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Objectives

We consider the problem of estimating a parameter θ based on an

observation, Y .

Instead of the MSE, we seek non–trivial lower bounds on:

Bayesian regime: E exp{α[θ̂(Y ) − Θ]2}

Non-Bayesian regime: Eθ exp{α[θ̂(Y ) − θ]2}, θ̂(·) is unbiased

where α > 0 is a given constant.

By “non–trivial” lower bounds, we mean something more sophisticated than

applying Jensen’s inequality:

E exp{α[θ̂(Y ) − Θ)2} ≥ exp{αE[θ̂(Y ) − θ]2} ≥ exp{α[MSE lower bound]}.
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Motivations

Risk–sensitivity: penalizing large errors (optimization & stoch. control).

Robustness to model uncertainty.

The MGF/CGF of (θ̂ − θ)2 as a function of α is more informative.

Related to large deviations performance, Pr{|θ̂ − θ| ≥ δ}.

Tail behavior of ǫ = θ̂ − θ:

α ≥ αc → E exp{α[θ̂(Y ) − Θ]2} diverges → tail of f(ǫ) > exp{−αcǫ2}.
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Difficulty

In the Bayesian regime, the optimal estimator

θ̂(y) = arg min
η

E

h

exp{α(Θ − η)2}|Y = y
i

,

which is given by the solution, η, to the equation,

η =
E

h

Θexp{α(Θ − η)2}|Y = y
i

E [exp{α(Θ − η)2}|Y = y]
,

is even more difficult to calculate than the MMSE estimator,

θ̂(y) = E{Θ|Y = y},

hence the quest for lower bounds is even more crucial here.
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Generic Lower Bounds

Based on the Laplace principle,

lnEP eZ ≥ EQZ − D(Q‖|P ),

we have the following generic bounds,

Bayesian:

∀Q(θ, y) : lnE exp{α[θ̂(Y ) − Θ]2} ≥ αLB(Q) − D(Q‖P ),

where LB(Q) is an arbitrary Bayesian MSE lower bound under Q.

Non–Bayesian:

∀θ′ : lnEθ exp{α[θ̂(Y ) − θ]2} ≥ αLNB(θ′) + α(θ′ − θ)2 − D(Pθ′‖Pθ),

where LNB(θ′) is an arbitrary non–Bayesian MSE lower bound under θ′.

These generic bounds offer considerable freedom...
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Bayesian Regime – Conditions for Tightness

If you can guess an estimator g(y) and a reference measure Q, such that both:

g(·) minimizes EQ[θ̂(Y ) − Θ]2.

Q(θ|y) ∝ P (θ|y) exp{α[g(y) − θ]2}.

then g minimizes E exp{α[θ̂(Y ) − Θ]2}.

Condition for tightness of the Bayesian Cramér–Rao lower bound (BCRLB),

LB(Q):

Q(θ|y) = N (g(y), LBCR(Q)).

Combining with the above, we then should have

P (θ|y) = N

„

g(y),
LBCR(Q)

1 − 2αLBCR(Q)

«

.
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Example: Gaussian Linear Models

Under P , let Θ ∼ N (0, σ2) and for a given Θ = θ, let

y(t) = θs(t) + n(t), 0 ≤ t ≤ T

where n(t) is AWGN, with psd N0/2, and s(t) is with energy Es.

Denoting z =
R T

0
y(t)s(t)dt, we get

P (θ|y) = P (θ|z) ∝ exp

(

−
N0 + 2σ2Es

2σ2N0

„

θ −
σ2

σ2Es + N0/2
· z

«2
)

,

and the optimality conditions are satisfied by the estimator,

θ̂ =
σ2

σ2Es + N0/2
· z.
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Example: Gaussian Linear Models (Cont’d)

The estimator,

θ̂ =
σ2

σ2Es + N0/2
· z

achieves

inf
g

lnE exp{α[g(Y ) − Θ]2} =
1

2
ln

1

1 − α/αc
, 0 < α < αc

△
=

1

2σ2
+

Es

N0

.

No estimator g can have an estimation error ǫ = g(Y ) − Θ with a pdf with tail

that decays faster than

exp



−

„

1

2σ2
+

Es

N0

«

ǫ2
ff

.
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Non–Linear Model & Reference Gaussian–Linear Model

Under P , Θ ∼ N (0, σ2) and given θ = θ, y(t) = x(t, θ) + n(t).

Under Q, Θ ∼ N (0, σ̃2), and y(t) = θs(t) + n(t).

lnE exp{α[g(Y ) − Θ]2} ≥
ασ̃2N0

N0 + 2σ̃2Es
− D(σ̃2‖σ2) −

1

N0

Z T

0

E[x(t, Θ) − Θs(t)]2dt.

Degrees of freedom: σ̃2 and the reference signal, s(t). Optimal signal:

s∗(t) ∝ E {Θ · x(t, Θ)} .

For x(t, θ) ∝ cos(ωt + θ),

lnE exp{α[g(Y ) − Θ]2} ≥
1

2
ln

1

1 − α/αc
−

Ex

N0

, αc =
1

2σ2
.
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Non–Linear Model and Reference

Under P , Θ has a general prior, PΘ and y(t) = x(t − θ) + n(t).

Under Q, Θ has a general prior, QΘ and y(t) = s(t − θ) + n(t).

Bound =
α

I(QΘ) + 2

N0

R T
0

[ṡ(t)]2dt
− D(QΘ‖PΘ) −

1

N0

Z T

0

[x(t) − s(t)]2dt.

Degrees of freedom: QΘ and s(t). The optimal s(t) is the solution to

s(t) −
s̈(t)

λ
= x(t) ṡ(0) = ṡ(T ) = 0

where λ controls the trade off.

For x(t, θ) = a(t) sin(θt) + b(t) cos(θt), the optimal s(t) is

s(t, θ) =
λx(t, θ)

t2 + λ
.
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The Non–Bayesian Regime

For the linear mmodel, y(t) = θ · s(t) + n(t), we obtain,

Bound = sup
θ′

»

αN0

2Es
+

„

α −
Es

N0

«

(θ′ − θ)2
–

=

(

αN0

2Es
α ≤ Es

N0

∞ α > Es

N0

which means that αc ≤ Es/N0.

The ML estimator achieves Es/N0, and so, αc = Es/N0

lnEθ exp{α[θ̂ML − θ]2} = −
1

2
ln

„

1 −
αN0

Es

«

.

The bound is achieves for small α and/or large SNR.
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Extension to the Vector Case (Non–Bayesian)

For

x(t, θ) =
k

X

i=1

θisi(t),

define Γ be the k × k matrix of correlations with entries given by

γij =
1

Es

Z T

0

si(t)sj(t)dt.

lnEθ exp
n

[αT (θ̂ − θ)]2
o

≥
N0αT Γ−1α

2Es
+ sup

θ′

(θ′ − θ)T
„

ααT −
Es

N0

Γ

«

(θ′ − θ)

=

(

N0αT
Γ
−1α

2Es
αT Γ−1α ≤ Es

N0

∞ elsewhere
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More in the Paper

Explicit bounds for various signal models.

MMSE lower obunds other than the BCRLB, e.g., the W-W bound.

Extension the Laplace principle to Rényi divergences.

Phase transitions under the CGF criterion,
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