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Abstract

We study the ensemble performance of biometric authentication systems, based on secret key gen-
eration, which work as follows. In the enrollment stage, an individual provides a biometric signal
that is mapped into a secret key and a helper message, the former being prepared to become
available to the system at a later time (for authentication), and the latter is stored in a public
database. When an authorized user requests authentication, claiming his/her identity as one of the
subscribers, he/she has to provide a biometric signal again, and then the system, which retrieves
also the helper message of the claimed subscriber, produces an estimate of the secret key, that is fi-
nally compared to the secret key of the claimed user. In case of a match, the authentication request
is approved, otherwise, it is rejected. Referring to an ensemble of systems based on Slepian–Wolf
binning, we provide a detailed analysis of the false–reject (FR) and false–accept (FA) probabilities,
for a wide class of stochastic decoders. We also derive converse bounds. The converse bound of
the FA probability matches the direct theorem, whereas the one for the FR probability is tight for
some ranges of rates. Finally, we outline derivations of the secrecy leakage (for the typical code in
the ensemble) and the privacy leakage.

Index Terms: biometric security, Slepian-Wolf coding, random binning, error exponents, secrete

key generation.
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I. Introduction

We consider a biometric authentication system that is described in [9, Sections 2.2–2.6], which is

based on the notion of secret key generation and sharing due to Maurer [10] and Ahlswede and

Csiszár [1], [2]. Specifically, such a system works as follows. In the enrollment stage, an individual

which subscribes to the system, provides a biometric signal, X = (X1, X2, . . . , Xn). The system

receives this signal and generates (using its encoder) two outputs in response. The first output

is a secret key, S, at rate Rs and the second is a helper message, W , at rate Rw. The secret

key is prepared in order to be used by the system later, at the authentication stage. The helper

message is stored in a public database. When an authorized user (a subscriber) wishes to sign in,

claiming his/her identity as one of the existing subscribers, he/she is requested to provide again

his/her biometric signal, Y = (Y1, . . . , Yn) (correlated to X , if indeed from the same individual, or

independent, if not). The system then retrieves the helper message W of the claimed subscriber,

and responds (using its decoder) by estimating the secret key, Ŝ (based on (Y , W )), and comparing

it to the secret key of the claimed user, S. In case of a match, access to the system is granted,

otherwise, it is denied.

In [9, Sect. 2.3], achievable rate pairs (Rs, Rw) were found for the existence of systems (encoders

and decoders) that satisfy the following three requirements in the large n limit: (i) arbitrarily small

false–reject (FR) probability, (ii) arbitrarily small false–accept (FA) probability, (iii) arbitrarily

small secrecy leakage, I(S; W )/n, and (iv) privacy leakage, I(X ; W )/n, as small as possible. In

particular, Theorem 2.1 of [9] asserts that when (X , Y ) are drawn from a discrete memoryless source

(DMS), generating independent copies of a correlated pair (X, Y ) ∼ PXY , the maximum achievable

key rate, Rs, under the above constraints, is given by the single–letter mutual information, I(X; Y ).

It then follows that Rw must lie in the range (H(X|Y ), H(X) − Rs), where the conditional entropy

in the lower limit is essential for reliable identification of an authorized subscriber (small FR

probability) and it also sets the minimum possible privacy leakage, whereas the upper limit is

essential for the secrecy leakage requirement. These limitations already guarantee that Rw < H(X),

which is essential for keeping the FA probability vanishingly small for large n.

As in many proofs of direct coding theorems in the information theory literature, in the achiev-

ability part of [9, Theorem 2.1] too, the analyses of the error probabilities (in this case, the FA
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and the FR probabilities) are very rough – they are merely good enough to prove the achievability

of the desired coding rates in the simplest possible manner. However, these are poor estimates of

the achievable FR and FA probabilities themselves when these are considered to be the relevant

performance metrics for given Rs and Rw.

The purpose of this paper is to provide sharper evaluations of the ensemble performance of the

FA and the FR probabilities. In particular, referring to an ensemble of systems based on Slepian–

Wolf binning, we provide detailed analyses of the exponential behavior of the FR probability, for

a wide class of stochastic decoders, which includes the respective maximum a posteriori (MAP)

decoder as a special case. An expurgated bound is provided as well and discussed quite in detail.

For the FA probability, we analyze the ensemble performance of the MAP decoder and provide

some intuition concerning its behavior. We also provide converse bounds for both the FR and the

FA probabilities, which hold under some assumptions. The converse bound of the FA probability is

tight in the sense that its error exponent matches the achievability result. Concerning the converse

bound of the FR probability, which is essentially a version of the sphere–packing bound, there is

a gap, in general, but at a certain (interesting) region in the plane of rates (Rw, Rs), it is tight.

Finally, the secrecy leakage of the typical code in the ensemble, as well as the privacy leakage, are

addressed.

The paper is organized as follows. In Section II, we establish the notation conventions. In Section

III, we formalize the setup and spell out the objectives. In Section IV, we present and discuss the

random coding FR exponent an expurgated bound, and the corresponding converse bound. In

Section V, we derive the random coding FA exponent and its matching converse bound. In Section

VI, we discuss the secrecy leakage of the typical code, and finally, in Section VII, we do the same

with the privacy leakage. A brief summary is provided in Section VIII.

II. Notation Conventions

Throughout the paper, random variables will be denoted by capital letters, specific values they may

take will be denoted by the corresponding lower case letters, and their alphabets will be denoted by

calligraphic letters. Random vectors and their realizations will be denoted, respectively, by capital

letters and the corresponding lower case letters, both in the bold face font. Their alphabets will
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be superscripted by their dimensions. For example, the random vector X = (X1, . . . , Xn), (n –

positive integer) may take a specific vector value x = (x1, . . . , xn) in X n, the n–th order Cartesian

power of X , which is the alphabet of each component of this vector. Sources and channels will be

denoted by the letter P or Q, subscripted by the names of the relevant random variables/vectors

and their conditionings, if applicable, following the standard notation conventions, e.g., QX , PY |X ,

and so on. When there is no room for ambiguity, these subscripts will be omitted. The probability

of an event G will be denoted by Pr{G}, and the expectation operator with respect to (w.r.t.) a

probability distribution P will be denoted by EP {·}. Again, the subscript will be omitted if the

underlying probability distribution is clear from the context. The entropy of a generic distribution

Q on X will be denoted by HQ(X). For two positive sequences an and bn, the notation an
·
= bn will

stand for equality in the exponential scale, that is, limn→∞
1
n log an

bn
= 0. Similarly, an

·
≤ bn means

that lim supn→∞
1
n log an

bn
≤ 0, and so on. The indicator function of an event G will be denoted by

I{G}. The notation [x]+ will stand for max{0, x}.

The empirical distribution of a sequence x ∈ X n, which will be denoted by P̂x, is the vector of

relative frequencies P̂x(x) of each symbol x ∈ X in x. The type class of x ∈ X n, denoted T (P̂x),

is the set of all vectors x′ with P̂x′ = P̂x. Information measures associated with empirical distri-

butions will be denoted with ‘hats’ and will be subscripted by the sequences from which they are

induced. For example, the entropy associated with P̂x, which is the empirical entropy of x, will be

denoted by Ĥx(X). Similar conventions will apply to the joint empirical distribution, the joint type

class, the conditional empirical distributions and the conditional type classes associated with pairs

(and multiples) of sequences of length n. Accordingly, P̂xy will be the joint empirical distribution

of (x, y) = {(xi, yi)}
n
i=1, and T (P̂xy) will denote the joint type class of (x, y). Similarly, T (P̂x|y|y)

will stand for the conditional type class of x given y, Ĥxy(X, Y ) will designate the empirical joint

entropy of x and y, Ĥxy(X|Y ) will be the empirical conditional entropy, Îxy(X; Y ) will denote

empirical mutual information, and so on. We will also use similar rules of notation in the context

of a generic distribution, QXY (or Q, for short): we use T (QX) for the type class of sequences

with empirical distribution QX , HQ(X) – for the corresponding empirical entropy, T (QXY ) – for

the joint type class x, T (QX|Y |y) – for the conditional type class of x given y, HQ(X, Y ) – for

the joint empirical entropy, HQ(X|Y ) – for the conditional empirical entropy, IQ(X; Y ) – for the

empirical mutual information, and so on. We will also use the customary notation for the weighted
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divergence,

D(QY |X‖PY |X |QX) =
∑

x∈X

QX(x)
∑

y∈Y

QY |X(y|x) log
QY |X(y|x)

PY |X(y|x)
. (1)

III. Setup and Objectives

Consider the following system model for biometric identification (see Fig. 1). An enrollment source

sequence, x = (x1, . . . , xn), which is a realization of the random vector X = (X1, . . . , Xn), that

emerges from a discrete memoryless source (DMS), PX , with a finite alphabet X , is fed into an

enrollment encoder, E , that produces two outputs: a secret key, s (a realization of a random

variable S), and a helper message, w (a realization of W ), taking on values in finite alphabets,

Sn = {0, 1, . . . , enRs} and Wn = {0, 1, . . . , enRw}, respectively, where Rs is the secret–key rate, and

Rw is the helper–message rate. This encoding operation designates the enrollment stage.

We consider the ensemble of enrollment encoders, {E}, generated by random binning, where for

each source vector x ∈ X , one selects independently at random, both a secret key and a helper

message, under the uniform distributions across Sn and Wn, respectively. In other words, denoting

by w = f(x) and s = g(x), the randomly selected bin assignments for both outputs, it is assumed

that the 2|X |n random variables {f(x), g(x)}x∈X n are all mutually independent.

The authentication decoder, A, which is aware of the randomly selected encoder, E , is fed by two

inputs: the helper message w and an authentication source sequence, y = (y1, . . . , yn) (a realization

of Y = (Y1, . . . , Yn)), that is produced at the output of a discrete memoryless channel (DMC),

PY |X , with a finite output alphabet Y, that is fed by x. The output of the authentication decoder

is ŝ = U(y, w) (a realization of Ŝ), which is an estimate (possibly, randomized) of the secret key,

s. If ŝ = s, access to the system is granted, otherwise, it is denied. This decoding operation stands

for the authentication stage.

The optimal estimator of s, based on (y, w), in the sense of minimum FR probability, Pr{Ŝ 6= S},

is the maximum a posteriori probability (MAP) estimator, given by

ŝMAP = U(y, w)
∆
= arg max

s
P (s, w|y) = arg max

s

∑

x∈X n

P (x|y) · I{f(x) = w} · I{g(x) = s}, (2)

where P (x|y) (shorthand notation for PX |Y (x|y)) is the posterior probability of X = x given

Y = y, that is induced by the product distribution, PXY (and the subscript XY will sometimes
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be suppressed for simplicity, when there is no risk of compromising clarity).

X W

S Y

Ŝ

Encoder Decoder

Figure 1: Biometric authentication system based on secret key generation.

In this paper, we expand the scope and study a more general class of decoders. This is a class of

generalized stochastic likelihood decoders [12], [16], [17], [19], where the decoder randomly selects

its estimate ŝ according to the posterior distribution

P̃ (s|y, w) =

∑

x∈X n exp{na(P̂xy)} · I{f(x) = w} · I{g(x) = s}
∑

x∈X n exp{na(P̂xy)} · I{f(x) = w}
, (3)

where the function a(·), henceforth referred to as the decoding metric, is an arbitrary continuous

function of the joint empirical distribution P̂xy. Throughout the sequel, we will refer to the

numerator of the r.h.s. as P̃ (s, w|y), and to the denominator as P̃ (w|y). The motivation for

considering the generalized likelihood decoder is that it provides a unified framework for examining

a large variety of decoders which are interesting both theoretically and practically. For example,

with

a(P̂xy) =
∑

x∈X

∑

y∈Y

P̂xy(x, y) ln P (x|y), (4)

we have the ordinary likelihood decoder in spirit of [16], [17], [19]. For

a(P̂xy) = β
∑

x∈X

∑

y∈Y

P̂xy(x, y) ln P (x|y), (5)

β being a free parameter (sometimes referred to as the inverse temperature parameter [15] due to

the analogy in statistical mechanics), we extend this likelihood decoder to a parametric family of

decoders, where β controls the skewedness of the posterior. In particular, β → ∞ leads to the
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ordinary MAP decoder, ŝMAP. Other interesting choices are associated with mismatched metrics,

a(P̂xy) =
∑

x∈X

∑

y∈Y

P̂xy(x, y) ln P ′(x|y), (6)

P ′ being different from P , and

a(P̂xy) = −βĤxy(X|Y ), (7)

which for β → ∞ approaches the universal minimum entropy decoder (see also discussion around

eqs. (5)–(7) of [12]).

An unauthorized user (i.e., an imposter), who claims for a given subscriber identity and wishes

to break into the system, does not have the correlated biometric data y. The best he/she can do is

to estimate s based on the only data he/she has, which is the helper message w, and then forges

any fake biometric data ỹ, which together with w, would cause the decoder to output this estimate

of s. More precisely, the imposter first estimates s according to

s̃ = V (w)
∆
= arg max

s
P (s|w) = arg max

s

∑

x∈X n

P (x) · I{f(x) = w} · I{g(x) = s}, (8)

and then generates any ỹ ∈ Yn such that U(ỹ, w) = s̃, and uses it as the biometric signal for

authentication.

The objectives of the paper are to obtain: (i) exponential error bounds for the best achievable

average FR probability, P̄FR = Pr{Ŝ 6= S}, associated with the generalized stochastic likelihood

decoder (3), as well as an expurgated bound following the methodology of [12, Theorem 2] (see also

the correction [13]), and (ii) exponential error bounds for the FA probability of (8), P̄FA = Pr{S̃ =

S}. Finally, we outline derivations of the secrecy leakage, I(S; W ) (for the typical code in the

ensemble) and the privacy leakage, in the large n limit.

IV. The False–Reject Error Exponent

A. Random Coding Exponent

Consider the system configuration described in Section III, along with the generalized stochastic

likelihood decoder (3). Define the functions

E(Rw, QX0Y )
∆
= min

QX|Y

[Rw − HQ(X|Y ) + [a(QX0Y ) − a(QXY )]+]+ (9)
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and

EFR

r (Rw)
∆
= min

QX0Y

{D(QX0Y ‖PXY ) + E(Rw, QX0Y )}. (10)

Our first result is the following.

Theorem 1 Consider the system configuration described in Section III. Then,

lim
n→∞

[

−
ln P̄FR

n

]

= EFR

r
(Rw). (11)

Before providing the proof, a few points should be discussed.

1. First, observe that Theorem 1 asserts that EFR
r

(Rw) is the exact random coding FR exponent,

not just a lower bound. This is due to the fact that all steps of the analytic derivation are ensemble–

tight in the exponential scale, thanks to the ability to avoid the use of the Jensen inequality and

other well known tools that are traditionally used to facilitate the analysis, at the possible price of

compromising tightness (see the proof of Theorem 1 below).

2. It is interesting to observe that the FR random coding exponent, EFR
r (Rw), depends only on

Rw, not on Rs. This fact is not trivial, but the intuition is the following: in order to estimate S

correctly, with high probability, from the given data (Y , W ), there should be essentially no am-

biguity, first of all, in defining what the correct S is. This will be the case if there is essentially

only one source vector X that is responsible for the given W and then this X would dictate the

correct S = g(X). This in turn would happen with high probability as long as Rw > H(X|Y ).

Otherwise, if more than one source vector (in the same conditional type class given Y as the correct

one) is mapped by the encoder to the same helper message, then at least one such source vector is

likely to be mapped to a different secret key message, and then the decoding would be ambiguous.

It appears then that correct estimation of S is essentially equivalent to correct estimation of X,

as in ordinary Slepian–Wolf decoding [7] (see also [18] and references therein), where there is no

secret key at all (or alternatively, Rs → ∞). Indeed, the Slepian–Wolf coding component of the

joint source–channel coding system, analyzed in [12, Section IV] under the generalized likelihood

decoder, contributes the very same error exponent as asserted in Theorem 1.
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3. It is interesting to examine a few decoding metrics. Consider the choice a(Q) = −HQ(X|Y ). In

this case, we have

min
QX|Y

[Rw − HQ(X|Y ) + [a(QX0Y ) − a(QXY )]+]+

= min
QX|Y

[Rw − HQ(X|Y ) + [HQ(X|Y ) − HQ(X0|Y )]+]+

= min
QX|Y

[Rw − min{HQ(X|Y ), HQ(X0|Y )}]+

= [Rw − min{max
QX|Y

HQ(X|Y ), HQ(X0|Y )}]+

= [Rw − HQ(X0|Y )]+, (12)

which, together with (10), yields the same random coding exponent as the optimal MAP decoder

for Slepian–Wolf decoding (see also [12] and [16]). More generally, the same comment applies to

a(Q) = −βHQ(X|Y ) for every β ≥ 1, where β → ∞ pertains to the deterministic universal mini-

mum entropy decoding, the source–coding dual to maximum mutual information (MMI) universal

decoding (see, e.g., [18] and references therein). For a(Q) = βEQ ln P (X|Y ), we have a finite–

temperature likelihood decoder. For β → ∞, we are back to the ordinary MAP decoder, which

yields

lim
β→∞

min
QX|Y

[Rw − HQ(X|Y ) + [a(QX0Y ) − a(QXY )]+]+

= lim
β→∞

min
QX|Y

[Rw − HQ(X|Y ) + β[EQ ln P (X0|Y ) − EQ ln P (X|Y )]+]+

= min
{QX|Y : EQ ln P (X|Y )≥EQ ln P (X0|Y )}

[Rw − HQ(X|Y )]+, (13)

which, together with (10), yields the random coding exponent of the MAP decoder, as expected.

As argued above, this is the same as the exponent achieved by a(Q) = −βHQ(X|Y ) for all β ≥ 1.

The remaining part of this subsection is devoted to the proof of Theorem 1.

Proof of Theorem 1. The expected FR probability is given by

P̄FR = E







∑

s6=S

P̃ (s|W , Y )







(14)

where the expectation is w.r.t. both the randomness of (S, W , Y ) and the randomness of the code,

E . For given realizations, X = x and Y = y, let us denote

P̄FR(x, y)
∆
= E







∑

s′ 6=g(x)

P̃ (s′|f(x), y)







, (15)
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where now the expectation is merely w.r.t. the randomness of E . Now, following eq. (3),

P̃ (s′|f(x), y) =

∑

x′∈X n exp{na(P̂x′y)} · I{f(x′) = f(x)} · I{g(x′) = s′}
∑

x′∈X n exp{na(P̂x′y)} · I{f(x′) = f(x)}

=

∑

QX|Y
ena(QXY )N(T (QX|Y |y), f(x), s′)

ena(P̂xy) +
∑

QX|Y
ena(QXY )N(T (QX|Y |y), f(x))

, (16)

where the summations over {QX|Y } are across all conditional types {T (QX|Y |y)} of sequences of

length n, and where

N(T (QX|Y |y), w, s′) =

∣

∣

∣

∣

T (QX|Y |y)
⋂

{

x′ : f(x′) = w, g(x′) = s′}
∣

∣

∣

∣

, (17)

and

N(T (QX|Y |y), w) =

∣

∣

∣

∣

T (QX|Y

⋂

{

x′ : f(x) = w, x′ 6= x
}

∣

∣

∣

∣

. (18)

Let us first consider the average FR probability for a given (x, y) while fixing the realizations of

w = f(x) and s = g(x):

P̄FR(x, y, s, w) = E











∑

s′ 6=s
∑

QX|Y
ena(QXY )N(T (QX|Y |y), f(x), s′)

ena(P̂xy) +
∑

QX|Y
ena(QXY )N(T (QX|Y |y), f(x))











=

∫ 1

0
dt · Pr











∑

QX|Y
ena(QXY )N(T (QX|Y |y), f(x))

ena(P̂xy ) +
∑

QX|Y
ena(QXY )N(T (QX|Y |y), f(x))

≥ t











= n ·

∫ ∞

0
dθe−nθ · Pr











∑

QX|Y
ena(QXY )N(T (QX|Y |y), f(x))

ena(P̂xy ) +
∑

QX|Y
ena(QXY )N(T (QX|Y |y), f(x))

≥ e−nθ











·
=

∫ ∞

0
dθe−nθ · Pr







∑

QX|Y

ena(QXY )N(T (QX|Y |y), f(x)) > en[a(P̂xy)−θ]







·
=

∫ ∞

0
dθe−nθ · Pr

{

max
QX|Y

ena(QXY )N(T (QX|Y |y), f(x)) > en[a(P̂xy)−θ]

}

·
=

∫ ∞

0
dθe−nθ · Pr

⋃

QX|Y

{

ena(QXY )N(T (QX|Y |y), f(x)) > en[a(P̂xy )−θ]
}

·
= max

QX|Y

∫ ∞

0
dθe−nθ · Pr

{

N(T (QX|Y |y), f(x)) > en[a(P̂xy)−a(QXY )−θ]
}

. (19)

Now, observe that N(T (QX|Y |y), f(x)) is a binomial random variable with |T (QX|Y |y)|
·

= enHQ(X|Y )

trials and probability of success e−nRw . Similarly as argued, e.g., in [12] (see page 5042, bottom
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half of the right column therein), we have

Pr
{

N(T (QX|Y |y), f(x)) > en[a(QX0Y )−a(QXY )−θ]
}

·
= e−nE(QXY ,QX0Y ,θ,Rw), (20)

where we have replaced P̂xy by the notation QX0Y (X0 being an auxiliary random variable that

represents the underlying source vector x), and where

E(Rw, QX0Y , QXY , θ) =

{

[Rw − HQ(X|Y )]+ θ > a(QX0Y ) − a(QXY ) − [HQ(X|Y ) − Rw]+
∞ θ ≤ a(QX0Y ) − a(QXY ) − [HQ(X|Y ) − Rw]+

(21)

Thus,

P̄FR(x, y, s, w)
·
= max

QX|Y

∫ ∞

[a(QX0Y )−a(QXY )−[HQ(X|Y )−Rw]+]+
dθe−nθ · e−n[Rw−HQ(X|Y )]+ . (22)

whose exponential decay rate is according to

min
QX|Y

{[a(QX0Y ) − a(QXY ) − [HQ(X|Y ) − Rw]+]+ + [Rw − HQ(X|Y )]+}

= min
QX|Y

{

[Rw − HQ(X|Y ) + a(QX0Y ) − a(QXY )]+ HQ(X|Y ) > Rw

Rw − HQ(X|Y ) + [a(QX0Y ) − a(QXY )]+ HQ(X|Y ) ≤ Rw

= min
QX|Y

[Rw − HQ(X|Y ) + [a(QX0Y ) − a(QXY )]+]+

= E(Rw, QX0Y ). (23)

The second to the last equality follows from the identity [u − v]+ = [[u]+ − v]+, holding whenever

v ≥ 0, which is applied to the first line of the second expression with the assignments u = a(QX0Y )−

a(QXY ) and v = HQ(X|Y ) − Rw (see also [16] as well as the text after eq. (11) of [12] for a

very similar argument). Since this exponential behavior, of P̄FR(x, y, s, w), is independent of the

particular realizations, s and w, it holds also for the expectation w.r.t. the randomness of S and

W , namely, it also characterizes the exponential rate of P̄FR(x, y). Finally, it readily follows from

the method of types [4] that the expectation w.r.t. the randomness of (X, Y ) decays according to

the exponent

EFR

r
(Rw) = min

QX0Y

{D(QX0Y ‖PXY ) + E(Rw, QX0Y )}, (24)

which is as defined in (10). This completes the proof of Theorem 1. �

B. Expurgated Bound

Our expurgated bound will be asserted for each type class, T (QX), of source vectors separately.

As in channel coding, where expurgation is associated with elimination of some ‘bad’ codewords
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of a randomly generated code, here too, we might need to eliminate a small fraction of bad source

vectors from T (QX), in order to guarantee a certain FR performance level for each one of the

remaining source vectors in T (QX). One may wonder what would be the justification for such an

elimination of source vectors, as these are generated by the source and given to us, and they are

not under our control. Nonetheless, in the context of biometric authentication system described

in Section III, where {x} are the enrollment signals, there are at least two possible ways to justify

this elimination of a small fraction of the members of the type class.

1. In the enrollment stage, if the individual that subscribes to the system, has generated a

‘forbidden’ source vector x (in the sense that has been eliminated in the expurgation process),

he/she might be asked to kindly provide his/her biometric signal once again, with the hope

that this time a ‘legitimate’ source vector will be generated. The probability that this would

happen is small in the first place, provided that the fraction of vectors eliminated from T (QX)

is small. The probability of bothering the subscriber more than once with the request of a

repeated measurement is even much smaller.

2. Considering the fact that x may be digitized with some precision (which is in line with the

finite alphabet assumption anyway), it is conceivable to think of the enrollment data as having

undergone a certain stage of vector quantization. Once x is thought of as an output of a vector

quantizer, then not necessarily every member of T (QX) must be a legitimate codebook vector

in the first place. Among other things, one might rule out source vectors that contribute a

high FR probability.

In order to present the expurgated exponent, a few additional definitions are needed. For a given

QY , let us define

α(Rw, QY )
∆
= sup

{QX|Y : HQ(X|Y )>Rw}
[a(QXY ) + HQ(X|Y )] − Rw, (25)

γ(QXY )
∆
= max{a(QXY ), α(Rw, QY )}, (26)

Λ(QXX′)
∆
= min

QY |XX′

{γ(QXY ) − HQ(Y |X, X ′) − EQ ln P (Y |X) − a(QX′Y )}, (27)

and for a given QX , define

EFR

ex (Rw, QX) = inf
{QX′|X : HQ(X′|X)≥Rw}

{Λ(QXX′) − HQ(X ′|X) + Rw}. (28)
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Finally, let PFR(E|x) denote the FR probability of a given enrollment encoder E , conditioned on

the input source vector X = x.

Theorem 2 Consider the system configuration described in Section III and let {δn}n≥1 be a positive

sequence tending to zero such that nδn → ∞. Then, there exists a code E such that for every QX ,

PFR(E|x) ≤ exp{−nEFR

ex
(Rw, QX) + o(n)}, (29)

for every x ∈ T (QX) \ B(QX), where B(QX) is a certain subset of T (QX), whose size does not

exceed e−nδn |T (QX)|.

A few points concerning Theorem 2 should be discussed.

1. It is interesting to note that the expression of EFR
ex (Rw, QX) has some analogy to the Csiszár–

Körner–Marton (CKM) expurgated exponent of channel coding [4, p. 165, Problem 10.18]. The

term Λ(QXX′) plays the same role as the expected Bhattacharyya distance in the CKM expur-

gated exponent, whereas HQ(X ′|X) is analogous to the coding rate R in channel coding and Rw

is parallel to the empirical mutual information between channel codewords. Roughly speaking, the

contribution of a single incorrect source vector x′ to the FR probability is about exp{−nΛ(QXX′)}

provided that (x, x′) ∈ T (QXX′) (the pairwise error event). This probability should be multiplied

by the typical number of such incorrect source vectors within T (QX′|X |x) that are encoded into

the same given helper message and hence may cause confusion. This number is of the exponential

order exp{n[HQ(X ′|X) − Rw]}, provided that HQ(X ′|X) − Rw > 0, and it vanishes otherwise.

2. Note that in contrast to Theorem 1, here we are no longer arguing that the result is ensemble–

tight. There is actually one step in the derivation where exponential tightness might be compro-

mised. Specifically, in one of the steps of this analysis, the denominator of (3) is lower bounded

by a relatively simple single–letter bound that holds true for the vast majority of encoders, {E},

in the ensemble. By doing this, possible gaps to these bounds may not be fully exploited, and we

cannot rule out the possibility that this causes some loss of tightness. Having said that, a very

similar analysis that was recently carried out in the channel–coding counterpart [14] was shown to

be ensemble–tight, and so, we speculate that this is the case here too. Also, the derivation of the

expurgated bound includes a certain degree of freedom that does not exist in the random coding
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bound of Theorem 1, and upon exploiting this degree of freedom, we obtain a result, which is at

least as strong as the random coding bound, and sometimes strictly so.

3. The sequence δn tends to zero in order not to slow down the exponential decay rate, but it is

also required that nδn → ∞ in order to guarantee that the set of ‘bad’ source vectors, B(QX),

would be merely a minority of T (QX) for large n.

4. We now show that for every Rw, the overall expurgated exponent (taking into account all

types, {QX}) cannot be worse than EFR
r (Rw), at least for the metric a(QXY ) = −βHQ(X|Y ),

which was shown to be as good as the optimal decoding metric in the ordinary random coding

sense. Note that this is in contrast to the traditional expurgated exponent, which improves on

the random coding exponent only at a certain range of rates, but is inferior to the random coding

exponent elsewhere (see also [12], where a similar finding was observed for a particular numerical

example). For the above–mentioned choice of a(QXY ), one easily verifies that α(Rw, QY ) = −βRw

and γ(QXY ) = −β min{HQ(X|Y ), Rw}, and so,

Λ(QXX′) = min
QY |XX′

{γ(QXY ) − HQ(Y |X, X ′) − EQ ln P (Y |X) + βHQ(X ′|Y )}

= min
QY |XX′

{β[HQ(X ′|Y ) − min{HQ(X|Y ), Rw}] +

IQ(X ′; Y |X) + D(QY |X‖PY |X |QX)}. (30)

Upon optimizing β, we obtain

Eex(Rw, QX) = sup
β∈IR

inf
{QX′|X : HQ(X′|X)≥Rw}

{Λ(QXX′) − HQ(X ′|X)} + Rw

= sup
β∈IR

inf
{QX′Y |X : HQ(X′|X)≥Rw}

{D(QY |X‖PY |X |QX) + IQ(X ′; Y |X) +

β[HQ(X ′|Y ) − min{HQ(X|Y ), Rw}] − HQ(X ′|X) + Rw}

≥ inf
{QX′Y |X : HQ(X′|X)≥Rw}

{D(QY |X‖PY |X |QX) + IQ(X ′; Y |X) +

HQ(X ′|Y ) − min{HQ(X|Y ), Rw} − HQ(X ′|X) + Rw}

= inf
{QX′Y |X : HQ(X′|X)≥Rw}

{D(QY |X‖PY |X |QX) + IQ(X ′; Y |X) + HQ(X ′|Y ) +

[Rw − HQ(X|Y )]+ − HQ(X ′|X)

= inf
{QX′Y |X : HQ(X′|X)≥Rw}

{D(QY |X‖PY |X |QX) + HQ(X ′|Y ) − HQ(X ′|X, Y ) +
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[Rw − HQ(X|Y )]+

= inf
{QX′Y |X : HQ(X′|X)≥Rw}

{D(QY |X‖PY |X |QX) + IQ(X ′; X|Y ) + [Rw − HQ(X|Y )]+}

≥ inf
{QX′Y |X : HQ(X′|X)≥Rw}

{D(QY |X‖PY |X |QX) + [Rw − HQ(X|Y )]+}. (31)

Without the constraint, HQ(X ′|X) ≥ Rw, the last expression is exactly the random coding FR

exponent for a given type QX , and upon taking into account the probabilistic weight of each type,

the overall exponent associated with the last line (again, without the constraint) is exactly Er(Rm)

of Theorem 1 for the optimal, MAP decoder. By inspection of eq. (31), we therefore observe that

there are four origins of the gap between the expurgated exponent and the random coding exponent:

(i) the decoder actually being analyzed might be suboptimal for the expurgated ensemble, (ii) the

optimal β (for the given family of decoders) might not necessarily be β∗ = 1 (the first inequality in

the above chain). In fact, the optimal β∗ is expected to depend on Rw.1 (iii) the term IQ(X ′; X|Y )

which may not necessarily vanish for the optimal QX′Y |X (the second inequality), and (iv) the

constraint HQ(X ′|X) ≥ Rw. For example, if Rw > ln |X |, the expurgated exponent is infinite while

the random coding exponent is finite.

5. As can be seen in the proof of Theorem 2, the asserted expurgated exponent is obtained from

an intermediate expression that depends on a free parameter ρ that undergoes optimization. It

is interesting to observe what happens when we set ρ = 1 instead of optimizing over ρ. This

would correspond to the ordinary ensemble average, which needs no expurgation. In this case,

EFR
ex (Rw, QX) would be replaced by

E1(Rw, QX) = sup
β∈IR

inf
QX′|X

{

Λ(QXX′) − [HQ(X ′|X) − Rw]+ + [Rw − HQ(X ′|X)]+
}

= sup
β∈IR

inf
QX′|X

{

Λ(QXX′) + Rw − HQ(X ′|X)
}

, (32)

where we have used the trivial identity [u]+ − [−u]+ ≡ u. Therefore, the expression of E1(Rw, QX)

is exactly like that of EFR
ex (Rm, QX), except that the constraint, HQ(X ′|X) ≥ Rw, is removed. It

follows that EFR
ex

(Rw, QX) is expected to improve on E1(Rw, QX) at high rates, where the con-

straint may be active. It also follows (similarly as in (31)) that E1(Rw, QX) is never smaller than

1The fact that optimal β may not necessarily be infinite (except the case (5)), is interesting on its own right, as it
means that the the stochastic decoder may outperform the deterministic one for a given (suboptimal) decoding
metric.

15



the random coding FR exponent given the type QX , since the latter lacks this constraint as well.

The reason that this expurgated exponent is nowhere worse than the random coding exponent is

that we do not use the inequality [
∑

x′ 6=x u(x′)]1/ρ ≤
∑

x′ 6=x[u(x′)]1/ρ (holding for ρ ≥ 1), like

in the traditional expurgated bound. This inequality causes a loss of tightness. Without it, the

supremum over ρ is always achieved at ρ → ∞.

6. The case of ordinary, deterministic MAP decoding is obtained again as of special case of (5) in

the limit β → ∞. As in (13), when the objective function to be minimized over {QXX′Y )}, contains

a term like β · G(QXX′Y ) (for some functional G(·)), then in the limit of β → ∞, it is replaced by

a constraint of the form G(QXX′Y ) ≤ 0.

The remaining part of this subsection is devoted to the proof of Theorem 2.

Proof of Theorem 2. For a given code, E , and a given the underlying source vector x, we have

PFR(E|x) =
∑

y
P (y|x)

∑

s6=g(x)

P̃ (s|f(x), y) (33)

=
∑

s6=g(x)

∑

y
P (y|x) ·

P̃ (s, f(x)|y)

exp{na(P̂xy)} + Zx(y)
, (34)

where

Zx(y) =
∑

x′ 6=x

exp{na(P̂x′y)} · I{f(x′) = f(x)}. (35)

Let ǫ > 0 be arbitrarily small. It is shown in the Appendix2 that

Pr
{

Zx(y) < exp{nα(Rw + ǫ, P̂y)} for some (x, y)
}

≤ |X × Y|n · exp{−enǫ + nǫ + 1}. (36)

Now, denoting

Gǫ =
{

E : Zx(y) ≥ exp{nα(Rw + ǫ, P̂y)} for all (x, y)
}

, (37)

we have:

E
{

[PFR(E|x)]1/ρ
}

= E





∑

s 6=g(x)

∑

y
P (y|x) ·

P̃ (s, f(x)|y)

exp{na(P̂xy)} + Zx(y)





1/ρ

2See also [12, Appendix B] for a similar argument related to channel coding.
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=
∑

E

P (E)





∑

s6=g(x)

∑

y
P (y|x) ·

P̃ (s, f(x)|y)

exp{na(P̂xy)} + Zx(y)





1/ρ

=
∑

E∈Gǫ

P (E)





∑

s6=g(x)

∑

y
P (y|x) ·

P̃ (s, f(x)|y)

exp{na(P̂xy)} + Zx(y)





1/ρ

+

∑

E∈Gc
ǫ

P (E)





∑

s 6=g(x)

∑

y
P (y|x) ·

P̃ (s, f(x)|y)

exp{na(P̂xy)} + Zx(y)





1/ρ

≤
∑

E∈Gǫ

P (E)





∑

s6=g(x)

∑

y
P (y|x) ·

P̃ (s, f(x)|y)

exp{na(P̂xy)} + exp{nα(Rw + ǫ, P̂y)}





1/ρ

+

∑

E∈Gc
ǫ

P (E) · 11/ρ

≤
∑

E

P (E)





∑

s6=g(x)

∑

y
P (y|x) ·

P̃ (s, f(x)|y)

exp{na(P̂xy)} + exp{nα(Rw + ǫ, P̂y)}





1/ρ

+

enRs · |X × Y|n · exp{−enǫ + nǫ + 1}. (38)

Considering the arbitrariness of ǫ, the expression in the square brackets is exponentially equivalent

to

∑

s 6=g(x)

∑

y
P (y|x)e−nγ(P̂xy)P̃ (s, f(x)|y)

=
∑

s 6=g(x)

∑

y
P (y|x)e−nγ(P̂xy)

∑

x′

exp{na(P̂x′y)}I{f(x′) = f(x), g(x′) = s}

=
∑

s 6=g(x)

∑

x′

I{f(x′) = f(x), g(x′) = s}
∑

y
P (y|x) exp{n[a(P̂x′y) − γ(P̂xy)]}. (39)

Now, the inner most summation (over y) can be assessed using the method of types [4]. Accordingly,

referring to (27), we have

e−nΛ(P̂xx′ ) ·
=

∑

y
P (y|x) exp{n[a(P̂x′y) − γ(P̂xy)]}, (40)

which is the contribution of a single incorrect source vector x′ to the FR probability. This yields

∑

s6=g(x)

∑

x′

I{f(x′) = f(x), g(x′) = s} · e−nΛ(P̂xx′)

≤
∑

x′

e−nΛ(P̂xx′ )I{f(x′) = f(x)}

=
∑

QX′|X

e−nΛ(QXX′)N(T (QX′|X |x), f(x)), (41)
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where we have defined

N(T (QX′|X |x), f(x))
∆
=

∣

∣

∣

∣

T (QX′|X |x) ∩ {x′ : f(x′) = f(x)}

∣

∣

∣

∣

. (42)

On substituting this back into the bound on E
{

[PFR(E|x)]1/ρ
}

, we get

E
{

[Pe(E|x)]1/ρ
}

≤ E















∑

QX′|X

e−nΛ(QXX′)N(T (QX′|X |x), f(x))





1/ρ










·
=

∑

QX′|X

e−nΛ(QXX′)/ρE
{

[N(T (QX′|X |x), f(x))]1/ρ
}

=
∑

QX′|X

e−nΛ(QXX′)/ρ
∫ ∞

0
dt · Pr

{

[

N(T (QX′|X |x), f(x))
]1/ρ

≥ t

}

=
∑

QX′|X

e−nΛ(QXX′)/ρ
∫ ∞

0
dt · Pr

{

N(T (QX′|X |x), f(x)) ≥ tρ
}

·
=

∑

QX′|X

e−nΛ(QXX′)/ρ
∫ ∞

−∞
dθ · enθ · Pr

{

N(T (QX′|X |x), f(x)) ≥ enθρ
}

. (43)

Let us focus on the term Pr[N(T (QX′|X |x), f(x)) ≥ enθρ]. Since N(T (QX′|X |x), f(x)) is a binomial

random variable with |T (QX′|X |x)|
·

= enHQ(X′|X) trials and probability of success e−nRw , we have

Pr
[

N(T (QX′|X |x), f(x)) ≥ enθρ
]

·
= e−nE(Rw,QXX′ ,ρθ) (44)

where

E(Rw, QXX′ , ρθ) =

{

[Rw − HQ(X ′|X)]+ [HQ(X ′|X) − Rw]+ ≥ ρθ
∞ [HQ(X ′|X) − Rw]+ < ρθ

=

{

[Rw − HQ(X ′|X)]+ θ ≤ [HQ(X ′|X) − Rw]+/ρ
∞ θ > [HQ(X ′|X) − Rw]+/ρ

(45)

On substituting this back into the expression of E
{

[PFR(E|x)]1/ρ
}

, we get

E
{

[PFR(E|x)]1/ρ
}

·
≤

∑

QX′|X

e−nΛ(QXX′)/ρ ·

∫ [HQ(X′|X)−Rw]+/ρ

−∞
dθ · enθe−n[Rw−HQ(X′|X)]+

·
= exp

{

−n min
QX′|X

[

Λ(QXX′) + ρ[Rw − HQ(X ′|X)]+ − [HQ(X ′|X) − Rw]+
]

/ρ

}
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∆
= e−nEx(Rw,QX ,ρ)/ρ. (46)

It follows then that

E







1

|T (QX)|

∑

x∈T (QX)

[PFR(E|x)]1/ρ







·
≤ e−nEx(Rw,QX ,ρ)/ρ, (47)

and so, there exists a code E with

1

|T (QX)|

∑

x∈T (QX)

[PFR(E|x)]1/ρ
·
≤ e−nEx(Rw,QX ,ρ)/ρ. (48)

For a given such E and QX , let us order the members of T (QX), as x1, x2, x3, . . ., according to

PFR(E|x1) ≥ PFR(E|x2) ≥ PFR(E|x3) ≥ . . . and let M be a temporary short-hand notation for

|T (QX)|. Let B(QX) be the subset of T (QX) formed by the first M ′ = e−δnM members of T (QX)

according to this order, i.e., B(QX) = {x1, x2, . . . , xM ′}. We then have

e−nEx(Rw,QX ,ρ)/ρ
·
≥

1

M

M
∑

m=1

[PFR(E|xm)]1/ρ

≥
1

M

M ′
∑

m=1

[PFR(E|xm)]1/ρ

≥
1

M

M ′
∑

m=1

[PFR(E|xM ′+1)]1/ρ

=
1

M
· M ′ · [PFR(E|xM ′+1)]1/ρ

= e−nδn

[

max
x∈T (QX )\B(QX )

PFR(E|x)

]1/ρ

, (49)

and so, maxx∈T (QX )\B(QX ) PFR(E|x) decays at an exponential rate which is at least as large as

sup
ρ≥0

Ex(Rw, QX , ρ)

= sup
ρ≥0

inf
QX′|X

{

Λ(QXX′) − [HQ(X ′|X) − Rw]+ + ρ[Rw − HQ(X ′|X)]+
}

(50)

= inf
{QX′|X : HQ(X′|X)≥Rw}

{

Λ(QXX′) − [HQ(X ′|X) − Rw]+
}

= inf
{QX′|X : HQ(X′|X)≥Rw}

{Λ(QXX′) − HQ(X ′|X) + Rw}

= Ex(Rw, QX), (51)

completing the proof of Theorem 2.
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C. Converse Bound

We begin with a words of background. Owing to the duality between Slepian–Wolf coding and

channel coding, we should mention the well known converse bound concerning the error exponent

of Slepian–Wolf coding, i.e., the sphere–packing error exponent (see, e.g., [3, pp. 7–9] and references

therein), which is given by

ESW

sp
(Rw) = min

QX

[D(QX‖PX ) + Esp(QX , PY |X , HQ(X) − Rw)] (52)

where

Esp(QX , PY |X , R) = min
{QY |X : IQ(X;Y )≤R}

D(QY |X‖PY |X |QX). (53)

Upon substituting the latter into the former, we obtain

ESW

sp (Rw) = min
{QXY : HQ(X|Y )≥Rw}

D(QXY ‖PXY ). (54)

As argued in [3, eq. (23)], the achievability associated with Slepian–Wolf MAP decoding (see also

Subsection B below) and the sphere–packing converse bound coincide in the range H(X|Y ) ≤

Rw ≤ Rcr

∆
= H(X ′|Y ′), where (X ′, Y ′) is a pair of random variables, jointly distributed according

to PX′Y ′ , defined by

PY ′(y) =
PY (y)

[

∑

x

√

PX|Y (x|y)
]2

∑

y′ PY (y′)
[

∑

x

√

PX|Y (x|y′)
]2 (55)

PX′|Y ′(x|y) =

√

PX|Y (x|y)
∑

x′

√

PX|Y (x′|y)
. (56)

In view of comments 2 and 3, of the discussion after Theorem 1, it follows that the FR random coding

error exponent, associated with MAP decoding and minimum entropy decoding, also achieves the

sphere–packing bound at this range of Rw. The Slepian–Wolf sphere–packing exponent also has an

alternative expression due to Gallager [7], given by

ESW

sp (Rw) = sup
ρ>0







− ln





∑

y

[

∑

x

PXY (x, y)1/(1+ρ)

]1+ρ


 + ρR







. (57)

These are all well known results concerning Slepian–Wolf coding, but our problem here is some-

what different. In our case, the decoder should estimate S = g(X) based on (Y , W ), and not X
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itself, as in Slepian–Wolf decoding. This is a less ambitious goal, but on the other hand, there are

additional constraints on the system. In [9, p. 159], it is assumed that X can be reliably estimated

from (S, W ) (which can be motivated by the desire to make the encoder information lossless w.r.t.

the source, i.e., the system essentially keeps a record of the full biometric signature). Accordingly,

let us assume an encoder that maps each type x within T (QX) into a different pair (s, w), as long

as H(QX) < Rs + Rw. We refer to this condition as the estimability condition. Our converse bound

is now stated in the following theorem.

Theorem 3 Consider the system configuration of Section III, where f : X n → Wn and g : X n →

Sn are arbitrary functions that satisfy the mentioned estimability condition of the source vector.

Let U be an arbitrary decoder and define the set

Q(Rw, Rs) = {QXY : Rw < HQ(X|Y ), Rw + Rs > HQ(X)} . (58)

Then,

PFR

·
≥ exp

{

−n

[

inf
QXY ∈Q(Rw,Rs)

D(QXY ‖PXY ) + o(n)

]}

. (59)

We point out that whenever the second constraint that defines Q(Rw, Rs) becomes inactive, the

exponential rate of this lower bound agrees with ESW
sp

(Rw). This is the case when Rs > HQ∗(X)−Rw,

where Q∗ = Q∗
XY is the achiever of ESW

sp
(Rw) as it appears in (54). Therefore, as described above,

if in addition, Rw ∈ [H(X|Y ), Rcr], then the converse bound is tight.

The remaining part of this subsection is devoted to the proof of this theorem.

Proof of Theorem 3. Let QXY be any joint distribution with the property HQ(X) < Rs + Rw

and let us denote all information measures associated with QXY by using the subscript Q. We

are assuming that the encoder maps every type with empirical entropy less than Rs + Rw in a

one–to–one manner. The following two chains of inequalities are taken from [8] with minor twists.

The first is:

IQ(S; W ) = HQ(S) + HQ(W ) − HQ(S, W )

= HQ(S) + HQ(W ) − HQ(S, W , X) + HQ(X|S, W )

= HQ(S) + HQ(W ) − HQ(X) + HQ(X |S, W )

= HQ(S) + HQ(W ) − nHQ(X) + HQ(X |S, W )
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≤ HQ(S) + nRw − nHQ(X) + nǫ, (60)

for some arbitrary ǫ > 0, where the last step follows from the assumption on the encoder and Fano’s

inequality. The second chain of inequalities from [8] is the following:

HQ(S) = IQ(S; Y , W ) + HQ(S|Y , W )

≤ IQ(S; Y , W ) + PFR(QXY ) · nRs + 1

= IQ(S; W ) + IQ(S; Y |W ) + PFR(QXY ) · nRs + 1

≤ IQ(S; W ) + HQ(Y ) − H(Y |X , S, W ) + PFR(QXY ) · nRs + 1

≤ IQ(S; W ) + HQ(Y ) − H(Y |X) + PFRQXY ) · nRs + 1

= IQ(S; W ) + nIQ(X; Y ) + PFR(QXY ) · nRs + 1, (61)

where PFR(QXY ) is the FR probability induced by the auxiliary source QXY . On substituting the

upper bound (61) on HQ(S) into (60), we obtain

IQ(S; W ) ≤ IQ(S; W ) + nIQ(X; Y ) + PFR(QXY ) · nRs + nRw − nHQ(X) + nǫ + 1

= IQ(S; W ) − nHQ(X|Y ) + PFR(QXY ) · nRs + nRw + nǫ + 1, (62)

which yields

PFR(QXY ) ≥
nHQ(X|Y ) − nRw − nǫ − 1

nRs

. (63)

Now, consider the following standard argument for changing probability measures. Let E =

{(x, y) : g(x) 6= U(y, f(x))} denote the error event for a given encoder, (f, g), and decoder

U . For a given QXY ∈ Q(Rw, Rs) and an arbitrarily small ǫ > 0, define also

Gǫ =

{

(x, y) :

∣

∣

∣

∣

1

n

n
∑

i=1

ln
QXY (xi, yi)

PXY (xi, yi)
− D(QXY ‖PXY )

∣

∣

∣

∣

≤ ǫ

}

. (64)

Then,

PFA =
∑

(x,y)∈E

n
∏

i=1

PXY (xi, yi)

≥
∑

(x,y)∈E∩Gǫ

[

n
∏

i=1

QXY (xi, yi)

]

· exp

{

−
n

∑

i=1

ln
QXY (xi, yi)

PXY (xi, yi)

}

≥
∑

(x,y)∈E∩Gǫ

[

n
∏

i=1

QXY (xi, yi)

]

· exp{−n[D(QXY ‖PXY ) + ǫ]}
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≥ exp{−n[D(QXY ‖PXY ) + ǫ]} ·





∑

(x,y)∈E

n
∏

i=1

QXY (xi, yi) −
∑

(x,y)∈Gc
ǫ

n
∏

i=1

QXY (xi, yi)





= exp{−n[D(QXY ‖PXY ) + ǫ]}[PFA(QXY ) − o(n)]

≥ exp{−n[D(QXY ‖PXY ) + ǫ]} ·

[

HQ(X|Y ) − Rw − ǫ

Rs

− o(n)

]

. (65)

The proof is completed by selecting QXY to be the minimizer of D(QXY ‖PXY ) across Q(Rw+2ǫ, Rs),

and by using the arbitrariness of ǫ > 0, as well as the continuity of HQ(X|Y ) and D(QXY ‖PXY )

as functionals of QXY .

V. The False–Accept Error Exponent

In this section, we analyze the ensemble performance of the system from the viewpoint of an

imposter who makes an attempt to estimate the secret key without access to the side information

Y , and we are interested in the exponential decay rate of the FA probability. This section is divided

into two parts: Subsection A is devoted to the direct theorem and Subsection B focuses on the

converse theorem.

A. Direct Theorem

Here we analyze the FA probability for the average code. As described in Section III, here we assume

that the imposter estimates S using the MAP estimator, S̃ (see (8)), based on the helper message

only. Accordingly, as defined in Section III, we denote P̄FA = Pr{S̃ = S}, i.e., the probability of

correct decoding (FA), averaged over the ensemble of codes {E}. Let us define

EFA(Rw, Rs) = min
QX

[D(QX‖PX) + min{Rs, [HQ(X) − Rw]+}] . (66)

Our main result, in this subsection, is the following.

Theorem 4 Consider the system configuration described in Section III. Then,

P̄FA ≤ exp{−nEFA(Rw, Rs) + o(n)}. (67)

The expression of this exponential error bound is quite intuitive and it can easily be understood

to hold even if the imposter is informed about the type3 QX of X . There are about en[HQ(X)−Rw]+

3Here a genie–aided decoding argument does not harm the tightness of the FA exponent, because one can guess the
type correctly with probability of success that decays only polynomially.
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source sequences of type QX (including the correct one), whose helper message is the given W . If

[HQ(X) − Rw]+ > Rs, then all possible enRs members of the secret–message set would be likely to

appear as encoded secret messages among those sequences, approximately evenly, so the probability

of guessing the correct one is about e−nRs . If, on the other hand, [HQ(X) − Rw]+ < Rs, then it is

very likely that there would be only about en[HQ(X)−Rw]+ different s–messages, so the probability

of guessing the correct one is the reciprocal, e−n[HQ(X)−Rw]+ . It is easy to see that EFA(Rw, Rs)

vanishes for Rw > H(X), as expected.

It is also interesting to observe that here, in contrast to the exponential FR bounds of Section

IV, the exponent depends on both Rw and Rs, and not only on Rw. As expected, it is increasing in

Rs and decreasing in Rw.

The FA error exponent of Theorem 4 can also be presented in a Gallager–style form:

EFA(Rw, Rs) = min
Q

[D(QX‖PX) + min{Rs, [HQ(X) − Rw]+}]

= min
QX

min
0≤s≤1

max
0≤ρ≤1

{D(QX‖PX) + sRs + (1 − s)ρ[HQ(X) − Rw]}

= min
0≤s≤1

max
0≤ρ≤1

min
QX

{D(QX‖PX) + sRs + (1 − s)ρ[HQ(X) − Rw]}

= min
0≤s≤1

max
0≤ρ≤1

{

−[1 − ρ(1 − s)] ln

[

∑

x

PX(x)1/[1−ρ(1−s)]

]

+ sRs − ρ(1 − s)Rw

}

= min
0≤s≤1

max
s≤ρ≤1

{

−ρ ln

[

∑

x

PX(x)1/ρ

]

+ sRs − (1 − ρ)Rw

}

. (68)

Proof of Theorem 4. In the derivation below, we let xQ denote an arbitrary representative source

vector x of type QX . The choice of this representative within T (QX) is completely immaterial

since all members of T (QX) are equiprobable. Similarly as before, we also denote by N(QX , w, s)

the number of members of T (QX) that are encoded into (w, s).

P̄FA = E

{

∑

w
max

s
P (w, s)

}

= E







∑

w
max

s

∑

QX

PX(xQ) · N(QX , w, s)







·
= E

{

∑

w
max

s
max
QX

PX(xQ) · N(QX , w, s)

}

·
= E

{

∑

w
max
QX

PX(xQ) max
s

N(QX , w, s)

}
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·
= E







∑

w

∑

QX

PX(xQ) max
s

N(QX , w, s)







·
=

∑

w

∑

QX

PX(xQ) · E

{

max
s

N(QX , w, s)

}

=
∑

w

∑

QX

PX(xQ) ·

|T (QX )|
∑

n=1

Pr

{

max
s

N(QX , w, s) ≥ n

}

=
∑

w

∑

QX

PX(xQ) ·

|T (QX )|
∑

n=1

Pr
⋃

s
{N(QX , w, s) ≥ n}

≤
∑

w

∑

QX

PX(xQ) ·

|T (QX )|
∑

n=1

min
{

1, enRsPr [N(QX , w, s) ≥ n]
}

. (69)

Now, for QX ∈ G
∆
= {QX : HQ(X) > Rs + Rw}, clearly, Pr[N(QX , w, s) ≥ n] is large for ev-

ery n ≤ en[HQ(X)−Rw−Rs−ǫ] (for an arbitrarily small ǫ > 0 and large n), and so, the minimum

between 1 and enRsPr [N(QX , w, s) ≥ n] is certainly 1. Hence, these terms, of the summation

over n, contribute altogether a quantity of the exponential order of en[HQ(X)−Rw−Rs]. For larger

n, Pr[N(QX , w, s) ≥ n] decays super–exponentially, and so, these terms contribute a negligible

amount. Consequently, considering the factor of enRw that stems from the summation over w,

one term that contributes to the expression of the last line above is
∑

QX∈G PX(xQ)en[HQ(X)−Rs],

which is of the exponential order of exp{−n minQX∈G [D(QX‖PX ) + Rs]}. The other term comes

from the types that belong to Gc. For QX ∈ Gc, there are sub–exponentially few terms that

contribute min{1, enRs · en[HQ(X)−Rs−Rw]} = e−n[Rw−HQ(X)]+ , and so, the overall contribution

is maxQX∈Gc enRwe−n[HQ(X)+D(QX ‖PX )]e−n[Rw−HQ(X)]+ , which is exp{−n minQX∈Gc [D(QX‖PX ) +

[HQ(X) − Rw]+]}. Thus, the overall performance is

P̄FA

·
≤ exp

(

−n min
QX

[D(QX‖PX) + min{Rs, [HQ(X) − Rw]+}]

)

, (70)

completing the proof of Theorem 4.

B. Converse Theorem

We next provide a matching converse to Theorem 4. To this end, we will make the follow-

ing regularity condition concerning the helper–message encoder, f : for each type class QX , the

number of different {w} for which N(QX , w) ≥ 1 is the maximum possible number, that is,
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min{enRw , |T (QX)|}
·
= exp[n min{Rw, HQ(X)}. Otherwise, the encoder can obviously be improved

from the viewpoint of the legitimate subscriber,4 by using a larger variety of {w}, which would

obviously make the helper message more informative for him/her.

Theorem 5 Consider the system configuration of Section III, where f : X n → Wn is an arbitrary

helper–message encoder that satisfies the regularity assumption, g : X n → Sn is an arbitrary secret–

message encoder and V : Wn → Sn is an arbitrary decoder. Then,

PFA

∆
= Pr{V (W ) = S} ≥ exp{−[nEFA(Rw, Rs) + o(n)]}. (71)

It is interesting to point out that the proof of Theorem 5 (see below) provides a guideline

concerning good encoders that minimize the FA probability: in the proof of this theorem, all

inequalities become equalities if bins are allocated to source sequences as evenly as possible, both

for the secret message encoder and the helper message encoder. This is to say that within type

classes whose sizes are smaller than the total number of bins, each source sequence should be mapped

into a different bin, and for the other type classes, all bins should be populated evenly by source

sequences, at least in the exponential scale. Clearly, a typical realization of a randomly chosen

random binning code has this property. It is speculated that certain other classes of (randomized)

encoders share this property as well, such as those that are based on universal hash functions.

If the encoder does not satisfy the aforementioned regularity condition, but the number of {w}

with N(QX , w) ≥ 1 is given instead by the exponential order of exp{nW (QX)} (for some W (QX) ≤

min{Rw, HQ(X)}), then [HQ(X) − Rw]+, in the expression of EFA(Rw, Rs), should be replaced by

HQ(X) − W (QX).

Proof of Theorem 5. Upon repeating the first five lines of eq. (69), but without the expectation

w.r.t. the randomness of the encoder, we have

PFA

·
=

∑

w

∑

QX

PX(xQ) max
s

N(QX , w, s)

=
∑

w

∑

QX

PX [T (QX)] ·
maxs N(QX , w, s)

|T (QX)|
. (72)

4This is a reasonable assumption since the system is designed, first and foremost, for the authentication of legitimate
subscribers. In the absence of such an assumption, there is no non–trivial lower bound to the FAR since one may
use the degenerate encoder f(x) ≡ 0 for all x, which renders the helper message completely useless and then the
FAR would be dropped to e−nRs .
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To lower bound the quantity maxs N(QX , w, s), we have the following consideration. Assume

first that N(QX , w) > enRs . Since
∑

s N(QX , w, s) = N(QX , w), the smallest possible value of

maxs N(QX , w, s) is attained when N(QX , w, s) = N(QX , w)/enRs for all s. For 1 ≤ N(QX , w) ≤

enRs , we will lower bound maxs N(QX , w, s) by 1. Thus, in general, for every QX and w for which

N(QX , w) ≥ 1,

max
s

N(QX , w, s) ≥ max{1, N(QX , w)e−nRs}. (73)

On substituting the last lower bound into the above approximation of PFA, we obtain,

PFA

·
≥

∑

{w: N(QX ,w)≥1}

∑

QX

PX [T (QX)] ·
max{1, N(QX , w)e−nRs}

|T (QX)|

=
∑

QX

en min{Rw,HQ(X)}PX [T (QX)] ·
1

en min{Rw,HQ(X)}

∑

{w: N(QX ,w)≥1}

max{1, N(QX , w)e−nRs}

|T (QX)|
.

Now, the function q(t) = max{1, te−nRs} is obviously convex, and so, since the number of different

{w} in the f–image of every type QX is as large as min{|T (QX)|, enRw}, the above expression is

further lower bounded by

PFA

·
≥

∑

QX

en min{Rw,HQ(X)}PX [T (QX)] ·
1

|T (QX)|
×

max







1,
1

en min{Rw,HQ(X)}

∑

{w: N(QX ,w)≥1}

N(QX , w)e−nRs







=
∑

QX

en min{Rw,HQ(X)}PX [T (QX)] ·
1

|T (QX)|
· max

{

1, |T (QX)| · e−n(Rs+min{Rw,HQ(X)}
}

·
= exp

{

−n min
QX

(− min{Rw, HQ(X)} + D(QX‖PX)+

HQ(X) − [HQ(X) − Rs − min{Rw, HQ(X)}]+)}

= exp {−n (D(QX‖PX) + min{Rs, HQ(X) − min{Rw, HQ(X)}})}

= exp {−n (D(QX‖PX) + min{Rs, [HQ(X) − Rw]+})}

= exp{−nEFA(Rw, Rs)}. (74)

This completes the proof of Theorem 5.
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VI. Secrecy Leakage for the Typical Code

In this section, we provide an outline for the evaluation of the secrecy leakage, I(W ; S), associated

with the typical code, E , in the ensemble.

We envision the typical code as a code with the following properties:

1. For any given type class T (QX) whose size is larger than en(Rs+Rw), the number of mem-

bers of T (QX) mapped each one of the en(Rs+Rw) pairs (s, w) is exactly the same (uniform

distribution of (S, W ) within the type), so that H(S, W |X ∈ T (QX)) = n(Rs + Rw).

2. For any given type class T (QX) whose size is smaller than en(Rs+Rw), each member of T (QX)

is mapped to a different pair (s, w), so that H(S, W |X ∈ T (QX)) = log |T (QX)|.

The secrecy leakage will then be upper bounded as follows:

I(S; W ) = H(S) + H(W ) − H(S, W )

≤ nRs + nRw − H(S, W |P̂X )

= n(Rs + Rw) − E min
{

n(Rs + Rw), log |T (P̂X )|
}

= E

{

[

n(Rs + Rw) − log |T (P̂X )|
]

+

}

≈ nE
{

[Rs + Rw − ĤX (X)]+
}

. (75)

Now, assuming that H(X) > Rs + Rw, the probability of falling in a type class T (P̂x) with

Rs + Rw − Ĥx(X) > 0 is of the exponential order of exp{−nEsec(Rs + Rw)}, where

Esec(R)
∆
= min{D(QX‖PX) : HQ(X) ≤ R}, (76)

and therefore,

I(S; W )
·
≤ n

∑

x
PX(x)[Rs + Rw − Ĥx(X)] · I{Rs + Rw − Ĥx(X) > 0}

≤ n(Rs + Rw) · Pr{Rs + Rw − ĤX (X) > 0}

·
= exp{−nEsec(Rs + Rw)}, (77)

which means that as long as H(X) > Rs + Rw, strong security is guaranteed in the sense that

I(S; W ) tends to zero even without normalization by n, as it decays exponentially fast. The

secrecy exponent depends on Rs and Rw only via their sum, Rs + Rw.
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VII. Privacy Leakage

In this last section, which is very brief, we study the privacy leakage – the amount of information

that leaks from the biometric signature X to the helper message, W , that is, the normalized

mutual information, I(X ; W )/n. Since W is a deterministic function of X for a given code, then

I(X ; W ) = H(W ). Thus,

I(X; W ) = H(W )

= H(W |P̂X ) + I(W ; P̂X )

≤
∑

T (P̂x)

P [T (P̂x)]H(W |P̂x) + H(P̂X )

≤
∑

T (P̂x)

P [T (P̂x)] min{nRw, log |T (P̂x)|} + (|X | − 1) log(n + 1)

= E min
{

nRw, log |T (P̂X )|
}

+ (|X | − 1) log(n + 1). (78)

Now, similarly as in Section VI, since Rw < H(X), the first term behaves like nRw plus a term

of the exponential order of exp{−nEsec(Rw)} (where Esec(·) was defined in Section VI), which is

negligible compared to both nRw and (|X | − 1) log(n + 1). Thus, I(X; W )/n converges to Rw at

least as fast as (log n)/n, and, as said, Rw in turn can chosen arbitrarily close (from above) to

H(X|Y ), in accordance to [9, Proposition 2.4]. Of course, the cost of proximity to H(X|Y ) is in

compromising the FR exponent, as was shown in Section IV.

VIII. Summary and Conclusion

In this paper, we studied the ensemble performance of biometric authentication systems, that are

based on secret key generation. Referring to an ensemble of codes based on Slepian–Wolf binning, we

have provided detailed, sharp analyses of the false–reject and false–accept probabilities, in terms of

error exponents, for a wide class class of stochastic decoders that covers the optimal MAP decoder,

as well as several additional decoders, as special cases. Converse bounds have been derived as well.

Finally, we have outlined derivations of the secrecy leakage for the typical code in the ensemble, as

well as on the privacy leakage. We believe that our results provide a more precise characterization of

the trade-offs among the various figures of metric associated with biometric authentication systems

that are based on secret key generation.
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Appendix

Proof of eq. (36). The proof is similar to the proof of a similar argument in the context of channel

coding [12, Appendix B]. First, observe that

Zx(y) =
∑

x′ 6=x

exp{na(P̂x′y)} · I{f(x′) = f(x)} =
∑

QX|Y

ena(QXY )N(T (QX|Y |y), f(x)). (A.1)

Thus, considering the randomness of {f(x)},

Pr
{

Zx(y) ≤ exp{nα(R + ǫ, P̂y)}
}

= Pr







∑

QX|Y

N(T (QX|Y |y), f(x))ena(QXY ) ≤ exp{nα(R + ǫ, P̂y)}







≤ Pr

{

max
QX|Y

N(T (QX|Y |y), f(x))ena(QXY ) ≤ exp{nα(R + ǫ, P̂y)}

}

= Pr
⋂

QX|Y

{

N(T (QX|Y |y), f(x))ena(QXY ) ≤ exp{nα(R + ǫ, P̂y)}
}

= Pr
⋂

QX|Y

{

N(T (QX|Y |y), f(x)) ≤ exp{n[α(R + ǫ, P̂y) − a(QXY )]}
}

. (A.2)

Now, N(T (QX|Y |y), f(x)) is a binomial random variable with |T (QX|Y |y)
·

= enHQ(X|Y ) trials and

success rate of e−nRw . We now argue that by the very definition of α(R + ǫ, P̂y), there must exist

some Q∗
X|Y such that for Q∗

XY = P̂y × Q∗
X|Y , HQ∗(X|Y ) ≥ R + ǫ and HQ∗(X|Y ) − R − ǫ ≥

α(R + ǫ, P̂y) − a(P̂y × Q∗
X|Y ). Let then Q∗

X|Y be such a conditional distribution. Then,

Pr
⋂

Q

{

N(T (QX|Y |y), f(x)) ≤ exp{n[α(R + ǫ, P̂y) − a(P̂y × QX|Y )]}
}

≤ Pr
{

N(T (Q∗
X|Y |y), f(x)) ≤ exp{n[α(R + ǫ, P̂y) − a(P̂y × Q∗

X|Y )]}
}

. (A.3)

Now, we know that HQ∗(X|Y ) ≥ R + ǫ and HQ∗(X|Y ) − R − ǫ ≥ α(R + ǫ, P̂y) − a(P̂y × Q∗
X|Y ).

By the Chernoff bound the probability in question is upper bounded by

exp
{

−enHQ∗ (X|Y )D(e−αn‖e−βn)
}

, (A.4)

where α = HQ∗(X|Y ) + a(P̂y × Q∗
XY ) − α(R + ǫ, P̂y) and β = R. Noting that α − β ≥ ǫ, we can

easily lower bound the binary divergence as follows (see [11, Section 6.3]):

D(e−αn‖e−βn) ≥ e−βn{1 − e−(α−β)n[1 + n(α − β)]}
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≥ e−nR[1 − e−nǫ(1 + nǫ)], (A.5)

where in the last passage, we have used the decreasing monotonicity of the function f(t) = (1+t)e−t

for t ≥ 0. Thus,

Pr
{

N(T (Q∗
X|Y |y), f(x)) ≤ exp{n[α(R, P̂y) − a(P̂y × Q∗

X|Y ) − ǫ]}
}

≤ exp
{

−enHQ∗ (X|Y ) · e−nR[1 − e−nǫ(1 + nǫ)]
}

≤ exp
{

−enǫ[1 − e−nǫ(1 + nǫ)]
}

= exp {−enǫ + nǫ + 1} . (A.6)

Finally, the factor of |X × Y|n in eq. (36) comes from the union bound, taking into account all

|X × Y|n possible pairs {(x, y)}. This completes the proof of eq. (36).
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