Technion—Israel Institute of Technology
Haifa 3200004, Israel

ISIT 2019, Paris, France, U.S.A., July 2019.

Typical Random Codes

Traditional random coding error exponents are defined as

$$E_r(R) = \lim_{n \rightarrow \infty} \left[-\frac{\ln \mathbf{E} P_e(\mathcal{C}_n)}{n} \right].$$

We define **typical**-code error exponents as

$$E_{\text{typ}}(R) = \lim_{n \rightarrow \infty} \left[-\frac{\mathbf{E} \ln P_e(\mathcal{C}_n)}{n} \right].$$

- By Jensen's inequality, $E_{\text{typ}}(R) \geq E_r(R)$.
- $E_r(R)$ – dominated by **bad** codes; $E_{\text{typ}}(R)$ – dominated by **typical** codes.

Let $\mathcal{G}_E = \{\mathcal{C}_n : P_e(\mathcal{C}_n) \doteq e^{-nE}\}$.

$$\overline{P_e(\mathcal{C}_n)} \doteq \sum_E P(\mathcal{G}_E) \cdot e^{-nE} \doteq P(\mathcal{G}_E^*) \cdot e^{-nE^*}.$$

Otoh, $E_{\text{typ}}(R) = \sum_E P(\mathcal{G}_E) \cdot \mathbf{E} = E_0$, where $P[\mathcal{G}_{E_0}] \rightarrow 1$.

Motivation

- $E_{\text{typ}}(R)$ is never worse than $E_r(R)$.
- Code selected once and for all: no LLN to support $\mathbf{EP}_e(\mathcal{C}_n)$.
- Once selected, w.h.p. $P_e(\mathcal{C}_n) \sim e^{-nE_0}$, forever.
- Theoretical framework for random-like codes (Battail, 1995).
- Analogy: physics of disordered sys. – quenched vs. annealed average.

Q: With all these motivations, why wasn't it explored much more before?

A: Not so easy to analyze (also in physics)

Related Work

- Barg & Forney ('02): i.i.d. random coding, BSC:

$$\text{At low rates: } E_{\text{typ}}(R) = E_{\text{ex}}(2R) + R.$$

- Nazari ('11); Nazari, Anastasopoulos & Pradhan ('14):

upper and lower bounds for the α –decoder.

- Stat. phys. literature: Kabashima ('08), Mora & Riviore ('06), ...:

LDPC codes - replica analysis and cavity method.

- Battail ('95):

random–like codes.

- Merhav ('18): fixed–composition rand. coding, DMC, gen. likelihood dec.

Exact error exponent of the typical random code (TRC).

Contributions and Incentives

Contributions:

Deriving the error exponent of the TRC of the colored Gaussian channel, for:

- a class of generalized likelihood decoders;
- a general channel input spectrum;
- a general channel transfer function;
- a general noise spectrum.

Also: 0–rate exponent, range of tightness; comparison to RC; water–pouring.

Incentives:

- The great importance of the colored Gaussian channel.
- The generality of the above.
- Availability of closed–form expressions.

The AWGN

Random coding distribution:

$$Q(\mathbf{x}) = \begin{cases} \frac{1}{\text{Surf}(\sqrt{n}P)} & \|\mathbf{x}\|^2 = nP \\ 0 & \text{elsewhere} \end{cases}$$

Likelihood decoder

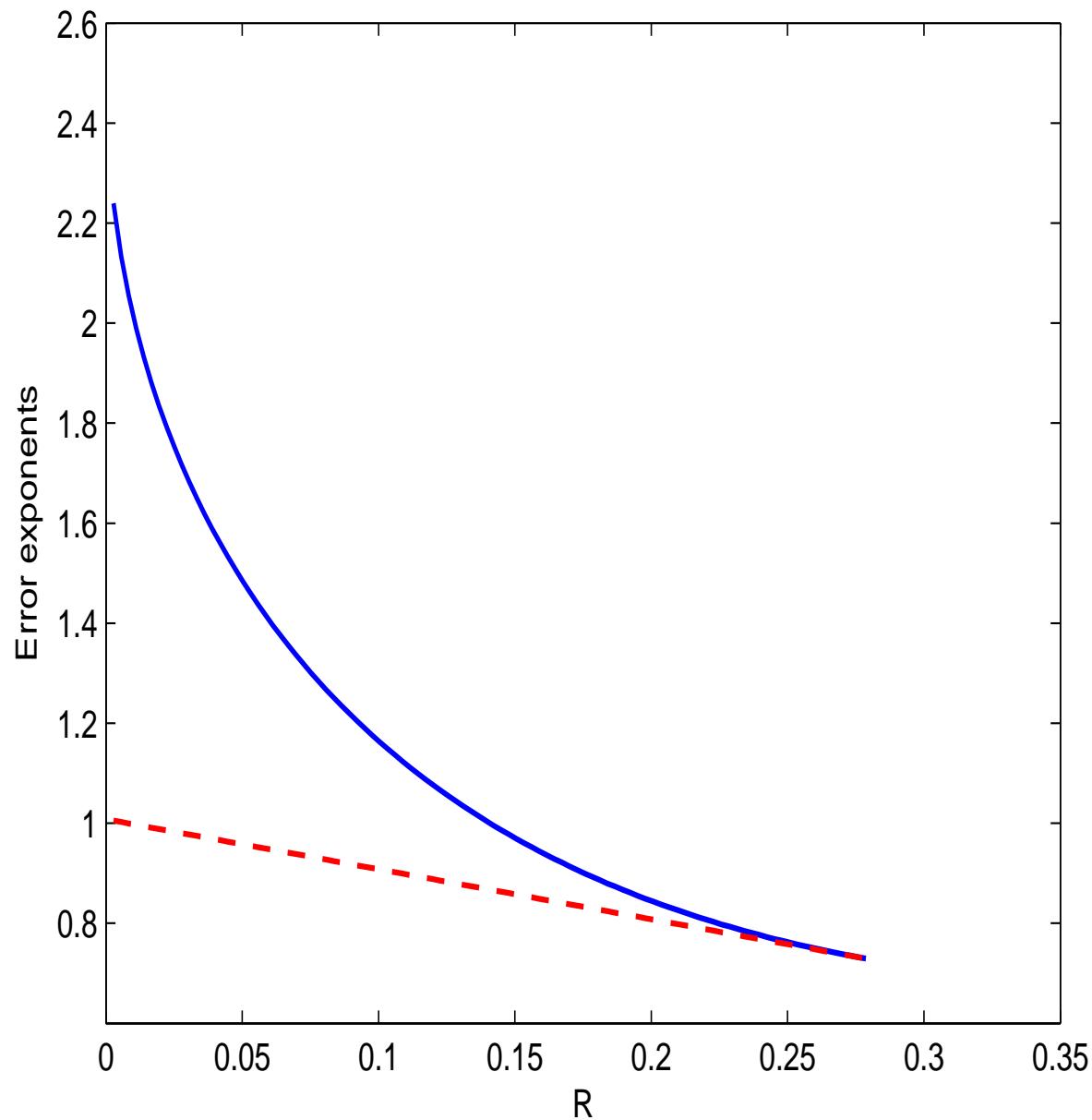
$$P_\beta(\hat{m} = m | \mathbf{y}) = \frac{\exp\{\beta \mathbf{x}^T[m] \cdot \mathbf{y} / \sigma^2\}}{\sum_{m'=0}^{M-1} \exp\{\beta \mathbf{x}^T[m'] \cdot \mathbf{y} / \sigma^2\}}.$$

$$E_{\text{trc}}(R) \geq \begin{cases} \frac{\text{snr}}{4} (1 - \sqrt{1 - e^{-4R}}) + R & R \leq R_* \\ \frac{\text{snr}}{4} - \frac{\text{snr}^2/8}{1 + \sqrt{1 + \text{snr}^2/4}} + 2R_* - R & R \geq R_* \end{cases}$$

where $\text{snr} = P/\sigma^2$ and

$$R_* = \frac{1}{4} \ln \left(\frac{1 + \sqrt{1 + \text{snr}^2/4}}{2} \right).$$

Graphs for $\text{snr} = 10$



Discussion

- For $R < R_*$, curvy part, starting at slope $-\infty$, ending at slope -1 .
- $R = R_*$ designates a **phase transition**:
 - Below R_* : error dominated by subexponentially few codewords at distance $2nP(1 - \sqrt{1 - e^{-4R}})$.
 - Above R_* error dominated by $e^{2n(R - R_*)}$ codewords at distance $2nP(1 - \rho^*)$, where ρ^* depends only on snr.
- Straight-line part = random coding exponent below the critical rate.
- TRC exponent exceeds RC exponent at least for $R < R_*$.
- There is some R_t below which the TRC exponent bound is tight.

The Colored Gaussian Channel

- Random coding: uniform on spheres in freq. bins according to $S_X(e^{j\omega})$.
- The channel: $Y_t = X_t + Z_t$, where the noise spectrum is $S_Z(e^{j\omega})$.
- Decoder: GLD that assumes the wrong noise spectrum, $\tilde{S}_Z(e^{j\omega})$.

Defining

$$\text{snr}(\omega) = \frac{S_X(e^{j\omega})}{S_Z(e^{j\omega})}; \quad \mu(\omega) = \frac{S_Z(e^{j\omega})}{\tilde{S}_Z(e^{j\omega})}.$$

$$L(\omega) = \lambda\mu(\omega)[1 - \lambda\mu(\omega)]\text{snr}(\omega).$$

$$\begin{aligned} A(\omega, \theta, \lambda) &= L(\omega) \left(1 - \frac{2L(\omega)}{\sqrt{\theta^2 + 4L^2(\omega)} + \theta} \right) - \\ &\quad \frac{\theta}{2} \ln \left(\frac{2\theta}{\sqrt{\theta^2 + 4L^2(\omega)} + \theta} \right). \end{aligned}$$

Main Result

For the colored Gaussian channel,

$$E_{\text{trc}}(R) \geq \sup_{\theta \geq 1} \sup_{0 \leq \lambda \leq \beta} \left\{ \frac{1}{2\pi} \int_0^{2\pi} A(\omega, \theta, \lambda) d\omega - (2\theta - 1)R \right\}.$$

Some comments:

- The matched case ($\mu(\omega) \equiv 1$): optimal $\lambda = \min\{\beta, 1/2\}$.
- TRC and random coding exponent coincide above

$$R_* = \frac{1}{8\pi} \int_0^{2\pi} \ln \left(\frac{1 + \sqrt{1 + 4L^2(\omega)}}{2} \right) d\omega.$$

- There is an interval of small rates where the lower bound is tight.
- Zero-rate exponent

$$E_{\text{trc}}(0) = \frac{1}{8\pi} \cdot \frac{\left[\int_0^{2\pi} \mu(\omega) \cdot \text{snr}(\omega) d\omega \right]^2}{\int_0^{2\pi} \mu^2(\omega) \cdot \text{snr}(\omega) d\omega}.$$

Optimal Input Spectrum

Defining $K(\omega) = \lambda\mu(\omega)[1 - \lambda\mu(\omega)]$, the optimal spectrum is

$$S_X(\omega) = \frac{4\theta B[4BK(\omega) - S_Z(\omega)]_+}{4BK(\omega) + [4BK(\omega) - S_Z(\omega)]_+},$$

where B is chosen such that

$$\frac{1}{2\pi} \int_0^{2\pi} \frac{4B[4BK(\omega) - S_Z(\omega)]_+}{4BK(\omega) + [4BK(\omega) - S_Z(\omega)]_+} \cdot d\omega = \frac{P}{\theta}.$$

Comments:

- The dependence on the rate is via the optimal θ .
- For $R \rightarrow 0$, $S_X(\omega)$ puts all the power on one frequency.
- In the matched case,

$$S_X(\omega) = \frac{4\theta B[B - S_Z(\omega)]_+}{B + [B - S_Z(\omega)]_+}.$$

similarly to the solution for the expurgated exponent.

Some Final Remarks

- Main technique used: a Gaussian analogue of the method of types.
- There is a range of rates where the TRC error exponent bound is tight.
- Beyond R_* the TRC exponent coincides with the ordinary RC exponent.
- All results extend easily to continuous-time colored Gaussian channels.