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Abstract

The error exponent of the typical random code is defined as the asymptotic normalized ex-
pectation of the logarithm of the probability of error, as opposed to the traditional definition
of the random coding exponent as the normalized logarithm of the expectation of the probabil-
ity of error with respect to a given ensemble of codes. For a certain ensemble of independent
codewords, with a given power spectrum, and a generalized stochastic mismatched decoder,
we characterize the error exponent the typical random codes (TRC) for the colored Gaussian
channel, with emphasis on the range of low rates, where the TRC error exponent differs in
value from the ordinary random coding error exponent. The error exponent formula, which
is exponentially tight at some range of low rates, is presented as the maximum of a certain
function with respect to one parameter only (in the spirit of Gallager’s formulas) in the case of
matched decoding, and two parameters in the case of mismatched decoding. Several aspects of
the main results are discussed. These include: general properties, a parametric representation,
critical rates, phase transitions, optimal input spectrum (water pouring), and comparison to the
random coding exponent.

Index Terms: error exponent, typical random code, reliability function, Gaussian channel,
water pouring.
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I. Introduction

Inspired by the brief article of Barg and Forney [1], in a recent work [12], the error exponent of the

typical random code (TRC) for a general discrete memoryless channel (DMC) was studied. The

error exponent of the TRC was defined as the asymptotic normalized expectation of the logarithm

of the probability of error, as opposed to the traditional definition of the random coding exponent

as the normalized logarithm of the expectation of the probability of error with respect to the same

ensemble of codes. The study of error exponents for TRCs was motivated in [12, Introduction] in

several ways: (i) due to Jensen’s inequality, it is never worse than the random coding error exponent.

(ii) In relation to (i), it is a less pessimistic performance metric compared to the ordinary random

coding exponent, especially at low rates, as it does not suffer from the problem that poor codes

dominate the average error probability. (iii) Given that a certain concentration property holds, it

is more relevant as a performance metric, as the code is normally assumed to be randomly selected

just once, and then it is used repeatedly. (iv) It captures correctly the behavior of random–like

codes [2], which are well known to be very good codes.

In [12], an exact formula for the error exponent function of the TRC was derived for a general

discrete memoryless channel (DMC) under the ensemble of fixed composition codes and a class of

generalized likelihood decoders (GLD’s) [13], [19], [25], namely, stochastic decoders that randomly

select the decoded message according to a posterior distribution (given the channel output) with

a certain structure. The class of GLD’s considered in [12] covers many decoders of theoretical

and practical interest as special cases, including deterministic metric decoders, like the maximum

likelihood (ML) decoder, the maximum mutual information (MMI) decoder, α–decoders [4] and

mismatched decoders.

While the analysis in [12] is heavily based on the method of types [3], and hence applicable,

in principle, to the finite–alphabet case only, here we consider the continuous–alphabet case, and

more precisely, the Gaussian case. In particular, we derive a formula for the error exponent of the

TRC for the additive Gaussian channel. We begin from the additive white Gaussian noise (AWGN)

channel, and then extend the scope to the colored Gaussian channel with a given channel input

spectrum and noise spectrum. While we present the results for the discrete–time case, a minor

modification of the error exponent formula allows to pass to the continuous–time case as well.
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It is perhaps surprising that although the finite–alphabet formula of the TRC exponent [12]

is not trivial to work with (as it involves a rather computationally heavy optimization of certain

functionals of probability distributions), in the Gaussian noise case considered here (and even

when the noise is colored), the situation is considerably better in that sense. In particular, the

resulting TRC error exponent, which is provably exact at least at some range of low rates,1 involves

optimization over one parameter only in the case of a GLD with the matched (ML) decoding

metric, and two parameters for a general (mismatched) GLD. Finally, we present and discuss a

few byproducts of our main result. These include: a parametric representation, the zero–rate TRC

exponent, the range of guaranteed tightness of our bound, the rate at which the TRC exponent

meets the random coding exponent, and the optimal channel input spectrum (water–pouring).

A few words on the history of related work are in order.

In the context of bounds on the reliability function of the Gaussian channel, the first random

coding bound for the discrete–time case, as well as a sphere–packing lower bound, are due to

Shannon [20]. His work was followed by numerical evaluations due to Slepian [23]. Ebert [5] has

derived (random–coding and expurgated) upper bounds and (sphere–packing and straight–line)

lower bounds on the error probability of the parallel additive Gaussian channel, which in the long

block limit, are applicable to the colored Gaussian channel by using the eigenvalue distribution

theorem [8] (see also [7]). The lower bounds are based on the work of Shannon, Gallager and

Berlekamp [21], which appeared a year later. Ebert’s results appeared also in Gallager’s book [6,

Chapters 7, 8]. Viterbi [24] studied decoders with generalized decision regions for the Gaussian

channel as well as other very noisy channels. During the years that have passed ever since these

early works were published, a vast amount of work on improved bounds has been carried out (see,

e.g., [18] for a very good survey), but most of it is of lesser direct relevance to the topic of this

paper.

In the context of error exponents of TRC’s, on the other hand, much less work has been done

before. Prior to [12], as mentioned earlier, Barg and Forney [1] have derived, among other things, the

error exponent of the TRC for the binary symmetric channel (BSC) under i.i.d. binary symmetric

random coding. Nazari [16] and Nazari, Anastasopoulos and Pradhan [17] derived upper and lower

1In fact, the TRC exponent function is interesting to study primarily at low rates, as beyond a certain rate, it
coincides with the ordinary random coding error exponent anyway.
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bounds on the TRC exponent for a general DMC under the α–decoder of [4]. Beyond that, there

has been some work in the statistical–physics literature, where TRC error exponents were analyzed

for special classes of codes (like LDPC and Turbo codes) using the replica method and the cavity

method – see, e.g., [9], [15], [22].

The outline of the remaining part of this paper is as follows. In Section II, we establish notation

conventions (Subsection II.A), present the setup (Subsection II.B), and provide some background

(Subsection II.C). In Section III, we provide the main results concerning the TRC exponent and

discuss them, first for the case of the AWGN channel (Subsection III.A), and then for parallel chan-

nels and the colored Gaussian channel (Subsection III.B). In Section IV, we address the question

of the optimal input spectrum for the TRC exponent. Finally, in Section V, we outline the proofs

of the main results.

II. Notation Conventions, Setup and Background

A. Notation Conventions

Throughout the paper, random variables will be denoted by capital letters and specific values

they may take will be denoted by the corresponding lower case letters. Random vectors and their

realizations will be denoted, respectively, by capital letters and the corresponding lower case letters,

both in the bold face font. For example, the random vector X = (X0, X1, . . . , Xn−1), (n – positive

integer) may take a specific vector value x = (x0, x1, . . . , xn−1) in IRn. When used in the linear–

algebraic context, these vectors should be thought of as column vectors, and so, when they appear

with superscript T , they will be transformed into row vectors by transposition. Thus, xTy is

understood as the inner product of x and y. Probability density functions (PDFs) of sources and

channels will be denoted by the letters P and Q. The probability of an event E will be denoted by

Pr{E}, and the expectation operator will be denoted by E{·}.

For two positive sequences an and bn, the notation an
·

= bn will stand for equality in the expo-

nential scale, that is, limn→∞
1
n log an

bn
= 0. Similarly, an

·
≤ bn means that lim supn→∞

1
n log an

bn
≤ 0,

and so on. Accordingly, an
·

= e−n∞ will mean that an vanishes in a super–exponential rate. The in-

dicator function of an event E will be denoted by I{E}. The notation [x]+ will stand for max{0, x}.

The cardinality of a finite set A will be denoted by |A|.
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B. Setup

We first describe the communication system model in the simple case of the AWGN channel,

and then extend the scope to parallel Gaussian channels with application to the colored Gaussian

channel.

1. The AWGN Channel

Consider the discrete–time AWGN channel,

Yi = Xi + Zi, i = 0, 1, . . . , n− 1 (1)

where X = (X0, . . . , Xn−1) is a random channel input vector, Z = (Z0, . . . , Zn−1) is a zero–mean

Gaussian vector with covariance matrix σ2I, I being the n×n identity matrix, and Z is statistically

independent of X. In the sequel, we denote the conditional probability density function (PDF)

associated with this channel by P (y|x), that is,

P (y|x) = (2πσ2)−n/2 exp

{
− 1

2σ2

n−1∑
i=0

(yi − xi)2

}
. (2)

It is assumed that X is uniformly distributed across a codebook, Cn = {x[0],x[1], . . . ,x[M − 1]},

x[m] ∈ IRn, m = 0, 1, . . . ,M − 1, with M = enR, R being the coding rate in nats per channel use.

We consider the random selection of the codebook Cn, where all codewords are drawn indepen-

dently under the PDF,

Q(x) =

{
1

Surf(
√
nP )

‖x‖2 = nP

0 elsewhere
(3)

where Surf(r) is the surface area of the n–dimensional Euclidean sphere of radius r, and P is the

transmission power.

Once the codebook Cn has been drawn, it is revealed to both the encoder and decoder. We

consider the stochastic likelihood decoder, which randomly selects the decoded message index m̂

according to the generalized posterior,

Pβ(m̂ = m|y) =
P β(y|x[m])∑M−1

m′=0 P
β(y|x[m′]

=
exp{βxT [m] · y/σ2}∑M−1

m′=0 exp{βxT [m′] · y/σ2}
, (4)

where β > 0 is a design parameter, which we select freely, and where the second equality stems

from the assumption that all codewords have the same norm (energy), as is evidenced in (3). The
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motivation for the GLD (4) was discussed extensively in earlier works, such [13] and [12] as well as

references therein.

The probability of error, for a given code Cn, is defined as

Pe(Cn) =
1

M

M−1∑
m=0

∑
m′ 6=m

P (y|xm) · Pβ(m̂ = m′|y). (5)

As in [12], we define the error exponent of the TRC as

Etrc(R) = lim
n→∞

[
−E{lnPe(Cn)}

n

]
, (6)

where the expectation is w.r.t. the randomness of Cn, and it is assumed that the limit exists. As

can be noted, this differs from the traditional random coding error exponent,

Er(R) = lim
n→∞

[
− ln[E{Pe(Cn)}]

n

]
. (7)

Our first goal is to derive a single–letter expression for Etrc(R).

2. Parallel Additive Gaussian Channels and the Colored Gaussian Channel

The model of parallel additive Gaussian channels is defined similarly as in Subsection II.B.1, ex-

cept that here the various Gaussian noise components Zi, i = 0, 1, . . . , n − 1, may have different

variances, σ2
i,n, i = 0, 1, . . . , n − 1, respectively. In other words, the covariance matrix of Z is

diag{σ2
0,n, σ

2
1,n, . . . , σ

2
n−1,n}. We assume that {σ2

i,n, i = 0, 1, . . . , n− 1} obey an asymptotic regime

where there exists some function SZ(ejω), j =
√
−1, ω ∈ [−π, π), such that

lim
n→∞

1

n

n−1∑
i=0

G(σ2
i,n) =

1

2π

∫ 2π

0
G[SZ(ejω)]dω (8)

for any continuous function G : IR+ → IR. The underlying motivation of this is the eigenvalue

distribution theorem [8] (see also [7]), as will be described in Subsection II.C. Accordingly, the

conditional PDF associated with this channel is given by

P (y|x) =
n−1∏
i=0

(2πσ2
i,n)−1/2 exp

{
− 1

2σ2
i,n

(yi − xi)2

}
. (9)

The structure of the code will now be slightly more involved than in Subsection II.B.1. Here

we consider a codebook CN of size M = eNR, with block length N = n`, n being the number
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of parallel channels as before and ` is another positive integer. Specifically, we subdivide each

codeword x[m] ∈ CN of length N into n non–overlapping segments, each of length `, i.e., x[m] =

(x0[m],x1[m], . . . ,xn−1[m]), where xi[m] = (xi`[m], xi`+1[m], . . . , x(i+1)`−1[m]), i = 0, 1, . . . , n− 1.

For every i, the segment xi[m] has norm ‖xi[m]‖2 = `Pi,n, and this segment is fed into the i–th

channel component whose noise variance is σ2
i,n. We assume that

∑n−1
i=0 Pi,n ≤ nP , where P is the

overall power constraint. As is the case with {σ2
i,n}, asymptotic convergence of the error exponent

in the large n limit could be expected only if there would be a well defined asymptotic regime

concerning the behavior of {Pi,n, i = 0, 1, . . . , n − 1} as n → ∞. To this end, we will assume

that {Pi,n} are “samples” of a certain function, SX(ejω), of a continuous, real–valued variable,

ω ∈ [0, 2π), that is,

Pi,n = SX(ej2πi/n), i = 0, 1, . . . , n− 1. (10)

We consider the random selection of the codebook CN , where all codewords are drawn independently

under the PDF,

Q(x) =
n−1∏
i=0

Qi(xi), (11)

where

Qi(xi) =

{ 1

Surf(
√
`Pi,n)

‖xi‖2 = `Pi,n

0 elsewhere
(12)

Once the codebook CN has been drawn, it is revealed to both the encoder and decoder. We consider

the stochastic likelihood decoder, which randomly selects the decoded codeword x ∈ CN according

to the generalized posterior,

Pβ(m̂ = m|y) =
exp

{
β
∑n−1
i=0 xTi [m] · yi/σ̃2

i,n

}
∑M−1
m′=0 exp

{
β
∑n−1
i=0 xTi [m′] · yi/σ̃2

i,n

} (13)

where {σ̃2
i,n, i = 0, 1, . . . , n} are (possibly) mismatched noise variances assumed by the decoder,

and yi is the i–th segment of y, that corresponds to the channel input segment xi[m]. Of course,

if σ̃2
i,n = σ2

i,n for all i (or more generally, σ̃2
i,n ∝ σ2

i,n) and β → ∞, we obtain the deterministic

(matched) ML decoder. Similarly as with {Pi,n}, it will be assumed that σ̃2
i,n = S̃Z(ej2πi/n),

i = 0, 1, . . . , n − 1, for some function S̃Z(ejω), ω ∈ [0, 2π), and so, together with (10) and the

eigenvalue distribution theorem, we have

lim
n→∞

1

n

n−1∑
i=0

G(Pi,n, σ
2
i,n, σ̃

2
i,n) =

1

2π

∫ 2π

0
G[SX(ejω), SZ(ejω), S̃Z(ejω)]dω (14)
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for any continuous function G.

Finally, the probability of error and the TRC exponent are defined as in Subsection II.B.1,

except that now n is replaced by N and the GLD of eq. (4) is replaced by the one of eq. (13). Our

goal would be to derive the TRC exponent under the asymptotic regime that we have defined. The

process of taking the limit of N = n`→∞ will be carried out in two steps: we first take the limit

`→∞ for fixed n, and then take limit n→∞. In other words, the asymptotic regime corresponds

to `� n.

C. Background

As mentioned in Subsection II.B.2, eq. (8) is motivated by the eigenvalue distribution theorem. Let

{Zi} be a discrete–time, zero–mean stationary process with an absolutely summable autocorrelation

sequence {rZ(k), k = 0,±1,±2, . . .} (i.e.,
∑
k |rZ(k)| <∞), and power spectral density

SZ(ejω) = F{rZ(k)} =
∞∑

k=−∞
rZ(k)e−jωk, (15)

which is assumed strictly positive and bounded for all ω ∈ [−π, π). Let RnZ be the corresponding

n × n autocorrelation matrix, namely, the matrix whose (k, l)–th element is rZ(k − l), k, l ∈

{1, . . . , n}. Let Λn be the matrix whose columns are orthonormal eigenvectors of RnZ . Then by

applying the linear transformation, Z̃ = Λ−1
n Z, one diagonalizes the covariance matrix and the

variances, {σ2
i,n}, of the various components of Z̃ are equal to the respective eigenvalues of RnZ .

If {rZ(k)} is absolutely summable, then according to the eigenvalue distribution theorem, eq. (8)

holds true [7, Theorem 4.2] for every continuous function G : [a, b] → IR, with a = ess inf SZ(ejω)

and b = ess supSZ(ejω).

Applying this setup to colored Gaussian intersymbol interference (ISI) channel model, let

Yt =
∞∑
i=0

hiXt−i +Wt, (16)

where {Wt} is a zero–mean, stationary Gaussian process with a given spectrum SW (ejω) and the

linear ISI system, H(z) =
∑∞
i=0 hiz

−i, has an inverse G(z) = 1/H(z) =
∑∞
i=0 giz

−i such that

Zt =
∑∞
i=0 giWt−i has a power spectral density,

SZ(ejω) = SW (ejω)|G(ejω)|2 =
SW (ejω)

|H(ejω)|2
(17)
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whose inverse Fourier transform, {rZ(k)}, is absolutely summable. Then, considering the equivalent

channel model (neglecting edge effects),

Ỹt = Xt + Zt, (18)

we can now apply the linear transformation Λn that diagonalizes the covariance matrix RnZ of an

n-block of Z, and then the resulting variances, σ2
i,n, of the transformed noise vector, are equal to

the respective eigenvalues of RnZ , which in turn satisfy the eigenvalue distribution theorem in the

large n limit.

Operatively, the communication system works as follows: given a codeword x = (x0,x1, . . . ,xn−1),

generated as described in Subsection II.B.2, we transmit ` sub–blocks, each of length n, where in

the k–th sub-block (k = 0, 1, . . . , ` − 1), the transmitted vector is
∑n−1
i=0 xi`+kψi, ψi being the i–

th eigenvector of RnZ . At the receiver, we first apply the linear system G(z) to {Yt} in order to

obtain {Ỹt}. Then, every n–block of {Ỹt} undergoes a bank of correlators with all eigenvectors,

{ψi}, in order to retrieve noisy versions of the coefficients {xin+k}n−1
i=0 , whose noise components are

uncorrelated with each other, and their variances are σ2
i,n, i = 0, 1, . . . , n− 1.

Note that, in general, {ψi} and {xi`+k} might be complex–valued. For the sake of simplicity,

and without loss of generality, however, we will assume that they are real. This is justified by the

following simple consideration. Suppose that ψi is a complex eigenvector of RnZ . Since both RnZ and

the corresponding eigenvalue, σ2
i,n, are real, then the complex conjugate, ψ∗i is also an eigenvector

associated with σ2
i,n, and therefore, so are ui = Re{ψi} and vi = Im{ψi}, which are vectors in IRn.

Now, if ui and vi are not orthogonal to each other, then one can apply a simple transformation

(e.g., the Gram–Schmidt projection) to represent the two–dimensional eigensubspace, spanned by

ui and vi, by two orthonormal basis vectors, which are clearly eigenvectors pertaining to σ2
i,n as

well. Of course, eigenvectors of other eigenvalues are orthogonal to each other. For example, in

the circulant approximation of RnZ for large n [7, Chapters 3, 4], the matrix Λn pertains to the

discrete Fourier transform (DFT), whose complex exponential eigenvectors can be separated into

real–valued sine and cosine vectors for the real and imaginary parts, which are all orthogonal to

each other.
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III. Main Results

A. The AWGN Channel

We begin from the AWGN channel model described in Subsection II.B.1. We first define a few

quantities. For a given σ2
Y > 0 and ρ ∈ [−1, 1], define

g(σ2
Y , ρ) =

β
√
PσY ρ

σ2
(19)

and

α(R, σ2
Y ) = sup

|ρ|≤
√

1−e−2R

[
g(σ2

Y , ρ) +
1

2
ln(1− ρ2)

]
+R

= w

(
β
√
PσY
σ2

, R

)
+R, (20)

where

w(u,R)
∆
= sup

|ρ|≤
√

1−e−2R

[
ρ · u+

1

2
ln(1− ρ2)

]

=

 u ·
√

1− e−2R −R R ≤ 1
2 ln

(
1+
√

1+4u2

2

)
2u2

1+
√

1+4u2
− 1

2 ln
(

1+
√

1+4u2

2

)
R ≥ 1

2 ln
(

1+
√

1+4u2

2

) (21)

Next, for a given ρXX′ ∈ [−1, 1], define

Γ(ρXX′) =
1

2
ln(2πσ2) + inf

{
1

2σ2
(σ2
Y − 2

√
PσY ρXY + P )− 1

2
ln(2πeσ2

Y |XX′)+[
max{g(σ2

Y , ρXY ), α(R, σ2
Y )} − g(σ2

Y , ρX′Y )
]

+

}
, (22)

where

σ2
Y |XX′

∆
= σ2

Y + min
s,t
{(s2 + 2stρXX′ + t2)P − 2

√
PσY (sρXY + tρX′Y )}, (23)

and where the infimum in (22) is over all {σ2
Y , ρXY , ρX′Y } such that the matrix P ρXX′P ρXY

√
PσY

ρXX′P P ρX′Y
√
PσY

ρXY
√
PσY ρX′Y

√
PσY σ2

Y

 (24)

is positive semi–definite.

Our first result is the following.
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Theorem 1 For the AWGN channel model defined in Subsection II.B.1,

Etrc(R) = inf

{
Γ(ρXX′) +

1

2
ln

1

1− ρ2
XX′

}
−R, (25)

where the infimum is subject to the constraint |ρXX′ | ≤
√

1− e−4R.

The proof appears in Section V.A. The remaining part of this subsection is devoted to a dis-

cussion about Theorem 1.

The insight behind this expression of the TRC exponent is as follows. Let us imagine aux-

iliary random variables X, X ′ and Y , that represent the transmitted codeword x[m], an in-

correct codeword x[m′] (m′ 6= m), and the channel output vector, y, respectively. The term

[max{g(σ2
Y , ρXY ), α(R, σ2

Y )}− g(σ2
Y , ρX′Y )]+, that appears in the definition of Γ(ρXX′), represents

the exponential rate of the probability that the GLD would select x[m′] as the decoded message

given that the empirical correlation coefficient between x[m] and x[m′] is a given number, denoted

ρXX′ . The term α(R, σ2
Y ) is interpreted as the typical exponent of the collective contribution of

all incorrect codewords at the denominator of (4). As explained also in [12], the probability that

x[m′] would be the decoded message given that x[m] was transmitted, is of the exponential order

of exp{−nΓ(ρXX′)}. Therefore, the overall error probability,

Pe(Cn) =
1

M

∑
m

∑
m′ 6=m

Pr

{
x[m′] decoded

∣∣∣∣x[m] transmitted

}
·

=
∑
ρXX′

M(ρXX′) exp{−n[Γ(ρXX′) +R]}, (26)

is of the exponential order of maxρXX′ M(ρXX′) exp{−n[Γ(ρXX′) + R]}, where M(ρXX′) is the

typical number of codeword pairs (x[m],x[m′]) whose empirical correlation coefficient is about ρXX′

and the sum is over a fine grid in (−1, 1). Since there are about e2nR codeword pairs in Cn and

since the probability of event {xT [m] · x[m′]/(nP ) ≈ ρXX′} is about exp{−n
2 ln[1/(1− ρ2

XX′)], the

typical value of the number M(ρXX′) is of the exponential order of exp{n[2R− 1
2 ln[1/(1−ρ2

XX′)]},

whenever 2R− 1
2 ln[1/(1− ρ2

XX′) > 0, and is zero otherwise.

An alternative representation of Γ(ρXX′) is the following. Let X, X ′ and Y be zero–mean

random variables, defined as follows. The variables X and X ′ both have variance P and covariance

E(XX ′) = ρXX′P . Given X and X ′, let Y be defined as Y = aX + bX ′ + V , where V is zero–

mean wit variance σ2
V , and is uncorrelated to both X and X ′. Under this representation, we
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can transform the optimization variables of Γ(ρXX′), from {σ2
Y , ρXY , ρX′Y } to (a, b, σ2

V ), and then

Γ(ρXX′) becomes

Γ(ρXX′) =
1

2
ln(2πσ2) + inf

a,b,σ2
V

(
1

2σ2
([(a− 1)2 + 2ρXX′(a− 1)b+ b2]P + σ2

V )− 1

2
ln(2πeσ2

V )+

[
max

{
β

σ2
(a+ ρXX′b)P, α(R, [a2 + 2ρXX′ab+ b2]P + σ2

V )

}
− β

σ2
(ρXX′a+ b)P

]
+

)
,

where the infimum is over (a, b, σ2
V ) ∈ IR2 × IR+.

We observe that by eliminating the term α(R, [a2 + 2ρXX′ab + b2]P + σ2
V ), the expression of

Γ(ρXX′) simplifies dramatically, and hence also the expression of the TRC exponent. As we show

next, in this case, all the minimizations can be carried out in closed form. This elimination of the

term α(R, ·) yields a lower bound to the TRC exponent, which corresponds to a union bound of

the pairwise error events, {m → m′}, and which is tight at a certain range of low rates. Let us

define then

ΓL(ρXX′)
∆
=

1

2
ln(2πσ2) + inf

a,b,σ2
V

[
1

2σ2
([(a− 1)2 + 2ρXX′(a− 1)b+ b2]P + σ2

V )−

1

2
ln(2πeσ2

V ) +
βP

σ2
[a+ ρXX′b− ρXX′a− b)]+

]
=

1

2
ln(2πσ2) + inf

a,b,σ2
V

[
1

2σ2
([(a− 1)2 + 2ρXX′(a− 1)b+ b2]P + σ2

V )−

1

2
ln(2πeσ2

V ) +
βP

σ2
(1− ρXX′)[a− b]+

]
=

1

2
ln(2πσ2) + inf

a,b,σ2
V

sup
0≤λ≤β

[
1

2σ2
([(a− 1)2 + 2ρXX′(a− 1)b+ b2]P + σ2

V )−

1

2
ln(2πeσ2

V ) +
λP

σ2
· (1− ρXX′)(a− b)

]
(a)
=

1

2
ln(2πσ2) + sup

0≤λ≤β
inf
a,b,σ2

V

[
1

2σ2
([(a− 1)2 + 2ρXX′(a− 1)b+ b2]P + σ2

V )−

1

2
ln(2πeσ2

V ) +
λP

σ2
(1− ρXX′)(a− b)

]
(b)
= sup

0≤λ≤β
inf
a,b

[
P

2σ2
· [(a− 1)2 + 2ρXX′(a− 1)b+ b2]+

λP

σ2
(1− ρXX′)(a− b)

]
= sup

0≤λ≤β

P

σ2
· λ(1− λ)(1− ρXX′)

=
P

σ2
· β̂(1− β̂) · (1− ρXX′), (27)

12



where β̂ = min{β, 1
2}. Here, the passage (a) is allowed by the minimax theorem as the objective is

convex in (a, b, σ2
V ) and affine (and hence concave) in λ and passage (b) is by the simple fact that

the optimal σ2
V turns out to be equal to σ2. Thus, for β ≥ 1

2 ,

ΓL(ρXX′) =
P

4σ2
· (1− ρXX′)

∆
=

snr

4
· (1− ρXX′). (28)

Finally,

Etrc(R) ≥ E−trc(R)

∆
= inf

|ρXX′ |≤
√

1−e−4R

[
snr

4
· (1− ρXX′)−

1

2
ln(1− ρ2

XX′)−R
]

=
snr

4
− w

(
snr

4
, 2R

)
−R

=


snr

4 (1−
√

1− e−4R) +R R ≤ R∗
snr

4 −
snr2/8

1+
√

1+snr2/4
+ 1

2 ln

(
1+
√

1+snr2/4
2

)
−R R ≥ R∗

(29)

where

R∗ =
1

4
ln

(
1 +

√
1 + snr2/4

2

)
. (30)

The lower bound, E−trc(R), has a non–affine convex part, starting with slope −∞ at rate R = 0, and

ending with slope −1 at rate R∗, and so, it is tangential to the straight–line part that starts

at rate R∗. The point R = R∗ exhibits a glassy phase transition [11, Chap. 6], [14, Chap-

ters 5,6] in the behavior of E−trc(R): for R ≤ R∗, the error probability (see second line of eq.

(26)) is dominated by a sub–exponential number of incorrect codewords at Euclidean distance

d =
√

2nP (1−
√

1− e−4R) from the transmitted codeword, whereas for R > R∗, there are expo-

nentially exp{n[2R − 1
2 ln 1

1−ρ2∗
]} = exp{2n(R − R∗)} dominant codewords at Euclidean distance

d =
√

2nP (1− ρ∗), where ρ∗ = snr/[2(1 +
√

1 + snr2/4)]. The straight–line part of eq. (29) can

readily be recognized as R0−R, which is exactly the straight–line part of the random coding error

exponent below the critical rate. Thus, the TRC exponent exceeds the random coding exponent at

least in the range R ∈ [0, R∗]. Obviously, for R ≥ Rcrit ≥ R∗, the exact TRC exponent must coin-

cide with the random coding exponent, as the TRC exponent is sandwiched between the random

coding exponent and the sphere–packing exponent, which in turn coincide for R ≥ Rcrit. Thus, the

interesting range to explore the behavior of the TRC exponent is the range of low rates.

At the low–rate extreme, it is readily observed that the lower bound (29) yields Etrc(0) ≥ snr/4,

which must be, in fact, an equality, since it coincides with the minimum–distance upper bound on

13



the best zero–rate achievable error exponent. In this context, a natural question that arises is the

following: what is the range of low rates where the above derived lower bound to the TRC exponent

is tight, i.e., E−trc(R) = Etrc(R)? In other words, at what range of rates, the union bound of the

pairwise error probabilities is of the same exponential order as the exact TRC exponent? We will

propose an answer to this question in more generality in the sequel, where we consider the colored

Gaussian noise model.

B. Parallel Additive Gaussian Channels and the Colored Gaussian Channel

We next move on to handle the model of independent parallel Gaussian channels, which will then

be used pass to the colored Gaussian channel, as described above. Similarly as in the case of

the AWGN channel, considered in Subsection III.A, here too, the elimination of the term α(R, ·)

contributes dramatically to the simplification of the ultimate TRC exponent formula (lower bound).

Moreover, without it, the resulting expression would be associated with a very complicated calculus

of variations. Also, as before, this simplification comes at no loss of tightness at some range of low

rates, as will be shown in the sequel.

Consider the setup defined in Subsection II.B.2, and to avoid cumbersome notation, we hence-

forth omit the subscript n of Pi,n, σ2
i,n, and σ̃2

i,n, and denote them instead by Pi, σ
2
i , and σ̃2

i ,

respectively. We will also use the notation µi = σ2
i /σ̃

2
i , and snri = Pi/σ

2
i . For a given λ ≥ 0 and

θ ≥ 1, let us define

A(snri, µi, λ, θ)
∆
= inf
|ρ|<1

{
λµi(1− λµi)snri(1− ρ) +

θ

2
ln

1

1− ρ2

}
. (31)

More explicitly, denoting

Si = λµi(1− λµi)snri, (32)

the minimizing ρ is given by

ρ∗i =

√
θ2 + 4S2

i − θ
2Si

=
2Si√

θ2 + 4S2
i + θ

, (33)

and then

A(snri, µi, λ, θ) = Si

1− 2Si√
θ2 + 4S2

i + θ

− θ

2
ln

 2θ√
θ2 + 4S2

i + θ

 . (34)
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Our first main result in this subsection is provided by the following theorem, whose proof

appears in Section V.B.

Theorem 2 For the model of the parallel Gaussian channels described in Subsection II.B.2, let

`→∞ while n is kept fixed. Then,

Etrc(R) ≥ sup
θ≥1

sup
0≤λ≤β

{
1

n

n−1∑
i=0

A(snri, µi, λ, θ)− (2θ − 1)R

}
. (35)

Let SX(ω), SZ(ω), and S̃Z(ω) be defined as in Subsection II.B.2, and define snr(ω) = SX(ω)/SZ(ω)

and µ(ω) = SZ(ω)/S̃Z(ω). The following corollary follows from Theorem 2 using the eigenvalue

distribution theorem, by taking the limit n→∞.

Corollary 1 For the colored Gaussian channel described in Subsection II.B.2,

Etrc(R) ≥ E−trc(R)
∆
= sup

θ≥1
sup

0≤λ≤β

{
1

2π

∫ 2π

0
A[snr(ω), µ(ω), λ, θ]dω − (2θ − 1)R

}
. (36)

Referring to Corollary 1, let us denote

B(θ) = sup
0≤λ≤β

1

2π

∫ 2π

0
A[snr(ω), µ(ω), λ, θ]dω, (37)

so that

E−trc(R) = sup
θ≥1

[B(θ)− (2θ − 1)R]. (38)

A few comments are in order concerning these results.

1. The matched case. Note that in the matched case (µi ≡ 1 for parallel channels, or µ(ω) ≡ 1

for the colored channel), the optimal value2 of λ is β̂ = min{β, 1
2}. This simplifies the formula in

the sense that it remains to maximize (numerically) over one parameter only – the parameter θ. It

also implies that for any β ≥ 1
2 , the GLD is as good as the (deterministic) ML decoder in terms of

(our lower bound to) the TRC exponent.

2. General properties of the TRC exponent function. The behavior of the function E−trc(R)

is similar to the that of the AWGN case. We first observe that E−trc(0) = supθ≥1B(θ) = limθ→∞B(θ)

2Of course, any positive constant c, for which µi ≡ c (or µ(ω) ≡ c), is also associated with matched decoding, but
the optimization over λ would absorb such a constant.
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since B(θ) is a monotonically non-decreasing function. For low positive rates, E−trc(R) is a convex

curve, with an initial slope of −∞. In this range, it can be represented parametrically (with a

slight abuse of notation) by the pair of equations,

R(θ) =
1

2
· dB(θ)

dθ
∆
=
B′(θ)

2
(39)

E−trc(θ) = B(θ)− (2θ − 1)R(θ), (40)

where θ exhausts the range [1,∞). Since B(θ) is non–decreasing and concave (because it is obtained

as the minimum over affine functions of θ), then as R increases, the negative slope of Etrc(R)

becomes milder: it is given by −(2θR − 1), where θR is the solution θ to the equation B′(θ) = 2R.

Since B′(θ) is a decreasing function (due to the concavity of B(θ)), then so is θR. The curvy part

of E−trc(R) ends at the point where θR = 1. This happens at rate R∗ = B′(1)/2. For R ≥ R∗,

E−trc(R) = B(1)−R, where B(1) is given by

B(1) = sup
0≤λ≤β

1

2π

∫ 2π

0
A[snr(ω), µ(ω), λ, 1]dω. (41)

It is shown in Appendix B that this expression coincides also with R0, the zero–rate random coding

exponent, and so, in the range of rates between R∗ and Rcrit, our lower bound to the TRC exponent

coincides with the classical random coding exponent.

To calculate R∗, we have

R∗ =
1

2
· ∂
∂θ

[
1

2π

∫ 2π

0
A[snr(ω), µ(ω), λ, θ]dω

]
θ=1

=
1

4π

∫ 2π

0

(
∂

∂θ
A[snr(ω), µ(ω), λ, θ]

)
θ=1

dω

=
1

4π

∫ 2π

0

∂

∂θ

[
λµ(ω)[1− λµ(ω)]snr(ω)(1− ρθ) +

θ

2
ln

1

1− ρ2
θ

]
θ=1

dω

(a)
=

1

4π

∫ 2π

0

1

2
ln

1

1− ρ2
1

dω

=
1

8π

∫ 2π

0
ln

[
1 +

√
1 + 4λ2µ2(ω)[1− λµ(ω)]2snr2(ω)

2

]
dω, (42)

where λ is the achiever of the TRC exponent and ρθ is the optimal ρ for a given θ. Equality (a)

is obtained by observing that upon differentiating the integrand, the internal derivative dρθ/dθ is

multiplied by an expression that vanishes due to the fact that ρθ (which is also a function of ω) is
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optimal. In the matched case (µ(ω) ≡ 1, which is ML decoding), where the optimal value of λ is

1
2 , this becomes

R∗ =
1

8π

∫ 2π

0
ln

[
1 +

√
1 + snr2(ω)/4

2

]
dω, (43)

thus recovering the expression (30) of R∗ of the AWGN channel as a special case. Obviously, Rcrit

must be larger than R∗, otherwise, the TRC exponent would exceed the sphere–packing exponent

along the range [Rcrit, R∗], which is a clear contradiction.

3. Tightness at low rates. Recall that in our analysis, both here and in the AWGN channel case,

we have ignored the term α(R, ·) that designates the contribution of all the incorrect codewords

in the posterior of the GLD (see eqs. (4) and (13)). It turns out that at least for deterministic

mismatched decoding at low rates, this simplification comes at no cost in the exponential tightness.

More precisely, there is an interval of low rates [0, Rt], where E−trc(R) = Etrc(R). In Appendix C,

we derive a non–trivial lower bound to Rt.

4. The zero–rate TRC exponent. For R = 0, we have

E−trc(0) = sup
θ≥1

sup
0≤λ≤β

1

2π

∫ 2π

0
A[snr(ω), µ(ω), λ, θ]dω

= sup
0≤λ≤β

lim
θ→∞

1

2π

∫ 2π

0
A[snr(ω), µ(ω), λ, θ]dω

= sup
0≤λ≤β

1

2π

∫ 2π

0
λµ(ω)[1− λµ(ω)]snr(ω)dω

= sup
0≤λ≤β

{
λ · 1

2π

∫ 2π

0
µ(ω) · snr(ω)dω − λ2 · 1

2π

∫ 2π

0
µ2(ω) · snr(ω)dω

}
. (44)

Now, if

β <

∫ 2π
0 µ(ω) · snr(ω)dω

2
∫ 2π

0 µ2(ω) · snr(ω)dω
(45)

then

E−trc(0) = β · 1

2π

∫ 2π

0
µ(ω) · snr(ω)dω − β2 · 1

2π

∫ 2π

0
µ2(ω) · snr(ω)dω. (46)

Otherwise, the optimal λ is given by

λ∗ =

∫ 2π
0 µ(ω) · snr(ω)dω

2
∫ 2π
0 µ2(ω) · snr(ω)dω

, (47)
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and then

E−trc(0) =
1

8π
·

[∫ 2π
0 µ(ω) · snr(ω)dω

]2
∫ 2π

0 µ2(ω) · snr(ω)dω
. (48)

Observe that by the Cauchy–Shwartz inequality

1

8π
·

[∫ 2π
0 µ(ω) · snr(ω)dω

]2
∫ 2π

0 µ2(ω) · snr(ω)dω

=
1

8π
·

[∫ 2π
0

√
µ2(ω) · snr(ω) ·

√
snr(ω)dω

]2
∫ 2π

0 µ2(ω) · snr(ω)dω

≤ 1

8π
·
∫ 2π

0 µ2(ω) · snr(ω)dω ·
∫ 2π

0 snr(ω)dω∫ 2π
0 µ2(ω) · snr(ω)dω

=
1

8π
·
∫ 2π

0
snr(ω)dω, (49)

with equality iff µ(ω) = const. for almost every ω, which is the matched case.

5. The continuous–time colored Gaussian channel. A very similar analysis applies to the

continuous–time colored Gaussian channel. Here, we begin from ` non–overlapping frames, each

of length T0 seconds. The resulting expression of logPe(Cn), using the very same ideas, would

be of the general form ` sup
∑
iG[λi(T0)], where λi(T0) are the eigenvalues pertaining to the noise

autocorrelation function (see [6, Chap. 8]). But

` · sup
∑
i

G[λi(T0)] = `T0 · sup
1

T0

∑
i

G[λi(T0)],

which for large T0, behaves like

`T0 · sup
1

2π

∫ +∞

−∞
G[SZ(ω)]dω = T · sup

1

2π

∫ +∞

−∞
G[SZ(ω)]dω,

where T = `T0 is the overall duration of all ` frames of length T0. Thus, in the continuous–time

case, we obtain exactly the same error exponent formula, except for two differences: (i) ω is now

analog frequency (in units of radians per second, rather than just radians), and the range of all

frequency–domain integrals is from −∞ to +∞, rather than from 0 to 2π. (ii) The exponent

is in terms of the duration T , rather than the integer N , namely, Pe(Cn)
·

= e−ET rather than

Pe(Cn)
·

= e−En.
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IV. Water–Pouring Optimization of the Input Power Spectrum

A natural question that always arises in the context of parallel Gaussian channels and the colored

Gaussian channel is the question of the optimal input spectrum. This section is devoted to address

this question in the context of the TRC exponent.

The function A(snr, µ, λ, θ) is concave in snr (as it is the minimization of affine functions of

snr over the parameter ρ), and considering first, the parallel Gaussian channels, we would like to

maximize
∑n−1
i=0 A(snri, µi, λ, θ) subject to the constraints,

∑n−1
i=0 σ

2
i snri ≤ nP and snri ≥ 0 for all

i. This amounts to the Lagrangian,

n−1∑
i=0

A(snri, µi, λ, θ) + ξ

(
nP −

n−1∑
i=0

σ2
i snri

)
+
n−1∑
i=0

νisnri. (50)

Denoting by Ȧ(snri, µi, λ, θ) the partial derivative of A(snri, µi, λ, θ) w.r.t. snri, the conditions for

optimality are

Ȧ(snri, µi, λ, θ) ≤ ξσ2
i , i = 0, 1, . . . , n− 1 (51)

with equality whenever snri > 0. The solution is

snri =
[
Ȧ−1(ξσ2

i , µi, λ, θ)
]

+
, (52)

where Ȧ−1(·, µi, λ, θ) is the inverse3 of Ȧ(·, µi, λ, θ) and ξ ≥ Ȧ(0, µi, λ, θ)/σ
2
min (with σ2

min
∆
=

mini: snri=0 σ
2
i ) is chosen such that

n−1∑
i=0

σ2
i

[
Ȧ−1(ξσ2

i , µi, λ, θ)
]

+
= nP. (53)

We can now easly pass to continuous–frequency integrals as before and obtain

SX(ω) = SZ(ω) ·
[
Ȧ−1(ξSZ(ω), µ(ω), λ, θ)

]
+
, (54)

and finally maximize the resulting error–exponent expression over λ and θ. More specifically, using

the concrete form of the function A, we have:

A(snr, µ, λ, θ) = min
ρ

{
λµ(1− λµ)snr(1− ρ) +

θ

2
· ln 1

1− ρ2

}
= λµ(1− λµ)snr · [1− ρ(snr)] +

ϑ

2
· ln 1

1− ρ2(snr)
, (55)

3Since A is concave in snr, its derivative monotonically decreasing and hence the inverse exists.
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which leads to

Ȧ(snr, µ, λ, θ) = λµ(1− λµ)[1− ρ(snr)] +

[
−λµ(1− λµ)snr +

θρ(snr)

1− ρ2(snr)

]
· dρ(snr)

dsnr

= λµ(1− λµ)[1− ρ(snr)], (56)

where the second equality is due to the fact that the expression in the square brackets, which is

the derivative of A w.r.t. ρ, must vanish for ρ(snr), the optimal value of ρ. Thus, the optimality

condition is

λµ(1− λµ)[1− ρ(snri)] ≤ ξσ2
i , (57)

with equality when snri > 0, or, equivalently,

ρ(snri) =
2λµ(1− λµ)snri/2

θ +
√
θ2 + 4λ2µ2(1− λµ)2snr2

i

=

[
1− ξσ2

i

λµ(1− λµ)

]
+

. (58)

Upon solving for snri, one obtains

snri =
1

λµi(1− λµi)
· θ[1− ξσ2

i /{λµi(1− λµi)}]+
1− [1− ξσ2

i /{λµi(1− λµi)}]2+
. (59)

Passing to the limit of the continuous frequency domain, we obtain

SX(ω) =
SZ(ω)

λµ(ω)[1− λµ(ω)]
· θ[1− ξSZ(ω)/{λµ(ω)[1− λµ(ω)])}]+

1− [1− ξSZ(ω)/{λµ(ω)[1− λµ(ω)]}]2+

=

{
θ{λµ(ω)[1−λµ(ω)]−ξSZ(ω)}
2ξλµ(ω)[1−λµ(ω)]−ξ2SZ(ω)

ξSZ(ω) ≤ λµ(ω)[1− λµ(ω)]

0 elsewhere

(60)

or, denoting B = 1/4ξ,

SX(ω) =

{
4θB{4Bλµ(ω)[1−λµ(ω)]−SZ(ω)}

8Bλµ(ω)[1−λµ(ω)]−SZ(ω) SZ(ω) ≤ 4Bλµ(ω)[1− λµ(ω)]

0 elsewhere

=
4θB[4Bλµ(ω){1− λµ(ω)} − SZ(ω)]+

4Bλµ(ω)[1− λµ(ω)] + [4Bλµ(ω){1− λµ(ω)} − SZ(ω)]+
, (61)

where B is chosen such that

1

2π

∫ 2π

0

4B[4Bλµ(ω){1− λµ(ω)} − SZ(ω)]+
4Bλµ(ω)[1− λµ(ω)] + [4Bλµ(ω){1− λµ(ω)} − SZ(ω)]+

· dω =
P

θ
. (62)

Note that the optimum input spectrum depends on R, via the variable θ, whose optimal value

depends on R. When θ →∞ (R → 0), the r.h.s. goes to zero, and B must be chosen just slightly
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above minω SZ(ω)/{λµ(ω)[1− λµ(ω)]}, in order to comply with the power constraint. This means

that SX(ω) would tend to concentrate all the power at the frequency ω∗, which achieves this

minimum.

In the matched case, where λµ(ω) ≡ 1/2, we obtain

SX(ω) =
4θB[B − SZ(ω)]+
B + [B − SZ(ω)]+

. (63)

This optimal spectral power distribution is identical to that of the ordinary expurgated exponent for

parallel additive Gaussian channel (see [6, eq. (7.5.51), p. 352]). This should not be very surprising

as the expurgated exponent and the TRC exponent are closely related [1], [12].

V. Proofs

For the proofs, we will need some additional notation and a few preliminary facts.

The empirical variance of a sequence x ∈ IRn is defined as

σ̂2
x =

1

n

n∑
i=1

x2
i =
‖x‖2

n
. (64)

For a given ε > 0, the Gaussian type class of x ∈ IRn with tolerance ε, will be defined as

Tε(x) =
{
x′ : |σ̂2

x′ − σ̂2
x| ≤ ε

}
. (65)

The differential entropy associated with σ̂2
x, which is the Gaussian empirical entropy of x, will be

defined as

ĥx(X) =
1

2
ln(2πeσ̂2

x). (66)

Similar conventions will apply to conditional empirical conditional types and empirical conditional

Gaussian differential entropies and mutual informations. The empirical covariance of (x,y) ∈

IRn × IRn will be defined as

Ĉxy =
1

n

n∑
i=1

xiyi =
xTy

n
, (67)

The empirical correlation coefficient of (x,y) ∈ IRn × IRn will be defined as

ρ̂xy =
Ĉxy

σ̂xσ̂y
. (68)
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Accordingly, for a given ε > 0, the Gaussian conditional type class of y ∈ IRn given x ∈ IRn, with

tolerance ε, will be defined as

Tε(y|x) =
{
y′ : |σ̂2

y′ − σ̂2
y| ≤ ε, |Ĉxy′ − Ĉxy| ≤ ε

}
. (69)

The Gaussian empirical conditional entropy of y given x will be defined as

ĥxy(Y |X) =
1

2
ln[2πeσ̂2

y(1− ρ̂2
xy)] =

1

2
ln

[
2πe

(
σ̂2
y −

Ĉ2
xy

σ̂2
x

)]
, (70)

and so, the Gaussian empirical mutual information is given by

Îxy(X;Y ) = ĥy(Y )− ĥxy(Y |X) =
1

2
ln

1

1− ρ̂2
xy

. (71)

Note that ĥxy(X|Y ) can also be presented as

ĥxy(X|Y ) =
1

2
ln[2πeσ̂2

y|x], (72)

where

σ̂2
y|x = min

a∈IR

1

n
‖y − ax‖2 = σ̂2

y(1− ρ̂2
xy), (73)

and so, the notion of the Gaussian conditional empirical differential entropy can easily apply to

conditioning on more than one vector. For example, given (x,x′,y) ∈ (IRn)3,

ĥxx′y(Y |X,X ′) =
1

2
ln[2πeσ̂2

y|xx′ ], (74)

with

σ̂2
y|xx′ = min

a,b∈IR

1

n
‖y − ax− bx′‖2

= min
a,b∈IR

{σ̂2
y − 2(aĈxy + bĈx′y) + (a2 + 2abρ̂xx′ + b2)P}. (75)

For future use, note that σ̂2
y|xx′ is a concave function of (σ̂2

y, Ĉxy, Ĉx′y), as it is obtained by

minimizing an affine function of these variables. Since the logarithmic function is monotonically

increasing and concave as well, then so is ĥxx′y(Y |X,X ′). Finally, for a given ε > 0 the Gaussian

conditional type class of y ∈ IRn given x,x′ ∈ IRn, with tolerance ε, will be defined as

Tε(y|x,x′) =
{
ỹ : |σ̂2

ỹ − σ̂
2
y| ≤ ε, |Ĉxỹ − Ĉxy| ≤ ε, |Ĉx′ỹ − Ĉx′y| ≤ ε

}
. (76)

In the sequel, we will need the following simple inequality:

Vol{Tε(y|x,x′)} ≤ exp{n[ĥxx′y(Y |X,X ′) +O(ε)]}, (77)

which is easily proved using the same technique as in [10, Lemma 3].
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A. Proof of Theorem 1

The proof is based on the same line of thought as in [12, Theorem 1], except that some modifications

have to be carried out in order to address the continuous alphabet case considered here. As in [12],

we use the identity

E{lnPe(Cn)} = lim
r→∞

r · ln
(
E{Pe(Cn)1/r}

)
, (78)

and so, we first focus on the calculation of E{Pe(Cn)1/r}. Another simple observation (easily proved

using the Chernoff bound) that will be used in the proof is that for every E > 0, there exists a

sufficiently large constant B > 0, such that for every m ∈ {0, 1, . . . ,M − 1},

Pr

{
‖Y ‖2 ≥ nB or ‖Y ‖2 ≤ n/B

∣∣∣∣x[m] transmitted

}
≤ e−nE , (79)

and so if we take E = Eex(0), the zero–rate expurgated exponent, we can find a constant B such

that the contribution of Pr{‖Y ‖2 ≤ n/B} + Pr{‖Y ‖2 ≥ nB} cannot affect the error exponent

Etrc(R) ≤ Eex(0) at any coding rate (see also [10] for a similar argument). In other words, if the

decoder would declare an error for every y whose norm is either larger than nB or smaller than

n/B, there would be no degradation in the error exponent. Consequently, it is enough to focus

only on y–vectors whose norms are in the range [n/B, nB]. Let us denote this set of vectors by

Hn(B). Now,

Pe(Cn) =
1

M

M−1∑
m=0

∑
m′ 6=m

∫
IRn

P (y|xm) · exp{nβxT [m′] · y/σ2}∑M−1
m̃=0 exp{nβxT [m̃] · y/σ2}

· dy

=
1

M

M−1∑
m=0

∑
m′ 6=m

∫
IRn

P (y|xm) · exp{nβxT [m′] · y/σ2}
exp{nβxT [m] · y/σ2}+

∑
m̃6=m exp{nβxT [m̃] · y/σ2}

· dy

·
=

1

M

M−1∑
m=0

∑
m′ 6=m

∫
Hn(B)

P (y|xm) · exp{nβxT [m′] · y/σ2}
exp{nβxT [m] · y/σ2}+ Zm(y)

· dy, (80)

where we have defined

Zm(y) =
∑
m̃6=m

exp{nβxT [m̃] · y/σ2}. (81)

We now argue that for every ε > 0 (see Appendix for the proof),

Pr
{
Cn : ∃ 0 ≤ m < M, y ∈ Hn(B) : Zm(y) < exp{n[α(R− ε, σ̂2

y)− δ(ε)]}
} ·

= e−n∞, (82)
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where δ(ε) = 2β
√
PBε/σ2. We then have (neglecting ε, which is arbitrarily small),

E
{

[Pe(Cn)]1/r
} ·
≤ E

 1

M

M−1∑
m=0

∑
m′ 6=m

∫
Hn(B)

P (y|xm)×

min

{
1,

exp{nβxT [m′]y/σ2}
exp{nβxT [m]y/σ2}+ exp{nα(R, σ̂2

y)}

}
dy

]1/r


·
= E

 1

M

M−1∑
m=0

∑
m′ 6=m

∫
Hn(B)

P (y|xm)×

min

{
1,

exp{nβxT [m′]y/σ2}
exp{nβxT [m]y/σ2}+ exp{nα(R, σ̂2

y)}

}
dy

]1/r


·
= E

 1

M

M−1∑
m=0

∑
m′ 6=m

∫
Hn(B)

P (y|xm)×

exp

{
−n

[
max

{
β
√
Pσ̂y

σ2
ρ̂x[m]y, α(R, σ̂2

y)

}
−
β
√
Pσ̂y

σ2
ρ̂x[m′]y

]
+

}
dy

]1/r
 ,

where we have neglected the double–exponentially small contribution of codes that violate (82).

The inner integral over y is of the form∫
Hn(B)

(2πσ2)−n/2 exp

{
−‖y − x[m]‖2

2σ2

}
· exp{−nK(σ̂y, ρ̂x[m]y, ρ̂x[m′]y)}dy,

where

K(σY , ρXY , ρX′Y ) =

[
max

{
β
√
PσY
σ2

ρXY , α(R, σ2
Y )

}
− β
√
PσY
σ2

ρX′Y

]
+

.

Since K is not a quadratic function, this is not a simple Gaussian integral, but its exponential

order can be assessed using a Gaussian analogue of the method of types (see, e.g., the analy-

sis in [10]). For the given two codewords, x[m] and x[m′], we divide Hn(B) into conditional

types {Tε(y|x[m],x[m′])}. The number of such conditional types is finite: since ‖y‖2 ≤ nB and

‖x[m]‖2 = ‖x[m′]‖2 = nP , then Ĉx[m]y and Ĉx[m′]y can take on values only in the interval

[−
√
PB,

√
PB], and so, there are no more than (B/ε) · (2

√
PB/ε)2 = 4PB2/ε3 conditional types

classes {Tε(y|x[m],x[m′])} within Hn(B), resulting from a grid of step size ε in each of the ranges

of σ̂2
y, Ĉx[m]y, and Ĉx[m′]y. Therefore, the above integral is of the exponential order of

sup
y∈Hn(B)

Vol{Tε(y|x[m],x[m′])} · (2πσ2)−n/2 exp

{
−‖y − x[m]‖2

2σ2

}
×

exp{−nK(σ̂y, ρ̂x[m]y, ρ̂x[m′]y)}
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·
= exp

{
−n inf

y

[
1

2
ln(2πσ2) +

σ̂2
y − 2

√
Pσ̂y + P

2σ2
− ĥy|x[m]x[m′](Y |X,X ′)+

K(σ̂y, ρ̂x[m]y, ρ̂x[m′]y)
]}

·
≤ exp

{
−n inf

σY ,ρXY ,ρX′Y

[
1

2
ln(2πσ2) +

σ2
Y − 2

√
PσY + P

2σ2
− 1

2
ln(2πeσ2

Y |XX′)+

K(σY , ρXY , ρX′Y )]} , (83)

where the infimum over (σY , ρXY , ρX′Y ) is such that the matrix (24) (with ρXX′ = ρ̂x[m]x[m′]) is

positive semi–definite. Using eqs. (75) and (77), it is readily observed that this integral is of the

exponential order of e−nΓ(ρx[m]x[m′]), where the function Γ(·) is defined in (22). Thus, we have

shown that

E
{

[Pe(Cn)]1/r
} ·
≤ E


 1

M

M−1∑
m=0

∑
m′ 6=m

exp{−nΓ(ρx[m]x[m′])}

1/r


≤ enR/rE

(∑
ρi

M(ρi) exp{−nΓ(ρi)}
)1/r

≤ enR/r
∑
ρi

E{M(ρi)
1/r} · exp{−nΓ(ρi)/r} (84)

where {ρi} form a fine quantization grid over the interval (−1, 1) and M(ρi) is the number of

codeword pairs {x[m],x[m′]} whose empirical correlation coefficient fall in the quantization bin of

ρi. The remaining part of the proof follows exactly the same lines as the proof of [12, Theorem 1],

except that joint types {QXX′} (and the conditional types, {QX′|X}) of [12] are now indexed by

{ρi} and I(Q) is replaced by 1
2 ln 1

1−ρ2
XX′

.

B. Proof of Theorem 2

The proof goes along the same lines as the proof of Theorem 1, except that there are n independent

copies of all elements produced from `–vectors, and so, we will outline only the main differences.

Here we denote

σ̂2
yi

=
‖yi‖2

`
(85)

Ĉxiyi
=

xTi yi
`

. (86)
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For a given code Cn, a given transmitted codeword x[m] and a given competing codeword x[m′],

Pr{m′ decoded

∣∣∣∣ m transmitted}

=

∫
IRN

P (y|x[m]) · Pr{m̂ = m′|y}dy

≤
∫

IRN

[
n−1∏
i=0

(2πσ2
i )
−`/2 exp{−‖yi − xi[m]‖2/(2σ2

i )}
]
×

min

{
1, exp

[
β
n−1∑
i=0

(
xTi [m′]yi

σ̃2
i

− xTi [m]yi
σ̃2
i

)]}
dy

·
= max

{σ̂2
yi
,Ĉxi[m]y ,Ĉxi[m

′]y}i

[
n−1∏
i=0

Vol{Tε(yi|xi[m],xi[m
′])}×

(2πσ2
i )
−`/2 exp{−‖yi − xi[m]‖2/(2σ2

i )}
]
· exp

−β
[
n−1∑
i=0

(
xTi [m]yi
σ̃2
i

− xTi [m′]yi
σ̃2
i

)]
+


·

= exp

−` min
{σ̂2
yi
,Ĉxi[m]y ,Ĉxi[m

′]y}i

n−1∑
i=0

1

2
ln(2πσ2

i ) +
σ̂2
yi
− 2Ĉxi[m]yi

+ Pi

2σ2
i

−

ĥxi[m]xi[m′]y(Y |X,X ′)
)

+ β

[
n−1∑
i=0

Ĉxi[m]yi
− Ĉxi[m′]yi

σ̃2
i

]
+


·

= exp

−` inf
{σ2
yi
,Ĉxi[m]yi

,Ĉxi[m
′]yi
}i

n−1∑
i=0

1

2
ln(2πσ2

i ) +
σ̂2
yi
− 2Ĉxi[m]yi

+ Pi

2σ2
i

−

ĥxi[m]xi[m′]y(Y |X,X ′)
)

+ sup
0≤λ≤β

n−1∑
i=0

Ĉxi[m]yi
− Ĉxi[m′]yi

σ̃2
i

}

= exp

−` sup
0≤λ≤β

inf
{σ2
yi
,Ĉxi[m]yi

,Ĉxi[m
′]yi
}i

n−1∑
i=0

1

2
ln(2πσ2

i ) +
σ̂2
yi
− 2Ĉxi[m]yi

+ Pi

2σ2
i

−

ĥxi[m]xi[m′]y(Y |X,X ′)
)

+
n−1∑
i=0

Ĉxi[m]yi
− Ĉxi[m′]yi

σ̃2
i

}

= exp

−` sup
0≤λ≤β

n−1∑
i=0

inf
{σ2
yi
,Ĉxi[m]yi

,Ĉxi[m
′]yi
}i

1

2
ln(2πσ2

i ) +
σ̂2
yi
− 2Ĉxi[m]yi

+ Pi

2σ2
i

−

ĥxi[m]xi[m′]y(Y |X,X ′) +
n−1∑
i=0

Ĉxi[m]yi
− Ĉxi[m′]yi

σ̃2
i

)}

= exp

{
−` sup

0≤λ≤β

n−1∑
i=0

λµi(1− λµi)snri(1− ρi[m,m′])
}
, (87)

where ρi[m,m
′] is the empirical correlation coefficient between xi[m] and xi[m

′], and where the last

step is obtained from the minimization of each term over {σ2
yi
, Ĉxi[m]yi

, Ĉxi[m′]yi
}, very similarly
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as is done in eq. (27). The proof is completed similarly as in [12] by showing that the typical

number of codeword pairs {x[m],x[m′]} for which the segmental empirical correlation coefficients

are around (ρ0, ρ1, . . . , ρn−1) (within a fine grid) is of the exponential order of

M(ρ0, ρ1, . . . , ρn−1)
·

= exp

{
N

[
2R− 1

2n

n−1∑
i=0

ln
1

1− ρ2
i

]}
(88)

as long as 1
2n

∑n−1
i=0 ln 1

1−ρ2i
< 2R, and M(ρ0, ρ1, . . . , ρn−1) = 0 otherwise. Thus, for the typical

code,

Pe(Cn)
·
≤ 1

M

M−1∑
m=0

∑
m′ 6=m

exp

{
−` sup

0≤λ≤β

n−1∑
i=0

λµi(1− λµi)snri(1− ρi[m,m′])
}

·
= e−NR

∑
ρ0,ρ1,...,ρn−1

M(ρ0, ρ1, . . . , ρn−1)×

exp

{
−` sup

0≤λ≤β

n−1∑
i=0

λµi(1− λµi)snri(1− ρi)
}

·
= exp

{
−N inf

ρ0,ρ1,...,ρn−1
sup

0≤λ≤β

1

n

n−1∑
i=0

[
λµi(1− λµi)snri(1− ρi) +

1

2
ln

1

1− ρ2
i

]
−R

}

·
= exp

{
−N sup

0≤λ≤β
inf

ρ0,ρ1,...,ρn−1

1

n

n−1∑
i=0

[
λµi(1− λµi)snri(1− ρi) +

1

2
ln

1

1− ρ2
i

]
−R

}
,

where the infimum is subject to the constraint 1
2n

∑n−1
i=0 ln 1

1−ρ2i
< 2R. This constrained minimiza-

tion at the exponent can be presented as

inf
ρ0,ρ1,...,ρn−1

sup
ϑ≥0

1

n

n−1∑
i=0

[
λµi(1− λµi)snri(1− ρi) +

1

2
ln

1

1− ρ2
i

+ ϑ

(
1

2
ln

1

1− ρ2
i

− 2R

)]
−R

= sup
ϑ≥0

1

n

n−1∑
i=0

inf
ρi

[
λµi(1− λµi)snri(1− ρi) +

1 + ϑ

2
ln

1

1− ρ2
i

]
− (2ϑ+ 1)R

= sup
θ≥1

1

n

n−1∑
i=0

inf
ρi

[
λµi(1− λµi)snri(1− ρi) +

θ

2
ln

1

1− ρ2
i

]
− (2θ − 1)R

= sup
θ≥1

1

n

n−1∑
i=0

A(snri, µi, λ, θ)− (2θ − 1)R, (89)

which is the relevant expression for Theorem 2.

Appendix A: Proof of Eq. (82)

For a given ε > 0, consider the set of vectors,

Hε
n(B) = Hn(B)

⋂
{y = (i1, i2, . . . , in) · 2ε : (i1, i2, . . . , in) ∈ Zn} , (A.1)
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namely, the grid of all vectors within Hn(B) whose components are integer multiples of 2ε. Obvi-

ously,

|Hε
n(B)| ≤ Vol{Hn(B)}

(2ε)n
≤ (2πeB)n/2

(2ε)n
=

(√
2πeB

2ε

)n
, (A.2)

in other words, the number of points within Hε
n(B) is exponential in n. If we prove that

Pr
{
∃m ∈ {0, 1, . . . ,M − 1}, y ∈ Hεn(B) : Zm(y) < exp{nα(R− ε, σ̂2

y)
} ·

= e−n∞. (A.3)

then the result will follow by continuity considerations as follows: if y and y′ differ by no more

than ε component-wise in absolute value, then for ε� 1/
√
B,

σ̂y =

√
1

n
‖y‖2

≥
√

1

n
(‖y′‖2 − 2

√
Bn
√
nε2 + nε2)

≥
√
σ̂2
y′ − 2

√
Bε

≥ σ̂y′ −
2
√
Bε

2σ̂y′

≥ σ̂y′ −
2
√
Bε

2/
√
B

= σ̂y′ −Bε. (A.4)

Thus,

α(R, σ̂2
y) = sup

|ρ|≤
√

1−e−2R

[
β
√
Pσ̂yρ

σ2
+

1

2
ln(1− ρ2)

]
+R

≥ sup
|ρ|≤
√

1−e−2R

[
β
√
P (σ̂y′ −Bε)ρ

σ2
+

1

2
ln(1− ρ2)

]
+R

≥ α(R, σ̂2
y′)−

β
√
PBε

σ2
. (A.5)

On the other hand,

Zm(y) =
∑
m′ 6=m

exp

{
βxT [m′]y

σ2

}

≤
∑
m′ 6=m

exp

{
β(xT [m′]y′ +

√
nP
√
nε2)

σ2

}

= exp

{
nβ
√
Pε

σ2

}
· Zm(y′). (A.6)
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It follows that if Zm(y) ≥ exp{nα(R − ε, σ̂2
y) for all (m,y) ∈ {0, 1, . . . ,M − 1} × Hεn(B), then

Zm(y) ≥ exp{n[α(R − ε, σ̂2
y) − δ(ε)]} for all (m,y) ∈ {0, 1, . . . ,M − 1} × Hn(B), where δ(ε) is as

defined above.

Since the number of pairs (m,y) ∈ {0, 1, . . . ,M − 1} × Hεn(B) is upper bounded by enR ·

(
√

2πeB/ε)n, which is exponential in n, it is enough to prove that

Pr
{
Zm(y) < exp{nα(R− ε, σ̂2

y)
} ·

= e−n∞ (A.7)

for every given (m,y) ∈ {0, 1, . . . ,M − 1} × Hεn(B), as the union bound over all these pairs will

not affect the super–exponential decay of the probability under discussion. The proof of this fact

is the same as the proof of the analogous result in [13, Appendix B], except that here Zm(y)

is approximated as
∑
iM(ρi) exp{βn

√
Pσ̂yρi/σ

2}, where {ρi} form a fine quantization grid with

spacing ε within the interval (−1, 1) and M(ρi) is the number of codewords other than x[m] whose

empirical correlation coefficient with y is between ρi−ε/2 and ρi+ε/2. The proof in [13, Appendix

B] applies here verbatim except that Q, g(Q) and I(Q) of [13] are replaced by ρi, β
√
Pσ̂yρi and

1
2 ln 1

1−ρ2i
, respectively.

Appendix B: Calculation of R0

In ordinary random coding under the same regime, we have the following. The pairwise error event

is:
n−1∑
i=0

x̃Ti yi
σ̃2
i

≥
n−1∑
i=0

xTi yi
σ̃2
i

, (B.1)

where xi represents the i–th segment of the transmitted codeword and x̃i stands for that of a

competing one. On substituting yi = xi + zi, this becomes

n−1∑
i=0

x̃Ti (xi + zi)

σ̃2
i

≥
n−1∑
i=0

xTi (xi + zi)

σ̃2
i

, (B.2)

or
n−1∑
i=0

(x̃i − xi)
Tzi

σ̃2
i

≥ `
n−1∑
i=0

Pi(1− ρi)
σ̃2
i

, (B.3)

where ρi is the empirical correlation coefficient between xi and x̃i. Now,

n−1∑
i=0

(x̃i − xi)
Tzi

σ̃2
i

∼ N
(

0, 2`
n−1∑
i=0

Piσ
2
i (1− ρi)
σ̃4
i

)
, (B.4)
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thus, the probability of the above event is

Pr

{
n−1∑
i=0

(x̃i − xi)
Tzi

σ̃2
i

≥ `
n−1∑
i=0

Pi(1− ρi)
σ̃2
i

}
= Q

 `
∑n−1
i=0 Pi(1− ρi)/σ̃2

i√
2`
∑n−1
i=0 Piσ

2
i (1− ρi)/σ̃4

i


·

= exp

−
`
[∑n−1

i=0 Pi(1− ρi)/σ̃2
i

]2
4
∑n−1
i=0 Piσ

2
i (1− ρi)/σ̃4

i

 , (B.5)

where Q(·) is the error function,

Q(x) =
1√
2π

∫ ∞
x

e−u
2/2du. (B.6)

The average pairwise probability of error is therefore given by

Pr

{
n−1∑
i=0

(x̃i − xi)
Tzi

σ̃2
i

≥ `
n−1∑
i=0

Pi(1− ρi)
σ̃2
i

}

·
= max

ρ1,...,ρn
exp

`
n−1∑
i=0

1

2
ln(1− ρ2

i )−
`
[∑n−1

i=0 Pi(1− ρi)/σ̃2
i

]2
4
∑n−1
i=0 Piσ

2
i (1− ρi)/σ̃4

i

 , (B.7)

where the term `
∑n−1
i=0

1
2 ln(1−ρ2

i ) accounts for the probabilistic weight of (ρ0, . . . , ρn−1). Therefore,

the exponent is

min
ρ0,...,ρn−1

 1

n

n−1∑
i=0

1

2
ln

1

1− ρ2
i

+

[∑n−1
i=0 Pi(1− ρi)/σ̃2

i

]2
4n
∑n−1
i=0 Piσ

2
i (1− ρi)/σ̃4

i


= min

ρ0,...,ρn−1

{
− 1

n

n−1∑
i=0

1

2
ln(1− ρ2

i ) + sup
λ≥0

[
λ · 1

n

n−1∑
i=0

Pi(1− ρi)
σ̃2
i

− λ2 · 1

n

n−1∑
i=0

Piσ
2
i (1− ρi)
σ̃4
i

]}

= sup
λ≥0

1

n

n−1∑
i=0

min
ρi

{
1

2
ln

1

1− ρ2
i

+ λ · Pi(1− ρi)
σ̃2
i

− λ2 · Piσ
2
i (1− ρi)
σ̃4
i

}

= sup
λ≥0

1

n

n−1∑
i=0

min
ρi

{
1

2
ln

1

1− ρ2
i

+
Pi
σ̃2
i

(
λ− λ2σ2

i

σ̃2
i

)
(1− ρi)

}

= sup
λ≥0

1

n

n−1∑
i=0

A(snri, µi, λ, 1),

(B.8)

and in the limit of large n,

R0 = sup
λ≥0

1

2π

∫ 2π

0
A[snr(ω), µ(ω), λ, 1]dω = B(1), (B.9)

as opposed to the zero–rate TRC exponent, which corresponds to

sup
λ≥0

1

2π

∫ 2π

0
A[snr(ω), µ(ω), λ,∞]dω.
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Appendix C: Tightness at Low Rates

As before, we begin from parallel channels, and then take the limit n→∞ in order to pass to the

continuous frequency domain. For deterministic decoding we also take the limit β → ∞. Let us

denote

G(x,y) =
1

n

n−1∑
i=0

xTi yi
σ̃2
i

(C.1)

and

α(R,y) = sup
n−1∑
i=0

√
Piσ̂yi

ρi

σ̃2
i

, (C.2)

where the supermum is over all (ρ0, ρ1, . . . , ρn−1) such that
∑n−1
i=0

1
2 ln 1

1−ρ2i
≤ nR. As in [12], the

TRC exponent for deterministic mismatched decoding is obtained by analyzing the probability of

the event G(xm′ ,y) ≥ max{G(xm,y), α(R,y)}, for a given code, taking the logarithm, and finally,

averaging over the code ensemble. As mentioned earlier, here we removed the term α(y, R) and

upper bounded by this probability by the probability of the event G(xm′ ,y) ≥ G(xm,y), which is

the union of pairwise error events. We would like to show now that there is a range of low rates

[0, Rt], where this bound is exponentially tight. Consider the chain of inequalities

Pr{G(x[m′],y) ≥ G(x[m],y)}

= Pr{G(x[m′],y) ≥ G(x[m],y) ≥ α(R,y)}+ Pr{G(x[m′],y) ≥ α(R,y) ≥ G(x[m],y)}+

Pr{α(R,y) ≥ G(x[m′],y) ≥ G(x[m],y)}

= Pr{G(x[m′],y) ≥ max{α(R,y), G(x[m],y)}+ Pr{α(R,y) ≥ G(x[m′],y) ≥ G(x[m],y)}

≤ Pr{G(x[m′],y) ≥ max{α(R,y), G(x[m],y)}+ Pr{α(R,y) ≥ G(x[m],y)}, (C.3)

where the left–most side is the quantity we analyze in the proof of Theorem 2, and in the right–

most side, the first term is the desired quantity, whereas the second term is the supplementary

term that we would now like to focus on. In particular, if we show that the second term decays

at an exponential rate faster than that of the first term (which is E−trc(R)), then our union–bound

analysis in Theorem 2 is tight. Now,

Pr{α(R,y) ≥ G(x[m],y)} = Pr

 max
{−
∑n−1

i=0
ln(1−ρ̂2i )≤2nR}

n−1∑
i=0

√
Piσ̂yi

ρ̂i

σ̃2
i

≥ 1

`

n−1∑
i=0

xTi [m]yi
σ̃2
i

 . (C.4)
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But

max
{−
∑n−1

i=0
ln(1−ρ̂2i )≤2nR}

∑
i

√
Piσ̂yi

ρ̂i

σ̃2
i

= max
ρ̂0,...,ρ̂n−1

inf
λ≥0

n−1∑
i=0

{√
Piσ̂yi

ρ̂i

σ̃2
i

+ λ

[
R+

1

2
ln(1− ρ̂2

i )

]}

= inf
λ≥0

n−1∑
0=1

max
ρi

{√
Piσ̂yi

ρ̂i

σ̃2
i

+ λ

[
R+

1

2
ln(1− ρ̂2

i )

]}

= inf
λ≥0

{
n−1∑
0=1

W

(√
Piσ̂yi

σ̃2
i

, λ

)
+ λR

}
, (C.5)

where we define

W (α, λ) = max
ρ

{
αρ+

λ

2
ln(1− ρ2)

}
= λ · w

(
α

λ
,∞
)

=
2α2

λ+
√
λ2 + 4α2

+
λ

2
ln

[
2λ

λ+
√
λ2 + 4α2

]
. (C.6)

Now,

Pr{α(R,y) ≥ G(x[m],y)} = Pr

{
1

`

n−1∑
i=0

xTi [m]yi
σ̃2
i

≤ inf
λ≥0

[
k∑
i=1

W

(√
Piσ̂yi

σ̃2
i

, λ

)
+ λR

]}

≤ inf
λ≥0

Pr

{
1

`

n−1∑
i=0

xTi [m]yi
σ̃2
i

≤
n−1∑
i=0

[
W

(√
Piσ̂yi

σ̃2
i

, λ

)
+ λR

]}
.(C.7)

For a given λ ≥ 0, the exponent of the last probability is given by

min
{ρi,σ̂2

yi
}

1

n

n−1∑
i=0

{
1

2
ln(2πσ2

i ) +
σ̂2
yi
− 2
√
Piσ̂yi

ρi + Pi

2σ2
i

− 1

2
ln[2πeσ̂2

yi
(1− ρ2

i )]

}
, (C.8)

where the minimum is taken over all {(ρi, σ̂2
yi

), 0 = 1, 2, . . . , n− 1} such that

n−1∑
i=0

√
Piσ̂yi

ρi

σ̃2
i

≤
n−1∑
i=0

[
W

(√
Piσ̂yi

σ̃2
i

, λ

)
+ λR

]
, (C.9)

or, equivalently, the exponent is given by

min
{ρi,σ̂2

yi
}
sup
ζ≥0

1

n

n−1∑
0=1

{
1

2
ln(2πσ2

i ) +
σ̂2
yi
− 2
√
Piσ̂yi

ρi + Pi

2σ2
i

− 1

2
ln[2πeσ̂2

yi
(1− ρ2

i )]+

ζ

λ

[√
Piσ̂yi

ρi

σ̃2
i

−W
(√

Piσ̂yi

σ̃2
i

, λ

)
− λR

]}
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≥ sup
ζ≥0

1

n

n−1∑
i=0

min
ρi,σ̂2

yi

{
1

2
ln(2πσ2

i ) +
σ̂2
yi
− 2
√
Piσ̂yi

ρi + Pi

2σ2
i

− 1

2
ln[2πeσ̂2

yi
(1− ρ2

i )]+

ζ
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Piσ̂yi

ρi

σ̃2
i
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(√

Piσ̂yi

σ̃2
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∆
= sup

ζ≥0

1

n

n−1∑
i=0

D(Pi, σ
2
i , σ̃

2
i , λ, ζ)− ζR, (C.10)

where we have defined

D(P, σ2, σ̃2, λ, ζ) = min
ρ,σ2

Y

{
1

2
ln(2πσ2) +

σ2
Y − 2

√
PσY ρ+ P

2σ2
− 1

2
ln[2πeσ2

Y (1− ρ2)]+

ζ

λ

[√
PσY ρ

σ̃2
−W

(√
PσY
σ̃2

, λ

)]}
. (C.11)

After the minimization over λ ≥ 0, and after taking the limit of n→∞, we obtain

ε(R) = sup
ζ≥0

[
sup
λ≥0

1

2π

∫ 2π

0
D[SX(ω), SZ(ω), S̃Z(ω), λ, ζ]dω − ζR

]
∆
= sup

ζ≥0
[∆(ζ)− ζR], (C.12)

and it is not difficult to check that ε(0) = 2E−trc(0), as for R = 0, the optimum λ tends to infinity,

in which case, W (
√
PσY /σ̃

2, λ) vanishes. Thus Rt, the maximum guaranteed rate of tightness of

our TRC bound, is the supremum of all rates R such that ε(R) > Etrc(R). To find an expression

for R∗, we require that for every θ ≥ 1, there exists ζ > 2θ − 1 such that

∆(ζ)− ζR ≥ B(θ)− (2θ − 1)R,

or equivalently,

R ≤ ∆(ζ)−B(θ)

ζ − 2θ + 1
.

Therefore,

Rt = inf
θ≥1

sup
ζ>2θ−1

∆(ζ)−B(θ)

ζ − 2θ + 1
. (C.13)
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