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Abstract

Considering the problem of risk—sensitive parameter estimation, we propose a fairly wide family
of lower bounds on the exponential moments of the quadratic error, both in the Bayesian and the
non—Bayesian regime. This family of bounds, which is based on a change of measures, offers con-
siderable freedom in the choice of the reference measure, and our efforts are devoted to explore this
freedom to a certain extent. Our focus is mostly on signal models that are relevant to communica-
tion problems, namely, models of a parameter—dependent signal (modulated signal) corrupted by
additive white Gaussian noise, but the methodology proposed is also applicable to other types of
parametric families, such as models of linear systems driven by random input signals (white noise,
in most cases), and others. In addition to the well known motivations of the risk—sensitive cost
function (i.e., the exponential quadratic cost function), which is most notably, the robustness to
model uncertainty, we also view this cost function as a tool for studying fundamental limits con-
cerning the tail behavior of the estimation error. Another interesting aspect, that we demonstrate
in a certain parametric model, is that the risk—sensitive cost function may be subjected to phase
transitions, owing to some analogies with statistical mechanics.

Index Terms: risk—sensitive estimation, risk—averse estimation, robust estimation, Bayesian esti-
mation, Cramér—Rao bound, unbiased estimation, tail behavior, phase transitions.



1 Introduction

While the minimum mean square error (MMSE) has been the most common figure of merit for
measuring the performance of estimators in several areas, such as estimation theory, informa-
tion/communication theory, and statistics, by contrast, the exponential moments of the quadratic
error, namely, Eexp{a(é —0)2)} (a > 0 being a prescribed constant, § — a parameter, and 6
its estimator), have received much less attention in those fields. In the realm of the theory of
optimization and stochastic filtering and control, on the other hand, the problem of minimizing
exponential moments of the quadratic error, or exponential moments of any other loss function,
has been studied rather intensively, and it is well-known as the risk—sensitive or risk—averse cost
function (see, e.g., [8], [10], [13], [18], [30], [31] and many references therein).

One of the main motivations for using the exponential function of the loss is to impose a penalty,
or a risk, that is extremely sensitive to large values of the loss, hence the qualifier “risk—sensitive”
in the name of this criterion. Another motivation is associated with robustness properties of the
resulting risk—sensitive solutions to model uncertainties [1], [12]. Indeed, as explained in [22, p.
349, the paragraph of eq. (11)], minimization of the exponential moment of the loss function is
equivalent to minimization of the expected loss for the worst distribution in the e—neighborhood
(in the Kullback-Leibler divergence sense) of the given (nominal) probability distribution, where €
grows with the risk—sensitive factor parameter ««. There are, in fact, a few additional motivations for
minimizing exponential moments, which are also relevant to the problem of parameter estimation
considered here, and indeed, risk—sensitive parameter estimation has been studied to a considerable
extent (see, e.g., [3], [14], [17], [19], [24], [25], [26], [32], and references therein). First and foremost,
the exponential moment, F exp{a(é —6)?}, as a function of «, is obviously the moment-generating
function of (é— 6)2, and as such, it provides the full information about the entire distribution of this
random variable, not just its first order moment. Thus, in particular, if we are fortunate enough to
find an estimator that uniformly minimizes E exp{a(d — 0)2} for all & > 0 (and there are examples
that this may be the case), then this is much stronger than just minimizing the first moment.
Secondly, exponential moments are intimately related to large—deviations rate functions (owing to
the exponential tightness of the Chernoff bound), and so, the minimization of exponential moments
may give us an edge on minimizing probabilities of (undesired) large deviations events of the form
Pr{|6 — 0] > &} (for some threshold § which is related to a), or more precisely, on maximizing the

exponential rate of decay of these probabilities.

Moreover, an important feature of the estimation error, € = 6 — 0, is its tail behavior: how fast
can the probability density function (pdf) of e possibly decay as |¢|] — oo (assuming the support
of € to be unbounded)? This is not accomplished, in general, by inspecting a figure of merit like
Pr{|d — 0| > 6}, for a given 4, since the optimal estimator under this criterion may depend on 6,
whereas we might be interested to assess the decay rate of the entire distribution tail of a single
estimator 6. It turns out that when the support of # is unbounded (and so is that of é), then there

is normally a critical value of «, denoted a,, such that for every a < «., the exponential moment



E exp{a(é —6)2} is finite at least for some estimators, whereas, for o > a., it must diverge for any
estimator . When this is the case, this means that there exists no estimator whose pdf tail decays
faster than a Gaussian tail of the form exp(—a.€?). Thus, deriving bounds on a is an important
aspect of the risk—sensitive cost function, as we shall see in the sequel. Interestingly, in a large
variety of models that we examine, our bounds on «, will turn out to be tight in spite of the fact

that the corresponding bounds to the mean exponential quadratic error are not always tight.

Our main focus in this paper is in lower bounds to the mean exponential quadratic error as a
function of the risk—sensitive parameter . We propose a rather wide family of such lower bounds,
both in the Bayesian and non—Bayesian regimes, though most of our emphasis is on the Bayesian
regime. This family of bounds is based on a change of measures, combined with the plethora
of bounds for the ordinary mean square error (MSE), and as such, it offers a considerably large
freedom in the choice of certain ingredients of these bounds. Our efforts are devoted to explore
this freedom at least to a certain extent. The bounds are applied mostly to signal models that
are relevant to communication problems, namely, models of a parameter—dependent signal (i.e.,
a modulated signal) corrupted by additive white Gaussian noise, but the methodology proposed
is also applicable to other types of parametric families, such as models of linear systems driven
by random input signals (white noise, in most cases), memoryless sources parametrized by their
letter probabilities, Markov sources, parametrized by their state transition probabilities, and so
on. Another interesting aspect, that we demonstrate (in the Bayesian regime) for a very simple
parametric model, is that the risk—sensitive cost function may be subjected to phase transitions,

owing to some intimate analogies with statistical mechanics.

The remaining part of this paper is organized as follows. In Section 2, we establish notation
conventions, define the problem, and provide a few preliminaries. In Section 3, we provide our
generic lower bounds to the risk—sensitive cost function for both the Bayesian and the non—Bayesian
regimes. These two generic bounds will serve as the basis for several families of bounds that will be
further developed for various classes of parametric models in Section 4 (the Bayesian regime) and
in Section 5 (the non-Bayesian regime). Also, in the last subsection of Section 4, we demonstrate
that the risk—sensitive cost function may exhibit phase transitions even in some simple parametric

models, like that of the binary memoryless (Bernoulli) source.

2 Notation, Definitions, Problem Setting and Preliminaries

We begin by establishing some notation conventions. We consider a parametric family of probability
functions,! {P(y|f), 6 € A}, where  is parameter taking values in a parameter set A, and y is
a set of observations. For the sake of simplicity of the presentation, throughout most of of this
paper, # will be a scalar parameter, and accordingly, A will be either an interval, or half of the

real line, or the entire real line. In a few places along the paper, however, we will let § be a vector

!Probability density functions (pdfs) in the continuous case, or probability mass functions (pmfs) in the discrete
case.



of finite dimension k and accordingly, A will be IR or a subset of it. The set of observations, ¥,
may either be a vector of dimension n, y = (y1,...,y,) (in the discrete-time case) or a waveform
y = {y(t), 0 <t < T} (in the continuous-time, Gaussian case), depending on the context. In
the latter case, the conditional pdf P(y|f) will be understood to be defined via a complete family
of orthonormal basis functions, according to the well known conventions (see, e.g., [16, Chap.
8]). In the Bayesian setting, we will assume that € is a random variable, distributed according
to a given prior P(f), whose support is .A. The joint density of # and y will then be given by
P(6,y) = P(0)P(y|0). Alternative joint densities of # and y will be denoted by the letter Q (e.g.,

Q(9), Q(yl0), etc.).

An estimator, 0, of the parameter 6, is any measurable function of y only. Following customary
notation conventions, we will use capital letters to designate randomness. Accordingly, Y will
denote the random observation set, and in the Bayesian setting © will denote a random parameter
governed by the prior P(6).

In the non—Bayesian setting, where 6 is assumed an unknown deterministic variable, Pp{E} will
denote the probability of an event &£, associated with Y, under P(-|@), and similarly, Eo{f(Y )}
will denote the expectation of some function f of the random observation set Y, with respect to
(w.r.t.) P(-|0). An estimator 6 = A(y) is called unbiased if for every € A, we have Egf = 6. The
Kullback-Leibler divergence between the conditional densities P; = P(-10) and Py = P(-|#) will be
defined as _

PY|0)

D(F;||Py) = Ejln PY[) (1)

provided that the support of P(-|f) covers the one of P(-|6).

In the Bayesian setting, the probability of an event £, associated with Y and O, will be denoted
by P{£} and the expectation of a given function f(Y,©), will be denoted by E{f(Y,©)}. The
conditional expectation of f(Y,0) given Y = y (which is the same as the conditional expectation
of f(y,0)) will be denoted by E{f(y,0)|y}. Expectations and conditional expectations w.r.t. an
alternative joint density {Q(6,y)} will be subscripted by @, i.e., EqQ{f(0,Y)}, Eg{f(©,y)|y},
etc. The Kullback—Leibler divergence between () and P will be defined as

Q(0,Y)

D(Q||P) :EQIHW’ (2)

provided that the support of Q) covers the support of P.

In this paper, we judge the performance of any estimator according to the exponential moment of
the squared error, henceforth referred to as the risk—sensitive cost function, which is parametrized
by a positive real «, called the risk—sensitive factor, and is defined as follows. In the non—Bayesian
regime,

Ao (0,0, 0) = n By {exp (a[d(Y) - 0]}, (3)

with the quest of minimizing Ayg over all unbiased estimators, uniformly for all § € A. In the



Bayesian regime, the risk—sensitive cost function is defined as

As(0, ) SWE {exp (a[é(Y) — @]2)} , (4)

with the quest of minimizing Ay over all estimators in general. The risk—sensitive factor, «, controls
the degree of risk—sensitivity, or the degree of robustness of the estimator that minimizes the risk—
sensitive cost function. The larger is «, the greater is the sensitivity to large errors. The limit
a — 0 recovers the case of ordinary MSE estimation.

It should be pointed out that even in the Bayesian regime (let alone the non—Bayesian one), the
optimal estimator
0 = argmin E{eo‘(e_")2 ly} (5)
n

is not trivial to calculate, in general, as it is associated with the solution 7 of the equation

E{0c(©-1? |y
) BlOe g} “
E{c>®=" |y}

which cannot be solved in closed—form in most cases. This is even more difficult than calculating
the MMSE estimator, i.e., the conditional expectation, E{©|y}, which is known to be a non-trivial
task (if not completely undoable) on its own right, in the vast majority of cases of practical interest.
Thus, the need for good lower bounds to ANB(é,H,a) and AB(é, «) is at least as crucial as in the

classical case of the MSE cost function.

3 Generic Lower Bounds

Our basic, generic lower bounds, for both the Bayesian and the non—Bayesian regimes, are provided

in the following theorem, whose very simple proof appears at the end of this section.

Theorem 1 Consider the parametric family defined in Section 2.
1. For every estimator é,

AB(év Oc) > aLB(Q) - D(QHP)v (7)

where @Q is an arbitrary joint density of (0,Y) and Ly(Q) is an arbitrary lower bound to
Eqli(y) - e].

2. For every unbiased estimator é,
Aws(0,0,0) > aLys(8) + a(f — 0)* — D(Fy]| Fy), (8)

where 0 is an arbitrary parameter value in A and LNB(é) is any non—Bayesian lower bound
on the MSE, Eé(é —0)2, for unbiased estimators.



As can be seen, both generic bounds offer a rather wide spectrum of choices with many degrees
of freedom. In the Bayesian lower bound (part 1 of Theorem 1), one has the freedom to choose
both the joint density ), henceforth referred to as the reference model, and the MSE lower bound,
Ly(Q). As for the former, since the inequality (7) applies for any (), one has the freedom to select
the one that maximizes the r.h.s. of (7) over a certain class Q of reference models, and it would be
wise to define the class O to be wide enough to yield good bounds, on the one hand, and structured
enough to make the problem of maximization over Q tractable, on the other hand. First and
foremost, @ should be a family of other parametric models for which it is relatively easy to derive
a good lower bound, Lg(Q) (or even the exact MMSE), as well as an expression (or at least an
upper bound) to D(Q||P). Of course, the choice @ = P is always legitimate, but it normally leads
to a rather trivial lower bound — the same bound that is obtained by a simple application of the
Jensen inequality (In Ee? > EZ), which is a relatively weak bound in most cases. Of course, if
Q is chosen to include P as a member, the bound resulting from maximization over Q cannot be
worse than this trivial lower bound. The MSE lower bound, Lg(Q), can chosen, for example, to
be the Bayesian Cramér-Rao bound [27], or the Weiss—Weinstein lower bound [29], or any one of

their many variants, see, e.g., [28] and many references therein.

Similar comments apply to the non-Bayesian setting (part 2 of Theorem 1). Here the degrees
of freedom are in the selection of the reference parameter value, 8, and in the selection of the non—
Bayesian MSE lower bound, Lys(f). The best choice of 8 is, of course, the one that maximizes
the r.h.s. of (8) over A, but this maximization is not always an easy task. The MSE lower bound,
LNB(é), can be taken to be one of many existing non—-Bayesian lower bounds for unbiased estimators,
for example, the non—Bayesian Cramér—Rao lower bound (see, e.g., [27]), the Bhattacharyya bound
[4], the Chapman-Robbins bound [6], the Fraser-Guttman bound [15], the Barankin bound [5], the

Keifer bound [20], etc.

We note that when the support A of the parameter 6 is unbounded, the maximization of the
lower bound (over @ € Q — in the Bayesian case, or over 6 € A — in the non-Bayesian case) might
yield an infinite value for large enough «, say, for every a > a, where «, is referred to as the critical
value of . When this is the case, it means that the pdf of the estimation error, € 24 0, decays
at a rate slower than exp{—a.e?} for |e] — co. The lower bounds of Theorem 1 can therefore yield
upper bounds to a.. If a, = 0, it means that there is no estimator with an estimation error whose
tail decays as fast as any Gaussian. We will encounter situations where this is indeed the case:
interestingly, while for many estimators, the error is nearly Gaussian around the origin (due to an
underlying central limit theorem), the tails may decay at a much slower rate than any Gaussian
tail. In the other extreme, if a, = oo, which is the case where the lower bound is finite no matter
how large a may be, the tail of the error may decay faster than any Gaussian. Of course, when 4
is a finite interval, this is trivially the case. We shall comment on the behavior of o, in the various

cases that we consider.

Some of the resulting bounds (Bayesian and non—Bayesian alike) can easily be extended to the



vector case. Considering, for example, the risk—sensitive cost function
Axp(0,0,a) = In Egexp {[aT(é - 6)]2} , 9)

where « is 6 are now both column vectors of dimension k and the superscript 1" denotes transpo-

sition, the above quantity is readily lower bounded by
o171 (0) + (6 - 0)(6 — 0)" ] — D(Fy|| o), (10)

where I71(f) is the inverse of the k x k Fisher information matrix associated with the parametric
family {P(-|0), 6 € A}. This gives some fundamental limitations on arbitrary projections of the
estimation error as well as on the behavior of the tails of the estimation error in various directions
in IR”.

In the remaining part of this paper, we shall make an attempt to explore some of these degrees
of freedom. Most of our efforts will be given to the Bayesian regime, but we will also devote some

attention to the Bayesian regime. We end this section by providing the proof of Theorem 1.

Proof of Theorem 1. We begin from a very simple well-known inequality, which stands at the basis
of the Laplace principle [11] or more generally, the Varadhan integral lemma [9, Section 4.3]. Let
Z be a random variable, governed by a probability distribution P, and let @ be an alternative
probability distribution on the same space, such that D(Q||P) < oo. Now,

(%)
Q(Z)

where the second step follows from the Jensen inequality.?

In Epe? =InEg exp{Z+1n } > EqgZ — D(Q|P), (11)

Next apply eq. (11) to both the Bayesian and the non—-Bayesian regime. For the Bayesian regime,
set Z = a[f(Y') — ©]2, then further lower bound Eg[f(Y') — ©]2 by Ly(Q), which will yield part 1

of Theorem 1. For the non-Bayesian regime (part 2 of Theorem 1), set Z = [#(Y) — ]2, use Py in
the role of P, P; — in the role of ), and then further lower bound Eé(é —6)? by

Ej(0 —0)* = E;(6 —6)" + (0 — 0)> > L (0) + (6 - 0)°, (12)

where in the first step, we have used the assumed unbiasedness of 6 and in the second step, we have

used the definition of Lyg(#). This completes the proof of Theorem 1.

4 The Bayesian Regime

4.1 Conditions for Tightness of the Lower Bound

Before exploring the lower bound of the Bayesian regime in specific parametric models, we would

like first to furnish conditions under which this bound is tight. Applying Observation 1 of [22, p.

2Equality is achieved if the r.h.s. is maximized w.r.t. Q, namely, if Q(z) is taken to be proportional to P(z)e?
(provided that P(z)e® is integrable), see, e.g., [22] and references therein.



347] to Bayesian parameter estimation, we find that an estimator 0 minimizes AB(é, a) if it also
minimizes EQ(é — 0)2, where Q(f]y) is given by

P(6]y)ecl0®)-01"
Z(y) ’

and where Z(y) is a normalization constant, so that Q(-|y) would integrate to unity. In other words,

Q0ly) = (13)

to minimize Ag (é, «), the estimator 0 has to be the conditional expectation of © given y w.r.t. Q.
Note that this condition has a circular character, since () depends on é, which in turn depends on
Q. Therefore, this condition for optimality is more useful as a criterion to check whether a given
estimator is optimal than as a tool for actually finding the optimal estimator. Further, let us lower
bound Eq(f — ©)? by Ly(Q), which is given by the Bayesian Cramér-Rao lower bound [27] w.r.t.

Q, that is,
1

Ly(Q) = W7 (14)
where
W(0,y) 2 %&"’y), (15)

As shown in [27, p. 73], a necessary and sufficient condition for the tightness of the Bayesian
Cramér—Rao lower bound is that Q(f|y) would be a Gaussian pdf whose variance is given by the
r.h.s. of (14), independently® of ¢, and whose mean is an arbitrary function of y (not necessarily
a linear function). When this is the case, then obviously, this function of y becomes the optimal
MMSE estimator, é(y), that achieves the Bayesian Cramér—Rao lower bound w.r.t. @. Combining
this condition with (13), we find that eq. (7), with Lg(Q) given by (14), is a tight lower bound

when P(|y) is also Gaussian with mean A(y) and variance that is independent of y.

4.2 Non-linear Signal Models and Linear Reference Models

A very well known special case, where the above conditions concerning ) are satisfied, is the case
where O is a Gaussian random variable, and given © = 0, the observation set Y is Gaussian with
a mean given by a linear function of 6 (and then, A(y) is a linear function of y). This motivates us

to choose the reference model ) as a jointly Gaussian density of © and Y.

Let us then begin from the case where both P and @ are such Gaussian linear models. In
particular, under P, let © ~ A(0,02) and for a given © = 0,

y(t) =0s(t) +n(t), 0<t<T (16)

where T is the observation interval, n(t) is additive white Gaussian noise (independent of ©) with
two—sided spectral density Ny/2, and {s(t), 0 < ¢t < T} is a given waveform with energy FEj.

3A tighter bound can be obtained by averaging (over Y') the conditional Bayesian Cramér-Rao lower bound given
y, where the expectation at the denominator of (14) is replaced by the conditional expectation given y. The
necessary and sufficient condition for the achievability of this bound is Gaussianity of the posterior, where both
the conditional mean and the conditional variance are allowed to depend on y.



Denoting .
2= /O s(t)y(b)dt, (17)

it is easily seen that

02 02 2
P(9|y):P(9|z)o<exp{—N0+2 Es (9 z> } (18)

202N, C02E,+ No/2

Thus, if we define

o? 2
0 P(y)P(6 0— ———="- 1
Q0,y) < Py)P( Iy)exp{a< TE. 1 NoJ2 Z> (19)
2
No + 20%E; o?
P - —=— - 0 — ———"-"- 2
x Ply)ew { < 262N, a) ( 02E, + No/?2 Z) } (20)
then the conditions of [22, Observation 1] are satisfied for the conditional mean estimator,
2
A o
= ———. 21
U2E8 + NO/2 Z? ( )

and so, the same estimator minimizes also Az (6, «) for every

A Ny + 20%E, 1 E,
0 = it A e 22
SOS T TN, 202 T N, (22)

The resulting value of the minimum achievable AB(é, «) is given by

A 1 1
min Ag (0, o) = =1

_ 2
0() 2 nl—a/ac’ (23)

and so, indeed the estimator error € = 0 Y) — © has a Gaussian tail at rate a. as defined above.

(
Next, suppose that under P, © ~ N(0,0?) and
y(t) ==zt 0)+n(t), 0<t<T (24)

where z(t,6) is continuous-time waveform (depending on ), whose energy is E, independently*
of . Now, under @, let © ~ N(0,52) and y(t) be as in (16), so for the given model P, we have
the freedom to choose 72 and the auxiliary signal s(t). To apply part 1 of Theorem 1, we have
to derive the expression for D(Q||P), which decomposes to the sum of two terms. The first is the

divergence between the two priors of ©, which is given by

1|62 52
DIN(0,62)|N(0,6%)] = = l— —In— — 11 , (25)

2 |02 o2

4This assumption concerning the energy is (at least nearly) satisfied for many parametric signal models, e.g.,
when 6 designates delay, frequency, or phase, etc. In these cases, the Gaussian prior on © makes sense (as an
approximation) as long as its standard deviation, o, is significantly smaller than the size of the interval A of the
support of the parameter.



and the second term is the expected divergence between the two Gaussian pdfs of y given 6. In
general, as can easily be verified, the divergence between the probability measures of two noisy
signals, y(t) = z1(t) +n(t), and y(t) = z2(t) +n(t), 0 < ¢t < T, with the same noise spectral density
No/2, is given by [ [z1(t) — z2(t)]dt/Ny. Therefore, applying (7), we have

) 5 1|52 G2
2
As(0,0) = aBq(0-0)° -5 [; —In— - 1] -
1
- EQlO°Es + By — 20C44(0)] (26)
0

Y

el VU D Pl

No+252E, 2|02 o2

5°Es+ E, — 2Eo{0C,4(0)}
No ’

a&? Ny 1 [&2 &2 1]

where

Crs(0) 2 /0 " st 0)dt.

For a given Ej, the best choice of the signal {s(t), <t < T} (in the sense of maximizing the lower

obund) is the one that maximizes

Eof6C..(0) = [ s()Bo(6x(t,0))ar (25)
namely,
S (t VEs - Eol0x(t,0)]. (29)

VI Bo{os(t, €))di
which when substituted back into (26), yields

A a6?N, 1|6a2 &
> 7Y 2 12— —_1] =
Ap(0,0) = No+ 25°E, 2 [02 In =3 ]
1 ~92 T
2 5B, +E, —2 E/ (Eq{0x(t,0))]2d (30)
0 0
~2 ~2 ~2
oo 9 1o o
TTonez 9 3 [02 N2 ]
1 T
2B =2 AN, / [Eq{0x(t,0))]2dt | | (31)
Ny 0

where \ £ Es/Ny and the remaining degrees of freedom for maximizing the bound are the parame-
ters A and 2. Consider first the maximization w.r.t. A. As a function of \, the above lower bound

has the form
a

1+b)\—c)\+d\/x

) =

10



where

a = as’ (32)

= 252 (33)

c = &2 (34)
T

i = 2\/Ni0/0 [Eo{@x(t,0)}2d1. (35)

If a is small and /or b, c and d are large (which is the case when « is small and /or 2 is large and /or
Ny is small), then the first term is not important and a good choice of A is the one that maximizes
—cX + dv/\, namely,

_ @ _ Jy [Eq{u(t,0)}Pdt.

4c? Nyot

On substituting this into (30), we obtain

As (0, 0) oo’ | Iy Bo{Oa(t.0))dr
| 1+ 557 Jo [Bo{®a(t, ©))dt Noo?
1|52 5 E,

To obtain more explicit results, we now particularize the signal model to phase modulation:

x(t,0) =4/ % - cos(wt + 6), (37)

where we have the following:

2, A ,
Ep{6x(t,0)} = ‘Re {e]thQ[G) : eje]}
T
2F 4 0 ’
_ T . jwt_E js©
T Re{]e s ole ]81}
2E : a 2~2
- _ z . jwt Y —s262/2
T Re {]e 55 ¢ ] 521}
_ 2E, ‘526752/2 . Re{jejwt}
T
I o G202 sin(wt). (38)
T
which yields
T ~
/ [Eo{01(t,0)}2dt = E,5%e 7", (39)
0

11



and so, the lower bound becomes, in this case,

. 52 E .
Mo(.0) > QE:;ZB%Q e Fz(l _ 52
%lj—i—lni—i—l}. (40)
For example, if 52 = o2, this becomes
As(0, ) ac’ Loy _ p2eo?y (41)

2 2 -
14 2E,0%¢7 7" /Ny Np

Let us compare this to the lower bound obtained by a simple application of the Jensen inequality,
combined with the Bayesian Cramér—Rao lower bound. The result is

N (10'2

>

When o2 is very large, this yields approximately 2aNg/E,, whereas the proposed bound gives
ao? — E, /Ny, which may be significantly larger for large o2. Moreover, returning to (40), if o2 is
large, then &2 should be chosen large as well (otherwise the divergence between the priors would

—52/2

be large), and then the terms containing e can be neglected. Under this approximation, it is

easily seen that the optimal choice of 52 is

2
-9 (o}
_ 43
1—2a0?’ (43)
which when substituted back into (40), yields
A 1 1 E
Ag (6 > _ln—— — = 44
s(lh0) 2 55 e T Ny (44)
which is finite only as long as a < #, namely, in this case, «, is upper bounded by
1
< —. 45
0 < 5 (15)

It turns out that this upper bound is tight, as it is achieved at least by the trivial estimator 0= 0,
whose estimation error, ¢ = 0 — © = —0 is indeed Gaussian with variance o2, by the model

assumption. In other words, for the model considered here,

1
o, = ——=.
202

We observe that in this case of the non—linear signal model, the Gaussian tail of the pdf of the

(46)

estimation error is due to the prior only, and the observation set Y contributes nothing whatsoever
to this Gaussian tail. This is different from the Gaussian—linear model considered before, where we
found that o, = # + ﬁ—;, which contains contributions of both the prior (the first term) and the
observation set (the second term).

12



4.3 More General Priors

So far, we have considered only Gaussian priors, for both P and for Q. This limits the framework
to models where the support A of the parameter is the entire real line. On the one hand, for
reasons that were discussed above, it is convenient to work with a Gaussian prior for ), but on the
other hand, if the parameter 6, under the real model P, takes values only in a finite interval (like
in the case of a delay parameter, for instance), then the divergence between the two priors would
be infinite and then our lower bound would be useless. This motivates us to extend the scope to

general priors whose support may not necessarily be the entire real line.

Considering the case where the prior is Q(#), and Q(y|0) is according to (16), then under certain
regularity conditions (see, e.g., [27]), the Bayesian Cramér—Rao lower bound is given by

2ol -0 2 e, o
where
! 2
1Q) = Bo(we.v)} = [ 910 (49

Given a general prior P, a convenient choice for @), here indexed by an auxiliary parameter 5 > 0,

is of the form
B
%0 =5 20 = [ P (19)

Denoting ¢(5) = In Z(f), the Kullback—Leibler divergence is given by

D(QslP) = (B —1)¢'(8) — (B). (50)

The idea is that one can now optimize the bound w.r.t. § and Ej (or equivalently, A\ = E,/Ny),
as the optimal signal s(t) for a given Fy is the same as before. Of course, for a general @, the
calculation of Eg{Oz(t,0)} will have to be modified accordingly, as earlier we have calculated it

with a Gaussian prior. This quantity depends, of course, on f.

Consider, for example, the model of delay estimation, where under P, z(¢,6) = z(t — 6), and
assume that the derivative @(¢) has finite energy. Suppose that under @, the signal is s(t — 6),
where s(+) is subjected to optimization of the bound. In this case, the lower bound is of the form,

N o 1 T
Au(f,0) > —(B-10B) +6(8) 57 [ O -s@Pdt. 6D

T I(Qp) + w5 Jo [3(0)2dt

As can be seen, the optimization over the signal s(-) involves a tradeoff between the energy of its

13



derivative and the Euclidean distance between s(t) and x(t). In particular,

(67

= 08 { 1(Qs) + 2 I (0t
o ]t =002}

—(B=1)¢'(8) + ¢(8)

- ll(@@ i~ (- 090) +05)-
Niomf{/:[x(t) (02t /OT 20t — EH . (52)

The inner minimization can be cast as a Lagrangian minimization

inf { / £)dt + A / dt} (53)

which can easily be solved using calculus of variations. In particular, suppose that s.(t) is the
optimal signal and consider a perturbation s(t) = s.(t) + er(t) for an arbitrary signal r(¢). On
substituting this form back into the Lagrangian and requiring that the derivative vanishes at ¢ =0

for every r(t), we obtain the equation,

T
/0 (F(D)3. (1) + Ar(t)[s.(8) — 2(O)]}dt = 0, (54)
or equivalently (using integration by parts),
F(T)42(T) — #(0)3,(0 +/ ) {8 (t) + Alsi(t) — 2(t)]}dt = 0, (55)

for every {r(t), 0 < ¢ < T}, which means that s,(¢) is obtained from z(t) by solving the second
order linear differential equation,

s4(t) — g*A(t) =2(t)  5.(0) = 5.(T) =0. (56)
As an example, let
() = 23]‘; 1 — cos(wot)], (57)

where wyg is a known parameter. Then the solution to the above differential equation is given by

2F,
s«(t) = 3T [ At - cos(wot) | - (58)
Now, denoting v = A\/(\ + w3), we have
1 T E,
5 | s —a®Fd = 22 (10 (59)

14



and

T 1
/ $2(t)dt = = Epw? - v? (60)
0 3
Thus, our lower bound can be presented as
N [0 / EJ: 2
AB(H’O‘) > Oguilll}:)5>0 lI(QB) 4 21/2003E$/3N0 - (/8 - 1)¢ (5) + Qs(ﬂ) - 3N0 ’ (1 - V) ‘| : (61)
Note that by selecting v = 0, this can be further lower bounded by
A o / E:v
Ap(0,0) > sup l@ —(B=1)¢(B) +(8) - 3N0] (62)
_ a—1(@Qp)(B—1)¢'(B) —¢(B)]  Esx
- | 1@ ) 0

which is finite only as long as a < a., where a, can be evaluated (or at least, upper bounded) by
limg_,5, I1(Qp)[(B — 1)¢'(8) — ¢(5)], where By is such that limg_, 5, I(Qg) = 0 (for example, if the
prior is Gaussian, then 5y = 0 and correspondingly, o, = #) If no such [y exists, then the upper
bound to «. is infinity.

The case of frequency estimation, where z(t,0) = a(t) sin(6t) + b(t) cos(ft) can be handled simi-
larly. In that case, the optimum auxiliary signal turns out to be s(t,6) = Az (t,0)/(t*> + \), where
A is again an auxiliary parameter that controls the tradeoff between the energy of the derivative of
s(t,0) and its distance to z(t, ).

4.4 Risk—Sensitive Bounds Based on Other MSE Lower Bounds

So far, our lower bounds on the risk—sensitive cost function were based solely on the Bayesian
Cramér—Rao lower bound as an MSE lower bound for the reference model. Of course, other MSE
lower bounds may be used as well, and one of the best such bounds is the Weiss—Weinstein bound
[28], [29]. In this short subsection, we demonstrate its usefulness in the problem of delay estimation

for a rectangular pulse, where the delay parameter has a uniform prior over a certain interval.

For the case where the underlying signal is a rectangular pulse of width 7, the MMSE of its delay
was shown in [29] to be lower bounded by 0.32472 /42, where v = E, /Ny (and in the literature,
there are other bounds with different constants, but the same behavior of being proportional to
72/4?). Considering an auxiliary rectangular pulse (under Q) with the same energy, but duration
7 > 7, we have

2 7

. .32472
An(dra) > 03,Y LS (1— 1), (64)

where the second term is due to the divergence between @ and P (which is proportional to the
Euclidean distance between the two rectangular pulses), and where we let the prior over auxiliary

prior be the same as the original one. Optimizing over 7, we obtain

67— 0.2
7 — 1.1805 <'Ya—2> : (65)

15



and the assumption 7* > 7 limits the applicability of this result to the case v > 0.8654((17’2)1/3.
On substituting 7* back into the above lower bound, we obtain

Ap(0,a) > 2.2922(ay?72)%2 — 2, (66)
which is non-trivial (non—negative) as long as
v < 1.2552(ar?)V/3, (67)

The bound seems to be monotonically increasing in v in some range of small v, but this range is
outside the range of applicability,
v > 0.8654(ar?)/3, (68)

4.5 The Logarithmic Probability Comparison Bound

As mentioned earlier in this section, for the linear—-Gaussian model (16), the conditional mean

estimator (21) minimizes all exponential moments of the squared error, and the performance is

A 1 1

where here, once again, a, = ff—g + # Returning to the model P, where © ~ N(0,0?) and
y(t) = z(t,0) + n(t), and letting Q be again defined by © ~ N (0,52%) and y(t) = 0s(t) + n(t), in
this section, we use a more general family of inequalities, where the Kullback—Leibler divergence is
replaced by the Rényi divergence. This family of inequalities induces a class of bounds referred to

as the logarithmic probability comparison bound (LPCB), [1], [2].
The idea behind the LPCB bound is as follows. For a given a > 1, let us define the Rényi

divergence as
1 dQ\®
Da(QHP) = mln/ (d—P) dP. (70)

Then, for a given random variable X, governed by either P or @), the underlying family of inequal-

ities [1] is as follows:

In Bpe'™ > - - - In Bgel™X —aD, Q|| P). (71)

Note that the inequality In Epe® > EgX — D(Q||P), that we have used in all previous parts of
the paper, is just a special case of the last inequality, where a | 1. Applying this more general
inequality with X = ﬁ(é —0)? (3 > 0, a given constant) and defining & = a3, we obtain the
following inequality for every o > 3 > 0:

Mo(0.0) 2 ——Zha(d. 0= §) = SDo/s(QIIP) (72)
« a—p «
> gty (1-% )—EDa/g(QHP) (73)

= “z<a—(iﬂ)1“<1‘aa; )- a—ﬁ /<dQ)a/ﬁ ™
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=Ll 4+ L
where &, = 5z + N Now,

762) 12 exp{—0? /25> ¢ ala—1) (T
— VQexi ®2§202H eXp[ (NO )/0 [m(t,@)—GS(t)]th]}

o 1 1 ala—1) [T
= (—2> {exp la <ﬁ - ﬁ) 02 + (TO)/O [z(t,©) — ®s(t)]2dt] }
= <§> EP{exp <a [%—%} @2+G(GTO) lE +O0%E —2@/ x(t @)dtD}

Let us now assume that fO x(t,0)dt is a constant, independent of 6 (which is as reasonable as

assuming that the energy is independent of #), and denote this constant by ¢. Then, letting

s(t) = v Es/T (DC signal), we get
dQ\“
/ (d_P) dp
_(Z a/QE [1 1}@%“(@_1) B, + 0%, — 20q| 2
- |3 PASPLY 552 7 952 No v s T L9\

o2\ ala —1)E a a ala—1)E 2a(a —1)q |E
N ae =Dl p e o paam DB e 2ala=l)g [Bs o0
(5‘2> e { TR Brow [ - g+ T ] O - S T

Now,

exp { o277 }

Epexp{A©? — BO} = (75)

V1-2A402
where in our case,
a a ala — 1)FEs a ! ala — p)E;s
A= = = — — 76
%2 252 T T Ny 2807 2852 T BN, (76)
and
B 2a(a —1)q [Es _ 20(a = B)g [ Es (77)

Ny T B2 Ny T

Note that as an alternative to the assumption that fOT x(t,0)dt = ¢ for all 6, one might assume that
s(t) is orthogonal to z(t,#) for all 6, which is equivalent to ¢ = 0, for which B = 0. It follows that

aD(Q|IP) = ailln/<3—g)adP (78)

2 E:v B2 2 1
= % Tyl ? In(1 — 2402). (79)

20a—1) 62 Ny @ 2a—1)(1-2402) 2(a—1)
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Thus, the lower bound becomes

) o a—p o o aE,
bl = g (1‘ a. ) Ta-5) " BN
BB?0? B )
"o B)(1 —2407) T 2(a_p) 1~ 247), (80)

where we have the freedom to maximize over the variables 8 (in the range 8 € (0,)), Es > 0 and
52 > 0. Choosing, for example, % = 02 and E, — 0 (which yield A — 0 and B — 0), we get

A o} 1 ok,
Ag(0,) > sup { ln{ ]— x}, 81
o002 2P 2= " [T= 22— )] ~ BN &
which, for 8 — 0, limits ., to be no more than 1/20? (which is again, obviously achievable, e.g.,
by 6 = 0). To see why this is true, suppose conversely, that o = % for some arbitrarily small
€ > 0. Then by choosing 8 = 555, the above lower bound becomes infinite. Some graphs of the last

bound are depicted in Fig. 1.

25

-05
0

Figure 1: Graphs of the r.h.s. of eq. (81) as a function of a. Here, 02 = 1/2, E5 = ¢ = 0 (hence d. = 1) and
the SNR takes the values: E;/Ny = 0.001 (red), E;/Ng = 0.01 (blue), and E, /Ny = 0.1 (green).

Iterated LPCB

Let a be given and let 31, 3o, ..., Bk be positive numbers such that Zi-“:l Bi < a. Let Py, Py,..., P
be a corresponding a sequence of probability measures with P = P and P, = @, and let E; denote

18



the expectation operator w.r.t. P;, i = 1,2,...,k. Now consider the following chain of inequalities:

MolB.) 2 Bl 00— LD (py| Ry (52)
o — D1 1
« a— B 4N ip2  a— P
> In Eaele—P1—62)(0-0)* _ D PR —
= a-Bila—pi—p B2 (wpn)/a (P51 P2)
o
EDa/ﬂl(Pﬂ!Pl) (83)
SR, Y Ege(a*BI*BQ)(é*GF _%p 1)/ (P3| P2) —
a—B1— Ba By (BB
o
= Dayp, (P2 1) (84)
B
e k .
> 7klnEkexp{<a— Zﬂl> (6’—0)2} —
o — =1 /82 i=1
k=14
@3 5P sy Pt 1P (35)
We now have the freedom to choose the parameters k, 51,..., 0 and P», Ps, ..., Py. The original
inequality we have been using (7) is obtained as a special case where 5; | 0 fori=1,2,...,k—2k,
Br—1 T a,and P, = Py = ... = P,_1 = P (one can also choose, of course, k = 2 and (31 1 «,
B2 1 0). The ordinary (one-step) LPBC bound is obtained by choosing P, = Ps=... = P,_1 = Q,
b1 =0 <aand By = fP3 = ... = B | 0 (one can also choose, of course, k = 2 and 1 = f3,

B2 — 0). The iterated LPCB can be useful in situations where it is easier to derive (or to bound)
the Rényi divergences via certain intermediate reference models rather than going directly from the

underlying model to the ultimate reference model (see, e.g., the last part of Subsection 4.1 in [2]).

4.6 Phase Transitions

In this subsection, unlike all other parts of this paper, our focus is not quite only on lower bounds
and their tightness, but rather on another aspect of the risk—sensitive cost function, and this is
that in some cases, this cost function may exhibit phases transitions, even in rather seemingly
simple and innocent parametric models. We have already seen that in many situations where 6 is
unbounded, there might be a critical value of the risk—sensitive factor, o, beyond which this cost
function diverges. This is certainly a very sharp (first—order) phase transition. However, in some
cases there might be additional phase transitions, due to possible analogies with certain models in

statistical mechanics, and the purpose of this subsection is to demonstrate this fact.

Consider the example where © ~ Unif[0, 1], y € {0,1}" and P(y|f) is the Bernoulli distribution,
P(y|g) = ¢"1(1 — )", (86)

where ng = Y"1 ; y; is the number of ones. We would like to investigate the behavior of the risk—
sensitive cost function, and our focus will be on the asymptotic behavior at the exponential scale,

where o will be assumed to be growing linearly with n, that is, we take o = a - n for some fixed
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a > 0. We will study the asymptotic exponent of the optimal estimator as a function of 6 and a.
The optimal Bayesian performance is given by

. 1

min F exp {om(@ - 9)2} = Z P(y) mtin/ exp {om(t - 9)2} P(0)y)de (87)
- ; _p) _
= % P(y) min, max exp {nla(t - 0)? - D(q||0)]} (88)
- ) i —0)?2—
= exp {n Jnax min max, la(t = 6)? = D(q]9)] } ;o (89)

where = denotes equality in the exponential scale, and where D(q||f) designates the binary diver-
gence function,

q
D(ql|f) = qIn—- + (1 —¢q)ln

- (90)

0 1-6
The (asymptotically) optimal estimator is then given by
0= i t—0)% — D(q||0 91
arg min max la(t - 0) (allo)], (91)

which depends on y solely via ¢q. This estimator is depicted in Fig. 2 for a = 10.

0.7

0.65

0.6

0.55

0.5

0.45

0.4

0.35

Figure 2: Graph of 6(¢). Note that the range of 0(q), which is [0.331,0.669], is much smaller than the
domain of ¢, which is [0, 1]. The estimator avoids extreme values in order not to incur large errors
in case the true @ is in the other extreme. This is due to its risk—sensitive nature.

Obviously,
A . 2
E(a) 2 —0)2-D 2
(a) Jnax min max [a(t 0) (qHH)} (92)
> in a(t — q)? 93
2 ol et o 0
> 0. (94)
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On the other hand, note that by the Pinsker inequality [7], D(¢||6) > 2(¢— 6)?, and so, for a € [0, 2]

@ < g i oy o~ 0"~ 200 -0 )
< —60)* —2(q — 0) 96
<y gy ota =7 200 "
= —2)(q—6)? 97

R o
= 0, (98)

and so, it follows that for a € [0,2], E(a) = 0 and it is achieved by 6 = q. The following graph
(Fig. 3) displays E(a) and it suggests that a = 2 is indeed the maximum value of a for which it

still vanishes. Thus, we see a phase transition at a = 2.

08

0.7

0.6

05

0.4

03

0.2

0.1

Figure 3: Graph of E(a).

We have seen that the estimator § = q is asymptotically (exponentially) optimal for every a < 2.
We next analyze the risk—sensitive cost function for this estimator on the exponential scale, and
as said, we demonstrate that it also exhibits phase transitions. As already mentioned, it turns out
that in some cases, the expression of the exponential moment is analogous to that of a partition
function of a certain physical model, in particular, a model of magnetic spins with interactions,
which may exhibit phase transitions. To facilitate the presentation of the analogy with statistical
mechanics, we now slightly modify our notation. Consider the case where X is a binary vector
whose components take on values in X = {—1,+1}, and which is governed by a binary memoryless
source P, with probabilities Pr{X; = +1} =1 — Pr{X; = —1} = (1 + p)/2, (p designating the
expected ‘magnetization’ of each binary spin X;). The probability of  under P, is thus easily

shown to be given by

) 2 N 4 1—p '
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Consider the estimation of the parameter p by the ML estimator

1 n
fr==> (100)
iz
Now,
1— 2 n/2 1 2112/2 2
B, explan(i — )’} = ( 4“> (f—“) exp = (Ywi) —2au) @
x T H AN i

n/2 2
1— 2 2 1 14p a
na E —1 —2 E i+ — E i .
( 1 ) e acexp{<2n1_'u a,u> ix—i—n iﬂ:

The last summation over {x} is exactly the partition function pertaining to the Curie—Weiss model
of spin arrays in statistical mechanics (see, e.g., [23, Subsection 2.5.2]), where the magnetic field is
given by

B= %m i—z — 2ap (101)
and the coupling coefficient for every pair of spins is J = 2a. It is well known that this model exhibits
phase transitions pertaining to spontaneous magnetization below a certain critical temperature. In
particular, using the method of types [7], this partition function can be asymptotically evaluated

as being of the exponential order of

1 J
exp {n . ‘1;1”1‘2?1 [hz <¥> + Bm + 3 mﬂ } , (102)
where ha(u) = —ulnu — (1 — w)In(1 — u) is the binary entropy function, which stands for the

exponential order of the number of configurations {} with a given value of m = % > ;x; = 1. This
expression is clearly dominated by a value of m (the dominant magnetization m*) which maximizes

the expression in the square brackets, i.e., it solves the equation

m = tanh(Jm + B), (103)
or in our variables,
1. 1
m = tanh (Qam + 3 In 1 Ll 2a,u) . (104)
—p

For a < 1/2, there is only one solution and there is no spontaneous magnetization (paramagnetic
phase). For a > 1/2, however, there are three solutions, and only one of them dominates the
partition function, depending on the sign of B, or equivalently, on whether a > ag(u) = ﬁ In }Jj—ﬁ
or a < ap(p) and according to the sign of p. Accordingly, there are five different phases in the plane
spanned by a and p. The paramagnetic phase a < 1/2, the phases {u > 0, 1/2 < a < ap(p)} and
{p <0, a>ap(p)}, where the dominant magnetization m is positive, and the two complementary

phases, {u <0, 1/2 < a < ap(p)} and and { > 0, a > ap(p)}, where the dominant magnetization
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m* <0
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Figure 4: Phase diagram in the plane of (i, ).

is negative. Thus, there is a multi-critical point where the boundaries of all five phases meet, which
is the point (u,a) = (0,1/2). The phase diagram is depicted in Fig. 4.

This analysis can easily be extended to the case of a general parametric family of discrete mem-
oryless source (DMSs), {P(-]0), 6 € A}, where 6 is a parameter vector, and one may replace
the square error function by a general loss function L(6,6). The class {P(:|8), 6 € A} may not
necessarily span the entire simplex of DMSs of the given alphabet size.

5 The Non—Bayesian Regime

Many of the ideas raised in the previous section may have analogues in the non—Bayesian regime,
but we will not derive all of those analogous derivations herein. We will touch only a few important

points in this short section.

5.1 The Linear Signal Model
Consider again the signal model,
y(t) =x(t,0) +n(t), 0<t<T (105)

where n(t) is Gaussian white noise with two—sided spectral density Ny/2, as before. Consider, for

example the case, z(t,0) = 0 - s(t), where {s(t)} has energy Es. Then, if we take Lyg(f) to be
the Cramér—Rao bound, then it is given by QNTOS independent of 0, and so, according to part 2 of

23



Theorem 1, for any unbiased estimator,

A (XNO ES ~ 2
> —— —
An(B,0,0) > sgp{ o+ (a NO) G- 0) } (106)
alNg < Es
_ 28, * =N (107)
0 a > W(S)

namely, a, < E;/Ny. This means that no unbiased estimator has an estimation error e with a tail

—e2E5s/No

that decays faster than e . For the maximum likelihood (ML) estimator,

~ 1 T
HML:f/ y()( dt_‘9+_/ (108)
s J0
and so, the estimation error

. T
e—b—0— Ei/o n(t)s(t)dt (109)

is Gaussian, zero—mean, with variance 2—%0—, which attains the upper bound on «,. This means that
E;/Nj is the exact value of a, and not merely an upper bound. While in the Bayesian regime, we
have for a similar model, . 202 + NS , here we do not have the contribution of the prior, and the
remaining term is just ﬁ—; It is interesting to note that we obtained a tight result on «., attained
by the ML estimator, even though the bound on Ayg(f) is not attained by the ML estimator, as
alNg
R )

~ 1
As(fas,0,0) = 3 In <1 - (110)

The ML estimator achieves, however, the bound asymptotically when Ny /E is very small, which
means, either very small a or very large signal-to—noise ratio, or both.

5.2 The Vector Linear Signal Model

The above derivation extends to the vector case quite easily. Let z(t,0) = ¥ | 60;s,(t), where

{si(t)} all have the same energy, Fs and let I" be the k x k matrix of correlations with entries given

by
1 T
’yij = —/ Si(t)Sj(t)dt. (111)
Es 0

In this case, D(0]|0) = (§ — 6)TT( — 6), the Cramér-Rao lower bound is NoI'"! /2E, and so, we
get

- Noa'T—1 - E,
In Egexp {[aT(H - 9)]2} > % + sup(f — 0)" (aaT — ﬁor) 6 —6) (112)
s 0
NoaTT—1 E,
_ ] et el T (113)
00 elsewhere

where the notation A < B, for two k x k matrices A and B, means that B — A is a non-negative

definite matrix. The condition aa” < 5—;1“ is equivalent to o' T~ la < Ej /No. Here, the estimation
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error of the ML estimator of 6 is a zero mean Gaussian vector with covariance matrix given by
QNTOSF*I, and so the exponential moment performance of this estimator is given by
1 Ny

A.NB(éML,e, Oé) — _5 ln I - EO&OéTF_l

N
=——1In (1 - foaTI‘_loz> (114)

which is larger than the lower bound but is asymptotically the same when g—gaTI’ “la <« 1. Here
a. is extended from a single point, in the scalar parameter case, to the contour of a k—dimensional
ellipsoid defined by azﬂl“*lac = E;/Ny, and so, the ML estimator has an optimal tail (in all

directions) in this sense.

5.3 The Non-linear Signal Model

Consider next the model (105), where the energy E, = fOT 22(t,0)dt is independent of 6. We will
also denote

Jo w(t,0)z(t,0)dt

0(0,0) = L (115)
In this case, the lower bound becomes
. _ <o 2E[1—p(6,0
ANB(HI\/IL’ 9, Oé) 2 Sup CYLNB(H) + Oé(e - 9)2 - w (116)
6 0

If Lyp(0) is independent of @ (which is nearly the case with the Cramér-Rao lower bound in delay,
phase and frequency estimation), and if the range A of 6 is unlimited, then 6 can be chosen such
that the second term is arbitrarily large (whereas the third term is bounded since |p(6,8)| < 1),
and so, the lower bound is infinite for every a > 0, namely, o = 0. In other words, in this case,
no unbiased estimator (if at all existent) has a Gaussian tail however slow. If the range of 0 is
limited, then, of course, the supermum is finite and it depends on the exact form of p(-,-). The
same conclusion applies whenever the energy of x(t, ) grows slower than quadratically with 6. The
conclusion that o, = 0 is not surprising in view of the fact that for the same signal model, we
obtained . = 517 in the Gaussian prior case. In the Bayesian case, o, was positive due to the

202
prior only, and now the prior does not exist anyway, so that o, vanishes.
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