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Abstract

Considering the problem of risk–sensitive parameter estimation, we propose a fairly wide family
of lower bounds on the exponential moments of the quadratic error, both in the Bayesian and the
non–Bayesian regime. This family of bounds, which is based on a change of measures, offers con-
siderable freedom in the choice of the reference measure, and our efforts are devoted to explore this
freedom to a certain extent. Our focus is mostly on signal models that are relevant to communica-
tion problems, namely, models of a parameter–dependent signal (modulated signal) corrupted by
additive white Gaussian noise, but the methodology proposed is also applicable to other types of
parametric families, such as models of linear systems driven by random input signals (white noise,
in most cases), and others. In addition to the well known motivations of the risk–sensitive cost
function (i.e., the exponential quadratic cost function), which is most notably, the robustness to
model uncertainty, we also view this cost function as a tool for studying fundamental limits con-
cerning the tail behavior of the estimation error. Another interesting aspect, that we demonstrate
in a certain parametric model, is that the risk–sensitive cost function may be subjected to phase
transitions, owing to some analogies with statistical mechanics.

Index Terms: risk–sensitive estimation, risk–averse estimation, robust estimation, Bayesian esti-
mation, Cramér–Rao bound, unbiased estimation, tail behavior, phase transitions.
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1 Introduction

While the minimum mean square error (MMSE) has been the most common figure of merit for

measuring the performance of estimators in several areas, such as estimation theory, informa-

tion/communication theory, and statistics, by contrast, the exponential moments of the quadratic

error, namely, E exp{α(θ̂ − θ)2)} (α > 0 being a prescribed constant, θ – a parameter, and θ̂ –

its estimator), have received much less attention in those fields. In the realm of the theory of

optimization and stochastic filtering and control, on the other hand, the problem of minimizing

exponential moments of the quadratic error, or exponential moments of any other loss function,

has been studied rather intensively, and it is well–known as the risk–sensitive or risk–averse cost

function (see, e.g., [8], [10], [13], [18], [30], [31] and many references therein).

One of the main motivations for using the exponential function of the loss is to impose a penalty,

or a risk, that is extremely sensitive to large values of the loss, hence the qualifier “risk–sensitive”

in the name of this criterion. Another motivation is associated with robustness properties of the

resulting risk–sensitive solutions to model uncertainties [1], [12]. Indeed, as explained in [22, p.

349, the paragraph of eq. (11)], minimization of the exponential moment of the loss function is

equivalent to minimization of the expected loss for the worst distribution in the ǫ–neighborhood

(in the Kullback–Leibler divergence sense) of the given (nominal) probability distribution, where ǫ

grows with the risk–sensitive factor parameter α. There are, in fact, a few additional motivations for

minimizing exponential moments, which are also relevant to the problem of parameter estimation

considered here, and indeed, risk–sensitive parameter estimation has been studied to a considerable

extent (see, e.g., [3], [14], [17], [19], [24], [25], [26], [32], and references therein). First and foremost,

the exponential moment, E exp{α(θ̂ −θ)2}, as a function of α, is obviously the moment–generating

function of (θ̂−θ)2, and as such, it provides the full information about the entire distribution of this

random variable, not just its first order moment. Thus, in particular, if we are fortunate enough to

find an estimator that uniformly minimizes E exp{α(θ̂ − θ)2} for all α ≥ 0 (and there are examples

that this may be the case), then this is much stronger than just minimizing the first moment.

Secondly, exponential moments are intimately related to large–deviations rate functions (owing to

the exponential tightness of the Chernoff bound), and so, the minimization of exponential moments

may give us an edge on minimizing probabilities of (undesired) large deviations events of the form

Pr{|θ̂ − θ| ≥ δ} (for some threshold δ which is related to α), or more precisely, on maximizing the

exponential rate of decay of these probabilities.

Moreover, an important feature of the estimation error, ǫ ≡ θ̂ − θ, is its tail behavior: how fast

can the probability density function (pdf) of ǫ possibly decay as |ǫ| → ∞ (assuming the support

of ǫ to be unbounded)? This is not accomplished, in general, by inspecting a figure of merit like

Pr{|θ̂ − θ| ≥ δ}, for a given δ, since the optimal estimator under this criterion may depend on δ,

whereas we might be interested to assess the decay rate of the entire distribution tail of a single

estimator θ̂. It turns out that when the support of θ is unbounded (and so is that of θ̂), then there

is normally a critical value of α, denoted αc, such that for every α < αc, the exponential moment
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E exp{α(θ̂ − θ)2} is finite at least for some estimators, whereas, for α ≥ αc, it must diverge for any

estimator θ̂. When this is the case, this means that there exists no estimator whose pdf tail decays

faster than a Gaussian tail of the form exp(−αcǫ
2). Thus, deriving bounds on αc is an important

aspect of the risk–sensitive cost function, as we shall see in the sequel. Interestingly, in a large

variety of models that we examine, our bounds on αc will turn out to be tight in spite of the fact

that the corresponding bounds to the mean exponential quadratic error are not always tight.

Our main focus in this paper is in lower bounds to the mean exponential quadratic error as a

function of the risk–sensitive parameter α. We propose a rather wide family of such lower bounds,

both in the Bayesian and non–Bayesian regimes, though most of our emphasis is on the Bayesian

regime. This family of bounds is based on a change of measures, combined with the plethora

of bounds for the ordinary mean square error (MSE), and as such, it offers a considerably large

freedom in the choice of certain ingredients of these bounds. Our efforts are devoted to explore

this freedom at least to a certain extent. The bounds are applied mostly to signal models that

are relevant to communication problems, namely, models of a parameter–dependent signal (i.e.,

a modulated signal) corrupted by additive white Gaussian noise, but the methodology proposed

is also applicable to other types of parametric families, such as models of linear systems driven

by random input signals (white noise, in most cases), memoryless sources parametrized by their

letter probabilities, Markov sources, parametrized by their state transition probabilities, and so

on. Another interesting aspect, that we demonstrate (in the Bayesian regime) for a very simple

parametric model, is that the risk–sensitive cost function may be subjected to phase transitions,

owing to some intimate analogies with statistical mechanics.

The remaining part of this paper is organized as follows. In Section 2, we establish notation

conventions, define the problem, and provide a few preliminaries. In Section 3, we provide our

generic lower bounds to the risk–sensitive cost function for both the Bayesian and the non–Bayesian

regimes. These two generic bounds will serve as the basis for several families of bounds that will be

further developed for various classes of parametric models in Section 4 (the Bayesian regime) and

in Section 5 (the non–Bayesian regime). Also, in the last subsection of Section 4, we demonstrate

that the risk–sensitive cost function may exhibit phase transitions even in some simple parametric

models, like that of the binary memoryless (Bernoulli) source.

2 Notation, Definitions, Problem Setting and Preliminaries

We begin by establishing some notation conventions. We consider a parametric family of probability

functions,1 {P (y|θ), θ ∈ A}, where θ is parameter taking values in a parameter set A, and y is

a set of observations. For the sake of simplicity of the presentation, throughout most of of this

paper, θ will be a scalar parameter, and accordingly, A will be either an interval, or half of the

real line, or the entire real line. In a few places along the paper, however, we will let θ be a vector

1Probability density functions (pdfs) in the continuous case, or probability mass functions (pmfs) in the discrete
case.
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of finite dimension k and accordingly, A will be IRk or a subset of it. The set of observations, y,

may either be a vector of dimension n, y = (y1, . . . , yn) (in the discrete–time case) or a waveform

y = {y(t), 0 ≤ t ≤ T } (in the continuous–time, Gaussian case), depending on the context. In

the latter case, the conditional pdf P (y|θ) will be understood to be defined via a complete family

of orthonormal basis functions, according to the well known conventions (see, e.g., [16, Chap.

8]). In the Bayesian setting, we will assume that θ is a random variable, distributed according

to a given prior P (θ), whose support is A. The joint density of θ and y will then be given by

P (θ, y) = P (θ)P (y|θ). Alternative joint densities of θ and y will be denoted by the letter Q (e.g.,

Q(θ), Q(y|θ), etc.).

An estimator, θ̂, of the parameter θ, is any measurable function of y only. Following customary

notation conventions, we will use capital letters to designate randomness. Accordingly, Y will

denote the random observation set, and in the Bayesian setting Θ will denote a random parameter

governed by the prior P (θ).

In the non–Bayesian setting, where θ is assumed an unknown deterministic variable, Pθ{E} will

denote the probability of an event E , associated with Y , under P (·|θ), and similarly, Eθ{f(Y )}
will denote the expectation of some function f of the random observation set Y , with respect to

(w.r.t.) P (·|θ). An estimator θ̂ ≡ θ̂(y) is called unbiased if for every θ ∈ A, we have Eθθ̂ = θ. The

Kullback–Leibler divergence between the conditional densities Pθ̃ = P (·|θ̃) and Pθ = P (·|θ) will be

defined as

D(Pθ̃‖Pθ) = Eθ̃ ln
P (Y |θ̃)

P (Y |θ)
, (1)

provided that the support of P (·|θ̃) covers the one of P (·|θ).

In the Bayesian setting, the probability of an event E , associated with Y and Θ, will be denoted

by P{E} and the expectation of a given function f(Y , Θ), will be denoted by E{f(Y , Θ)}. The

conditional expectation of f(Y , Θ) given Y = y (which is the same as the conditional expectation

of f(y, Θ)) will be denoted by E{f(y, Θ)|y}. Expectations and conditional expectations w.r.t. an

alternative joint density {Q(θ, y)} will be subscripted by Q, i.e., EQ{f(Θ, Y )}, EQ{f(Θ, y)|y},

etc. The Kullback–Leibler divergence between Q and P will be defined as

D(Q‖P ) = EQ ln
Q(Θ, Y )

P (Θ, Y )
, (2)

provided that the support of Q covers the support of P .

In this paper, we judge the performance of any estimator according to the exponential moment of

the squared error, henceforth referred to as the risk–sensitive cost function, which is parametrized

by a positive real α, called the risk–sensitive factor, and is defined as follows. In the non–Bayesian

regime,

ΛNB(θ̂, θ, α)
∆
= ln Eθ

{

exp
(

α[θ̂(Y ) − θ]2
)}

, (3)

with the quest of minimizing ΛNB over all unbiased estimators, uniformly for all θ ∈ A. In the
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Bayesian regime, the risk–sensitive cost function is defined as

ΛB(θ̂, α)
∆
= ln E

{

exp
(

α[θ̂(Y ) − Θ]2
)}

, (4)

with the quest of minimizing ΛB over all estimators in general. The risk–sensitive factor, α, controls

the degree of risk–sensitivity, or the degree of robustness of the estimator that minimizes the risk–

sensitive cost function. The larger is α, the greater is the sensitivity to large errors. The limit

α → 0 recovers the case of ordinary MSE estimation.

It should be pointed out that even in the Bayesian regime (let alone the non–Bayesian one), the

optimal estimator

θ̂ = arg min
η

E{eα(Θ−η)2 |y} (5)

is not trivial to calculate, in general, as it is associated with the solution η of the equation

η =
E{Θeα(Θ−η)2 |y}
E{eα(Θ−η)2 |y} , (6)

which cannot be solved in closed–form in most cases. This is even more difficult than calculating

the MMSE estimator, i.e., the conditional expectation, E{Θ|y}, which is known to be a non–trivial

task (if not completely undoable) on its own right, in the vast majority of cases of practical interest.

Thus, the need for good lower bounds to ΛNB(θ̂, θ, α) and ΛB(θ̂, α) is at least as crucial as in the

classical case of the MSE cost function.

3 Generic Lower Bounds

Our basic, generic lower bounds, for both the Bayesian and the non–Bayesian regimes, are provided

in the following theorem, whose very simple proof appears at the end of this section.

Theorem 1 Consider the parametric family defined in Section 2.

1. For every estimator θ̂,

ΛB(θ̂, α) ≥ αLB(Q) − D(Q‖P ), (7)

where Q is an arbitrary joint density of (Θ, Y ) and LB(Q) is an arbitrary lower bound to

EQ[θ̂(Y ) − Θ]2.

2. For every unbiased estimator θ̂,

ΛNB(θ̂, θ, α) ≥ αLNB(θ̃) + α(θ̃ − θ)2 − D(Pθ̃‖Pθ), (8)

where θ̃ is an arbitrary parameter value in A and LNB(θ̃) is any non–Bayesian lower bound

on the MSE, E θ̃(θ̂ − θ̃)2, for unbiased estimators.
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As can be seen, both generic bounds offer a rather wide spectrum of choices with many degrees

of freedom. In the Bayesian lower bound (part 1 of Theorem 1), one has the freedom to choose

both the joint density Q, henceforth referred to as the reference model, and the MSE lower bound,

LB(Q). As for the former, since the inequality (7) applies for any Q, one has the freedom to select

the one that maximizes the r.h.s. of (7) over a certain class Q of reference models, and it would be

wise to define the class Q to be wide enough to yield good bounds, on the one hand, and structured

enough to make the problem of maximization over Q tractable, on the other hand. First and

foremost, Q should be a family of other parametric models for which it is relatively easy to derive

a good lower bound, LB(Q) (or even the exact MMSE), as well as an expression (or at least an

upper bound) to D(Q‖P ). Of course, the choice Q = P is always legitimate, but it normally leads

to a rather trivial lower bound – the same bound that is obtained by a simple application of the

Jensen inequality (ln EeZ ≥ EZ), which is a relatively weak bound in most cases. Of course, if

Q is chosen to include P as a member, the bound resulting from maximization over Q cannot be

worse than this trivial lower bound. The MSE lower bound, LB(Q), can chosen, for example, to

be the Bayesian Cramér–Rao bound [27], or the Weiss–Weinstein lower bound [29], or any one of

their many variants, see, e.g., [28] and many references therein.

Similar comments apply to the non–Bayesian setting (part 2 of Theorem 1). Here the degrees

of freedom are in the selection of the reference parameter value, θ̃, and in the selection of the non–

Bayesian MSE lower bound, LNB(θ̃). The best choice of θ̃ is, of course, the one that maximizes

the r.h.s. of (8) over A, but this maximization is not always an easy task. The MSE lower bound,

LNB(θ̃), can be taken to be one of many existing non–Bayesian lower bounds for unbiased estimators,

for example, the non–Bayesian Cramér–Rao lower bound (see, e.g., [27]), the Bhattacharyya bound

[4], the Chapman–Robbins bound [6], the Fraser–Guttman bound [15], the Barankin bound [5], the

Keifer bound [20], etc.

We note that when the support A of the parameter θ is unbounded, the maximization of the

lower bound (over Q ∈ Q – in the Bayesian case, or over θ̃ ∈ A – in the non–Bayesian case) might

yield an infinite value for large enough α, say, for every α ≥ αc, where αc is referred to as the critical

value of α. When this is the case, it means that the pdf of the estimation error, ǫ
∆
= θ̂ − θ, decays

at a rate slower than exp{−αcǫ
2} for |ǫ| → ∞. The lower bounds of Theorem 1 can therefore yield

upper bounds to αc. If αc = 0, it means that there is no estimator with an estimation error whose

tail decays as fast as any Gaussian. We will encounter situations where this is indeed the case:

interestingly, while for many estimators, the error is nearly Gaussian around the origin (due to an

underlying central limit theorem), the tails may decay at a much slower rate than any Gaussian

tail. In the other extreme, if αc = ∞, which is the case where the lower bound is finite no matter

how large α may be, the tail of the error may decay faster than any Gaussian. Of course, when A
is a finite interval, this is trivially the case. We shall comment on the behavior of αc in the various

cases that we consider.

Some of the resulting bounds (Bayesian and non–Bayesian alike) can easily be extended to the
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vector case. Considering, for example, the risk–sensitive cost function

ΛNB(θ̂, θ, α) = ln Eθ exp
{

[αT (θ̂ − θ)]2
}

, (9)

where α is θ are now both column vectors of dimension k and the superscript T denotes transpo-

sition, the above quantity is readily lower bounded by

αT [I−1(θ̃) + (θ̃ − θ)(θ̃ − θ)T ]α − D(Pθ̃‖Pθ), (10)

where I−1(θ̃) is the inverse of the k × k Fisher information matrix associated with the parametric

family {P (·|θ), θ ∈ A}. This gives some fundamental limitations on arbitrary projections of the

estimation error as well as on the behavior of the tails of the estimation error in various directions

in IRk.

In the remaining part of this paper, we shall make an attempt to explore some of these degrees

of freedom. Most of our efforts will be given to the Bayesian regime, but we will also devote some

attention to the Bayesian regime. We end this section by providing the proof of Theorem 1.

Proof of Theorem 1. We begin from a very simple well–known inequality, which stands at the basis

of the Laplace principle [11] or more generally, the Varadhan integral lemma [9, Section 4.3]. Let

Z be a random variable, governed by a probability distribution P , and let Q be an alternative

probability distribution on the same space, such that D(Q‖P ) < ∞. Now,

ln EP eZ = ln EQ exp

{

Z + ln
P (Z)

Q(Z)

}

≥ EQZ − D(Q‖P ), (11)

where the second step follows from the Jensen inequality.2

Next apply eq. (11) to both the Bayesian and the non–Bayesian regime. For the Bayesian regime,

set Z = α[θ̂(Y ) − Θ]2, then further lower bound EQ[θ̂(Y ) − Θ]2 by LB(Q), which will yield part 1

of Theorem 1. For the non–Bayesian regime (part 2 of Theorem 1), set Z = [θ̂(Y ) − θ]2, use Pθ in

the role of P , Pθ̃ – in the role of Q, and then further lower bound Eθ̃(θ̂ − θ)2 by

Eθ̃(θ̂ − θ)2 = E θ̃(θ̂ − θ̃)2 + (θ̃ − θ)2 ≥ LNB(θ̃) + (θ̃ − θ)2, (12)

where in the first step, we have used the assumed unbiasedness of θ̂ and in the second step, we have

used the definition of LNB(θ̃). This completes the proof of Theorem 1.

4 The Bayesian Regime

4.1 Conditions for Tightness of the Lower Bound

Before exploring the lower bound of the Bayesian regime in specific parametric models, we would

like first to furnish conditions under which this bound is tight. Applying Observation 1 of [22, p.

2Equality is achieved if the r.h.s. is maximized w.r.t. Q, namely, if Q(z) is taken to be proportional to P (z)ez

(provided that P (z)ez is integrable), see, e.g., [22] and references therein.
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347] to Bayesian parameter estimation, we find that an estimator θ̂ minimizes ΛB(θ̂, α) if it also

minimizes EQ(θ̂ − Θ)2, where Q(θ|y) is given by

Q(θ|y) =
P (θ|y)eα[θ̂(y)−θ]2

Z(y)
, (13)

and where Z(y) is a normalization constant, so that Q(·|y) would integrate to unity. In other words,

to minimize ΛB(θ̂, α), the estimator θ̂ has to be the conditional expectation of Θ given y w.r.t. Q.

Note that this condition has a circular character, since Q depends on θ̂, which in turn depends on

Q. Therefore, this condition for optimality is more useful as a criterion to check whether a given

estimator is optimal than as a tool for actually finding the optimal estimator. Further, let us lower

bound EQ(θ̂ − Θ)2 by LB(Q), which is given by the Bayesian Cramér–Rao lower bound [27] w.r.t.

Q, that is,

LB(Q) =
1

EQW 2(Θ, Y )
, (14)

where

W (θ, y)
∆
=

∂ ln Q(θ, y)

∂θ
. (15)

As shown in [27, p. 73], a necessary and sufficient condition for the tightness of the Bayesian

Cramér–Rao lower bound is that Q(θ|y) would be a Gaussian pdf whose variance is given by the

r.h.s. of (14), independently3 of y, and whose mean is an arbitrary function of y (not necessarily

a linear function). When this is the case, then obviously, this function of y becomes the optimal

MMSE estimator, θ̂(y), that achieves the Bayesian Cramér–Rao lower bound w.r.t. Q. Combining

this condition with (13), we find that eq. (7), with LB(Q) given by (14), is a tight lower bound

when P (θ|y) is also Gaussian with mean θ̂(y) and variance that is independent of y.

4.2 Non–linear Signal Models and Linear Reference Models

A very well known special case, where the above conditions concerning Q are satisfied, is the case

where Θ is a Gaussian random variable, and given Θ = θ, the observation set Y is Gaussian with

a mean given by a linear function of θ (and then, θ̂(y) is a linear function of y). This motivates us

to choose the reference model Q as a jointly Gaussian density of Θ and Y .

Let us then begin from the case where both P and Q are such Gaussian linear models. In

particular, under P , let Θ ∼ N (0, σ2) and for a given Θ = θ,

y(t) = θs(t) + n(t), 0 ≤ t ≤ T (16)

where T is the observation interval, n(t) is additive white Gaussian noise (independent of Θ) with

two–sided spectral density N0/2, and {s(t), 0 ≤ t ≤ T } is a given waveform with energy Es.

3A tighter bound can be obtained by averaging (over Y ) the conditional Bayesian Cramér–Rao lower bound given
y, where the expectation at the denominator of (14) is replaced by the conditional expectation given y. The
necessary and sufficient condition for the achievability of this bound is Gaussianity of the posterior, where both
the conditional mean and the conditional variance are allowed to depend on y.
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Denoting

z =

∫ T

0
s(t)y(t)dt, (17)

it is easily seen that

P (θ|y) = P (θ|z) ∝ exp







−N0 + 2σ2Es

2σ2N0

(

θ − σ2

σ2Es + N0/2
· z

)2






. (18)

Thus, if we define

Q(θ, y) ∝ P (y)P (θ|y) exp







α

(

θ − σ2

σ2Es + N0/2
· z

)2






(19)

∝ P (y) exp







−
(

N0 + 2σ2Es

2σ2N0
− α

)(

θ − σ2

σ2Es + N0/2
· z

)2






(20)

then the conditions of [22, Observation 1] are satisfied for the conditional mean estimator,

θ̂ =
σ2

σ2Es + N0/2
· z, (21)

and so, the same estimator minimizes also ΛB(θ̂, α) for every

0 < α < αc

∆
=

N0 + 2σ2Es

2σ2N0
≡ 1

2σ2
+

Es

N0
. (22)

The resulting value of the minimum achievable ΛB(θ̂, α) is given by

min
θ̂(·)

ΛB(θ̂, α) =
1

2
ln

1

1 − α/αc

, (23)

and so, indeed the estimator error ǫ = θ̂(Y ) − Θ has a Gaussian tail at rate αc as defined above.

Next, suppose that under P , Θ ∼ N (0, σ2) and

y(t) = x(t, θ) + n(t), 0 ≤ t ≤ T (24)

where x(t, θ) is continuous–time waveform (depending on θ), whose energy is Ex independently4

of θ. Now, under Q, let Θ ∼ N(0, σ̃2) and y(t) be as in (16), so for the given model P , we have

the freedom to choose σ̃2 and the auxiliary signal s(t). To apply part 1 of Theorem 1, we have

to derive the expression for D(Q‖P ), which decomposes to the sum of two terms. The first is the

divergence between the two priors of Θ, which is given by

D[N (0, σ̃2)‖N (0, σ2)] =
1

2

[

σ̃2

σ2
− ln

σ̃2

σ2
− 1

]

, (25)

4This assumption concerning the energy is (at least nearly) satisfied for many parametric signal models, e.g.,
when θ designates delay, frequency, or phase, etc. In these cases, the Gaussian prior on Θ makes sense (as an
approximation) as long as its standard deviation, σ, is significantly smaller than the size of the interval A of the
support of the parameter.
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and the second term is the expected divergence between the two Gaussian pdfs of y given θ. In

general, as can easily be verified, the divergence between the probability measures of two noisy

signals, y(t) = x1(t)+n(t), and y(t) = x2(t)+n(t), 0 ≤ t ≤ T , with the same noise spectral density

N0/2, is given by
∫ T

0 [x1(t) − x2(t)]2dt/N0. Therefore, applying (7), we have

ΛB(θ̂, α) ≥ αEQ(θ̂ − Θ)2 − 1

2

[

σ̃2

σ2
− ln

σ̃2

σ2
− 1

]

−

1

N0
EQ[Θ2Es + Ex − 2ΘCxs(Θ)] (26)

≥ ασ̃2N0

N0 + 2σ̃2Es
− 1

2

[

σ̃2

σ2
− ln

σ̃2

σ2
− 1

]

−

σ̃2Es + Ex − 2EQ{ΘCxs(Θ)}
N0

, (27)

where

Cxs(θ)
∆
=

∫ T

0
s(t)x(t, θ)dt.

For a given Es, the best choice of the signal {s(t), ≤ t ≤ T } (in the sense of maximizing the lower

obund) is the one that maximizes

EQ{ΘCxs(Θ)} =

∫ T

0
s(t)EQ{Θx(t, Θ)}dt, (28)

namely,

s∗(t) =

√
Es

√

∫ T
0 [EQ{Θx(t, Θ)}]2dt

· EQ[Θx(t, Θ)]. (29)

which when substituted back into (26), yields

ΛB(θ̂, α) ≥ ασ̃2N0

N0 + 2σ̃2Es
− 1

2

[

σ̃2

σ2
− ln

σ̃2

σ2
− 1

]

−

1

N0



σ̃2Es + Ex − 2

√

Es ·
∫ T

0
[EQ{Θx(t, Θ)}]2dt



 (30)

=
ασ̃2

1 + 2λσ̃2
− λσ̃2 − 1

2

[

σ̃2

σ2
− ln

σ̃2

σ2
− 1

]

−

1

N0



Ex − 2

√

λN0 ·
∫ T

0
[EQ{Θx(t, Θ)}]2dt



 , (31)

where λ
∆
= Es/N0 and the remaining degrees of freedom for maximizing the bound are the parame-

ters λ and σ̃2. Consider first the maximization w.r.t. λ. As a function of λ, the above lower bound

has the form

f(λ) =
a

1 + bλ
− cλ + d

√
λ,

10



where

a = ασ̃2 (32)

b = 2σ̃2 (33)

c = σ̃2 (34)

d = 2

√

1

N0

∫ T

0
[EQ{Θx(t, Θ)}]2dt. (35)

If a is small and/or b, c and d are large (which is the case when α is small and/or σ̃2 is large and/or

N0 is small), then the first term is not important and a good choice of λ is the one that maximizes

−cλ + d
√

λ, namely,

λ =
d2

4c2
=

∫ T
0 [EQ{Θx(t, Θ)}]2dt

N0σ̃4
.

On substituting this into (30), we obtain

ΛB(θ̂, α) ≥ ασ̃2

1 + 2
N0σ̃2

∫ T
0 [EQ{Θx(t, Θ)}]2dt

+

∫ T
0 [EQ{Θx(t, Θ)}]2dt

N0σ̃2
−

1

2

[

σ̃2

σ2
− ln

σ̃2

σ2
− 1

]

− Ex

N0
. (36)

To obtain more explicit results, we now particularize the signal model to phase modulation:

x(t, θ) =

√

2Ex

T
· cos(ωt + θ), (37)

where we have the following:

EQ{Θx(t, Θ)} =

√

2Ex

T
· Re

{

ejωtEQ[Θ · ejΘ]
}

= −
√

2Ex

T
· Re

{

jejωt ∂

∂s
EQ[ejsΘ]

∣

∣

∣

∣

s=1

}

= −
√

2Ex

T
· Re

{

jejωt ∂

∂s
e−s2σ̃2/2]

∣

∣

∣

∣

s=1

}

=

√

2Ex

T
· σ̃2e−σ̃2/2 · Re{jejωt}

= −
√

2Ex

T
· σ̃2e−σ̃2/2 sin(ωt). (38)

which yields
∫ T

0
[EQ{Θx(t, Θ)}]2dt = Exσ̃4e−σ̃2

. (39)

11



and so, the lower bound becomes, in this case,

ΛB(θ̂, α) ≥ ασ̃2

1 + 2Exσ̃2e−σ̃2/N0
− Ex

N0
(1 − σ̃2e−σ̃2

) −

1

2

[

σ̃2

σ2
− ln

σ̃2

σ2
− 1

]

. (40)

For example, if σ̃2 = σ2, this becomes

ΛB(θ̂, α) ≥ ασ2

1 + 2Exσ2e−σ2/N0
− Ex

N0
(1 − σ2e−σ2

). (41)

Let us compare this to the lower bound obtained by a simple application of the Jensen inequality,

combined with the Bayesian Cramér–Rao lower bound. The result is

ΛB(θ̂, α) ≥ ασ2

1 + σ2Ex/2N0
. (42)

When σ2 is very large, this yields approximately 2αN0/Ex, whereas the proposed bound gives

ασ2 − Ex/N0, which may be significantly larger for large σ2. Moreover, returning to (40), if σ2 is

large, then σ̃2 should be chosen large as well (otherwise the divergence between the priors would

be large), and then the terms containing e−σ̃2/2 can be neglected. Under this approximation, it is

easily seen that the optimal choice of σ̃2 is

σ̃2 =
σ2

1 − 2ασ2
, (43)

which when substituted back into (40), yields

ΛB(θ̂, α) ≥ 1

2
ln

1

1 − 2ασ2
− Ex

N0
, (44)

which is finite only as long as α < 1
2σ2 , namely, in this case, αc is upper bounded by

αc ≤ 1

2σ2
. (45)

It turns out that this upper bound is tight, as it is achieved at least by the trivial estimator θ̂ ≡ 0,

whose estimation error, ǫ = 0 − Θ = −Θ is indeed Gaussian with variance σ2, by the model

assumption. In other words, for the model considered here,

αc =
1

2σ2
. (46)

We observe that in this case of the non–linear signal model, the Gaussian tail of the pdf of the

estimation error is due to the prior only, and the observation set Y contributes nothing whatsoever

to this Gaussian tail. This is different from the Gaussian–linear model considered before, where we

found that αc = 1
2σ2 + Es

N0
, which contains contributions of both the prior (the first term) and the

observation set (the second term).

12



4.3 More General Priors

So far, we have considered only Gaussian priors, for both P and for Q. This limits the framework

to models where the support A of the parameter is the entire real line. On the one hand, for

reasons that were discussed above, it is convenient to work with a Gaussian prior for Q, but on the

other hand, if the parameter θ, under the real model P , takes values only in a finite interval (like

in the case of a delay parameter, for instance), then the divergence between the two priors would

be infinite and then our lower bound would be useless. This motivates us to extend the scope to

general priors whose support may not necessarily be the entire real line.

Considering the case where the prior is Q(θ), and Q(y|θ) is according to (16), then under certain

regularity conditions (see, e.g., [27]), the Bayesian Cramér–Rao lower bound is given by

EQ(θ̂ − θ)2 ≥ 1

I(Q) + 2Es/N0
(47)

where

I(Q) = EQ{W 2(Θ, Y )} =

∫

A

[Q′(θ)]2

Q(θ)
dθ. (48)

Given a general prior P , a convenient choice for Q, here indexed by an auxiliary parameter β > 0,

is of the form

Qβ(θ) =
P β(θ)

Z(β)
Z(β) =

∫

A
P β(θ)dθ. (49)

Denoting φ(β) = ln Z(β), the Kullback–Leibler divergence is given by

D(Qβ‖P ) = (β − 1)φ′(β) − φ(β). (50)

The idea is that one can now optimize the bound w.r.t. β and Es (or equivalently, λ = Es/N0),

as the optimal signal s(t) for a given Es is the same as before. Of course, for a general Q, the

calculation of EQ{Θx(t, Θ)} will have to be modified accordingly, as earlier we have calculated it

with a Gaussian prior. This quantity depends, of course, on β.

Consider, for example, the model of delay estimation, where under P , x(t, θ) = x(t − θ), and

assume that the derivative ẋ(t) has finite energy. Suppose that under Q, the signal is s(t − θ),

where s(·) is subjected to optimization of the bound. In this case, the lower bound is of the form,

ΛB(θ̂, α) ≥ α

I(Qβ) + 2
N0

∫ T
0 [ṡ(t)]2dt

− (β − 1)φ′(β) + φ(β) − 1

N0

∫ T

0
[x(t) − s(t)]2dt. (51)

As can be seen, the optimization over the signal s(·) involves a tradeoff between the energy of its

13



derivative and the Euclidean distance between s(t) and x(t). In particular,

ΛB(θ̂, α) ≥ sup
s(·),β







α

I(Qβ) + 2
N0

∫ T
0 ṡ2(t)dt

− (β − 1)φ′(β) + φ(β)

− 1

N0

∫ T

0
[x(t) − s(t)]2

}

= sup
Ẽ,β

[

α

I(Qβ) + 2Ẽ/N0

− (β − 1)φ′(β) + φ(β)−

1

N0
inf

{

∫ T

0
[x(t) − s(t)]2dt :

∫ T

0
ṡ2(t)dt = Ẽ

}]

. (52)

The inner minimization can be cast as a Lagrangian minimization

inf
s(·)

{

∫ T

0
ṡ2(t)dt + λ

∫ T

0
[x(t) − s(t)]2dt

}

, (53)

which can easily be solved using calculus of variations. In particular, suppose that s∗(t) is the

optimal signal and consider a perturbation s(t) = s∗(t) + ǫr(t) for an arbitrary signal r(t). On

substituting this form back into the Lagrangian and requiring that the derivative vanishes at ǫ = 0

for every r(t), we obtain the equation,

∫ T

0
{ṙ(t)ṡ∗(t) + λr(t)[s∗(t) − x(t)]}dt = 0, (54)

or equivalently (using integration by parts),

r(T )ṡ∗(T ) − r(0)ṡ∗(0) +

∫ T

0
r(t) · {−s̈∗(t) + λ[s∗(t) − x(t)]}dt = 0, (55)

for every {r(t), 0 ≤ t ≤ T }, which means that s∗(t) is obtained from x(t) by solving the second

order linear differential equation,

s∗(t) − s̈∗(t)

λ
= x(t) ṡ∗(0) = ṡ∗(T ) = 0. (56)

As an example, let

x(t) =

√

2Ex

3T
· [1 − cos(ω0t)], (57)

where ω0 is a known parameter. Then the solution to the above differential equation is given by

s∗(t) =

√

2Ex

3T
·
[

1 − λ

λ + ω2
0

· cos(ω0t)

]

. (58)

Now, denoting ν = λ/(λ + ω2
0), we have

1

N0

∫ T

0
[s∗(t) − x(t)]2dt =

Ex

3N0
· (1 − ν)2 (59)
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and
∫ T

0
ṡ2

∗(t)dt =
1

3
Exω2

0 · ν2. (60)

Thus, our lower bound can be presented as

ΛB(θ̂, α) ≥ sup
0≤ν≤1, β>0

[

α

I(Qβ) + 2ν2ω2
0Ex/3N0

− (β − 1)φ′(β) + φ(β) − Ex

3N0
· (1 − ν)2

]

. (61)

Note that by selecting ν = 0, this can be further lower bounded by

ΛB(θ̂, α) ≥ sup
β≥0

[

α

I(Qβ)
− (β − 1)φ′(β) + φ(β) − Ex

3N0

]

(62)

= sup
β≥0

[

α − I(Qβ)[(β − 1)φ′(β) − φ(β)]

I(Qβ)
− Ex

3N0

]

, (63)

which is finite only as long as α < αc, where αc can be evaluated (or at least, upper bounded) by

limβ→β0
I(Qβ)[(β − 1)φ′(β) − φ(β)], where β0 is such that limβ→β0

I(Qβ) = 0 (for example, if the

prior is Gaussian, then β0 = 0 and correspondingly, αc = 1
2σ2 ). If no such β0 exists, then the upper

bound to αc is infinity.

The case of frequency estimation, where x(t, θ) = a(t) sin(θt) + b(t) cos(θt) can be handled simi-

larly. In that case, the optimum auxiliary signal turns out to be s(t, θ) = λx(t, θ)/(t2 + λ), where

λ is again an auxiliary parameter that controls the tradeoff between the energy of the derivative of

s(t, θ) and its distance to x(t, θ).

4.4 Risk–Sensitive Bounds Based on Other MSE Lower Bounds

So far, our lower bounds on the risk–sensitive cost function were based solely on the Bayesian

Cramér–Rao lower bound as an MSE lower bound for the reference model. Of course, other MSE

lower bounds may be used as well, and one of the best such bounds is the Weiss–Weinstein bound

[28], [29]. In this short subsection, we demonstrate its usefulness in the problem of delay estimation

for a rectangular pulse, where the delay parameter has a uniform prior over a certain interval.

For the case where the underlying signal is a rectangular pulse of width τ , the MMSE of its delay

was shown in [29] to be lower bounded by 0.324τ2/γ2, where γ = Ex/N0 (and in the literature,

there are other bounds with different constants, but the same behavior of being proportional to

τ2/γ2). Considering an auxiliary rectangular pulse (under Q) with the same energy, but duration

τ̃ ≥ τ , we have

ΛB(θ̂, α) ≥ 0.324τ̃2

γ2
− 2γ

(

1 −
√

τ

τ̃

)

, (64)

where the second term is due to the divergence between Q and P (which is proportional to the

Euclidean distance between the two rectangular pulses), and where we let the prior over auxiliary

prior be the same as the original one. Optimizing over τ̃ , we obtain

τ̃∗ = 1.1895

(

γ6τ

α2

)0.2

, (65)
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and the assumption τ̃∗ ≥ τ limits the applicability of this result to the case γ ≥ 0.8654(ατ2)1/3.

On substituting τ̃∗ back into the above lower bound, we obtain

ΛB(θ̂, α) ≥ 2.2922(αγ2τ2)0.2 − 2γ, (66)

which is non–trivial (non–negative) as long as

γ < 1.2552(ατ2)1/3. (67)

The bound seems to be monotonically increasing in γ in some range of small γ, but this range is

outside the range of applicability,

γ ≥ 0.8654(ατ2)1/3. (68)

4.5 The Logarithmic Probability Comparison Bound

As mentioned earlier in this section, for the linear–Gaussian model (16), the conditional mean

estimator (21) minimizes all exponential moments of the squared error, and the performance is

ΛB(θ̂, α) =
1

2
ln

1

1 − α/αc

, (69)

where here, once again, αc = Es

N0
+ 1

2σ2 . Returning to the model P , where Θ ∼ N (0, σ2) and

y(t) = x(t, θ) + n(t), and letting Q be again defined by Θ ∼ N (0, σ̃2) and y(t) = θs(t) + n(t), in

this section, we use a more general family of inequalities, where the Kullback–Leibler divergence is

replaced by the Rényi divergence. This family of inequalities induces a class of bounds referred to

as the logarithmic probability comparison bound (LPCB), [1], [2].

The idea behind the LPCB bound is as follows. For a given a > 1, let us define the Rényi

divergence as

Da(Q‖P ) =
1

a(a − 1)
ln

∫ (

dQ

dP

)a

dP. (70)

Then, for a given random variable X, governed by either P or Q, the underlying family of inequal-

ities [1] is as follows:

ln EP eaX ≥ a

a − 1
ln EQe(a−1)X − aDa(Q‖P ). (71)

Note that the inequality ln EP eX ≥ EQX − D(Q‖P ), that we have used in all previous parts of

the paper, is just a special case of the last inequality, where a ↓ 1. Applying this more general

inequality with X = β(θ̂ − θ)2 (β > 0, a given constant) and defining α = aβ, we obtain the

following inequality for every α > β > 0:

ΛB(θ̂, α) ≥ α

α − β
ΛB(θ̂, α − β) − α

β
Dα/β(Q‖P ) (72)

≥ − α

2(α − β)
ln

(

1 − α − β

α̃c

)

− α

β
Dα/β(Q‖P ) (73)

= − α

2(α − β)
ln

(

1 − α − β

α̃c

)

− β

α − β
ln

∫ (

dQ

dP

)α/β

dP, (74)
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where α̃c = 1
2σ̃2 + Es

N0
. Now,

∫ (

dQ

dP

)a

dP

= EP

{[

(2πσ̃2)−1/2 exp{−Θ2/2σ̃2}
(2πσ2)−1/2 exp{−Θ2/2σ2}

]a

exp

[

a(a − 1)

N0

∫ T

0
[x(t, Θ) − Θs(t)]2dt

]}

=

(

σ2

σ̃2

)a/2

EP

{

exp

[

a

(

1

2σ2
− 1

2σ̃2

)

Θ2 +
a(a − 1)

N0

∫ T

0
[x(t, Θ) − Θs(t)]2dt

]}

=

(

σ2

σ̃2

)a/2

EP

{

exp

(

a

[

1

2σ2
− 1

2σ̃2

]

Θ2 +
a(a − 1)

N0

[

Ex + Θ2Es − 2Θ

∫ T

0
s(t)x(t, Θ)dt

])}

.

Let us now assume that
∫ T

0 x(t, θ)dt is a constant, independent of θ (which is as reasonable as

assuming that the energy is independent of θ), and denote this constant by q. Then, letting

s(t) ≡
√

Es/T (DC signal), we get

∫ (

dQ

dP

)a

dP

=

(

σ2

σ̃2

)a/2

EP







exp



a

[

1

2σ2
− 1

2σ̃2

]

Θ2 +
a(a − 1)

N0



Ex + Θ2Es − 2Θq

√

Es

T















=

(

σ2

σ̃2

)a/2

exp

{

a(a − 1)Ex

N0

}

· EP exp







[

a

2σ2
− a

2σ̃2
+

a(a − 1)Es

N0

]

Θ2 − 2a(a − 1)q

N0

√

Es

T
· Θ







.

Now,

EP exp{AΘ2 − BΘ} =
exp

{

B2σ2

2(1−2Aσ2)

}

√
1 − 2Aσ2

, (75)

where in our case,

A =
a

2σ2
− a

2σ̃2
+

a(a − 1)Es

N0
=

α

2βσ2
− α

2βσ̃2
+

α(α − β)Es

β2N0
(76)

and

B =
2a(a − 1)q

N0

√

Es

T
=

2α(α − β)q

β2N0

√

Es

T
(77)

Note that as an alternative to the assumption that
∫ T

0 x(t, θ)dt = q for all θ, one might assume that

s(t) is orthogonal to x(t, θ) for all θ, which is equivalent to q = 0, for which B = 0. It follows that

aDa(Q‖P ) =
1

a − 1
ln

∫
(

dQ

dP

)a

dP (78)

=
a

2(a − 1)
ln

σ2

σ̃2
+

aEx

N0
+

B2σ2

2(a − 1)(1 − 2Aσ2)
− 1

2(a − 1)
ln(1 − 2Aσ2). (79)
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Thus, the lower bound becomes

ΛB(θ̂, α) ≥ − α

2(α − β)
ln

(

1 − α − β

α̃c

)

− α

2(α − β)
ln

σ2

σ̃2
− αEx

βN0

− βB2σ2

2(α − β)(1 − 2Aσ2)
+

β

2(α − β)
ln(1 − 2Aσ2), (80)

where we have the freedom to maximize over the variables β (in the range β ∈ (0, α)), Es ≥ 0 and

σ̃2 > 0. Choosing, for example, σ̃2 = σ2 and Es → 0 (which yield A → 0 and B → 0), we get

ΛB(θ̂, α) ≥ sup
0<β<α

{

α

2(α − β)
ln

[

1

1 − 2σ2(α − β)

]

− αEx

βN0

}

, (81)

which, for β → 0, limits αc to be no more than 1/2σ2 (which is again, obviously achievable, e.g.,

by θ̂ ≡ 0). To see why this is true, suppose conversely, that α = 1+ǫ
2σ2 for some arbitrarily small

ǫ > 0. Then by choosing β = ǫ
2σ2 , the above lower bound becomes infinite. Some graphs of the last

bound are depicted in Fig. 1.

0 0.2 0.4 0.6 0.8 1
−0.5

0

0.5

1

1.5

2

2.5

Figure 1: Graphs of the r.h.s. of eq. (81) as a function of α. Here, σ2 = 1/2, Es = q = 0 (hence α̃c = 1) and
the SNR takes the values: Ex/N0 = 0.001 (red), Ex/N0 = 0.01 (blue), and Ex/N0 = 0.1 (green).

Iterated LPCB

Let α be given and let β1, β2, . . . , βk be positive numbers such that
∑k

i=1 βi < α. Let P1, P2, . . . , Pk

be a corresponding a sequence of probability measures with P1 ≡ P and Pk ≡ Q, and let Ei denote
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the expectation operator w.r.t. Pi, i = 1, 2, . . . , k. Now consider the following chain of inequalities:

ΛB(θ̂, α) ≥ α

α − β1
ln E2e(α−β1)(θ̂−θ)2 − α

β1
Dα/β1

(P2‖P1) (82)

≥ α

α − β1

[

α − β1

α − β1 − β2
ln E3e(α−β1−β2)(θ̂−θ)2 − α − β1

β2
D(α−β1)/β2

(P3‖P2)

]

−
α

β1
Dα/β1

(P2‖P1) (83)

=
α

α − β1 − β2
ln E3e(α−β1−β2)(θ̂−θ)2 − α

β2
D(α−β1)/β2

(P3‖P2) −
α

β1
Dα/β1

(P2‖P1) (84)

≥ α

α −∑k
i=1 βi

ln Ek exp

{(

α −
k
∑

i=1

βi

)

(θ̂ − θ)2

}

−

α
k−1
∑

i=1

1

βi
D

(α−
∑i−1

j=1
βj)/βi

(Pi+1‖Pi). (85)

We now have the freedom to choose the parameters k, β1, . . . , βk and P2, P3, . . . , Pk. The original

inequality we have been using (7) is obtained as a special case where βi ↓ 0 for i = 1, 2, . . . , k − 2, k,

βk−1 ↑ α, and P2 = P3 = . . . = Pk−1 = P (one can also choose, of course, k = 2 and β1 ↑ α,

β2 ↓ 0). The ordinary (one–step) LPBC bound is obtained by choosing P2 = P3 = . . . = Pk−1 = Q,

β1 = β < α and β2 = β3 = . . . = βk ↓ 0 (one can also choose, of course, k = 2 and β1 = β,

β2 → 0). The iterated LPCB can be useful in situations where it is easier to derive (or to bound)

the Rényi divergences via certain intermediate reference models rather than going directly from the

underlying model to the ultimate reference model (see, e.g., the last part of Subsection 4.1 in [2]).

4.6 Phase Transitions

In this subsection, unlike all other parts of this paper, our focus is not quite only on lower bounds

and their tightness, but rather on another aspect of the risk–sensitive cost function, and this is

that in some cases, this cost function may exhibit phases transitions, even in rather seemingly

simple and innocent parametric models. We have already seen that in many situations where θ is

unbounded, there might be a critical value of the risk–sensitive factor, αc beyond which this cost

function diverges. This is certainly a very sharp (first–order) phase transition. However, in some

cases there might be additional phase transitions, due to possible analogies with certain models in

statistical mechanics, and the purpose of this subsection is to demonstrate this fact.

Consider the example where Θ ∼ Unif[0, 1], y ∈ {0, 1}n and P (y|θ) is the Bernoulli distribution,

P (y|θ) = θnq(1 − θ)n(1−q), (86)

where nq =
∑n

i=1 yi is the number of ones. We would like to investigate the behavior of the risk–

sensitive cost function, and our focus will be on the asymptotic behavior at the exponential scale,

where α will be assumed to be growing linearly with n, that is, we take α = a · n for some fixed
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a > 0. We will study the asymptotic exponent of the optimal estimator as a function of θ and a.

The optimal Bayesian performance is given by

min
θ̂

E exp
{

αn(θ̂ − θ)2
}

=
∑

y
P (y) min

t

∫ 1

0
exp

{

αn(t − θ)2
}

P (θ|y)dθ (87)

·
=

∑

y
P (y) min

t∈[0,1]
max

θ∈[0,1]
exp

{

n[a(t − θ)2 − D(q‖θ)]
}

(88)

·
= exp

{

n · max
q∈[0,1]

min
t∈[0,1]

max
θ∈[0,1]

[

a(t − θ)2 − D(q‖θ)
]

}

, (89)

where
·
= denotes equality in the exponential scale, and where D(q‖θ) designates the binary diver-

gence function,

D(q‖θ) = q ln
q

θ
+ (1 − q) ln

1 − q

1 − θ
. (90)

The (asymptotically) optimal estimator is then given by

θ̂ = arg min
t∈[0,1]

max
θ∈[0,1]

[

a(t − θ)2 − D(q‖θ)
]

, (91)

which depends on y solely via q. This estimator is depicted in Fig. 2 for a = 10.
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Figure 2: Graph of θ̂(q). Note that the range of θ̂(q), which is [0.331, 0.669], is much smaller than the
domain of q, which is [0, 1]. The estimator avoids extreme values in order not to incur large errors
in case the true θ is in the other extreme. This is due to its risk–sensitive nature.

Obviously,

E(a)
∆
= max

q∈[0,1]
min

t∈[0,1]
max

θ∈[0,1]

[

a(t − θ)2 − D(q‖θ)
]

(92)

≥ max
q∈[0,1]

min
t∈[0,1]

a(t − q)2 (93)

≥ 0. (94)
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On the other hand, note that by the Pinsker inequality [7], D(q‖θ) ≥ 2(q −θ)2, and so, for a ∈ [0, 2]

E(a) ≤ max
q∈[0,1]

min
t∈[0,1]

max
θ∈[0,1]

[

a(t − θ)2 − 2(q − θ)2
]

(95)

≤ max
q∈[0,1]

max
θ∈[0,1]

[

a(q − θ)2 − 2(q − θ)2
]

(96)

= max
q∈[0,1]

max
θ∈[0,1]

(a − 2)(q − θ)2 (97)

= 0, (98)

and so, it follows that for a ∈ [0, 2], E(a) = 0 and it is achieved by θ̂ = q. The following graph

(Fig. 3) displays E(a) and it suggests that a = 2 is indeed the maximum value of a for which it

still vanishes. Thus, we see a phase transition at a = 2.
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Figure 3: Graph of E(a).

We have seen that the estimator θ̂ = q is asymptotically (exponentially) optimal for every a ≤ 2.

We next analyze the risk–sensitive cost function for this estimator on the exponential scale, and

as said, we demonstrate that it also exhibits phase transitions. As already mentioned, it turns out

that in some cases, the expression of the exponential moment is analogous to that of a partition

function of a certain physical model, in particular, a model of magnetic spins with interactions,

which may exhibit phase transitions. To facilitate the presentation of the analogy with statistical

mechanics, we now slightly modify our notation. Consider the case where X is a binary vector

whose components take on values in X = {−1, +1}, and which is governed by a binary memoryless

source Pµ with probabilities Pr{Xi = +1} = 1 − Pr{Xi = −1} = (1 + µ)/2, (µ designating the

expected ‘magnetization’ of each binary spin Xi). The probability of x under Pµ is thus easily

shown to be given by

Pµ(x) =

(

1 + µ

2

)(n+
∑

i
xi)/2

·
(

1 − µ

2

)(n−
∑

i
xi)/2

=

(

1 − µ2

4

)n/2

·
(

1 + µ

1 − µ

)

∑

i
xi/2

. (99)
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Consider the estimation of the parameter µ by the ML estimator

µ̂ =
1

n

n
∑

i=1

xi. (100)

Now,

Eµ exp{an(µ̂ − µ)2} =

(

1 − µ2

4

)n/2

enaµ2
∑

x

(

1 + µ

1 − µ

)

∑

i
xi/2

exp







a

n

(

∑

i

xi

)2

− 2aµ
∑

i

xi







=

(

1 − µ2

4

)n/2

enaµ2
∑

x
exp







(

1

2
ln

1 + µ

1 − µ
− 2aµ

)

∑

i

xi +
a

n

(

∑

i

xi

)2






.

The last summation over {x} is exactly the partition function pertaining to the Curie–Weiss model

of spin arrays in statistical mechanics (see, e.g., [23, Subsection 2.5.2]), where the magnetic field is

given by

B =
1

2
ln

1 + µ

1 − µ
− 2aµ (101)

and the coupling coefficient for every pair of spins is J = 2a. It is well known that this model exhibits

phase transitions pertaining to spontaneous magnetization below a certain critical temperature. In

particular, using the method of types [7], this partition function can be asymptotically evaluated

as being of the exponential order of

exp

{

n · max
|m|≤1

[

h2

(

1 + m

2

)

+ Bm +
J

2
· m2

]

}

, (102)

where h2(u) = −u ln u − (1 − u) ln(1 − u) is the binary entropy function, which stands for the

exponential order of the number of configurations {x} with a given value of m = 1
n

∑

i xi = µ̂. This

expression is clearly dominated by a value of m (the dominant magnetization m∗) which maximizes

the expression in the square brackets, i.e., it solves the equation

m = tanh(Jm + B), (103)

or in our variables,

m = tanh

(

2am +
1

2
ln

1 + µ

1 − µ
− 2aµ

)

. (104)

For a < 1/2, there is only one solution and there is no spontaneous magnetization (paramagnetic

phase). For a > 1/2, however, there are three solutions, and only one of them dominates the

partition function, depending on the sign of B, or equivalently, on whether a > a0(µ)
∆
= 1

4µ ln 1+µ
1−µ

or a < a0(µ) and according to the sign of µ. Accordingly, there are five different phases in the plane

spanned by a and µ. The paramagnetic phase a < 1/2, the phases {µ > 0, 1/2 < a < a0(µ)} and

{µ < 0, a > a0(µ)}, where the dominant magnetization m is positive, and the two complementary

phases, {µ < 0, 1/2 < a < a0(µ)} and and {µ > 0, a > a0(µ)}, where the dominant magnetization
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Figure 4: Phase diagram in the plane of (µ, α).

is negative. Thus, there is a multi-critical point where the boundaries of all five phases meet, which

is the point (µ, a) = (0, 1/2). The phase diagram is depicted in Fig. 4.

This analysis can easily be extended to the case of a general parametric family of discrete mem-

oryless source (DMSs), {P (·|θ), θ ∈ A}, where θ is a parameter vector, and one may replace

the square error function by a general loss function L(θ, θ̂). The class {P (·|θ), θ ∈ A} may not

necessarily span the entire simplex of DMSs of the given alphabet size.

5 The Non–Bayesian Regime

Many of the ideas raised in the previous section may have analogues in the non–Bayesian regime,

but we will not derive all of those analogous derivations herein. We will touch only a few important

points in this short section.

5.1 The Linear Signal Model

Consider again the signal model,

y(t) = x(t, θ) + n(t), 0 ≤ t ≤ T (105)

where n(t) is Gaussian white noise with two–sided spectral density N0/2, as before. Consider, for

example the case, x(t, θ) = θ · s(t), where {s(t)} has energy Es. Then, if we take LNB(θ̃) to be

the Cramér–Rao bound, then it is given by N0

2Es
independent of θ̃, and so, according to part 2 of
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Theorem 1, for any unbiased estimator,

ΛNB(θ̂, θ, α) ≥ sup
θ̃

{

αN0

2Es
+

(

α − Es

N0

)

(θ̃ − θ)2
}

(106)

=

{

αN0

2Es
α ≤ Es

N0

∞ α > Es

N0

(107)

namely, αc ≤ Es/N0. This means that no unbiased estimator has an estimation error ǫ with a tail

that decays faster than e−ǫ2Es/N0 . For the maximum likelihood (ML) estimator,

θ̂ML =
1

Es

∫ T

0
y(t)s(t)dt = θ +

1

Es

∫ T

0
n(t)s(t)dt (108)

and so, the estimation error

ǫ = θ̂ − θ =
1

Es

∫ T

0
n(t)s(t)dt (109)

is Gaussian, zero–mean, with variance N0

2Es
, which attains the upper bound on αc. This means that

Es/N0 is the exact value of αc and not merely an upper bound. While in the Bayesian regime, we

have for a similar model, αc = 1
2σ2 + Es

N0
, here we do not have the contribution of the prior, and the

remaining term is just Es

N0
. It is interesting to note that we obtained a tight result on αc, attained

by the ML estimator, even though the bound on ΛNB(θ) is not attained by the ML estimator, as

ΛNB(θ̂ML, θ, α) = −1

2
ln

(

1 − αN0

Es

)

. (110)

The ML estimator achieves, however, the bound asymptotically when αN0/Es is very small, which

means, either very small α or very large signal–to–noise ratio, or both.

5.2 The Vector Linear Signal Model

The above derivation extends to the vector case quite easily. Let x(t, θ) =
∑k

i=1 θisi(t), where

{si(t)} all have the same energy, Es and let Γ be the k × k matrix of correlations with entries given

by

γij =
1

Es

∫ T

0
si(t)sj(t)dt. (111)

In this case, D(θ̃‖θ) = (θ̃ − θ)T Γ(θ̃ − θ), the Cramér–Rao lower bound is N0Γ−1/2Es, and so, we

get

ln Eθ exp
{

[αT (θ̂ − θ)]2
}

≥ N0αT Γ−1α

2Es
+ sup

θ̃

(θ̃ − θ)T
(

ααT − Es

N0
Γ

)

(θ̃ − θ) (112)

=

{

N0αT Γ−1α
2Es

ααT ≺ Es

N0
Γ

∞ elsewhere
(113)

where the notation A ≺ B, for two k × k matrices A and B, means that B − A is a non-negative

definite matrix. The condition ααT ≺ Es

N0
Γ is equivalent to αT Γ−1α < Es/N0. Here, the estimation
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error of the ML estimator of θ is a zero mean Gaussian vector with covariance matrix given by
N0

2Es
Γ−1, and so the exponential moment performance of this estimator is given by

ΛNB(θ̂ML, θ, α) = −1

2
ln

∣

∣

∣

∣

I − N0

Es
ααT Γ−1

∣

∣

∣

∣

= −1

2
ln

(

1 − N0

Es
αT Γ−1α

)

(114)

which is larger than the lower bound but is asymptotically the same when N0

Es
αT Γ−1α ≪ 1. Here

αc is extended from a single point, in the scalar parameter case, to the contour of a k–dimensional

ellipsoid defined by αT
c

Γ−1αc = Es/N0, and so, the ML estimator has an optimal tail (in all

directions) in this sense.

5.3 The Non–linear Signal Model

Consider next the model (105), where the energy Ex =
∫ T

0 x2(t, θ)dt is independent of θ. We will

also denote

ρ(θ, θ̃) =

∫ T
0 x(t, θ)x(t, θ̃)dt

E
. (115)

In this case, the lower bound becomes

ΛNB(θ̂ML, θ, α) ≥ sup
θ̃

[

αLNB(θ̃) + α(θ − θ̃)2 − 2E[1 − ρ(θ, θ̃)]

N0

]

. (116)

If LNB(θ̃) is independent of θ̃ (which is nearly the case with the Cramér–Rao lower bound in delay,

phase and frequency estimation), and if the range A of θ is unlimited, then θ̃ can be chosen such

that the second term is arbitrarily large (whereas the third term is bounded since |ρ(θ, θ̃)| ≤ 1),

and so, the lower bound is infinite for every α > 0, namely, αc = 0. In other words, in this case,

no unbiased estimator (if at all existent) has a Gaussian tail however slow. If the range of θ is

limited, then, of course, the supermum is finite and it depends on the exact form of ρ(·, ·). The

same conclusion applies whenever the energy of x(t, θ) grows slower than quadratically with θ. The

conclusion that αc = 0 is not surprising in view of the fact that for the same signal model, we

obtained αc = 1
2σ2 in the Gaussian prior case. In the Bayesian case, αc was positive due to the

prior only, and now the prior does not exist anyway, so that αc vanishes.

25



References

[1] R. Atar, K. Chowdhary, and P. Dupuis, “Robust bounds on risk–sensitive functionals via

Rényi divergence,” SIAM J. Uncertainty Quant., vol. 3, pp. 18–33, 2015.

[2] R. Atar and N. Merhav, “Information–theoretic applications of the log–probability compari-

son bound,” IEEE Trans. Inform. Theory, vol. 61, no. 10, pp. 5366–5386, October 2015.

[3] R. N. Banavar and J. L. Speyer, “Properties of risk–sensitive filters/estimators,” IEE Proc.

Control Theory and Appl., vol. 145, no. 1, January 1998.

[4] A. Bhattacharyya, “On some analogues of the amount of information and their use in statis-

tical estimation,” Sankhya Indian Journal of Statistics, vol. 8, pp. 1–14, 201–218, 315–328,

1946.

[5] E. W. Barankin, “Locally best unbiased estimators,” Ann. Math. Statist., vol. 20, pp. 477–501,

1949.

[6] D. G. Chapman and H. Robbins, “Minimum variance estimation without regularity assump-

tion,” Ann. Math. Statist., vol. 22, pp. 581–586, 1951.

[7] I. Csiszár and J. Körner, Information Theory: Coding Theorems for Discrete Memoryless

Systems, Academic Press, New York, 1981.

[8] P. Dai Pra, L. Meheghini, and W. J. Runggaldier, “Connections between stochastic control

and dynamic games,” Mathematics of Control, Signals and Systems, vol. 9, pp. 303–326, 1996.

[9] A. Dembo and O. Zeitouni, Large DEviations and Applications, Jones and Bartlett Publishers,

London 1993.

[10] G. B. Di Masi and L. Stettner, “Risk–sensitive control of discrete–time Markov processes

with infinite horizon,” SIAM Journal on Control and Optimization, vol. 38, no. 1, pp. 61–78,

1999.

[11] P. Dupuis and R. S. Ellis, A Weak Convergence Approach to the Theory of Large Deviations,

John Wiley & Sons, 1997.

[12] P. Dupuis, M. R. James, and I. Petersen, “Robust properties of risk–sensitive control,” Math-

ematics of Control, Signals and Systems, vol. 13, pp. 318–322, 2000.

[13] W. H. Fleming and D. Hernández–Hernández, “Risk–sensitive control of finite state machines

on an infinite horizon I,” SIAM Journal on Control and Optimization, vol. 35, no. 5, pp. 1790–

1810, 1997.

[14] J. Ford, “Risk–sensitive filtering and parameter estimation,” DSTO-TR-0764, published by

DSTO Aeronautical and Maritime Research Laboratory, Melbourn, Victoria, Australia, 1999.

[15] D. A. Fraser and L. Guttman, “Bhattacharyya bound without regularity assumptions,” Ann.

Math. Statist., vol. 23, pp. 629–632, 1952.

26



[16] R. G. Gallager, Information Theory and Reliable Communication, John Wiley & Sons, New

York, 1968.

[17] Z. Hongguo and C. Peng, “Risk–sensitive fixed–point smoothing estimation for linear discrete–

time systems with multiple output delays,” J. Syst. Sci. Complex, vol. 26, pp. 137–150, 2013.

[18] R. Howard and J. Matheson, “Risk–sensitive Markov decision processes,” Management Sci-

ence, vol. 18, pp. 356–369, 1972.

[19] M. R. James, J. S. Baras, and R. J. Elliott, “Risk–sensitive control and dynamic games for

partially observed discrete–time nonlinear systems,” IEEE Trans. on Automatic Control, vol.

39, no. 4, pp. 780–792, April 1994.

[20] J. Keifer, “On minimum variance estimation,” Ann. Math. Statist., vol. 23, pp. 627–629, 1952.

[21] N. Merhav, “Statistical physics and information theory,” (invited paper) Foundations and

Trends in Communications and Information Theory, vol. 6, nos. 1–2, pp. 1–212, 2009.

[22] N. Merhav, “On optimum strategies for minimizing exponential moments of a loss function,”

Communications in Information and Systems, vol. 11, no. 4, pp. 343–368, 2011.

[23] M. Mézard and A. Montanari, Information, Physics and Computation, Oxford University

Press, 2009.

[24] J. B. Moore, R. J. Elliott, and S. Dey, “Risk–sensitive generalizations of minimum variance

estimation and control,” Journal of Mathematical Systems, Estimation and Control, vol. 7,

no. 1, pp. 1–15, 1997.

[25] K. Rajendra Prasad, M. Srinivasan, and T. Satya Savithri, “Robust fading channel estimation

under parameter and process noise uncertainty with risk sensitive filter and its comparison

with CRLB,” WSEAS Transactions on Communications, vol. 13, pp. 363–371, 2014.

[26] V. R. Ramezani and S. I. Marcus, “Estimation of hidden Markov models: risk–sensitive filter

banks and qualitative analysis of their sample paths,” IEEE Trans. on Automatic Control,

vol. 47, no. 12, pp. 1999–2009, December 2002.

[27] H. L. van Trees, Detection, Estimation, and Modulation Theory, Part I, John Wilty & Sons,

New York, 1968.

[28] Bayesian Bounds for Parametric Estimation and Nonlinear Filtering/Tracking, Edited by

H. L. Van Trees and K. L. Bell, John Wiley & Sons, 2007.

[29] A. J. Weiss, Fundamental Bounds in Parameter Estimation, Ph.D. dissertation, Tel Aviv

University, Tel Aviv, Israel, June 1985.

[30] P. Whittle, “Risk–sensitive linear/quadratic/Gaussian control,” Advances in Applied Proba-

bility, vol. 13, pp. 764–777, 1981.

[31] P. Whittle, “A risk–sensitive maximum principle,” Systems and Control Letters, vol. 15, pp.

183–192, 1990.

27



[32] N. Yamamoto and L. Bouten, “Quantum risk–sensitive estimation and robustness,” IEEE

Trans. on Automatic Control, vol. 54, no. 1, pp. 92–107, January 2009.

28


