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Objectives

We consider the problem of estimating a parameter § based on an

observation, Y.

Instead of the MSE, we seek non—trivial lower bounds on:

Bayesian regime: E exp{a[6(Y) — 0]}

Non-Bayesian regime: Eg exp{a[d(Y) — 6]}, 6(-) is unbiased

where o > 0 IS a given constant.

By “non-trivial” lower bounds, we mean something more sophisticated than

applying Jensen’s inequality:

Eexp{a[0(Y) — ©)?} > exp{aE[(Y) — 0]*} > exp{a[MSE lower bound]}.
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Motivations

Risk—sensitivity: penalizing large errors (optimization & stoch. control).

Robustness to model uncertainty.
The MGF/CGF of ( — 0)? as a function of « is more informative.
Related to large deviations performance, Pr{|d — 0| > §}.

Tail behavior of e = 8 — 6

a>ac — Eexp{a[d(Y)— 0]%} diverges — tail of f(e) > exp{—ace’}.
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Difficulty

In the Bayesian regime, the optimal estimator
(y) = argmin B |exp{a(© - n)*}Y =y,
which is given by the solution, n, to the equation,

 E[0exp{a(0—n)}Y = y]
77 Elexp{a® —n)2}Y =y

IS even more difficult to calculate than the MMSE estimator,

6(y) = E{O]Y =y},

hence the quest for lower bounds is even more crucial here.

—n. 4/]



Generic Lower Bounds

Based on the Laplace principle,
nEpe” > EqgZ — D(Q||P),

we have the following generic bounds,

Bayesian:

VQ(0,y): InEexp{a[d(Y)—06]°} > aLg(Q) — D(Q||P),

where Lg(Q) is an arbitrary Bayesian MSE lower bound under Q.

Non—Bayesian:
V' : InEgexp{a[d(Y) —0]°} > aLng(0) + a0 — 0)° — D(Py || Py),

where Lyg(#') is an arbitrary non—Bayesian MSE lower bound under ¢'.

These generic bounds offer considerable freedom...
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Bayesian Regime — Conditions for Tightness

If you can guess an estimator g(y) and a reference measure @, such that both:
® ¢(-) minimizes Eg[A(Y) — ©]2.
® Q(bly) oc P(8ly) exp{aly(y) — 6]°}.

then g minimizes E exp{a[d(Y) — ©]*}.

Condition for tightness of the Bayesian Cramér—Rao lower bound (BCRLB),
Lg(Q):
Q0ly) = N(9(y), Lgcr(@))-

Combining with the above, we then should have

o - (o )
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Example: Gaussian Linear Models

Under P, let © ~ N(0, ¢?) and for a given © = 6, let
y(t) =0s(t) +n(t), 0<t<T

where n(t) iIs AWGN, with psd Ny /2, and s(t) is with energy Es.

Denoting z = fOT y(t)s(t)dt, we get

2
Ny + 202 Es o2
P(Oly) = P(0]z) o exp { 202N, (9 "~ 02E, + No/2 Z) }

and the optimality conditions are satisfied by the estimator,

0_2

0 = . 2.

—n. 7/]



Example: Gaussian Linear Models (Cont’d)

The estimator,

0_2

= -

achieves

L O<a<acs 1 4L
1 —a/ac’ “ T 202 TNy

inf In E exp{a[g(Y) — ©]°} = %ln
g

No estimator g can have an estimation error e = g(Y') — © with a pdf with tail

ex — 1 + B 62
P 202 T No '

that decays faster than
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Non—Linear Model & Reference Gaussian—Linear Mode

Under P, © ~ N(0,0°) and given 0 = 0, y(t) = z(t, 0) + n(t).
Under Q, © ~ N (0,52), and y(t) = 0s(t) + n(t).

a5’Ny

In Eexp{a[g(Y) — @]2} > D(52H‘72) —

T
Nio /O Elz(t,0) — 0s(1)2dt.

Degrees of freedom: 5% and the reference signal, s(¢). Optimal signal:
s (t) x E{© - z(t,0)}.
For x(t,0) o cos(wt + 6),

1 1 E. 1
—In — ac = —=.

In Eexp{alg(Y) — @]2} > 1—a/ac N’ 202
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Non—-Linear Model and Reference

Under P, © has a general prior, Pg and y(t) = xz(t — ) + n(?).
Under @, © has a general prior, Qg and y(t) = s(t — 0) + n(t).

Bound = a !

I(Qe) + 7 Jo [3(1)]2dt No

Degrees of freedom: Qg and s(t). The optimal s(¢) is the solution to

where )\ controls the trade off.

For z(t,0) = a(t) sin(0t) + b(t) cos(0t), the optimal s(t) is

Ax(t,0)
24+ X

s(t,0) =

T
— D(Qel|Po) — — /O () — s()2d.
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The Non—-Bayesian Regime

For the linear mmodel, y(t) = 0 - s(t) + n(t), we obtain,

No Es / 2
Bound = 2 —— (6 —0
wlae + (0o w) o]
N, B,
_ 2B, SN
o a>

which means that a. < Es/Np.
The ML estimator achieves E /Ny, and so, a. = Es/Ny

In Eg exp{a[fy — 9]°) = —% In (1 — aév()) :
S

The bound is achieves for small o and/or large SNR.
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Extension to the Vector Case (Non—Bayesian)

For
k
z(t,0) = > 0;s(),
1=1

define I" be the k x k matrix of correlations with entries given by

NoalT 1o / T T Es /
2. +S;1,p(9 —0) (aa — FOF (0" —0)
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More in the Paper

Explicit bounds for various signal models.
MMSE lower obunds other than the BCRLB, e.g., the W-W bound.
Extension the Laplace principle to Rényi divergences.

Phase transitions under the CGF criterion,
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