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Typical Random Codes

Traditional random coding error exponents are defined as

Er(R) = lim

n—oo

[_ InE Pe (cn)] |

n

We define typical-code error exponents as

n—oo

[_ ElnPe (cn)] |

n

#® By Jensen’s inequality, Eyyp(R) > Er(R).

#® Fr(R)—dominated by bad codes; Eyy(R) — dominated by typical codes.

Let Gg = {Cn: Pe(Cn) = e "FY.

Pe(Cn) =) P(Gr)-c """ = P(Gp) - e "7
E

Otoh, Eyn(R) = > g P(9E)-E = Eo, Wwhere PlGg,| — 1.
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M otivation

Eiyp(R) is never worse than Er(R).
Code selected once and for all: no LLN to support EPe(Cy,).

Once selected, w.h.p. Pe(Cp) ~ e~ "0, forever.

Theoretical framework for random-like codes (Battail, 1995).

© o o o o

Analogy: physics of disordered sys. — quenched vs. annealed average.

Q: With all these motivations, why wasn’t it explored much more before?

A: Not so easy to analyze (also in physics) ....
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Related Wor k

Barg & Forney (2002): i.i.d. random coding, BSC:

At low rates: Eyn(R) = Eex(2R) + R.
Nazari (2011); Nazari, Anastasopoulos & Pradhan (2014):
upper and lower bounds for the a—decoder.
Stat. phys. literature: Kabashima (2008), Mora & Riviore (2006), ...:
LDPC codes - replica analysis and cavity method.
Battail (1995):

random-—like codes.
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Contributions

We derive the exact typical—-code error exponent for a class of stochastic

decoders,

P(in = mly) « exp{ng(Pz,.y)},

eg. 9(Q@xy =FEQInW'(YX), g(Q@xy) = 8- a(Qxv), 9(@xy) = BIo(X;Y).
Extending Barg & Forney (2002) in several directions:

® General DMC is considered, not merely the BSC.
Covering a wider family of decoders.
Ensemble of constant composition codes — optimal PI distribution.

Relation to expurgated exponent — for all R and a general decoder.

© o o ©

The analysis technique is applicable also to more general scenarios.
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Main Result

Let
a(R,Qy) =sup[g(Qxy) — Io(X;Y)] + R,

where supremum is over {Q x|y : Io(X;Y) < R, Qx = Px }.
M'Qxx,R) = inf {D(Qy|x||[W|Px)+ Ip(X;Y|X)+

Y|XX/!

9(Qxv) Na(R,Qy) —9(@x/v)]+}-

Theorem: The typical error exponent is
Eyp(R) = nf{l(Qxx/, R) + Io(X; X"} - R,

where the infimum is over {Qxx/ : Io(X;X') <2R, Qx = Qx’ = Px}.
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ML Decoding

In ML decoding: minimization s.t.

EqIn W (Y|X') > max{Eq In W(Y|X), D(R,Qy)},

D(R,Qy) =sup{EqInW(Y|X"): Io(X";Y) <R, (Qy X Qxry)x = Px},
being the typical highest score of an incorrect message.

This is not a union bound of pairwise error events.
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Relation to Expurgated Exponent

Defining
Eo(R,S) = nf{l'(Qxx",5) + Io(X; X')} — R,

the infimum being over {Qx x’ : Io(X;X") <R, Qx = Qx’ = Px}, we have
for all R:
Eex(R) = Eo(R, R);  Eyp(R) = Eo(2R, R) + R.

In general,

Eyp(R)<Eex(2R) + R,

because here the expurgated exponent is improved.
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rand. coding, expurg. and exponents for z—channel w. crossover 0.1.

—n. 9/7



°

A Few Wordson the Analysis

Using the identity EIn Pe(C) = limy— oo pIn E[Pe(C)]'/*.
Using the method of type class enumerators.

Main idea behind the analysis: handling summations of exponentially
many fractions with random denominators — exploit concentration
properties.

eng(Xm/ ’y)
end(X m,Y) 4+ Zm?ﬁm en9(X m,Y)

B> 3 S P@IXm)

m m'#m Y

In paritcular, with very high probability,

Z eng(Xm,y) > 6na(R,15y).

m%m

Showing that the reversed inequality holds for most terms w.h.p.
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Other Applications

The same techniques are applicable in other scenarios:
® List decoding (fixed list size): involves the notion of multi—information.
® Decoding with an erasure option.

The details are in the paper.

—n. 11/7



Future Directions

Analogues in source coding (e.g., Slepian—Wolf).
Source—channel coding.

Multi-user situations: MAC, BC, etc.

Other (more structured) ensembles: allowing dependencies.
Universal decoding.

Continuous alphabets (Gaussian channel).
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