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Abstract

The error exponent of the typical random code is defined as the asymptotic normalized ex-
pectation of the logarithm of the probability of error, as opposed to the traditional definition
of the random coding exponent as the normalized logarithm of the expectation of the probabil-
ity of error with respect to a given ensemble of codes. For a certain ensemble of independent
codewords, with a given power spectrum, and a generalized stochastic mismatched decoder,
we characterize the error exponent the typical random codes (TRC) for the colored Gaussian
channel, with emphasis on the range of low rates, where the TRC error exponent differs in
value from the ordinary random coding error exponent. The error exponent formula, which
is exponentially tight at some range of low rates, is presented as the maximum of a certain
function with respect to one parameter only (in the spirit of Gallager’s formulas) in the case of
matched decoding, and two parameters in the case of mismatched decoding. Several aspects of
the main results are discussed. These include: general properties, a parametric representation,
critical rates, phase transitions, optimal input spectrum (water pouring), and comparison to the
random coding exponent.

Index Terms: error exponent, typical random code, reliability function, Gaussian channel,
water pouring.
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I. Introduction

Inspired by the brief article of Barg and Forney [1], in a recent work [12], the error exponent of the
typical random code (TRC) for a general discrete memoryless channel (DMC) was studied. The
error exponent of the TRC was defined as the asymptotic normalized expectation of the logarithm
of the probability of error, as opposed to the traditional definition of the random coding exponent
as the normalized logarithm of the expectation of the probability of error with respect to the same
ensemble of codes. The study of error exponents for TRCs was motivated in [12, Introduction] in
several ways: (i) due to Jensen’s inequality, it is never worse than the random coding error exponent.
(ii) In relation to (i), it is a less pessimistic performance metric compared to the ordinary random
coding exponent, especially at low rates, as it does not suffer from the problem that poor codes
dominate the average error probability. (iii) Given that a certain concentration property holds, it
is more relevant as a performance metric, as the code is normally assumed to be randomly selected
just once, and then it is used repeatedly. (iv) It captures correctly the behavior of random-like

codes [2], which are well known to be very good codes.

In [12], an exact formula for the error exponent function of the TRC was derived for a general
discrete memoryless channel (DMC) under the ensemble of fixed composition codes and a class of
generalized likelihood decoders (GLD’s) [13], [19], [25], namely, stochastic decoders that randomly
select the decoded message according to a posterior distribution (given the channel output) with
a certain structure. The class of GLD’s considered in [12] covers many decoders of theoretical
and practical interest as special cases, including deterministic metric decoders, like the maximum
likelihood (ML) decoder, the maximum mutual information (MMI) decoder, a—decoders [4] and

mismatched decoders.

While the analysis in [12] is heavily based on the method of types [3], and hence applicable,
in principle, to the finite—alphabet case only, here we consider the continuous—alphabet case, and
more precisely, the Gaussian case. In particular, we derive a formula for the error exponent of the
TRC for the additive Gaussian channel. We begin from the additive white Gaussian noise (AWGN)
channel, and then extend the scope to the colored Gaussian channel with a given channel input
spectrum and noise spectrum. While we present the results for the discrete-time case, a minor

modification of the error exponent formula allows to pass to the continuous—time case as well.



It is perhaps surprising that although the finite—alphabet formula of the TRC exponent [12]
is not trivial to work with (as it involves a rather computationally heavy optimization of certain
functionals of probability distributions), in the Gaussian noise case considered here (and even
when the noise is colored), the situation is considerably better in that sense. In particular, the
resulting TRC error exponent, which is provably exact at least at some range of low rates,! involves
optimization over one parameter only in the case of a GLD with the matched (ML) decoding
metric, and two parameters for a general (mismatched) GLD. Finally, we present and discuss a
few byproducts of our main result. These include: a parametric representation, the zero—rate TRC
exponent, the range of guaranteed tightness of our bound, the rate at which the TRC exponent

meets the random coding exponent, and the optimal channel input spectrum (water—pouring).
A few words on the history of related work are in order.

In the context of bounds on the reliability function of the Gaussian channel, the first random
coding bound for the discrete-time case, as well as a sphere—packing lower bound, are due to
Shannon [20]. His work was followed by numerical evaluations due to Slepian [23]. Ebert [5] has
derived (random-coding and expurgated) upper bounds and (sphere-packing and straight—line)
lower bounds on the error probability of the parallel additive Gaussian channel, which in the long
block limit, are applicable to the colored Gaussian channel by using the eigenvalue distribution
theorem [8] (see also [7]). The lower bounds are based on the work of Shannon, Gallager and
Berlekamp [21], which appeared a year later. Ebert’s results appeared also in Gallager’s book [6,
Chapters 7, 8]. Viterbi [24] studied decoders with generalized decision regions for the Gaussian
channel as well as other very noisy channels. During the years that have passed ever since these
early works were published, a vast amount of work on improved bounds has been carried out (see,
e.g., [18] for a very good survey), but most of it is of lesser direct relevance to the topic of this
paper.

In the context of error exponents of TRC’s, on the other hand, much less work has been done
before. Prior to [12], as mentioned earlier, Barg and Forney [1] have derived, among other things, the
error exponent of the TRC for the binary symmetric channel (BSC) under i.i.d. binary symmetric

random coding. Nazari [16] and Nazari, Anastasopoulos and Pradhan [17] derived upper and lower

n fact, the TRC exponent function is interesting to study primarily at low rates, as beyond a certain rate, it
coincides with the ordinary random coding error exponent anyway.



bounds on the TRC exponent for a general DMC under the a—decoder of [4]. Beyond that, there
has been some work in the statistical-physics literature, where TRC error exponents were analyzed

for special classes of codes (like LDPC and Turbo codes) using the replica method and the cavity
method — see, e.g., [9], [15], [22].

The outline of the remaining part of this paper is as follows. In Section II, we establish notation
conventions (Subsection II.A), present the setup (Subsection II.B), and provide some background
(Subsection II.C). In Section III, we provide the main results concerning the TRC exponent and
discuss them, first for the case of the AWGN channel (Subsection ITII.A), and then for parallel chan-
nels and the colored Gaussian channel (Subsection II1.B). In Section IV, we address the question
of the optimal input spectrum for the TRC exponent. Finally, in Section V, we outline the proofs

of the main results.

II. Notation Conventions, Setup and Background

A. Notation Conventions

Throughout the paper, random variables will be denoted by capital letters and specific values
they may take will be denoted by the corresponding lower case letters. Random vectors and their
realizations will be denoted, respectively, by capital letters and the corresponding lower case letters,
both in the bold face font. For example, the random vector X = (X, X1,...,X,—1), (n — positive
integer) may take a specific vector value € = (xg,x1,...,2Z,—1) in IR". When used in the linear—
algebraic context, these vectors should be thought of as column vectors, and so, when they appear
with superscript 7', they will be transformed into row vectors by transposition. Thus, &’y is
understood as the inner product of & and y. Probability density functions (PDF's) of sources and
channels will be denoted by the letters P and (). The probability of an event £ will be denoted by
Pr{&}, and the expectation operator will be denoted by E{-}.

For two positive sequences a,, and b,, the notation a,, = b, will stand for equality in the expo-
nential scale, that is, lim,,_, % log ‘Z—Z = 0. Similarly, a, S b, means that lim sup,, %log ‘;—: <0,

~"%° will mean that a,, vanishes in a super—exponential rate. The in-

and so on. Accordingly, a,, = e
dicator function of an event £ will be denoted by Z{ E'}. The notation [x]+ will stand for max{0, z}.

The cardinality of a finite set A will be denoted by |.A|.



B. Setup

We first describe the communication system model in the simple case of the AWGN channel,
and then extend the scope to parallel Gaussian channels with application to the colored Gaussian

channel.
1. The AWGN Channel
Consider the discrete-time AWGN channel,
Yi=Xi+Zi, i=0,1,....n—1 (1)

where X = (X, ..., X,—1) is a random channel input vector, Z = (Zy, ..., Z,—1) is a zero-mean
Gaussian vector with covariance matrix 021, I being the n x n identity matrix, and Z is statistically
independent of X. In the sequel, we denote the conditional probability density function (PDF)
associated with this channel by P(y|x), that is,

o 1 n—1
P(yla) = (210”) "2 exp {—22 (yi — xi)2} : (2)
7" =0
It is assumed that X is uniformly distributed across a codebook, C,, = {z[0], z[1],...,x[M — 1]},

xzm] € R", m=0,1,...,M — 1, with M = e"® R being the coding rate in nats per channel use.

We consider the random selection of the codebook C,, where all codewords are drawn indepen-
dently under the PDF, . )
Q) = { ST 1 e )
0 elsewhere
where Surf(r) is the surface area of the n—dimensional Euclidean sphere of radius r, and P is the

transmission power.

Once the codebook C, has been drawn, it is revealed to both the encoder and decoder. We
consider the stochastic likelihood decoder, which randomly selects the decoded message index m
according to the generalized posterior,

Pilylelm)) _ exp{Ba’[m]-y/o%}
Yoo PPyle[m’] SN _gexp{BaTm'] - y/o?}

where 8 > 0 is a design parameter, which we select freely, and where the second equality stems

Bp(m = mly) = (4)

from the assumption that all codewords have the same norm (energy), as is evidenced in (3). The



motivation for the GLD (4) was discussed extensively in earlier works, such [13] and [12] as well as

references therein.

The probability of error, for a given code C,, is defined as

M-1
PAC) =22 3 Plylen) - Patin = m'ly). 5)

m=0 m/#m

As in [12], we define the error exponent of the TRC as

Buc(R) = lim |-

n—oo

E{In Pe(Cn)}] ’

n

(6)

where the expectation is w.r.t. the randomness of C,,, and it is assumed that the limit exists. As

can be noted, this differs from the traditional random coding error exponent,

E.(R) = lim {—ln[E{Pe(C”)}]] : (7)

n

Our first goal is to derive a single-letter expression for E.,.(R).

2. Parallel Additive Gaussian Channels and the Colored Gaussian Channel

The model of parallel additive Gaussian channels is defined similarly as in Subsection I1.B.1, ex-

cept that here the various Gaussian noise components Z;, ¢ = 0,1,...,n — 1, may have different
variances, 012’”, i = 0,1,...,n — 1, respectively. In other words, the covariance matrix of Z is
diag{0g ., 0% s+, 051, }. We assume that {07, i =0,1,...,n — 1} obey an asymptotic regime

where there exists some function Sz(e/%), j = v/—1, w € [—m, ), such that

1 n—1 ) 1 o )
1 — - = —_— Jw
dm 23 Glot) = 5 [ GlSz(eR ®
for any continuous function G : R™ — IR. The underlying motivation of this is the eigenvalue
distribution theorem [8] (see also [7]), as will be described in Subsection II.C. Accordingly, the

conditional PDF associated with this channel is given by

n—1
P(y!w)ZH(%U?,n)l/Qexp{— : (yi—xi)Z}- 9)

i=0 202,
The structure of the code will now be slightly more involved than in Subsection II.B.1. Here

we consider a codebook Cy of size M = eN, with block length N = nf, n being the number



of parallel channels as before and ¢ is another positive integer. Specifically, we subdivide each
codeword x[m] € Cy of length N into n non—overlapping segments, each of length ¢, i.e., [m| =
(xo[m],z1[m], ..., xn-1[m]), where z;[m] = (wi[m], vi11[m], ..., 2(41)0-1lm]), i =0,1,...,n — 1.
For every i, the segment x;[m] has norm ||x;[m]||?> = ¢P;,, and this segment is fed into the i—th
channel component whose noise variance is O’Z-%n. We assume that Z?:_ol P;,, < nP, where P is the
overall power constraint. As is the case with {aﬁn}, asymptotic convergence of the error exponent
in the large n limit could be expected only if there would be a well defined asymptotic regime
concerning the behavior of {P;,, i = 0,1,...,n — 1} as n — oco. To this end, we will assume
that {P;,} are “samples” of a certain function, Sx(e’“), of a continuous, real-valued variable,
w € [0,2m), that is,

P, = Sx/(e¥mi/m), i=0,1,...,n—1. (10)

We consider the random selection of the codebook Cp, where all codewords are drawn independently

under the PDF,

n—1
Qz) = ] Qi(=a), (11)
i=0
where ) )
o —— |zi||* ={P,
Qi(x;) = Surf(,/epP; ,,) il ) (12)
0 elsewhere

Once the codebook Cy has been drawn, it is revealed to both the encoder and decoder. We consider
the stochastic likelihood decoder, which randomly selects the decoded codeword & € Cy according
to the generalized posterior,

exp {831 @lm] - yi/5%, }

Shzhexp {8 @l ] - v,/52, }

Pg(in =mly) = (13)

where {51‘2,71» i =0,1,...,n} are (possibly) mismatched noise variances assumed by the decoder,

and y; is the i—th segment of y, that corresponds to the channel input segment x;[m|. Of course,

i2,n o azn) and 8 — oo, we obtain the deterministic

(matched) ML decoder. Similarly as with {P;,}, it will be assumed that &7, = Sy (ed?mi/my,

. ~92 _ 2 . ~
if 67, = o, for all i (or more generally, &

i =0,1,...,n — 1, for some function Sz(e/*), w € [0,27), and so, together with (10) and the

eigenvalue distribution theorem, we have

2 Jo

1 n— 1 21
lim —

n—o0 n “

K3

1
Z G(Pm,afm,&zn) = — G[Sx ('), S7(e7%), Sz (/)] dw (14)
=0



for any continuous function G.

Finally, the probability of error and the TRC exponent are defined as in Subsection II.B.1,
except that now n is replaced by N and the GLD of eq. (4) is replaced by the one of eq. (13). Our
goal would be to derive the TRC exponent under the asymptotic regime that we have defined. The
process of taking the limit of N = nf — oo will be carried out in two steps: we first take the limit
{ — oo for fixed n, and then take limit n — oo. In other words, the asymptotic regime corresponds

to £ > n.

C. Background

As mentioned in Subsection I1.B.2, eq. (8) is motivated by the eigenvalue distribution theorem. Let
{Z;} be a discrete-time, zero-mean stationary process with an absolutely summable autocorrelation

sequence {rz(k), k=0,£1,£2,...} (i.e., Y |rz(k)| < 00), and power spectral density

Sz(e?) = Flrz(k)} = i rz(k)e_jw’“, (15)

k=—o00
which is assumed strictly positive and bounded for all w € [—m, 7). Let R% be the corresponding
n X n autocorrelation matrix, namely, the matrix whose (k,l)-th element is rz(k — 1), k,l €
{1,...,n}. Let A, be the matrix whose columns are orthonormal eigenvectors of R7. Then by
applying the linear transformation, Z = A;1Z, one diagonalizes the covariance matrix and the
variances, {07;27”}, of the various components of Z are equal to the respective eigenvalues of R7.
If {rz(k)} is absolutely summable, then according to the eigenvalue distribution theorem, eq. (8)
holds true [7, Theorem 4.2] for every continuous function G : [a,b] — IR, with a = essinf Sz (e/*)

and b = esssup Sz(e’¥).

Applying this setup to colored Gaussian intersymbol interference (ISI) channel model, let
o0
Y, = Z hi Xy + W, (16)
i=0
where {W;} is a zero-mean, stationary Gaussian process with a given spectrum Sy (e/“) and the
linear ISI system, H(z) = >.5°,h;z~% has an inverse G(z) = 1/H(z) = >.7°,9;2~" such that

Zy =352 9iWi—; has a power spectral density,

2 _ SW(ejw)

Sz(e7) = Sw(e)|G(e?*)* = TH()2

(17)



whose inverse Fourier transform, {rz(k)}, is absolutely summable. Then, considering the equivalent

channel model (neglecting edge effects),
Y, = Xy + Z, (18)

we can now apply the linear transformation A,, that diagonalizes the covariance matrix R of an

n-block of Z, and then the resulting variances, o? . of the transformed noise vector, are equal to

i,n)
the respective eigenvalues of R, which in turn satisfy the eigenvalue distribution theorem in the

large n limit.

Operatively, the communication system works as follows: given a codeword & = (xo, ®1,...,Tp_1),
generated as described in Subsection I1.B.2, we transmit ¢ sub—blocks, each of length n, where in
the k—th sub-block (k = 0,1,...,¢ — 1), the transmitted vector is Z?:_(Jl ZTivr ki, ¥; being the i—
th eigenvector of R7. At the receiver, we first apply the linear system G(z) to {Y;} in order to
obtain {¥;}. Then, every n-block of {¥;} undergoes a bank of correlators with all eigenvectors,
{1}, in order to retrieve noisy versions of the coefficients {:Uerk}?;Ol, whose noise components are

uncorrelated with each other, and their variances are o2, i = 0,1,...,n — 1.

Note that, in general, {1;} and {x;1%} might be complex—valued. For the sake of simplicity,
and without loss of generality, however, we will assume that they are real. This is justified by the
following simple consideration. Suppose that ; is a complex eigenvector of R’,. Since both R, and

the corresponding eigenvalue, o?

in» are real, then the complex conjugate, ¢ is also an eigenvector

associated with o7, and therefore, so are u; = Re{t;} and v; = Im{¢;}, which are vectors in IR™.

Now, if u; and v; are not orthogonal to each other, then one can apply a simple transformation

(e.g., the Gram—Schmidt projection) to represent the two—dimensional eigensubspace, spanned by

2

u; and v;, by two orthonormal basis vectors, which are clearly eigenvectors pertaining to o7, as
well. Of course, eigenvectors of other eigenvalues are orthogonal to each other. For example, in
the circulant approximation of R7 for large n [7, Chapters 3, 4], the matrix A,, pertains to the
discrete Fourier transform (DFT), whose complex exponential eigenvectors can be separated into
real-valued sine and cosine vectors for the real and imaginary parts, which are all orthogonal to

each other.



IT1I. Main Results

A. The AWGN Channel

We begin from the AWGN channel model described in Subsection II.B.1. We first define a few

quantities. For a given 02 > 0 and p € [—1, 1], define

s . BVPoyp
gloy,p) = - 5
o
and
2 2 1 2
a(R,oy) = sup g(UYaP)+§1n(1—P )|+ R
[p|<y/1—e=21

o

where

1
w(u, R) = sup [p U+ B In(1 — p2)}

lp|<vV/1-e=2R
u-vV1—ec2R_R Rgéln H7v12+4u2
- 22 1 14++/T4u? 1 14++/T44u?
ﬁ_iln(%) R>1ln %

Next, for a given pxxs € [—1, 1], define

T(pxx) = 3 In(270“) + inf ﬁ(ay — 2V Poypxy + P) — 3 In(2reoy xx/)+

[max{g(a%, pxy),a(R,0%)} — g(o¥, pX’Y)} +} ’

where

T |xx" 2ot + Hslitn{(SQ + 2stpxxr +t2)P — 2V Poy (spxy + tpxy)},

and where the infimum in (22) is over all {o%, pxy, px’y } such that the matrix

P pxx' P pxyVPoy
pxx P P pxyVPoy
pxyVPoy pxyVPoy o}

is positive semi—definite.

Our first result is the following.

10

(19)

(20)

(24)



Theorem 1 For the AWGN channel model defined in Subsection II.B.1,
. 1 1
Ey(R) =inf {I'(pxx/) + s In —5— 7 — R, (25)

where the infimum is subject to the constraint |pxx/| < V1 — e 4K,

The proof appears in Section V.A. The remaining part of this subsection is devoted to a dis-

cussion about Theorem 1.

The insight behind this expression of the TRC exponent is as follows. Let us imagine aux-
iliary random variables X, X’ and Y, that represent the transmitted codeword x[m], an in-
correct codeword x[m'] (m’ # m), and the channel output vector, y, respectively. The term
[max{g(0%, pxy), (R, 0%)} — g(0%, pxry)]+, that appears in the definition of I'(px x/), represents
the exponential rate of the probability that the GLD would select x[m/] as the decoded message
given that the empirical correlation coefficient between x[m] and x[m/] is a given number, denoted
pxx’- The term a(R, 032,) is interpreted as the typical exponent of the collective contribution of
all incorrect codewords at the denominator of (4). As explained also in [12], the probability that
x|[m'] would be the decoded message given that x[m] was transmitted, is of the exponential order
of exp{—nI'(pxx/)}. Therefore, the overall error probability,

P.(C,) = %Z Z Pr {m[m'] decoded

m m/#m

x[m] transmitted}
= > M(pxx)exp{-n[l(pxx/) + Rl}, (26)
Pxx
is of the exponential order of max, ., M(pxx')exp{—n[['(pxx) + R]}, where M(pxx) is the
typical number of codeword pairs (x[m], z[m']) whose empirical correlation coefficient is about px x
and the sum is over a fine grid in (—1,1). Since there are about ¢**# codeword pairs in C,, and
since the probability of event {’[m] - @[m/]/(nP) ~ pxx:} is about exp{—2In[1/(1 — p% y,)], the

typical value of the number M (pxx) is of the exponential order of exp{n[2R — % In[1/(1—p%x)]},

whenever 2R — £ In[1/(1 — p% /) > 0, and is zero otherwise.

An alternative representation of I'(pxx) is the following. Let X, X’ and Y be zero-mean
random variables, defined as follows. The variables X and X’ both have variance P and covariance
E(XX') = pxx/P. Given X and X', let Y be defined as Y = aX + bX' + V, where V is zero-

mean wit variance 0‘2/, and is uncorrelated to both X and X’. Under this representation, we

11



can transform the optimization variables of I'(px x/), from {0, pxy, px'v} to (a,b,0%), and then

I'(pxx’) becomes

1 1 1
Dlpxx:) = =In27ro?)+ inf (= ([(a —1)*+ 2pxx/(a — )b+ b*|P + 0%) — = In(2wec?, )+
2 a,b,g"Q/ 20-2 2
+) ’

We observe that by eliminating the term «(R, [a? + 2px xrab + b?|P + 0%,), the expression of

{max {fQ(a + pxx'b) P, (R, [a® + 2px xrab + b*| P + 0‘2/)} — g(PXX'a +b)P

where the infimum is over (a,b,0%) € R? x R™T.

I'(px x’) simplifies dramatically, and hence also the expression of the TRC exponent. As we show
next, in this case, all the minimizations can be carried out in closed form. This elimination of the
term «(R,-) yields a lower bound to the TRC exponent, which corresponds to a union bound of
the pairwise error events, {m — m'}, and which is tight at a certain range of low rates. Let us

define then

I'r(pxx) 2 —In(270?) + inf [2(17 ([(a—l) +2pXX/(a—l)b+bQ]P+av)

abav

P
~In(27ed?) + %[a + pxxb— pxxa—Db)|+

=  —In(2r0?) + inf [2;1] ([(a = 1) + 2pxx/(a — 1)b+ b P + 0%)—

abUV

~In(27ed?) + i—f(l — pxx)|a— b+

1
In(270?) + inf sup { 5 ([(a— 12+ 2pxx/(a—1)b+ P+ o%)—
abo? 0<a<p L20

P
In(2meod) + i— (1—pxx)(a—Db) }
)

In(270?) + su inf [
( ) D<)\I<)ﬂabg 202

ln(2ﬂ'60‘2/) + %(1 — pXX/)(CL — b):|

([(a — 1)* + 2pxx/(a — 1)b+ WP + o%)—

—
&Y
S—
N = NIF o= NIE o= NP o= N

® up inf [ PQ (0 —1)2 + 2px xr(a — 1)b + B+
0<A<B asb
AP
1= pxx)la )
P
T g AT A )
P . .
= L ha-9)- (- pxx), 7

12



where 3 = min{3, }. Here, the passage (a) is allowed by the minimax theorem as the objective is
convex in (a,b, 0¥ ) and affine (and hence concave) in A and passage (b) is by the simple fact that

the optimal 0% turns out to be equal to 0. Thus, for 8 > %,

P A Snr
r )=-—-(1- N=—-(1- ). 2
L(pxxr) dg2 ( PXX") 4 ( PXX") (28)
Finally,
Ew(R) > E_ (R)
A . snr 1 9
= inf {-(1—pXX/)—ln(1—pXX/)—R]
lpx xSV 1—e 4l 4 2
snr snr
= — = —,2R | - R
4 w( T )
{ M1 —V1-e*B)+ R R< R, )
= sor _ _ snr?/s o1 Lby/idsnrz/dn
I e (SR -k R2 R
where

1 1+4/1 2/4

The lower bound, F_

trc

(R), has a non—affine convex part, starting with slope —oo at rate R = 0, and
ending with slope —1 at rate R, and so, it is tangential to the straight-line part that starts
at rate R.. The point R = R, exhibits a glassy phase transition [11, Chap. 6], [14, Chap-
ters 5,6] in the behavior of E,

trc

(R): for R < R,, the error probability (see second line of eq.
(26)) is dominated by a sub-exponential number of incorrect codewords at Euclidean distance

d= \/2nP(1 — V1 —e *) from the transmitted codeword, whereas for R > R,, there are expo-

jpi
d = /2nP(1 — p*), where p* = snr/[2(1 4+ /1 +snr?/4)]. The straight-line part of eq. (29) can

readily be recognized as Ry — R, which is exactly the straight-line part of the random coding error

nentially exp{n[2R — 3 In =]} = exp{2n(R — R,)} dominant codewords at Euclidean distance

exponent below the critical rate. Thus, the TRC exponent exceeds the random coding exponent at
least in the range R € [0, R,]. Obviously, for R > R..; > R, the exact TRC exponent must coin-
cide with the random coding exponent, as the TRC exponent is sandwiched between the random
coding exponent and the sphere—packing exponent, which in turn coincide for R > R..,. Thus, the

interesting range to explore the behavior of the TRC exponent is the range of low rates.

At the low-rate extreme, it is readily observed that the lower bound (29) yields E,.(0) > snr/4,

which must be, in fact, an equality, since it coincides with the minimum-distance upper bound on

13



the best zero—rate achievable error exponent. In this context, a natural question that arises is the
following: what is the range of low rates where the above derived lower bound to the TRC exponent

is tight, i.e., B

trc

(R) = E..(R)? In other words, at what range of rates, the union bound of the
pairwise error probabilities is of the same exponential order as the exact TRC exponent? We will
propose an answer to this question in more generality in the sequel, where we consider the colored

Gaussian noise model.

B. Parallel Additive Gaussian Channels and the Colored Gaussian Channel

We next move on to handle the model of independent parallel Gaussian channels, which will then
be used pass to the colored Gaussian channel, as described above. Similarly as in the case of
the AWGN channel, considered in Subsection III.A, here too, the elimination of the term a(R,-)
contributes dramatically to the simplification of the ultimate TRC exponent formula (lower bound).
Moreover, without it, the resulting expression would be associated with a very complicated calculus
of variations. Also, as before, this simplification comes at no loss of tightness at some range of low

rates, as will be shown in the sequel.

Consider the setup defined in Subsection I1.B.2, and to avoid cumbersome notation, we hence-

2

ins and 5?2 . and denote them instead by P;, O’ZZ, and 63,

@,n?

forth omit the subscript n of P;,, o

2
)

respectively. We will also use the notation pu; = 02/52, and snr; = P;/c?. For a given A > 0 and

0 > 1, let us define

1
A(snry, i, A, 0) 2 inf {)\,ui(l — Api)snri (1 — p) + an 2} . (31)
ol <1 2 1-p
More explicitly, denoting
Si == )\}Ll(l - )\/Li)SHI‘i, (32)
the minimizing p is given by
. \/02 +452 -6 25; (33)
Pi = = )
25 02 +452 16
and then
25; 0 260
A(snry, iy \0) =8 [1 - —— | —-In | —rr—rvun-— . (34)
( \/92+4Si2+9) 20 [\J2+482+0

14



Our first main result in this subsection is provided by the following theorem, whose proof

appears in Section V.B.

Theorem 2 For the model of the parallel Gaussian channels described in Subsection 11.B.2, let
{ — oo while n is kept fized. Then,

1 n—1
E..(R) >sup sup < — Z A(snri, iy A, 0) — (20 — )R ;. (35)
0>10<0<8 | M 15

Let Sx (w), Sz(w), and Sz(w) be defined as in Subsection I1.B.2, and define snr(w) = Sx (w)/Sz(w)
and p(w) = Sz(w)/Sz(w). The following corollary follows from Theorem 2 using the eigenvalue

distribution theorem, by taking the limit n — co.

Corollary 1 For the colored Gaussian channel described in Subsection I1.B.2,

2m
E..R)> E_.(R) 2 sup sup {1/ Alsnr(w), p(w), A, 0] dw — (20 — I)R} . (36)
9>1 0<x<g L 27 Jo

Referring to Corollary 1, let us denote

1 27
BO) = sw o | Alsnre), uw), A ldes, (37)
so that
E..(R) = suplB(6) — (20 - )] (38)

A few comments are in order concerning these results.

1. The matched case. Note that in the matched case (u; = 1 for parallel channels, or u(w) =1
for the colored channel), the optimal value? of \ is B = min{f, %} This simplifies the formula in
the sense that it remains to maximize (numerically) over one parameter only — the parameter . It
also implies that for any 5 > %, the GLD is as good as the (deterministic) ML decoder in terms of

(our lower bound to) the TRC exponent.

2. General properties of the TRC exponent function. The behavior of the function E,_ (R)

is similar to the that of the AWGN case. We first observe that £, (0) = supy>, B(0) = limg_,o B(0)

trc

20f course, any positive constant c, for which u; = ¢ (or u(w) = ¢), is also associated with matched decoding, but
the optimization over A would absorb such a constant.
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since B(f) is a monotonically non-decreasing function. For low positive rates, £ (R) is a convex

trc
curve, with an initial slope of —oo. In this range, it can be represented parametrically (with a
slight abuse of notation) by the pair of equations,
1 dB(0) a B'(0)
2 do 2
(0) = B(0)— (20 —1)R(0), (40)

(39)

where 6 exhausts the range [1, 00). Since B() is non—decreasing and concave (because it is obtained
as the minimum over affine functions of 6), then as R increases, the negative slope of E,,.(R)
becomes milder: it is given by —(20r — 1), where 6 is the solution 6 to the equation B’(6) = 2R.

Since B'(0) is a decreasing function (due to the concavity of B(6)), then so is fr. The curvy part

of B (R) ends at the point where 6 = 1. This happens at rate R, = B'(1)/2. For R > R,,
E_.(R) = B(1) — R, where B(1) is given by
1 2T
B(l)= sup — Alsnr(w), p(w), A, 1]dw. (41)
o<a<g 2m Jo

It is shown in Appendix B that this expression coincides also with Ry, the zero—rate random coding
exponent, and so, in the range of rates between R, and R..;, our lower bound to the TRC exponent

coincides with the classical random coding exponent.

To calculate R., we have

Reo= g lon [ Al ue), 2 0]
© = 3700 27 snr(w), u(w), A, w0:1
= [ (GammE.uene)
= e ) 69 snr{w ), plw), A, h—1 W
1 (29 0 1
= E/o %0 [)\u(w)[l —)\u(w)]snr(w)(l—pg)+§ln 1—03] 9:1dw
() 1 (21 1
2 2.2 = 2anr2
_ 81/ In 1+ /1+4X2, (w)2[1 Ap(w)]?snr (w)] dw, (42)
™Jo

where \ is the achiever of the TRC exponent and py is the optimal p for a given 6. Equality (a)
is obtained by observing that upon differentiating the integrand, the internal derivative dpy/dé is

multiplied by an expression that vanishes due to the fact that pg (which is also a function of w) is
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optimal. In the matched case (u(w) = 1, which is ML decoding), where the optimal value of A is

1 2w
* — S 1
R 87r/0 n

thus recovering the expression (30) of R, of the AWGN channel as a special case. Obviously, R

% , this becomes

1+ /1+snr?(w)/4 d (43)
5 ;

must be larger than R,, otherwise, the TRC exponent would exceed the sphere—packing exponent

along the range [R..:, R«], which is a clear contradiction.

3. Tightness at low rates. Recall that in our analysis, both here and in the AWGN channel case,
we have ignored the term a(R,-) that designates the contribution of all the incorrect codewords
in the posterior of the GLD (see eqgs. (4) and (13)). It turns out that at least for deterministic
mismatched decoding at low rates, this simplification comes at no cost in the exponential tightness.

More precisely, there is an interval of low rates [0, R;], where E_ (R) = E,.(R). In Appendix C,

trc

we derive a non—trivial lower bound to R..

4. The zero—rate TRC exponent. For R = (0, we have

1 2m
Et:c(o) = Sup sup —— A[SHI‘(UJ),/,L(OJ),)\, Q]dw
0>10<x<g 27T Jo
1 2T
= sup lim — Afsnr(w), p(w), A, 0]dw
0<A< f—o0 27 Jo
1 27
= sup — Ap(w)[1 = Ap(w)]snr(w)dw
0<A<p 2 Jo

1 2w 1 2m
= sup {)\ : —/ p(w) - snr(w)dw — A2 - —/ 12 (w) - Snr(w)dw} . (44)
0<A<B 27 Jo 27 Jo

Now, if
5 < o (w) - snr(w)dw

2 o7 p2(w) - snr(w)dw

then
1 1

2 27
- pr— - —_— . —_ 2 D 2 .
E_(0)=p - /0 p(w) - snr(w)dw — S 5 /0 p(w) - snr(w)dw. (46)
Otherwise, the optimal A is given by

. 27 (W) - snr(w)dw

B 2 [ 12 (w) - snr(w)dw’
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and then

2
E(0) = — 3" () - snr(w) ] ‘ "
trc 87'(' 0271' #2 (CU) . Snr(w)dw
Observe that by the Cauchy—Shwartz inequality
2
1 [ 7 pw) - Snr(w)dw}
8w fo% p2(w) - snr(w)dw
2
1 { 027T V2 (w) - snr(w) - \/snr(w)dw}
= 81 f27r ,U,2(W) . Snr(w)dw
< = o 2 (w) - snr(w)dw - [T snr(w)dw
> 87’[’ f027r ’u2(w> . Snr(w)dw
2w
= 8i7r : / snr(w)dw, (49)
0

with equality iff u(w) = const. for almost every w, which is the matched case.

5. The continuous—time colored Gaussian channel. A very similar analysis applies to the
continuous—time colored Gaussian channel. Here, we begin from ¢ non—overlapping frames, each
of length Tj seconds. The resulting expression of log P,(C,,), using the very same ideas, would
be of the general form ¢sup)_; G[\i(Tp)], where X\;(Tp) are the eigenvalues pertaining to the noise

autocorrelation function (see [6, Chap. 8]). But
l- supZG’ (To)] = 0Ty - sup—ZG To)],
which for large Tp, behaves like

400 +oo
€T0-sup2::T/ G[Sz(w)]dw:Tsup%/ G[Sz(w)]dw

where T' = (T} is the overall duration of all £ frames of length Ty. Thus, in the continuous—time
case, we obtain exactly the same error exponent formula, except for two differences: (i) w is now
analog frequency (in units of radians per second, rather than just radians), and the range of all
frequency—domain integrals is from —oo to +oo, rather than from 0 to 2w. (ii) The exponent
is in terms of the duration T, rather than the integer N, namely, P.(C,) = e T rather than

P.(Cy) = e Bn,
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IV. Water—Pouring Optimization of the Input Power Spectrum

A natural question that always arises in the context of parallel Gaussian channels and the colored
Gaussian channel is the question of the optimal input spectrum. This section is devoted to address

this question in the context of the TRC exponent.

The function A(snr, u, A, 6) is concave in snr (as it is the minimization of affine functions of

snr over the parameter p), and considering first, the parallel Gaussian channels, we would like to

2

maximize Z?gol A(snr;, i, A, 0) subject to the constraints, Z?;Ol o;snr; < nP and snr; > 0 for all

1. This amounts to the Lagrangian,

n—1 n—1 n—1
Z A(snrg, pi, A\, 0) + € (nP — Z a?snrz) + Z V;SIT;. (50)

i=0 i=0 i=0
Denoting by A(snr;, ju;, A, 0) the partial derivative of A(snry, s, A, 6) w.r.t. snr;, the conditions for
optimality are

A(snry, pi, \, 0) < €02, i=0,1,...,n—1 (51)
with equality whenever snr; > 0. The solution is
snr; = [A_l(fa?,ui,)\,G)Lr, (52)

where A‘l(-,ui,)\,ﬂ) is the inverse® of A(-,ui,)\,e) and & > A(O,ui,)\,e)/a?nm (with o2 2

min

min;. snr,—o 07) is chosen such that

n—1
> o [A (€0t i A 0)] ,=nP. (53)
i=0
We can now easly pass to continuous—frequency integrals as before and obtain
Sx(w) = Sz(w) - [A7(6S2(w), u(w), A, 0)] . (54)

and finally maximize the resulting error—exponent expression over A and #. More specifically, using

the concrete form of the function A, we have:

. 6 1
A(sor, p, A, 0) = min {)\u(l — Ap)snr(1 — p) + 3 In = }
v 1
= )\/.L(l — )\,LL)SHI' . [1 — p(Sl’H')] + 5 -In %, (55)

3Since A is concave in snr, its derivative monotonically decreasing and hence the inverse exists.
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which leads to

A(SIH', 22 )‘7 9) = )\,u(l - )‘M)[l - ,O(SHI')] + _)‘/’L(l - )\,U)SIH' + Qp(snr) . dp(Sﬂr)

1 — p?(snr) dsnr
= Au(l—Ap)[1 — p(sur)], (56)

where the second equality is due to the fact that the expression in the square brackets, which is
the derivative of A w.r.t. p, must vanish for p(snr), the optimal value of p. Thus, the optimality
condition is

Ae(1 = Ap)[1 = p(sur;)] < o7, (57)
with equality when snr; > 0, or, equivalently,

22u(1 — i 2
p(snrs) = Ap(1 — Ap)snr; /2 _ [1 B 5021 . (58)
0+ \/92 + 4222 (1 — Ap)2snr? Al =Ap) | |

Upon solving for snr;, one obtains

o 1 01 — o7 /{A (1 = M) H+
P N ) T [ €0/ (L ML >
Passing to the limit of the continuous frequency domain, we obtain
Sxo) So(w) | 61— €85(0)/ ()L~ M@}
A()[I = Apw)] 1= [1—&Sz(w)/{Auw)[l = Auw)]}E
_ { el 2l 695 (w) < M) (1 — A(w))
0 elsewhere
(60)
or, denoting B = 1/4¢,
Sx(w) = { gei{ém?f“{ﬁi%ﬁ’”gji(f” SIZ (wfl < ABA(@)[1 — Mi(w))
elsewhere
_ 40BIABAu(){1 — Au(w)} — Sz(w)]s o
ABMa()[L = Ma(w)] + UBA(){1 = Aulw)} — Sz@)]+”
where B is chosen such that
1 e ABIABAuW){1 — Au(w)} — S2(w)]s P .
2m Jo  4BAp(w)[1 — Ap(w)] + [4BAp(w){1 — Ap(w)} — Sz(w)]+ 0

Note that the optimum input spectrum depends on R, via the variable 6, whose optimal value

depends on R. When 6 — oo (R — 0), the r.h.s. goes to zero, and B must be chosen just slightly
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above ming, Sz(w)/{Ap(w)[l — Au(w)]}, in order to comply with the power constraint. This means
that Sx(w) would tend to concentrate all the power at the frequency w*, which achieves this

minimum.
In the matched case, where Au(w) = 1/2, we obtain

40B[B — Sz (w)]+

X = BB S

(63)

This optimal spectral power distribution is identical to that of the ordinary expurgated exponent for
parallel additive Gaussian channel (see [6, eq. (7.5.51), p. 352]). This should not be very surprising
as the expurgated exponent and the TRC exponent are closely related [1], [12].

V. Proofs

For the proofs, we will need some additional notation and a few preliminary facts.

The empirical variance of a sequence & € IR" is defined as

T g n
=1
For a given € > 0, the Gaussian type class of & € IR" with tolerance ¢, will be defined as
To(@) = {a': (63 — 63| <} (65)

The differential entropy associated with 62, which is the Gaussian empirical entropy of @, will be

defined as

he(X) = %1n(27reé’2 ). (66)

Similar conventions will apply to conditional empirical conditional types and empirical conditional
Gaussian differential entropies and mutual informations. The empirical covariance of (x,y) €

IR"™ x IR™ will be defined as
T

. 1 & zly
C':cy = ;$lyz =T (67)
The empirical correlation coefficient of (z,y) € R"™ x IR™ will be defined as

éxy
by = . 68
Pxy Gy (68)
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Accordingly, for a given € > 0, the Gaussian conditional type class of y € IR" given € R", with

tolerance e, will be defined as
Tiyle) = {y': 163 — 651 <e, |Cay — Cay| <} (69)

The Gaussian empirical conditional entropy of y given & will be defined as

- 1 X 1 C2
hay (Y1X) = 5 In[2redgy (1 — jgy)] = 51 [2776 ( 53 — “’;yﬂ : (70)
Ox

and so, the Gaussian empirical mutual information is given by

1 1

Ipy(X;Y) = hy(Y) — hay(Y]X) = ST (71)
Py
Note that fzwy(X|Y) can also be presented as
. 1 .
hay(X|Y) = 5 In[27e63, 2], (72)
where
Liy- = 62,(1 — pa 73
y|m = mln Hy ax|® = y( Pwy), (73)

and so, the notion of the Gaussian conditional empirical differential entropy can easily apply to

conditioning on more than one vector. For example, given (x,z’,y) € (IR")3,

N 1 N
hwwly(Y’X, X/) = 5 1n[27r60'2y‘ww/], (74)
with
62 g = mMin lHy—acc ba'||?
Yz abeR N
= min {63 — 2(aCay + bCary) + (a® + 2abpgg: + b*) P} (75)

For future use, note that &me, is a concave function of (6%,C'wy, C'gyy), as it is obtained by
minimizing an affine function of these variables. Since the logarithmic function is monotonically
increasing and concave as well, then so is ﬁmm/y(Y|X , X"). Finally, for a given € > 0 the Gaussian
conditional type class of y € IR" given x, 2’ € IR", with tolerance ¢, will be defined as

T(y\w,w/) = {@3 |&32g—6;:3\ <k, ‘é:c'g—éwy’ <€ ’é —éw’y‘ SG}- (76)
In the sequel, we will need the following simple inequality:

Vol{ T (y|z, ')} < exp{n[ﬁww/y(ﬂX, X'+ O(e)l}, (77)

which is easily proved using the same technique as in [10, Lemma 3].
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A. Proof of Theorem 1

The proof is based on the same line of thought as in [12, Theorem 1], except that some modifications
have to be carried out in order to address the continuous alphabet case considered here. As in [12],

we use the identity

E{InP.(C,)} = lim r-In (E{P.(C,)"/"}), (78)

and so, we first focus on the calculation of E{P,(C,)"/"}. Another simple observation (easily proved
using the Chernoff bound) that will be used in the proof is that for every E > 0, there exists a
sufficiently large constant B > 0, such that for every m € {0,1,..., M — 1},

Pr {||Y||2 > nB or |Y|? < n/Blam] transmitted} < M, (79)

and so if we take E = E,.(0), the zero-rate expurgated exponent, we can find a constant B such
that the contribution of Pr{||Y||> < n/B} + Pr{||Y||> > nB} cannot affect the error exponent
E..(R) < E..(0) at any coding rate (see also [10] for a similar argument). In other words, if the
decoder would declare an error for every y whose norm is either larger than nB or smaller than
n/B, there would be no degradation in the error exponent. Consequently, it is enough to focus
only on y—vectors whose norms are in the range [n/B,nB]. Let us denote this set of vectors by

‘H,(B). Now,

RS exp{npa’ [m'] -y /o)
PO = X X o PR S e
1™ exp{nfa’m'] -y/o}
- Mm:Om, m/mnpy"” ' xp{nBET ] - 0%} + S expinBaT ] -y /o?)
M-1
- exp{nfa’[m] - y/o®)
T M 5 2 S P T ) 5 o) (80

where we have defined

Zm(y) = exp{nfx’[m] y/o*}. (81)
m#m

We now argue that for every € > 0 (see Appendix for the proof),

Pr {cn :30<m <M, y€Ha(B): Zn(y) < exp{nla(R —¢,53) — 5(6)]}} Z e (82)
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where §(¢) = 26v/PBe/o?. We then have (neglecting €, which is arbitrarily small),

B[ 35S,

m=0 m’#m
Hnn{l exp{npaz’[m'ly/o?} }dy
"exp{nBxT[m|y/o?} + exp{na(R, 5‘%;)}

IN -

E{[R.(C.)]""}

X Y [ Pyl

m=0 m’/#m Hn(B)

. exp{nBz’ [m'ly/o?}
o {1’ exp{nBzT[mly/o?} + exp{na(R, 53)} } dy

. 1/r
BV Péy R BV Py
exp{—n [max{ = ypa;[m}y,a(R,U?y)} 52 Pa:[m/]y dy )
+

where we have neglected the double-exponentially small contribution of codes that violate (82).

LS e

m=0 m’/#m

The inner integral over vy is of the form

. — xz[m]||? A R
/ (B)(27r02) /zexp{_w}'eXp{_”K(vapw[m}y’f)w[mqy)}dy’

where

VPo VPo
K(oy,pxy,pxty) = lmax{ﬁ = Coxy.a(R, o) ¢ - 4 p o oxry

+
Since K is not a quadratic function, this is not a simple Gaussian integral, but its exponential

order can be assessed using a Gaussian analogue of the method of types (see, e.g., the analy-
sis in [10]). For the given two codewords, x[m] and x[m’], we divide H,(B) into conditional
types {Tc(y|x[m], z[m'])}. The number of such conditional types is finite: since ||y||*> < nB and
|z[m]||> = ||x[m']||> = nP, then é’m[m}y and ém[m']y can take on values only in the interval
[~V PB,v/PB], and so, there are no more than (B/e) - (2/PB/e)?> = 4PB?/e® conditional types
classes {T:(y|x[m], z[m'])} within H,,(B), resulting from a grid of step size € in each of the ranges
of 65, ém[m}ya and ém[m/]y- Therefore, the above integral is of the exponential order of

sup WMﬁwWMhWMH«%ﬁrw%m{JW;ﬂMw}X
YEHn(B) 7

eXp{—nK(&yy ﬁaz[m]y7 ﬁaz[m'}y)}
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/\2 A~
07 — 2\/?0‘2/ + P -
Y 52 — hyjzpmz ) (VX X')+

. 1
= exp{—ni%f 51n(27r02)+

K (6y. bamiy: bzimy)| |

02 —2v/Poy + P
202

K(oy,pxv,pxv)l}s (83)

' 1
< exp {—n inf 5 In(27o?) +

OY,PXYPx!Yy

—5 ln(27rea§2/|XX/)+

where the infimum over (oy, pxy, pxry) is such that the matrix (24) (with pxx' = pxpmjzm]) i
positive semi—definite. Using eqgs. (75) and (77), it is readily observed that this integral is of the

exponential order of ¢ " (PLmTm)  where the function T'(-) is defined in (22). Thus, we have

shown that
. ) M1 1/r
E{[P.C)"} < Bl |5 X 2 en{-nl(oapmim)
m=0 m’/#m
1/r

< "f'E (Z M (p;) GXP{”F(M)}>
Pi

<

IS B{M ()"} - exp{=nT (ps)/7} (84)

where {p;} form a fine quantization grid over the interval (—1,1) and M(p;) is the number of
codeword pairs {@x[m], z[m']} whose empirical correlation coefficient fall in the quantization bin of
pi- The remaining part of the proof follows exactly the same lines as the proof of [12, Theorem 1],
except that joint types {Q@xx} (and the conditional types, {Qx/x}) of [12] are now indexed by
{p;} and I(Q) is replaced by 5 In #

xx/

B. Proof of Theorem 2

The proof goes along the same lines as the proof of Theorem 1, except that there are n independent
copies of all elements produced from f—vectors, and so, we will outline only the main differences.
Here we denote

~2 Hyz”Q

6y, = (85)
T

~ €X: .

Cay, = (86)
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For a given code C,, a given transmitted codeword x[m| and a given competing codeword x[m/],

Pr{m’ decoded ‘ m transmitted }

— [, Plylelm]) - Pr{in = m'ly}dy
R

T o, / exX — — ;| g;
< [, LHO@ 2)~112 exp{—|ly, — @il |/ (202))
n—1 /
=0 ¢ :
n—1
= max Vol{ Tc(y;|xi[m m’
R Y Ll_% {Te(yilzi[m], zs[m'])}

nl Tl 2L m/ .
(2m02)" 4/2exp{||yimi[m]n?/@o?)}}-exp{ﬁ [Z( Sul I I[J“”)

i=0 9 g
n—1 ~2 A
: 1 oy —2Cg, 4+ P,
= exp —¢ ~ min_ Z - 1n(27TO'Z-2) + Y, x [27”]!/1 i
n—1 Cf B C« ,
i T i £L; i
has iy (V1X, X)) 8 | 3 =it mdmly
i=0 i N
n—1 ~2 A
: 1 o3, — 2C . 4+ P
= expq —/ ~ inf —In(270?) + Y, z ém}yz i
{0y, C, iy, Ca,imy, }i i=0 2 207?
$ Caimly, — Camly
h / YX X 4+ su i —
x;[m]x; [m]y ‘ )) 0</\I<),8 % 0'1'2
n—1 ~ A
1 oy — 2Cg, + P
= expq —{ sup _inf - In(2r0?) + 2 x [Qm}yz L
0<A<h {"2 O m ]y"cmz‘[m,]yi}i = \2 20;
Caz,fmly, — C’mi[mqyi
hae, ez oy (Y1, X7) ) + Z
’I’L—l A2 A
1 oy — 2Cg, + P
= exp —f sup Z X inf ,1n(27mi2) + Y, T [2m]yl i
0<A<p =0 {02 »C.’B[m]ylvcx /y}z 2 20'2
Co.impy, — Camy,
ha iz my (Y1X, X') + Z p
1=0 1
n—1
— exp{ —{ sup Z A (1 — Apg)sar (1 — pi[m, m ])} (87)
0<A<B T

where p;[m, m'] is the empirical correlation coefficient between x;[m| and x;[m'], and where the last

step is obtained from the minimization of each term over {032!_ , C’mi[m}yi, C':Bi[m’]yi}7 very similarly
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as is done in eq. (27). The proof is completed similarly as in [12] by showing that the typical
number of codeword pairs {x[m], x[m’]} for which the segmental empirical correlation coefficients

are around (pg, p1, - .., pn—1) (within a fine grid) is of the exponential order of

M(Poym,---,Pn—l)ieXp{ [R—Zlnlp]} (88)

1 ol 01 In 5 p2 < 2R, and M(po,p1,-..,pn—1) = 0 otherwise. Thus, for the typical

2n

as long as

code,

n—1

_ M-1
P.(Cn) % > eXp{ —0 sup > (1 /\ui)snri(l—m[m,m'])}

m=0 m/#m 0<A<B =
: —NR
= e Z M((po, p1;- -5 Pn—1) X
PO5PL5--5Pn—1

—{ su )\z —)\isnril—i
o<£,a§” i )snry p)}

IN

exp

1 1
Api(1 — Apg)snry (1 — p;) + = In 2] - R}
e 2 1-
n—1

1
—N sup inf Z
0<ALB POPLs-Pn—1 TD

= exp

1 n—1
-N inf sup —
P{ POPLs5Pn— 10<,\I<)5 n Z

1 1
Api(1 = Api)snri(1 — p;) + 5 In 1 21 - R} ’
> _

where the infimum is subject to the constraint 5- > /"

tion at the exponent can be presented as

1 1 1 1
inf sup — Z l)\m — Apg)snri (1 — p;) + 51111_7/)2 4+ <ln — 2R>] - R

POy sPn—1 90 T 21— p?
1 1+ 1
= £ A (1 — Apg)snr; (1 — p; In——=| - 29+ 1R
y;gan[u( piJsuri(1 = pi) + — nl_p%] (20 +1)
1 0 1
= 21;11) - Z 1nf Api (1= Apg)snri (1 — p;) + 3 In =2 — (20 —1)R
1 n—1
= su A(snry, i, A, 0 20 — 1R, 89
up Z% pis A, 0) — (20 — 1) (89)
which is the relevant expression for Theorem 2.
Appendix A: Proof of Eq. (82)
For a given € > 0, consider the set of vectors,
HS(B B)({y = (i1,i2,...,in) - 2e 1 (i1, da,...,in) € 2"}, (A1)
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namely, the grid of all vectors within H,,(B) whose components are integer multiples of 2¢. Obvi-

ously,
Vol{H, (B 2reB)"?  (\2meB\"
e (B)| < YMHEWB)}  @reB)"E ([ V2meB) (A.2)
(2¢)™ (2¢)™ 2¢
in other words, the number of points within H¢(B) is exponential in n. If we prove that
Pr {Hm €{0,1,...,M -1}, ye Hy,(B) : Zn(y) < exp{na(R — 6,5’%/)} =e ", (A.3)

then the result will follow by continuity considerations as follows: if y and y’ differ by no more

than e component-wise in absolute value, then for e < 1/ VB,

1
5. — 2

1
\/n(Hy’]P — 2V BnVne? 4+ ne?)

AV

y/
. 2\/§6
> Oy — 5%
20’y/
> 2v/ Be
Oqy/
= Y 9B
Thus,
Pé 1
a(R,&?QJ) = sup [5\F20y'0+21n(1—p2) +R
pl<y/i—e2r L ¢
P(6qy — B 1
lpl<y/1—e 2R o 2
. BV PBe
> 2) - A.
CY(R,O’y) 0_2 ( 5)
On the other hand,
pa’ [m'ly
Zm(y) = m%:mexp{ 2
< Z exp B(xT [m'ly’ + VnPvne?)
a m/#m o?
nBv Pe
= e { 3 }Zm( ) (A.6)
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It follows that if Z,,(y) > exp{na(R — e,é}%/) for all (m,y) € {0,1,...,M — 1} x HE(B), then
Zm(y) > exp{n[a(R — € Uy) —d(e)]} for all (m,y) € {0,1,...,M — 1} x H,(B), where d(¢) is as
defined above.

Since the number of pairs (m,y) € {0,1,...,M — 1} x H%(B) is upper bounded by e
(V2meB/e)", which is exponential in n, it is enough to prove that

Pr {Zm(y) < exp{na(R — ¢, &%)} =e " (A7)

for every given (m,y) € {0,1,...,M — 1} x HS (B), as the union bound over all these pairs will
not affect the super—exponential decay of the probability under discussion. The proof of this fact
is the same as the proof of the analogous result in [13, Appendix B], except that here Z,,(y)
is approximated as >, M (p;) exp{Bn\/]?&ypi /o?}, where {p;} form a fine quantization grid with
spacing € within the interval (—1,1) and M (p;) is the number of codewords other than x[m] whose
empirical correlation coefficient with y is between p; —€/2 and p; +€/2. The proof in [13, Appendix
B] applies here verbatim except that @, ¢(Q) and I(Q) of [13] are replaced by p;, Bﬁﬁym and
1

1
5 ln 1_p$ s

respectively.

Appendix B: Calculation of R,

In ordinary random coding under the same regime, we have the following. The pairwise error event

is:

n—1 ~T n—1 T

i Ji i Ji

2 = (B.1)
=0 ( =0 i

where «; represents the i—th segment of the transmitted codeword and &; stands for that of a

competing one. On substituting y, = x; + z;, this becomes

n—1 ~T ) . n—1 T )
Z ; (wj;— zi) > x, (:vf;- zz)’ (B.2)
i=0 9 i=0 o;

or L .
— (iz .’13,) Zq Kn P’L<1 pz) B
Z 5.2 5.2 ) ( '3)
=0 i 1=0 7

where p; is the empirical correlation coefficient between x; and &;. Now,

i i) % ~N<o 2zzlf”)>, (B.4)

Uz
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thus, the probability of the above event is
n—1 — n—1 ~92
r; — 1 — P; / = R 1-— i)/ O0;
Pr {Z (@ Z Pi } ) > ,01 ( pi)/
i=0 Uz = o \/26 Sy Pio(1—pi)/od
.12
(S P - i) /5]

= exp{ ———— -5, (B.5)
4Zi:01 Pio?(1—pi)/5}

where Q(+) is the error function,

_ L [F g,
Q) = /x 2du. (B.6)

The average pairwise probability of error is therefore given by

n—1 /~ T n—1
5= (T — )" 2 Pi(1— p;)
I
=0 1

i=0 i
2
n—1 n—1pr1 _ \/x2
| ! Y Bl - pi) /5
= max eXp EZ ln 1 - pz) |: T:—f ! 2 ' z,;|4 9 (B7)
Pls-usPn P 0 4% =y Po; (1—pi)/o;

where the term £ Z?;Ol % In(1—p?) accounts for the probabilistic weight of (p, . . ., pn_1). Therefore,

the exponent is

_ n—1 ~2 2
) 1 [Zi:o P;(1 _Pi)/Ui}

it Z 5 n—1 p 2 ~1

PO Pr—1 e 2 1 — ,0Z n =y Pio; (1-— pi)/o'i

LR P(L—p) 5 1R Po?(l-p)
e A e e

n n

PO;--3Pn—1 i—0 i i—0 i

1n71
= sup-— Zmin{

i L § L (1—p?)+
= min —— —In(1 — p: su
n .— 2 Pi )\218

n—1
= A( Al
sup Z (snrj, 13, A, 1),
(B.8)
and in the limit of large n,
1 2m
Ry = sup —/ Alsnr(w), p(w), A, 1]dw = B(1), (B.9)
A>0 27
as opposed to the zero-rate TRC exponent, which corresponds to
1 2m
sup — Afsnr(w), p(w), A, oo]dw.
A>0 2T
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Appendix C: Tightness at Low Rates

As before, we begin from parallel channels, and then take the limit n — oo in order to pass to the

continuous frequency domain. For deterministic decoding we also take the limit 8 — oo. Let us

denote .
1 aly,
G(z,y) = — L (C.1)
n 1=0 Ui
and )
e Po
7 ylpz
a(R,y) = sup R (C.2)
=0 i
where the supermum is over all (pg, p1, ..., pn—1) such that 7= :1n 1_1p2 < nR. Asin [12], the

TRC exponent for deterministic mismatched decoding is obtained by analyzing the probability of
the event G(zx,,,/,y) > max{G(xm,y), a(R,y)}, for a given code, taking the logarithm, and finally,
averaging over the code ensemble. As mentioned earlier, here we removed the term «(y, R) and
upper bounded by this probability by the probability of the event G(x,,,y) > G(x,,y), which is
the union of pairwise error events. We would like to show now that there is a range of low rates

[0, R;], where this bound is exponentially tight. Consider the chain of inequalities

Pr{G(z[m],y) > G(z[m],y)}

= Pr{G(zm],y) = G(z[m],y) > a(R,y)} + Pr{G(z[m'],y) > a(R,y) > G(z[m],y)} +
>

Pr{a(R,y) > G(z[m],y) > G(z[m],y)}
= Pr{G(z[m'],y) > max{a(R,y),G(z[m],y)} + Pr{a(R,y) > G(z[m],y) > G(x[m],y)}
< Pr{G(x[m'],y) > max{a(R,y),G(z[m],y)} + Pr{a(R,y) > G(z[m],y)}, (C.3)

where the left—most side is the quantity we analyze in the proof of Theorem 2, and in the right—
most side, the first term is the desired quantity, whereas the second term is the supplementary
term that we would now like to focus on. In particular, if we show that the second term decays
at an exponential rate faster than that of the first term (which is £, (R)), then our union-bound

analysis in Theorem 2 is tight. Now,

n—1 /Pa_ o 1n71 T
7 ypz fl»',L [m]yl
Pr{a(R,y) > G(x|m],y)} = Pr max E Nilzfg — C4
oty = Glelml ) {{—27011n<1—ﬁ3>gm} = } .
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But

Vv Pioy, pi
max ——
(-3 mn(1-p2)<2nR} g5

P0s-Pn—1 >\>0 Ul

. {\/7 sz

n—1
= max inf {\ﬁ v,/ + A {R—i— In(1 — pz)]}
=0

= inf max

AMR+=-In(1—p
AZ0 5= pi + { +2n( )}}

n—1 f)i'\ .
= af W (Y8 A ) 4Ry, (C.5)
A>0 0=1 o;

where we define

W(a,\) = mgx{ap—i— %ln(l - pQ)}

= A-w(i,oo)

- 20 )\ [ 2X ] (C6)
T AtV rde A+ VA2 +4a2]’ '
Now,
1858 z! [mly; _ . \/E&yl
Pr{a(R,y) > G(x[m],y)} = Pr{g ; — < /1\r21% ;W 5 A+ AR
1 n-l_T ooonl P;6
< mipr iy Ty *Fsy A +AR| S (CT)
A>0 l = O = o;

For a given A > 0, the exponent of the last probability is given by

171 (1 63 —2v/Pioy pi+P 1
min — Z {2 In(2mo?) + Ys Q;le Lt 3 1n[27re6§i(1 — )¢, (C.8)

{piogy 31550 i

where the minimum is taken over all {(p;, &:Qy_), 0=1,2,...,n — 1} such that

or, equivalently, the exponent is given by

n—1
1
min sup — E ~In(270?) +
{p:,62 oy, Ye>o M { !

VFPioy pi V PGy,
o; o

%

X
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n—1
. 1 2
sup — min < = In(2nwo;) +
CZOH;P'L:&;J {2 (2r2)

/\2 ~
oy —2vVPoy.pi+ P 1 )
Y; = b 1n[27rea:2yi(1 — p)]+

)

Vv

Pioy p; Pioy.
i[f;ym _W<C§yl7A>_ARH

7

>

1 n—1
sup— Y D(P;,02,62,\¢) — (R, C.10
e go ( ¢)—¢ (C.10)

where we have defined

1 2 -2VP P 1
D(P,6%,6% X\,¢) = min{ = In(2w0?) + 7y ;Yp R In[2mecd (1 — p?)]+
p,U%, 2 20 2
| VEPovp oy (VEoy (AL (C.11)
A o2 o2

After the minimization over A > 0, and after taking the limit of n — oo, we obtain

(R) = sup |sup = [ D[Sx (), S2(w), S7(w), A, CJdw — CR
¢>0 [a>0 2™ Jo
S sup[A(¢) - CR], (C.12)
¢>0

and it is not difficult to check that ¢(0) = 2E;

trc

(0), as for R = 0, the optimum A tends to infinity,
in which case, W (v/Poy /6%, \) vanishes. Thus R,, the maximum guaranteed rate of tightness of
our TRC bound, is the supremum of all rates R such that e(R) > E...(R). To find an expression

for R,, we require that for every 6 > 1, there exists ( > 20 — 1 such that
A(¢) = CR > B(6) — (20— )R,

or equivalently,
APEGEL]
Therefore,
R, = inf sup A(Q) — B(9)

' C.13
0>1¢529-1 C—20+1 (G.13)
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