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Typical Random Codes

Traditional random coding error exponents are defined as

Er(R) = lim
n→∞

»

−
lnEPe(Cn)

n

–

.

We define typical–code error exponents as

Etyp(R) = lim
n→∞

»

−
ElnPe(Cn)

n

–

.

By Jensen’s inequality, Etyp(R) ≥ Er(R).

Er(R) – dominated by bad codes; Etyp(R) – dominated by typical codes.

Let GE = {Cn : Pe(Cn)
·
= e−nE}.

Pe(Cn)
·
=

X

E

P (GE) · e−nE ·
= P (G∗

E) · e−nE∗

.

Otoh, Etyp(R) =
P

E P (GE)·E = E0, where P [GE0
] → 1.
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Motivation

Etyp(R) is never worse than Er(R).

Code selected once and for all: no LLN to support EPe(Cn).

Once selected, w.h.p. Pe(Cn) ∼ e−nE0 , forever.

Theoretical framework for random–like codes (Battail, 1995).

Analogy: physics of disordered sys. – quenched vs. annealed average.

Q: With all these motivations, why wasn’t it explored much more before?

A: Not so easy to analyze (also in physics) ....
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Related Work

Barg & Forney (2002): i.i.d. random coding, BSC:

At low rates: Etyp(R) = Eex(2R) + R.

Nazari (2011); Nazari, Anastasopoulos & Pradhan (2014):

upper and lower bounds for the α–decoder.

Stat. phys. literature: Kabashima (2008), Mora & Riviore (2006), ...:

LDPC codes - replica analysis and cavity method.

Battail (1995):

random–like codes.
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Contributions

We derive the exact typical–code error exponent for a class of stochastic

decoders,

P (m̂ = m|y) ∝ exp{ng(P̂xmy)},

e.g., g(QXY = βEQ ln W ′(Y |X), g(QXY ) = β · α(QXY ), g(QXY ) = βIQ(X; Y ).

Extending Barg & Forney (2002) in several directions:

General DMC is considered, not merely the BSC.

Covering a wider family of decoders.

Ensemble of constant composition codes – optimal PI distribution.

Relation to expurgated exponent – for all R and a general decoder.

The analysis technique is applicable also to more general scenarios.
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Main Result

Let
α(R,QY ) = sup[g(QXY ) − IQ(X; Y )] + R,

where supremum is over {QX|Y : IQ(X;Y ) ≤ R, QX = PX}.

Γ(QXX′ , R) = inf
Q

Y |XX′

{D(QY |X‖W |PX) + IQ(X ′; Y |X) +

[g(QXY ) ∧ α(R, QY ) − g(QX′Y )]+}.

Theorem: The typical error exponent is

Etyp(R) = inf{Γ(QXX′ , R) + IQ(X; X ′)} − R,

where the infimum is over {QXX′ : IQ(X; X ′) ≤ 2R, QX = QX′ = PX}.
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ML Decoding

In ML decoding: minimization s.t.

EQ ln W (Y |X ′) ≥ max{EQ ln W (Y |X), D(R, QY )},

D(R, QY ) = sup{EQ ln W (Y |X ′′) : IQ(X ′′; Y ) ≤ R, (QY × QX′′|Y )X = PX},

being the typical highest score of an incorrect message.

This is not a union bound of pairwise error events.
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Relation to Expurgated Exponent

Defining

E0(R,S) = inf{Γ(QXX′ , S) + IQ(X;X ′)} − R,

the infimum being over {QXX′ : IQ(X;X ′) ≤ R, QX = QX′ = PX}, we have

for all R:

Eex(R) = E0(R,R); Etyp(R) = E0(2R,R) + R.

In general,

Etyp(R)≤Eex(2R) + R,

because here the expurgated exponent is improved.
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A Few Words on the Analysis

Using the identity E ln Pe(C) = limρ→∞ ρ lnE[Pe(C)]1/ρ.

Using the method of type class enumerators.

Main idea behind the analysis: handling summations of exponentially
many fractions with random denominators – exploit concentration
properties.
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In paritcular, with very high probability,

X

m̃6=m

e
ng(Xm̃,y) ≥ e

nα(R,P̂y)
.

Showing that the reversed inequality holds for most terms w.h.p.
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Other Applications

The same techniques are applicable in other scenarios:

List decoding (fixed list size): involves the notion of multi–information.

Decoding with an erasure option.

The details are in the paper.
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Future Directions

Analogues in source coding (e.g., Slepian–Wolf).

Source–channel coding.

Multi-user situations: MAC, BC, etc.

Other (more structured) ensembles: allowing dependencies.

Universal decoding.

Continuous alphabets (Gaussian channel).
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