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Typical Random Codes

Traditional random coding error exponents are defined as

Er(R) = lim
n→∞

»

− lnEPe(Cn)

n

–

.

We define typical–code error exponents as

Etyp(R) = lim
n→∞

»

−ElnPe(Cn)

n

–

.

By Jensen’s inequality, Etyp(R) ≥ Er(R).

Er(R) – dominated by bad codes; Etyp(R) – dominated by typical codes.

Let GE = {Cn : Pe(Cn)
·
= e−nE}.

Pe(Cn)
·
=
X

E

P (GE) · e−nE ·
= P (G∗

E) · e−nE∗

.

Otoh, Etyp(R) =
P

E P (GE)·E = E0, where P [GE0
] → 1.
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Motivation

Etyp(R) is never worse than Er(R).

Code selected once and for all: no LLN to support EPe(Cn).

Once selected, w.h.p. Pe(Cn) ∼ e−nE0 , forever.

Theoretical framework for random–like codes (Battail, 1995).

Analogy: physics of disordered sys. – quenched vs. annealed average.

Q: With all these motivations, why wasn’t it explored much more before?

A: Not so easy to analyze (also in physics) ....
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Related Work

Barg & Forney (’02): i.i.d. random coding, BSC:

At low rates: Etyp(R) = Eex(2R) + R.

Nazari (’11); Nazari, Anastasopoulos & Pradhan (’14):

upper and lower bounds for the α–decoder.

Stat. phys. literature: Kabashima (’08), Mora & Riviore (’06), ...:

LDPC codes - replica analysis and cavity method.

Battail (’95):

random–like codes.

Merhav (’18): fixed–composition rand. coding, DMC, gen. likelihood dec.

Exact error exponent of the typical random code (TRC).
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Contributions and Incentives

Contributions:
Deriving the error exponent of the TRC of the colored Gaussian channel, for:

a class of generalized likelihood decoders;

a general channel input spectrum;

a general channel transfer function;

a general noise spectrum.

Also: 0–rate exponent, range of tightness; comparison to RC; water–pouring.

Incentives:

The great importance of the colored Gaussian channel.

The generality of the above.

Availability of closed–form expressions.
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The AWGN

Random coding distribution:

Q(x) =

8

<

:

1

Surf(
√

nP )
‖x‖2 = nP

0 elsewhere

Likelihood decoder

Pβ(m̂ = m|y) =
exp{βx

T [m] · y/σ2}
PM−1

m′=0 exp{βxT [m′] · y/σ2}
.

Etrc(R) ≥

8

<

:

snr
4 (1 −

p

1 − e−4R) + R R ≤ R∗
snr
4 − snr2/8

1+
√

1+snr2/4
+ 2R∗ − R R ≥ R∗

where snr = P/σ2 and

R∗ =
1

4
ln

 

1 +
p

1 + snr2/4

2

!

.
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Graphs for snr = 10
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Figure 1: Graphs of − (solid blue graph) and
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Discussion

For R < R∗, curvy part, starting at slope −∞, ending at slope −1.

R = R∗ designates a phase transition:

Below R∗: error dominated by subexponentially few codewords at

distance 2nP (1 −
p

1 − e−4R).

Above R∗ error dominated by e2n(R−R∗) codewords at distance

2nP (1 − ρ∗), where ρ∗ depends only on snr.

Straight–line part = random coding exponent below the critical rate.

TRC exponent exceeds RC exponent at least for R < R∗.

There is some Rt below which the TRC exponent bound is tight.
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The Colored Gaussian Channel

Random coding: uniform on spheres in freq. bins according to SX(ejω).

The channel: Yt = Xt + Zt, where the noise spectrum is SZ(ejω).

Decoder: GLD that assumes the wrong noise spectrum, S̃Z(ejω).

Defining

snr(ω) =
SX(ejω)

SZ(ejω)
; µ(ω) =

SZ(ejω)

S̃Z(ejω)
.

L(ω) = λµ(ω)[1 − λµ(ω)]snr(ω).

A(ω, θ, λ) = L(ω)

 

1 − 2L(ω)
p

θ2 + 4L2(ω) + θ

!

−

θ

2
ln

 

2θ
p

θ2 + 4L2(ω) + θ

!

.
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Main Result

For the colored Gaussian channel,

Etrc(R) ≥ sup
θ≥1

sup
0λ≤β

(

1

2π

Z 2π

0
A(ω, θ, λ)dω − (2θ − 1)R

)

.

Some comments:

The matched case (µ(ω) ≡ 1): optimal λ = min{β, 1/2}.

TRC and random coding exponent coincide above

R∗ =
1

8π

Z 2π

0
ln

 

1 +
p

1 + 4L2(ω)

2

!

dω.

There is an interval of small rates where the lower bound is tight.

Zero–rate exponent

Etrc(0) =
1

8π
·

h

R 2π
0 µ(ω) · snr(ω)dω

i2

R 2π
0 µ2(ω) · snr(ω)dω

.
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Optimal Input Spectrum

Defining K(ω) = λµ(ω)[1 − λµ(ω)], the optimal spectrum is

SX(ω) =
4θB[4BK(ω) − SZ(ω)]+

4BK(ω) + [4BK(ω) − SZ(ω)]+
,

where B is chosen such that

1

2π

Z 2π

0

4B[4BK(ω) − SZ(ω)]+
4BK(ω) + [4BK(ω) − SZ(ω)]+

· dω =
P

θ
.

Comments:

The dependence on the rate is via the optimal θ.

For R → 0, SX(ω) puts all the power on one frequency.

In the matched case,

SX(ω) =
4θB[B − SZ(ω)]+
B + [B − SZ(ω)]+

.

similarly to the solution for the expurgated exponent.
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Some Final Remarks

Main technique used: a Gaussian analogue of the method of types.

There is a range of rates where the TRC error exponent bound is tight.

Beyond R∗ the TRC exponent coincides with the ordinary RC exponent.

All results extend easily to continuous–time colored Gaussian channels.
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