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Gaussian Intersymbol Interference Channels

With Mismatch
Wasim Huleihel Salman Salamatian Neri Merhav Muriel Médard

Abstract

This paper considers the problem of channel coding over Gaussian intersymbol interference (ISI)

channels with a given metric decoding rule. Specifically, it is assumed that the mismatched decoder has an

incorrect assumption on the impulse response function. The mismatch capacity is the highest achievable

rate for a given decoding rule. Existing lower bounds to the mismatch capacity for channels and decoding

metrics with memory (as in our model) are presented only in the form of multi-letter expressions that

have not been calculated in practice. Consequently, they provide little insight on the mismatch problem.

In this paper, we derive computable single-letter lower bounds to the mismatch capacity, and discuss some

implications of our results. Our achievable rates are based on two ensembles; the ensemble of codewords

generated by an autoregressive process, and the ensemble of codewords drawn uniformly over a “type

class” of real-valued sequences. Computation of our achievable rates demonstrates non-trivial behavior

of the achievable rates as a function of the mismatched parameters. As a simple application of our

technique, we derive also the random coding exponent associated with a mismatched decoder which

assumes that there is no ISI at all. Finally, we compare our results with universal decoders which are

designed outside the true class of channels that we consider in this paper.

I. INTRODUCTION

The mismatch capacity is the highest achievable rate for a given, possibly suboptimal, decoding

rule. This scenario arises naturally when, due to imprecise channel measurement, the receiver performs

maximum-likelihood decoding with respect to the wrong channel law, or when the receiver is intentionally

designed to perform a suboptimal decoding rule due to implementation constraints. This problem has
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been studied extensively, see e.g., [1-4] and many references therein. Finding a single-letter expression

for the mismatch capacity is a long-standing open problem.

Most of the existing work on the mismatch capacity has focused on deriving achievable rates using

random coding arguments for memoryless channels and decoding metrics. For a given block length, one

typically selects a certain ensemble of rate–R codes and then studies the highest achievable rate for

which the average probability of error still tends to zero as the block length tends to infinity. Different

random coding ensembles yield different lower bounds to the mismatch capacity. For example, the

ensemble of identically and independently distributed (i.i.d.) codewords leads to the generalized mutual

information (GMI) rate [5-7]. Tighter lower bounds to the mismatch capacity can be derived using

constant-composition ensembles [8, 9], and cost-constrained ensembles [3, 10]. Although the GMI is

the weakest bound of this class, it has the advantage of being applicable also to channels over infinite

alphabets, as its derivation relies on Gallager’s bounding technique [11] rather than on the method of

types. While superior to the GMI, the bound based on the constant-composition ensemble, relies heavily

on the method of types1 [12] and thus, at least at first glance, limited to channels over finite alphabets.

See, however, [1] for some extensions to memoryless channels of an exponential type and to some

channels with memory. In [3], this bound was also extended to general alphabets using an alternative

derivation that does not require the method of types. In [13], the question of finding the best mismatched

decoder (in the sense of maximizing the achievable rate) over a given family of linear decoders was

considered, along with an efficient algorithm for computing this decoder. Finally, [10] considered a more

comprehensive analysis of the random-coding error probability under various ensembles, including error

exponents, second-order coding rates [14, 15], and refined asymptotic results based on the saddlepoint

approximation [16]. In the discrete case, the results of [10] are tight in the error exponent sense, but for

general alphabets there is no guarantee for ensemble tightness, as the analysis is based on Gallager’s

bounding technique.

For channels and decoding rules with memory, however, there are no known single-letter lower

bounds, even in specific examples. The only existing lower bound, derived in [3], which holds for a

general family of channels and decoding metrics with memory, appears in the form of a multi-letter

expression. Unfortunately, this expression cannot be calculated in practice and it provides only little

insight on the mismatch decoding problem.

Motivated by the last paragraph, in this work, we consider a specific class of channels with memory;

Gaussian intersymbol interference (ISI) channels, with a mismatched decoding metric that is based upon

wrong ISI coefficients (see Section III for a precise definition of our model). Considering this problem is

important when, for example, the depth of the ISI is large (i.e, many taps), and thus the implementation

of the optimal maximum-likelihood (ML) decoder is complicated. In such cases, one might want to

1More critically, the method of types is of limited applicability to channels with memory, rendering the bound inapplicable

to such channels.
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intentionally limit the depth of the assumed ISI in decoding metric so that to keep the decoding complexity

within reasonable limits. Another possible motivation is that when the channel is slowly time-varying

(e.g., fading), it might limit the block length one can work with (block length within which the channel

is nearly fixed), and then estimation errors resulting from channel estimation can be significant. In such

cases it is interesting to understand how this issue affects the achievable rates. As was demonstrated in

[17], even for discrete memoryless channels (DMCs) and memoryless decoding metrics, the ensemble

of i.i.d. input codewords is not optimal, and an improved bound on the mismatch capacity of the DMC

can be obtained through a random coding argument applied to a superalphabet, or equivalently, inputs

defined over product spaces (i.e., inputs with memory).

We consider two random coding ensembles. In the first, the random codewords are generated by an

autoregressive (see eq. (11) for more details). For this ensemble, we derive a simple and computable

single-letter lower bound to the mismatch capacity. The obtained rate is ensemble-tight, namely, it

captures the exact maximum achievable rate for which the ensemble average error probability vanishes.

Also, contrary to the above-mentioned multi-letter expressions, in the Gaussian ISI case, our achievable-

rate formula is given in terms of frequency-domain integrals of certain spectral quantities, which are

computable at least numerically. The main technical contribution in the derivation is a novel procedure

to assess the exponential behavior of the error probability, using the saddle-point integration method (see,

e.g., [18]). Specifically, as shall be seen in the proof of our main results, the probability of error associated

with our mismatched decoder can be written as a function of the volumes (Lebesgue measure) of some

“conditional typical set” of sequences with continuous-valued components. This typical set, of some input

sequence (x1, x2, . . . , xn), given an output sequence (y1, y2, . . . , yn), will contain all sequences which,

within ε > 0, have the same sufficient statistics as (x1, x2, . . . , xn) induced by our mismatched decoding

rule. Accordingly, to analyze the probability of error we need to analyze the volume of this typical set.

While this was also the main difficulty of [19, 20], and resolved using the “backward channel” technique,

here, we use the saddle-point integration method which is, more direct, and simplifies the derivations

significantly. Since we deal with a Gaussian channel, the above mentioned typical set depends on the

input sequence only through certain simple statistics, such as, the correlation with the output sequence

and auto-correlations (up to some order), and thus it is possible to get “single-letter” expressions, as

opposed to general channels with (finite) memory, where only multi-letter formulas are available.

Then, using the same methods, we analyze also the ensemble of codewords which drawn according

to the uniform distribution within a “type class” of real-valued sequences [19, 20] (see eq. (13) for

more details). As before, for this ensemble we derive a computable single-letter lower bound to the

mismatch capacity. The resulting formula is more complicated to compute compared to the previous

ensemble. However, the fixed composition ensemble can be better than the autoregressive ensemble. As

an illustrating example, consider the simple case where both the true channel and the decoding metric

are memoryless. Specifically, the channel is given by yt = xt + wt, for t = 1, 2, . . . , n, where {wt}
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is a white Gaussian noise, while the mismatched decoder computes a ML estimate which correspond

to the channel ȳt = αxt + wt, for t = 1, 2, . . . , n, and α > 0 designates the mismatched parameter.

It should be clear then that codewords that are drawn on the entire hypersurface of radius
√
nPX

achieve the matched capacity irrespectively of the value of α.2 This is no longer true if one generates

codewords from the autoregressive codebook (in particular, i.i.d. codewords cannot achieve capacity if

there is a mismatch, even though the true channel and the decoding metric are memoryless). This is

illustrated in Fig. 1. In general scenarios (e.g., Fig. 2), we found that there is no special order between

the autoregressive codebook and the above “fixed composition” ensemble, in terms of the achievable

rates, namely, no ensemble is uniformly better than the other. Nevertheless, it seems that in most cases

the fixed composition ensemble is more powerful as a function of the mismatched parameters.

It turns out that a byproduct of our analysis is an ensemble-tight characterization of the random coding

error exponent. Exponentially tight analysis of the average probability of error was extensively studied

before (see, e.g., [21-24]) mainly for discrete memoryless sources and channels. Here, on the other hand,

as we deal with sources and channels with memory defined over infinite alphabets, the same methods

cannot be applied. Specifically, to assess the exact exponential rate of the average error probability, we

need to evaluate the log-volumes of some conditional typical sets of sequences with continuous-valued

components. While this was also the main core of [19, 20], here, the saddle-point integration method

simplifies the analysis considerably. Accordingly, to demonstrate the usefulness of our techniques, we

consider the ensemble of codewords drawn on the entire hypersurface of radius
√
nPX , and derive the

exact random coding error exponent in the case of a memoryless decoding metric.

Finally, we consider also the problem of universal decoding which received very much attention in

the last four decades [12, 19, 20, 25-36]. Indeed, as in the mismatch decoding problem, in many practical

situations encountered in coded communication systems, the specific channel over which transmission is

to be carried out is unknown to the receiver. The receiver only knows that the channel belongs to a given

family of channels. In such a case, the implementation of the optimum ML decoder is of course precluded,

and thus, universal decoders, independent of the unknown channel, and which perform asymptotically

as well as the ML decoder had the channel law been known, are sought. In this paper, we look at

the following scenario. Consider the Gaussian ISI channel, and assume that due to complexity issues

concerning the implementation of the optimal ML decoder, the receiver intentionally uses a mismatched

decoder which corresponds to a memoryless channel (namely, without ISI). Nonetheless, we allow the

receiver to optimize his memoryless metric, namely, it can be a function of the true channel. Now, consider

a different receiver which uses a universal decoder which is designed for a memoryless channel. In other

words, the true family of channels is outside the class of channels for which the universal decoder is

actually designed, i.e, mismatched universal decoder. Then, which approach yields higher rates? We

2This can be easily seen by expanding the mismatched decoding rule along with the fact that the different codewords have

the same energy, and comparing to the maximum-liklihood decoder.
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Fig. 1. Achievable rate as a function of the mismatched level α, for the additive white Gaussian noise channel (AWGN), using

Gaussian i.i.d. codebook and fixed composition ensemble (i.e., codewords are drawn uniformly at random over the n-dimensional

hypersphere of radius
√
nPX ), where PX = 1 and σ2 = 1. The fixed composition ensemble achieve the capacity of the AWGN,

i.e., 1/2 log 2, regardless of the value of α > 0.

show that both decoders achieve the same rates, and in fact achieve also the same error exponent. This

means that, at least in the specific scenario described above, our results provide indications that universal

decoders exhibit a robustness property with respect to (w.r.t.) the family of channels over which they

are actually designed. In other words, this observation (potentially) suggests a certain expansion of the

classic notion of universality to cases where the true underlying channel is outside the class.

The paper is organized as follows. In Section II we establish some notation. Then, in Section III,

we present our system model and formalize the problem. In Section IV we assert our main results.

Specifically, we first provide achievable rates under the autoregressive random coding ensemble and the

fixed composition ensemble, respectively. Then, we consider the problem of mismatch universal decoding.

Section V is devoted to the proofs of our main results. Finally, our conclusions appear in Section VI.

II. NOTATION CONVENTIONS

Throughout this paper, scalar random variables (RV’s) will be denoted by capital letters, their sample

values will be denoted by the respective lower case letters and their alphabets will be denoted by the

respective calligraphic letters. A similar convention will apply to random vectors and matrices and their

sample values, which will be denoted with same symbols in the bold face font. The expectation operator

of a RV X will be denoted by E(X). When using vectors and matrices in a linear-algebraic format, n-

dimensional vectors, like x, will be understood as column vectors, the operators (·)T and (·)H will denote

vector or matrix transposition and vector or matrix conjugate transposition, respectively, and so, XT
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would be a row vector. The `2-norm of a vector x is denoted by ‖x‖2. For two positive sequences {an}

and {bn}, the notation an
·
= bn means equivalence in the exponential order, i.e., limn→∞

1
n log (an/bn) =

0, where in this paper, logarithms are defined w.r.t. the natural basis, that is, log(·) = ln(·). Given two

real numbers a and b, we denote by [a : b] the set of integers {n ∈ N : dae ≤ n ≤ dbe}, and we let

a ∧ b , min(a, b) and a ∨ b , max(a, b). We define R+ , {x ∈ R : x > 0}, and sgn(·) is the sign

function, i.e., sgn(x) = d
dx |x|, for x 6= 0. The volume of a set A ⊂ Rn is defined as Vol {A} ,

∫
A dx.

Finally, the indicator function on a set A will be denoted by 1 {A}.

III. PROBLEM SETTING

Consider a discrete time, K-tap Gaussian ISI channel, characterized by

yt =

K∑
i=0

hixt−i + wt, (1)

for t = [1 : n], where {xt}nt=1−K ∈ Rn are the channel inputs, subjected to an average power constraint∑n
t=1 EX2

t ≤ nPX , {hi}Ki=0 ∈ RK+1 are the ISI coefficients, {wt}nt=1 is a zero-mean Gaussian white

noise with variance σ2, and {yt}nt=1 ∈ Rn are the channel outputs. It is assumed that {wt}nt=1 is

statistically independent of {xt}nt=1. We denote by W (y|x), the conditional density of the channel

output induced by (1), where x , (x1−K , . . . , xn) and y , (y1, . . . , yn), and without loss of generality

we assume that x1−K = · · · = x0 = 0, namely, an overhead of zeroes at the beginning of each block.

Alternatively, we may assume that x−k = xn−k, for k = 0, . . . ,K − 1, that is, a circularity assumption

on the input sequence [37]. As long as K is fixed and n→∞ these assumptions have no influence on

either the achievable error exponents or the achievable rates. Accordingly, for any x,y ∈ Rn,

logW (y|x) = −n
2

log(2πσ2)− 1

2σ2

n∑
t=1

(
yt −

K∑
i=0

hixt−i

)2

. (2)

A rate R block code of size n is a set of M = enR equiprobable n-dimensional vectors (codewords),

xi = (xi,1, . . . , xi,n) ∈ Rn, for 1 ≤ i ≤ M , to be transmitted over the channel (1). The decoder,

upon receiving y ∈ Rn, estimates the message i of the transmitted codeword as the one that maximizes

log V (y|xi), henceforth referred as the decoding metric. If this decoding metric is not equivalent to that

of the ML decoder (2), then we say that the decoder is mismatched.

We assume that the metric V (·|·) is equivalent to that of the ML decoder of a Gaussian ISI channel

with (possibly) different coefficients. Specifically, for any x,y ∈ Rn, V (y|x) is defined as,3

log V (y|x) = −n
2

log(2πσ2)− 1

2σ2

n∑
t=1

(
yt −

K∑
i=0

αixt−i

)2

(3)

3Without loss of generality, we assume that the length of the mismatched filter is the same as the length of the true filter,

with the understanding the one can always tap the shorter coefficients sequence with zeros.
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where {αi}Ki=0 ∈ RK+1 are the mismatched ISI coefficients. In particular, when αi = 0 for i = 1, . . . ,K,

then the decoder assumes that there is no ISI at all, i.e., the mismatched decoder is equivalent to the

optimal ML decoder associated with the additive white Gaussian noise channel (AWGN), namely, yt =

α0xt + wt, for t = [1 : n].

An error is said to have occurred if the estimated index î differs from the correct one, i. A rate R is

said to be achievable if, for every δ > 0, there exists a sequence of codes {Cn}n≥1 indexed by the block

length n, with M ≥ en(R−δ) and vanishing error probability Pe(Cn) when decoding with the metric

V (·|·). The mismatch capacity, CMis
ISI is the supremum of all achievable rates. The goal of this paper is

to derive lower bounds to the mismatched capacity CMis
ISI .

IV. MAIN RESULTS

In this section, we present and discuss our main results. Specifically, in Subsection IV-A we present

achievable rates for the mismatch decoding problem. We start with the autoregressive ensemble, where

codewords are drawn from an autoregressive process, and then we move forward to analyzing the

fixed composition ensemble. Following these results, in Subsection IV-B, we consider the problem of

mismatched universal decoding, as described in the Introduction.

A. Mismatched Achievable Rates

We establish first some notation. Let p be a non-negative integer, define P as the set of all vectors

ϕ = (ϕ1, . . . , ϕp) ∈ Rp, such that all roots of the polynomial zp −
∑p
i=1 ϕiz

p−i lie strictly within the

unit circle, and let ϕ0 = 0. We let A(ν), for ν ∈ [0, 2π], be the Fourier transform of the sequence

{αk}Kk=0, i.e.,

A(ν) ,
K∑
k=0

αke
−jkν , ν ∈ [0, 2π] (4)

where j ,
√
−1. Similarly, Φ(·) and H(·) are the Fourier transforms of {ϕk}pk=0 and {hk}Kk=0,

respectively. Next, define

η2 , PX ·

[
1

2π

∫ 2π

0

dν

|1− Φ(ν)|2

]−1

, (5)

and note that η2 depends on the choice of ϕ. Let {γm}pm=0, with γ−m = γm, for m ∈ [1 : p], be defined

as:

γm =

p∑
k=1

ϕkγm−k + η2δm, (6)

where δm is the Kronecker delta function. For ν ∈ [0, 2π], define:

SX(ν) ,
η2

|1− Φ(ν)|2
, (7)

SY (ν) , |H(ν)|2 · SX(ν) + σ2, (8)
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namely, the input and output spectra, respectively, and for ω ∈ R+,

fω(ν) ,
ω

2
|A(ν)|2 +

1

2η2

[
1 + |Φ(ν)|2 − 2 · Re(Φ(ν))

]
. (9)

Finally, define

Ī1(α,ϕ) ,
1

2
log(2η2)− min

ω∈R+

{
− 1

4π

∫ 2π

0

dν log fω(ν)+
ω2

8π

∫ 2π

0

dν
SY (ν) |A(ν)|2

fω(ν)

−ω

[
K∑
l=0

K∑
i=0

αlhiγl−i −

(
1

2
‖α‖22 γ0 +

K∑
l=1

K−l∑
k=0

αkαk+lγl

)]}
(10)

where in case that p < K, γk for k = p + 1, . . . ,K, are calculated using (6). It is a simple exercise

to check that the minimization problem in (10) is convex. We are now ready to state our main result, a

lower bound to the mismatch capacity associated with the system model described in Section III. The

proof of the following result is given in Section V.

Theorem 1 Consider the Gaussian ISI channel model in (1), and the mismatched decoding metric in (3).

Then, CMis
ISI > maxϕ∈P Ī1(α,ϕ), where Ī1(α,ϕ) is given in (10).

As was mentioned in the Introduction, previous works on the mismatch capacity focused mainly

on standard random coding ensembles, where each codeword is independently and identically generated

according to some given probability distribution. However, since the channel has memory, it is reasonable

to consider ensembles over which there is a correlation between the symbols within each codeword. To

achieve Ī1(α,ϕ), for a given ϕ, the codebook Cn is generated as follows: For each message i ∈ [1 : enR],

we generate (independently) the sequence {Xt}nt=1 according to

Xt =


∑p
i=1 ϕi ·Xt−i + ηZt, t ≥ 1

0, t < 1

(11)

where {Zt}t is white noise, η2 is chosen such that EX2
t = PX , for t = [1 : n], and thus it is given

in (5). Since we assume that the roots of the polynomial zp −
∑p
i=1 ϕiz

p−i lie strictly within the unit

circle, the above process is wide-sense stationary. For example, if p = 1, we get

Xt = ϕ1 ·Xt−1 +
√
PX (1− ϕ2

1)Zt, (12)

for t ≥ 1.

The role of ϕ is to shape the spectrum of the input process so as to mitigate the (undesired) effects

of the mismatch decoding. Note, however, that any choice of {ϕm}pm=1 ∈ P would result in a legitimate

lower bound to the mismatch capacity. Generally speaking, our result can be interpreted as follows: the

first term in (10) is associated with the differential entropy of the input process, and the second term

corresponds to a certain conditional entropy of the input given the incorrectly processed output. Finally,

we mention [7, Th. 2], where the Gaussian i.i.d. ensemble was studied using a different approach. It can
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be shown that, when specialized to the i.i.d. case (i.e., ϕi = 0 for all i ∈ [1 : p]), our result in Theorem 1

coincides with [7, Th. 2].

We now study the fixed composition ensemble, where codewords are drawn uniformly at random

within the a type class of real-valued sequences. Specifically, fix an arbitrary ε > 0, and pick p ∈ N.

Let Γ denote the set of all vectors γ = (γ0, γ1, . . . , γp) ∈ Rp+1 with γ0 , PX , such that the matrix{
γ|i−j|

}
i,j

is a positive-definite Toeplitz matrix. Also, let γ−k = γk, for k = [1 : p]. Define the sequence

of sets T nε (γ), for n = 1, 2, . . ., as follows

T nε (γ) ,

{
x ∈ Rn :

∣∣∣∣∣ 1n
n∑
t=1

xtxt−k − γk

∣∣∣∣∣ < ε, k = [0 : p]

}
. (13)

The codebook Cn is generated by drawing M codewords independently and uniformly at random

from T nε (γ). The role of γ is to shape the spectrum of the input process, and accordingly, these

parameters can be optimized. To state our main result we need some additional definitions. Let

Πm(α) ,
∑K−m
k=0 αkαk+m, for m ∈ [1 : K], and

W ,

{ωk}p+1
k=0 ∈ Rp+1

+ : ω0 ≥
p∑
i=1

ωi + ωp+1 ·
K∑

m=1+p∧K
|Πm(α)|

 . (14)

For ν ∈ [0, 2π], and ω ∈ W , define

gω(ν) ,
p∑
k=0

ωk cos(kν) + ωp+1 ·
K∑

k=1+p∧K

Πk(α) cos(kν), (15)

and

Ī2(α,γ) ,
1

2
log(2eη2)− min

ω∈W

− 1

4π

∫ 2π

0

log gω(ν)dν +
ω2
p+1

8π

∫
[0,2π]

dν
SY (ν) |A(ν)|2

gω(ν)

−ωp+1

 K∑
k=0

K∑
i=0

αkhiγk−i −
K∑

l=1+p∧K

Πl(α)γl

+

p∑
k=0

ωkγk

 (16)

where η2 above is calculated by first solving the Yule-Walker equations in (6) to find ϕ, and then

substituting in (5). Also, as before, when p < K, γk for k = p + 1, . . . ,K, are calculated using (6).

It can be shown that the minimization problem in (10) is convex. The following result is proved in

Appendix B.

Theorem 2 Consider the Gaussian ISI channel model in (1), and the mismatched decoding metric in (3).

Then, CMis
ISI > maxγ∈Γ Ī2(α,γ), where Ī2(α,γ) is given in (16).

Comparing the achievable rates in Theorems 1 and 2, we see that the achievable rate expression in

(10) is expressed in terms of a one-dimensional optimization over ω, while the expression in (16) is

expressed in terms of a minimization over a (p + 2)-length vector ω. Indeed, as shall be seen in the

proof of Theorem 2 the additional parameters {ωk}pk=0 correspond to the p+ 1 constraints imposed by

the codebook itself.
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As mentioned in the Introduction, a byproduct of our analysis is an ensemble-tight characterization of

the random coding error exponent. Indeed, the proofs of Theorems 1 and 2 are based on an exponentially-

tight analysis of the (ensemble) average probability of error. This implies also that the achievable rate

in Theorem 1 is ensemble-tight, namely, one cannot achieve higher rates using the same random coding

ensemble. We next characterize the random coding error exponent in the special case of αk = 0 for

1 ≤ k ≤ K (namely, a memoryless decoding metric), and we use the fixed composition ensemble in (13)

with p = 0. We emphasize that using the same methods we can analyze the more general case, but for

simplicity we opted to focus on the above configuration. Let E(PX , R) designate the random coding error

exponent associated with the above setting, namely, E(PX , R) , lim infn→∞− 1
n log P̄e(n,R) where

P̄e(n,R) designates the ensemble average probability of error. For brevity, we omit the dependency of

E(PX , R) on α0, {hk}Kk=0, and σ2. We start with some definitions. Let Πm(h) ,
∑K−m
k=0 hkhk+m, for

m ∈ [1 : K], and for ν ∈ [0, 2π], define

uω̂(ν) ,
1

4

∣∣∣∣∣ω̂1 − h0 +

K∑
k=1

hke
−jkν

∣∣∣∣∣
2

−
(

1

2σ2
+ ω̂2

)
·

[
ω̂0 +

1

2
‖h‖22 +

K∑
k=1

Πk(h) cos(kν)

]
, (17)

where ω̂ ∈ Ŵ , and Ŵ is the set of all ω̂ satisfying uω̂(ν) > 0, for any ν ∈ [0, 2π]. Also, for PY ∈ R+,

|ρXY | ≤ 1, let

V (ω̂, PY , ρXY ) ,
1

4π

∫ 2π

0

log
[
4ePXσ

2uω̂(ν)
]

dν − ω̂0 · PX − ω̂1 · ρXY
√
PXPY − ω̂2 · PY . (18)

Finally, for |β| < 1, define

I(β, h0, α0) , −|sgn(h0) + sgn(α0)|
4

log
(
1− β2

)
, (19)

and note that if h0 and α0 share the same sign then I(β, h0, α0) = −0.5 · log
(
1− β2

)
. Otherwise,

I(β, h0, α0) = 0. The following result is proved in Appendix C.

Theorem 3 Consider the Gaussian ISI channel model in (1), and the mismatched decoding metric in (3),

with αk = 0, for 1 ≤ k ≤ K. Then,

E(PX , R) = min
PY ,ρXY

max
ω̂∈Ŵ

{
V (ω̂, PY , ρXY ) + [I(ρXY , h0, α0)−R]+

}
. (20)

Based on Theorem 3 we can see that if h0 and α0 have different signs then E(PX , R) = 0,

for any R ≥ 0 and any PX . This is indeed reasonable due to the following reason: if, for example,

h0 > 0 but α0 < 0, then the mismatched decoder simply looks for the codeword which minimizes its

empirical correlation with the output sequence y. However, this is exactly the opposite operation of the

optimal ML decoder which maximizes the empirical correlation with y. Also, one can argue that 20

resembles the famous Csiszár-Körner-style error exponent function [12], namely, minQ{DKL(Q||P ) +

[I(Q)−R]+}, where DKL(Q||P ) is the Kullback-Leibler (KL) divergence between two measures Q and

P , and I(Q) is the mutual information calculated w.r.t. Q. This indeed makes sense, and one can think
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of maxω̂∈Ŵ V (ω̂, PY , ρXY ) in (20) as playing the role analogous to the KL-divergence. For example,

if K = 0, then it is a simple task to check that

max
ω̂∈Ŵ

V (ω̂, PY , ρXY ) = −1

2
log

(1− ρ2
XY )PY
σ2

+
1

2σ2

[
PY − 2h0ρXY

√
PXPY + h2

0PX

]
− 1

2
(21)

which is just the KL-divergence DKL(QXY ||PXY ), with QXY and PXY both being multivariate Gaussian

distributions, with zero means, and covariances

ΣQ =

 PX ρXY
√
PXPY

ρXY
√
PXPY PY

 and ΣP =

 PX h0 · PX

h0 · PX h2
0 · PX + σ2

 , (22)

respectively. In general, the term maxω̂∈Ŵ V (ω̂, PY , ρXY ) can be thought as the asymptotic formula of

the n-letter weighted KL-divergence DKL(QY n|Xn ||WY n|Xn |µXn), where QY n|Xn is some test channel,

and µXn is the random coding distribution, i.e., a uniform measure over the n-dimensional hypersphere

with radius
√
nPX .

We next compare numerically the results obtained in Theorems 1 and 2. Fig. 2 presents a numerical

comparison of the results obtained in Theorems 1 and 2, in the following scenario. We consider the

two-tap Gaussian ISI channel with h0 = h1 = 1/
√

2, σ2 = 1, and PX = 1. The mismatched decoder

has a fixed coefficient α0 = 1/
√

2, and we calculate the achievable rates as a function of α1. The

matched capacity can be calculated numerically and it is given by C = 0.374 nats per channel use.

The achievable rates in Fig. 2 correspond to fixed composition ensemble with one correlation parameter

(solid black curve), fixed composition ensemble without correlations (dashed-dotted blue curve), first-

order autoregressive ensemble (dashed brown curve), and Gaussian i.i.d. codebook (solid v-marked red

curve). It can be seen that the fixed composition ensemble with one correlation parameter is almost

uniformly better than all the other ensembles. The Gaussian i.i.d. codebook is the worst ensemble. In

this example, all ensembles achieve the maximum rate at the matched value of α1. Interestingly, we see

that all ensembles (and especially the fixed composition ensemble with correlation) behave differently

in the regions α1 < 1/
√

2 and α1 > 1/
√

2. These regions, respectively, correspond to the “optimistic”

and “pessimistic” assumptions of the receiver regarding the ISI channel. To wit, when α1 < 1/
√

2

(α1 > 1/
√

2) the receiver can be thought of as being optimistic (pessimistic) since he assumes that the

ISI part is weaker (stronger) than what it really is. Accordingly, it seems that in terms of achievable

rates, the price of optimism is higher than the price of pessimism.

Another comparison is shown in Fig. 3, where now h0 = 2/
√

5, h1 = 1/
√

5, σ2 = 1, PX = 1, and

α1 = 1. The matched ISI capacity in this case is C = 0.3625 nats per channel use. In this case, since

α1 6= h1, the mismatched channel is never the same as the true channel. Contrary to Fig. 2, it can be

seen that here the maximum rate is not achieved at the matched value of α0. This observation illustrates

that, in general, there is no direct connection between achievable rates and the minimization of the `2

distance between the true channel and the mismatched channel. Instead, if one imposes a fixed `2 distance

between the true response and the mismatched response, the achievable rates might very well depend of
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Fig. 2. Achievable rates as a function of the mismatched level α1, for the Gaussian ISI channel with h0 = h1 = 1/
√
2, σ2 = 1,

PX = 1, and α0 = 1/
√
2. The matched capacity is C = 0.374 nats per channel use. The achievable rates correspond to

fixed composition ensemble with one correlation parameter (solid black curve), fixed composition ensemble without correlations

(dashed-dotted blue curve), first-order autoregressive ensemble (dotted brown curve), and Gaussian i.i.d. codebook (solid v-mark

red curve).

how well the mismatched response approximate the “good” part of the frequency domain representation

of the true response. Similarly, in Fig. 4 we consider the case where h0 = h1 = h2 = 1/
√

2, σ2 = 1,

and PX = 1. The mismatched decoder has only one coefficient α0 (namely, K = 0). Here, again, it can

be seen that the maximum rate is not achieved at α0 = 1/
√

2. This illustrates that truncation (of the

mismatched decoder) is not always optimal. Note that this result might be initially surprising since one

can argue that, at least in the case of Gaussian i.i.d. codebook, if one decides to ignore the contribution

of the ISI part, since input symbols are independent of each other, then this contribution plays the role

of additional Gaussian additive noise. Accordingly, the best choice of the mismatch parameter should

be the truncated one (namely α0 = h0). This intuition is misleading due to the same reason mentioned

above.
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Fig. 3. Achievable rates as a function of the mismatched level α0, for the Gaussian ISI channel with h0 = 2/
√
5, h1 = 1/

√
5,

σ2 = 1, PX = 1, and α1 = 1. The matched capacity is C = 0.3625 nats per channel use. The achievable rates correspond to

fixed composition ensemble with one correlation parameter (solid black curve), fixed composition ensemble without correlations

(dashed-dotted blue curve), first-order autoregressive ensemble (dotted brown curve), and Gaussian i.i.d. codebook (solid v-mark

red curve).

B. Mismatched Universal Decoders

As discussed in the Introduction in many situations in coded communication systems, channel

uncertainty and variability preclude the implementation of the optimum ML decoder. In such cases,

a good solution is provided by universal decoders which perform asymptotically as well as the ML

decoder and yet do not require knowledge of the channel.

In this subsection, we analyze the following scenario: consider the same channel model presented in

Section III. Then, assume that due to complexity issues concerning the implementation of the optimal

ML decoder, the receiver uses the mismatched decoding metric in (3) with only α0 being active, i.e.,

corresponding to a memoryless channel. Nonetheless, we allow our receiver to optimize this coefficient,

namely, it can be a function of the true channel. Now, consider a different receiver which uses a

universal decoder designed for a memoryless channel (namely without ISI). In other words, the true

family of channels is outside the class of channels for which the universal decoder is actually designed,

i.e, mismatched universal decoder. Then, which approach yields higher rates?
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Fig. 4. Achievable rates as a function of the mismatched level α0, for the Gaussian ISI channel with h0 = h1 = h2 = 1/
√
2,

σ2 = 1, PX = 1. The achievable rates correspond to fixed composition ensemble with one correlation parameter (solid black

curve), fixed composition ensemble without correlations (dashed-dotted blue curve), first-order autoregressive ensemble (dotted

brown curve), and Gaussian i.i.d. codebook (solid v-mark red curve). The cross symbols “X” refer to the maximum rate achieved

by the corresponding ensembles.

In the sequel, for simplicity, we focus on the fixed composition ensemble without correlations. It is

well-known (see, e.g., [1, 20, 28, 36, 38]) that, for the AWGN with codewords drawn uniformly and

independently over the n-dimensional hypersphere with radius
√
nPX , given an output sequence yn, the

decoder

î = arg max
i∈Cn

∣∣∣∣∣
n∑
t=1

xt,iyt

∣∣∣∣∣ , (23)

is universal. Indeed, in this scenario, the generalized likelihood-ratio test (GLRT) is universal, and it is a

simple exercise to check that the GLRT is equivalent to (23). Before we present our main result, we briefly

comment that using the same techniques developed in this paper, one can consider more complicated

ensembles, such as the one in (13), and universal decoders designed for the ISI channel [20] and not

just for the AWGN, as described above. In principle, it makes sense that the random coding ensemble

and the universal decoder would be consistent with one another in the sense of their assumptions on the

memorylessness/memoryfulness of the channel. However, in the following discussion we demonstrate

that we can consider the ensemble in (13) when the universal decoder is designed for a memoryless

channel, with the understanding that we can actually consider also universal decoders designed for the
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ISI channel [20]. Given ε > 0, and two sequences xn and yn, we define

T nε (x|y) ,

{
x′ ∈ Rn :

∣∣∣∣∣ 1n
n∑
t=1

x′tyt −
1

n

n∑
t=1

xtyt

∣∣∣∣∣ < ε

}
. (24)

Let µ(·) designate the uniform measure over (13), and define

U(x,y) , − 1

n
logµ (T nε (x|y)) (25)

=
1

n
log Vol (T nε (γ))− 1

n
log Vol (T nε (γ) ∩ T nε (x|y)) . (26)

Then, it can be shown that the decoder which maximizes the metric in (26) over the given codebook, is

universal w.r.t. the ensemble in (13). Since the first term at the right hand side (r.h.s.) of (26) is in fact

independent of x it can be omitted, and so to explicitly derive the above decoding metric, we just need

to evaluate the log-volume of the set T nε (γ) ∩ T nε (x|y). This can be done using the same techniques

used in the proof of Theorem 2. Returning back to our setting, we have the following result.

Theorem 4 Consider the Gaussian ISI channel model in (1), and the mismatched universal decoder in

(23). Then, every

R <
1

2
log

(
1 +

h2
0 · PX

(‖h‖22 − h2
0) · PX + σ2

)
(27)

is achievable.

As before, we can obtain the random coding error exponent associated with the above universal decoder.

Theorem 5 Consider the Gaussian ISI channel model in (1), and the mismatched universal decoder in

(23). Then,

E(PX , R) = min
PY ,ρXY

max
ω̂∈Ŵ

{
V (ω̂, PY , ρXY ) +

[
−1

2
log(1− ρ2

XY )−R
]

+

}
. (28)

We provide a proof sketch of Theorem 4 in Appendix D. The proof of Theorem 5 is essentially the

same as the proof of Theorem 3, and thus omitted. From Theorem 4 we see that the achievable rate in (27)

has the interpretation that the “mismatched input signal” (or the residue signal) is treated as additional

Gaussian noise at the decoder. Accordingly, it is interesting to compare the above results with Theorems 2

and 3. Some technical calculations reveal that, for the specific scenario we consider above, the achievable

rate maxα0 Ī2(α0, PX) in Theorem 2 is essentially exactly the same as (27). Moreover, the optimal α0

which achieves (27) should be chosen as to match the sign of h0, namely, if h0 > 0 then α0 can be any

real but positive number, while if h0 < 0 then α0 can be any real but negative number. Accordingly,

while the mismatched decoder needs some knowledge of the true channel, it achieves the same rates as

the universal decoder which has no knowledge at all about the true channel. In particular, if the sign of

α0 was unknown to the mismatched decoder, and the mismatch decoder mistakenly assumes a different

sign compared to the true channel, then it will achieve zero-rate. This basically demonstrates that, at least

in the specific scenario described above, our results provide indications that universal decoders exhibit
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Fig. 5. Achievable rates as a function of the coefficient h0, for the Gaussian ISI channel with two taps and h1 = 1, σ2 = 1,

and PX = 1. The achievable rates correspond to the optimized (over α0) mismatched decoder (dotted red curve), and the

mismatched universal decoder (solid black curve), both under fixed composition ensemble without correlations.

a robustness property w.r.t. the family of channels over which they are actually designed. To wit, even

though our universal decoder is designed for a completely different class of channels, it still performs

as well as the best mismatched ML decoder in the same family. This observation (potentially) suggests

a certain expansion of the classic notion of universality to cases where the true underlying channel is

outside the class. Similarly, comparing the error exponents in Theorem 3 and 5 we see that the only

difference is the additional |sgn(h0) + sgn(α0)| /2 term in (19). Accordingly, if h0 and α0 share the

same sign, then both exponents coincide, otherwise, the exponent in Theorem 3 vanishes, while the

exponent in Theorem 5 remains unaffected. Finally, we present in Fig. 5 a numerical calculation of the

achievable rate in Theorem 4, for the two-tap Gaussian ISI channel with h1 = 1, σ2 = 1, and PX = 1.

V. PROOF OF THEOREM 1

The codebook Cn = {xi}Mi=1 is generated as follows: For each message i ∈ [1 : enR], we generate

(independently) a sequence {Xt}nt=1 according to (11), where {Zt}t is white Gaussian noise, η2 is

chosen such that EX2
t = PX , for any t = [1 : n], and thus it is given in (5). Also, for technical reasons,

we fix Xt = 0 for t = n+ 1, . . . , n+ (p ∨K), and for each message i ∈ [1 : enR]. We will then think

of all the forthcoming summation terms over t = [1 : n] as summing up to n̄ = n + p ∨K instead of

n. This assumption is made only for convenience, but has no influence on either the achievable error
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exponents or the achievable rates, as long as p∨K is fixed and n→∞. Accordingly, we can write the

following circularity relation
n̄∑
t=1

Xt−iXt−j =

n̄∑
t=1

XtXt−(j−i) (29)

for i ≤ j ∈ [1 : p ∨K]. For notational convenience, in the following we use n in place of n̄. We let

µp(·) designate the probability density function of a sequence of RV’s generated as described above.

Finally, define

γm , E {XtXt−m} (30)

to be the auto-covariance of the autoregressive process, and recall that these coefficients can be found

by evaluating (6).

Without loss of generality, we assume throughout, that the transmitted codeword is x , x1.

Accordingly, the average probability of error can be written as

P̄e(n,R) = Pr

[
M⋃
i=2

{
1

n
log V (Y |Xi) ≥

1

n
log V (Y |X1)

}]
(31)

= E

{
Pr

[
M⋃
i=2

{
1

n
log V (Y |Xi) ≥

1

n
log V (Y |X1)

}∣∣∣∣∣F0

]}
(32)

where F0 , (X1,Y ). Recall that for a pairwise independent events {Ai}Mi=1, we have [39, Sec. A2]

1

2
min

{
1,

M∑
i=1

Pr {Ai}

}
≤ Pr

{
M⋃
i=1

Ai

}
≤ min

{
1,

M∑
i=1

Pr {Ai}

}
,

and therefore,

P̄e(n,R)
.
= E

[
min

{
1,M · Pr

{
1

n
log V (Y |X2) ≥ 1

n
log V (Y |X1)

∣∣∣∣F0

}}]
. (33)

Thus, we need to assess the exponential behavior of the probability term in (33). Fix a positive constant

B > 0, and define the sequence of sets

Hn(B) ,

{
x,y ∈ Rn :

1

n

n∑
i=1

x2
i ≤ B,

1

n

n∑
i=1

y2
i ≤ B

}
, (34)

for n ≥ 1. Accordingly, (33) can be rewritten as follows

P̄e(n,R)
.
= E

[
I {Hn(B)} ·min

{
1,M · Pr

{
1

n
log V (Y |X2) ≥ 1

n
log V (Y |X1)

∣∣∣∣F0

}}]
+ E

[
I {Hcn(B)} ·min

{
1,M · Pr

{
1

n
log V (Y |X2) ≥ 1

n
log V (Y |X1)

∣∣∣∣F0

}}]
. (35)

Using the same techniques as in [19, Lemma 2] and [20, Lemma 2] it can be shown that there exists

a sufficiently large B such that the first term at the r.h.s. of dominates in the exponential scale. This

passage is mainly technical, and will be used to evaluate the volume of some typical sets as shall be

clear in the sequel. To conclude, we have

P̄e(n,R)
.
= E

[
I {Hn(B)} ·min

{
1,M · Pr

{
1

n
log V (Y |X2) ≥ 1

n
log V (Y |X1)

∣∣∣∣F0

}}]
. (36)
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For (X1,Y ) = (x,y) ∈ Hn(B), the inner probability term at the r.h.s. of (36) can be represented as

Pr

{
1

n
log V (y|X2) ≥ 1

n
log V (y|x)

}
=

∫
x′∈V(x,y)

dx′µp(x
′) (37)

where

V(x, y) ,

{
x′ ∈ Rn :

1

n
log V (y|x′) ≥ 1

n
log V (y|x)

}
. (38)

Using the saddle-point integration method we asses the exponential behavior of the r.h.s. of (37). To

present the result, let ω ∈ R+, and define for 1 ≤ m ≤ K and 1 ≤ r ≤ p,

Πm(α) ,
K−m∑
k=0

αkαk+m, (39)

Π̂r(ϕ) ,
p−r∑
k=1

ϕkϕk+r, (40)

and

ψ(x,y) ,
K∑
l=0

αl

n∑
t=1

ytxt−l −
1

2
‖α‖22

n∑
t=1

x2
t −

K∑
l=1

Πl(α)

n∑
t=1

xtxt−l. (41)

Also, let Ω , Ω1 + Ω2 be the n× n symmetric Toeplitz matrix,

[Ω1]i,j ,
ω

2
·



‖α‖22 , for |i− j| = 0

Π|i−j|(α), for 1 ≤ |i− j| ≤ K

0, otherwise

, (42)

and

[Ω2]i,j ,
1

2η2
·



1 + ‖ϕ‖22 , for |i− j| = 0

Π̂|i−j|(ϕ)− ϕ|i−j|, for 1 ≤ |i− j| ≤ p

0, otherwise

. (43)

Let A be an n× n lower-triangular Toeplitz matrix where for i ≥ j,

[A]i,j ,


αi−j , for 0 ≤ i− j ≤ K

0, otherwise

. (44)

Finally, define

qn(ω,x,y) ,
1

2
log π − 1

2n
log det Ω +

ω2

4n
yTAΩ−1ATy − ω

n
ψ(x,y), (45)

and

hn(x,y) , min
ω∈R+

qn(ω,x,y)− 1

2
log(2πη2). (46)

The following lemma is proved in Appendix A.
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Lemma 1 Fix (x,y) ∈ Hn(B). Then, for any δ1 > 0, there exists Nδ1 ∈ N large enough, such that for

any n > Nδ1 , ∣∣∣∣∣ 1n log

∫
V(x,y)

dx′µp(x
′)− hn(x,y)

∣∣∣∣∣ < δ1. (47)

Using (36)-(37), and Lemma 1, we may conclude that

P̄e(n,R)
.
= E

[
I {Hn(B)} exp

{
−n [−hn(X,Y )− δ1 −R]+

}]
. (48)

The next step is taking the expectation w.r.t. (X,Y ), distributed according to µp×W . In the following,

we calculate the limit of (46) as n → ∞. Due to the fact that qn(ω,x,y) converges uniformly to a

limit almost surely, as shall be shown in a moment, we can interchange the order of the limit and the

minimization in (46) [40]. Thus, we focus on the limit of qn(ω,x,y), and we consider the asymptotics

of each term in (45). Since Ω is a Toepliz matrix, using Szegö theorem [41], we have

lim
n→∞

1

n
log det Ω =

1

2π

∫
[0,2π]

dν log fω(ν) (49)

where

fω(ν) ,
ω

2

[
‖α‖22 + 2

K∑
k=1

Πk(α) cos(kν)

]
+

1

2η2

[
1 + ‖ϕ‖22 + 2

p∑
k=1

(Π̂k(ϕ)− ϕk) cos(kν)

]
(50)

=
ω

2
|A(ν)|2 +

1

2η2

[
1 + |Φ(ν)|2 − 2 · Re(Φ(ν))

]
. (51)

Next, using the law of large numbers (LLN) and once again Szegö theorem, we get, with overwhelming

probability as n→∞,

lim
n→∞

1

n
yTAΩ−1ATy = lim

n→∞

1

n
E
(
Y TAΩ−1ATY

)
(52)

= lim
n→∞

1

n
tr
{
AΩ−1ATRy

}
(53)

=
1

2π

∫
[0,2π]

dν
SY (ν) |A(ν)|2

fω(ν)
(54)

where SX(·), SY (·), and fω(·), are defined in (7)-(9), respectively, and SY (·) is the spectral density

function of Y , namely, it is the Fourier transform of the auto-covariance

RY (t, s) =

K∑
m,k=0

hmhkE {Xt−mXs−k}+ RW (t− s) (55)

=

K∑
m,k=0

hm1
hm2

γt−s+k−m + RW (t− s) (56)

=

K∑
m,k=0

hm1hm2γu+k−m + RW (u) (57)

= RY (u), (58)
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where {γm} are defined in (30), and thus

SY (ν) =

K∑
m,k=0

hm1
hm2

SX(ν)ej(m−k)ν + σ2 (59)

=

[
K∑
m=0

h2
m + 2 ·

K∑
m<k

hmhk cos [(k −m)ν]

]
SX(ν) + σ2. (60)

Finally, by the LLN and by using [42, Th. 2.4.2] we have, with overwhelming probability as n→∞,

lim
n→∞

1

n
ψ(x,y) =

K∑
l=0

K∑
i=0

αlhiγl−i −

(
1

2
‖α‖22 γ0 +

K∑
l=1

Πl(α)γl

)
. (61)

Collecting the last results, we obtain that with probability approaching one as n→∞,

lim
n→∞

hn(X,Y ) = min
ω

{
1

2
log π − 1

4π

∫ 2π

0

dν log fω(ν) +
ω2

8π

∫
[0,2π]

dν
SY (ν) |A(ν)|2

fω(ν)

−ω

[
K∑
l=0

K∑
i=0

αlhiγl−i −

(
1

2
‖α‖22 γ0 +

K∑
l=1

Πl(α)γl

)]}
− 1

2
log(2πη2)

, −Ī1(α,ϕ). (62)

Next, for any δ2 > 0, define the set

An(δ2) ,
{

(x,y) :
∣∣hn(x,y) + Ī1(α,ϕ)

∣∣ < δ2
}
. (63)

Accordingly, from (48) we have

P̄e(n,R) ≤ E
[
I {An(δ2)} exp

{
−n [−hn(X,Y )− δ1 −R]+

}]
+ Pr {Acn(δ2)} , (64)

and in light of (62), taking δ1 → 0 and δ2 → 0, followed by n→∞, the last term at the r.h.s. of (64)

is asymptotically negligible. Hence, in terms of achievable rate, we get that P̄e(n,R) decays to zero as

long as

R < Ī1(α,ϕ). (65)

Since {ϕi}pi=1 ∈ P were fixed parameters up to this point, we take the maximum of the r.h.s. of the

above inequality over these parameters, which concludes the proof.

VI. CONCLUSIONS

In this paper, we considered the problem of channel coding over Gaussian ISI channels with a

mismatched decoding rule. For this problem we provided two achievable rates using an autoregressive

random coding ensemble, and fixed composition ensemble. We then presented a mismatched universal

decoder, designed outside the true class of channels, and showed that it is robust. Finally, we discuss

a certain generalization and some implications of our analysis. Using the same techniques developed in

this paper, we can analyze more complicated scenarios of multi-user systems, such as, the ISI multiple-

access channel [43], and the ISI broadcast channel. Specifically, to obtain ensemble-tight results, the only
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step in our proof that should be modified is the application of the truncated union-bound, which is not

necessarily tight in the multi-user settings. To this end, one can use the tighter union bounds that were

derived in [44, 45].

APPENDIX A

PROOF OF LEMMA 1

Recall the fact that the step function 1 {x ≥ 0} is the inverse Laplace transform of the function 1/s,

i.e.,

1 {x ≥ 0} =
1

2πj

∫ c+j∞

c−j∞
dt

exp (tx)

t
, (A.1)

for any c > 0. Also, note that

V(x,y) = {x′ ∈ Rn : log V (y|x′) ≥ log V (y|x)}

=

x′ ∈ Rn :

K∑
l=0

αl

n∑
t=1

yt(x
′
t−l − xt−l)−

1

2

K∑
l,k=0

αlαk

n∑
t=1

(x′t−lx
′
t−k − xt−lxt−k) ≥ 0


=

{
x′ ∈ Rn :

K∑
l=0

αl

n∑
t=1

yt(x
′
t−l − xt−l)−

1

2
‖α‖22

n∑
t=1

(x′2t − x2
t )

−
K∑
l=1

Πl(α)

n∑
t=1

(x′tx
′
t−l − xtxt−l) ≥ 0

}
(A.2)

= {x′ ∈ Rn : ψ(x′,y)− ψ(x,y) ≥ 0} (A.3)

where ψ(x,y) is given in (41), and (A.2) follows from the circularity assumption (29), indeed,

K∑
l=0

K∑
k=0

αlαk

n∑
t=1

xt−lxt−k = ‖α‖22
n∑
t=1

x2
t + 2 ·

K∑
l=0

K∑
k=l+1

αlαk

n∑
t=1

xtxt−(k−l) (A.4)

= ‖α‖22
n∑
t=1

x2
t + 2 ·

K∑
l=0

K−l∑
m=1

αlαm+l

n∑
t=1

xtxt−m (A.5)

= ‖α‖22
n∑
t=1

x2
t + 2 ·

K∑
l=1

Πl(α)

n∑
t=1

xtxt−l (A.6)

where Πl(α) is defined in (39).

Then, we may write∫
V(x,y)

dx′µp(x
′) =

∫
Rn

dx′µp(x
′)1 {ψ(x′,y)− ψ(x,y) ≥ 0} (A.7)

=
1

2πj

∫
Rn

dx′µp(x
′)

∫ c+j∞

c−j∞
dω

1

ω
exp {ω (ψ(x′,y)− ψ(x,y))} (A.8)

=
1

2πj

∫ c+j∞

c−j∞
dω

1

ω
exp {−ωψ(x,y)}

∫
Rn

dx′µp(x
′) exp {ωψ(x′,y)} (A.9)
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where

µp(x) =
1

(2πη2)n/2
exp

− 1

2η2

n∑
t=1

(
xt −

p∑
l=1

ϕlxt−l

)2
 , (A.10)

and due to the circularity assumption we may write

µp(x) =
1

(2πη2)n/2
exp

{
− 1

2η2

[(
1 + ‖ϕ‖22

)
‖x‖22 + 2

p∑
l=1

(Π̂l(ϕ)− ϕl)
n∑
t=1

xtxt−l

]}
(A.11)

,
1

(2πη2)n/2
exp

{
− 1

2η2
L(x)

}
. (A.12)

Thus, ∫
V(x,y)

dx′µp(x
′) =

1

2πj

1

(2πη2)n/2

∫ c+j∞

c−j∞
dω

exp {−ωψ(x,y)}
ω

×
∫
Rn

dx′ exp

{
− 1

2η2
L(x′) + ωψ(x′,y)

}
. (A.13)

Now, the last exponent at the r.h.s. of the above equality can be rewritten as

1

2η2
L(x)− ωψ(x′,y) = x′TΩx′ − ωyTAx′ (A.14)

= (x′ − ω

2
Ω−1Ay)TΩ(x′ − ω

2
Ω−1Ay)− ω2

4
yTAΩ−1ATy (A.15)

where Ω and A are defined in (42)-(43) and (44), respectively. Then,∫
Rn

dx′ exp

{
− 1

2η2
L(x′) + ωψ(x′,y)

}
=

[
det

(
2π · 1

2
Ω−1

)]1/2

exp

{
ω2

4
yTAΩ−1ATy

}
= exp

{
n

2
log π − 1

2
log det Ω +

ω2

4
yTAΩ−1ATy

}
(A.16)

where in the first equality we have used the fact that Ω is a symmetric positive-definite Toeplitz matrix.4

Therefore, using the last result and (A.13), we get that∫
V(x,y)

dx′µp(x
′)
.
=

1

(2πη2)n/2

∫ c+j∞

c−j∞
dω

1

ω
exp [nqn(ω,x,y)] , (A.17)

and qn(ω,x,y) is defined in (45). The integral in (A.17) can now be assessed using the saddle-point

method [18, 46]. The derivative of qn(ω,x,y) vanishes at the value of ω that solves the equation

∂qn(ω,x,y)/∂ω = 0, where the gradient is taken w.r.t. ω. We will show that this saddle-point, denoted

by ω∗, is in fact real-valued, i.e., ω∗ ∈ R+. Accordingly, we choose c = ω∗, and thereby let the integration

path pass through this saddle-point. Now, at ω∗, qn(ω,x,y) has its maximum along the vertical direction

ω = ω∗ + jκ, −∞ < κ < ∞ (and hence it dominates the integral), but since it is a saddle-point it

minimizes qn(ω,x,y) in the horizontal direction (the real line), so we get∫
V(x,y)

dx′µp(x
′)
.
=

1

(2πη2)n/2
exp

{
n ·min

ω
qn(ω,x,y)

}
(A.18)

4Indeed, from (42)-(43) we see that Ω is diagonally dominant matrix with positive diagonal elements, and thus positive-

definite.
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, exp {n · hn(x,y)} (A.19)

where hn(x,y) is defined in (46).

We next show that ω∗ ∈ R+, as claimed above. Indeed, the modulus of the integrand in (A.17)

depends solely on the real part of the exponent of the integrand, namely, on Re {qn(ω,x,y)}. Now, if

we consider an arbitrary complex number ω = ωR + j ·ωI , then we need to show that Re {qn(ω,x,y)}

is maximized only at ωI = 0. Let Ω̄1 , 2ω−1 · Ω1, and then by definition Ω = ω · Ω̄1 + Ω2. Also,

define V , (ωR · Ω̄1 + Ω2)2 +ω2
I · Ω̄2

1, where for a symmetric matrix A, by A2 we mean AAT . Recall

that

qn(ω,x,y) ,
1

2
log π − 1

2n
log det Ω +

ω2

4n
yTAΩ−1ATy − ω

n
ψ(x,y). (A.20)

It is a simple exercise to check that −Re {log det Ω} is maximized at ωI = 0, and since the real part

of the first and last terms in (A.20) are independent of ωI , we focus on the real part of the third term,

which after simple algebra boils down to

Re

{
ω2

4
yTAΩ−1ATy

}
= yTA

[
V−1

(
ω3
RΩ̄1 + ω2

RΩ2 + ωRω
2
I Ω̄1 − ω2

IΩ2

)]
ATy. (A.21)

To prove that (A.21) is maximized at ωI = 0 it suffices to show that

V−1
(
ω3
RΩ̄1 + ω2

RΩ2 + ωRω
2
I Ω̄1 − ω2

IΩ2

)
�
[(
ωR · Ω̄1 + Ω2

)2]−1 (
ω3
RΩ̄1 + ω2

RΩ2

)
(A.22)

where for two matrices X and Z, X � Z means that Z − X is semi-positive definite matrix. Simple

algebra reveals that to prove (A.22) it suffices to show that(
ω3
RΩ̄1 + ω2

RΩ2

)
Ω̄2

1 �
(
ωRΩ̄1 −Ω2

) (
ωR · Ω̄1 + Ω2

)2
, (A.23)

which follows by expanding the terms on the left and right hand side of (A.23), and using the fact that

Ω̄1 and Ω2 are semi-positive definite matrices.

Finally, we show that the convergence in (A.18) is uniform over (x,y) ∈ Hn(B), as claimed in

the statement of Lemma 1. Precisely, we show that for any ε > 0, there exist an Nε large enough and

independent of (x,y), such that for any n > Nε∣∣∣∣∣ 1n log

∫
V(x,y)

dx′µp(x
′)− hn(x,y)

∣∣∣∣∣ < ε. (A.24)

Let v(z) be an analytical function, and let z0 ∈ R be its unique saddle-point. By the analyticity of v(·),

for any ε > 0, there exist a δ > 0 such that:∣∣∣∣v(z)− v(z0)− 1

2
v′′(z0)(z − z0)2

∣∣∣∣ ≤ ε(z − z0)2, (A.25)

for any z such that |z − z0| < δ. Accordingly, it can be shown that [18]

env(z0) ·

[√
2π

|v′′(z0) + ε|n
− 2Q

(
δ
√
n (|v′′(z0) + ε|)

)]
≤
∫ z0+j∞

z0−j∞
expnv(z)dz

≤ env(z0)

√
2π

|v′′(z0)− ε|n
+ C, (A.26)
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for some constant C, and Q(x) ,
∫∞
x

(2π)−1/2e−t
2/2dt, for x ∈ R. To prove (A.24), we show that the

terms in the square brackets at the left and right hand sides of (A.26) can be lower and upper bounded by

some universal constants. The proof consists of two steps. First, we will show that for any ε > 0, there

exists a universal δ > 0 independent of (x,y), such that qn(ω,x,y) is close to its Taylor approximation

around a ball of radius δ centered at the saddle-point. Then, we give a bound on |q′′n(ω,x,y)|, which

will be independent of (x,y). The desired result will then follow by using the last fact, |h′′(z0) ≤ 0|,

and (A.26).

Recall that qn(ω,x,y) converges almost surely to a value f(ω), as n→∞, for any (x,y) ∈ Hn(B).

Let ω∗n(x,y) be the sequence of saddle-points solving the minimization in (A.18). By the uniform

continuity of qn(ω,x,y) w.r.t. (x,y), there is a radius ∆ > 0 such that for n sufficiently large, all

saddle-points are contained in a ball centered at 0 and of radius ∆, i.e., w∗n(x,y) ∈ B(0,∆) almost

surely. Next, we define

M∆ , max
(x,y)∈Hn(B)

max
|ω−ω0|=∆

|qn(ω,x,y)|. (A.27)

By the Cauchy integration formula around the circle of radius ∆ above, with parametrization γ, we can

obtain the following expression of the Taylor approximation error E(ω,x,y) [47, Section 3]

E(ω,x,y) = qn(ω,x,y)− qn(w∗,x,y)− 1

2
q′′n(w∗,x,y)(ω − w∗)2 (A.28)

=

∞∑
k=3

(ω − ω∗)k

2πj

∮
γ

qn(z,x,y)

(z − ω∗)j+1
dz (A.29)

where ω∗ = ω∗n(x,y). Now, let us consider a ball of radius δ < ∆ around the saddle-point, such that

B(ω∗, δ) ⊂ B(0,∆). Using (A.27) and (A.29), for any ω ∈ B(ω∗, δ) we can bound |R(ω,x,y)| as

follows

|E(ω,x,y)| ≤
∞∑
k=3

M∆|ω − ω∗|k

∆k
(A.30)

≤M∆
δ3

∆2(∆− δ)
, ε, (A.31)

where the last step follows by evaluating the power series. Thus, for any ε > 0, there exist a δ independent

of (x,y) such that (A.25) is verified. Finally, by using Cauchy integration again, we have

|q′′n(ω,x,y)| = 1

π

∮
γ

qn(z,x,y)

(z − ω)2
(A.32)

≤ 2M∆

∆2
, (A.33)

as required.

APPENDIX B

PROOF OF THEOREM 2

In this section, we prove Theorem 2. Some technical details will be omitted, since they follow from

similar steps used in the proof of Theorem 1. Fix an arbitrary ε > 0, pick p ∈ N, and a set of parameters
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{γk}pk=0 ∈ Γ. The codebook Cn = {xi}Mi=1 is generated by drawing M codewords independently and

uniformly at random over T nε (γ) , T nε , defined in (13). Without loss of generality we assume that the

codeword x , x1 was sent. Then, similarly as in (36)-(37), we have

P̄e(n,R)
.
= E

[
I {Hn(B)} ·min

{
1,M · Pr

{
1

n
log V (Y |X2) ≥ 1

n
log V (Y |X1)

∣∣∣∣F0

}}]
. (B.1)

For (X1,Y ) = (x,y) ∈ Hn(B), the inner probability term at the r.h.s. of (B.1) can be represented as

Pr

{
1

n
log V (y|X2) ≥ 1

n
log V (y|x)

}
=

1

Vol(T nε )

∫
x′∈V(x,y)∩T nε

dx′ (B.2)

=
Vol (V(x,y) ∩ T nε )

Vol(T nε )
(B.3)

where

V(x,y) ∩ T nε ,

{
x′ ∈ T nε :

1

n
log V (y|x′) ≥ 1

n
log V (y|x)

}
(B.4)

=

{
x′ ∈ T nε :

K∑
l=0

αl

n∑
t=1

yt(x
′
t−l − xt−l)−

1

2
‖α‖22

n∑
t=1

(x′2t − x2
t )

−
K∑
l=1

Πl(α)

n∑
t=1

(x′tx
′
t−l − xtxt−l) ≥ 0

}
. (B.5)

Due to the fact that x′,x ∈ T nε ,∣∣∣∣∣
n∑
t=1

(x′tx
′
t−l − xtxt−l)

∣∣∣∣∣ ≤ 2nε, l ∈ [0 : p], (B.6)

and therefore,

V−(x,y) ∩ T nε ⊆ V(x,y) ∩ T nε ⊆ V+(x,y) ∩ T nε , (B.7)

in which

V+(x,y) ,

{
x′ ∈ Rn :

K∑
l=0

αl

n∑
t=1

yt(x
′
t−l − xt−l)

−
K∑

l=1+p∧K

Πl(α)

n∑
t=1

(x′tx
′
t−l − xtxt−l) + ‖α‖22 nε+ 2nε

K∑
l=1

Πl(α) ≥ 0


,
{
x′ ∈ Rn : ψ′(x′,y)− ψ′(x,y) + nC+(α)ε ≥ 0

}
(B.8)

where

ψ′(x,y) ,
K∑
l=0

αl

n∑
t=1

ytxt−l −
K∑

l=1+p∧K

Πl(α)

n∑
t=1

xtxt−l (B.9)

C+(α) , ‖α‖2 + 2

K∑
l=1

Πl(α), (B.10)

and V−(x,y) is defined similarly to (B.8) but with C+(α) replaced by C−(α) , −C+(α).
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The bulk of the argument resides in understanding the exponential behavior of (B.3). Using (B.7),

we note that

Vol
(
V−(x,y) ∩ T nε

)
≤ Vol (V(x,y) ∩ T nε ) ≤ Vol

(
V+(x,y) ∩ T nε

)
. (B.11)

In the sequel, we study the upper bound, with the understanding that the lower bound follows from

similar steps. We write

Vol
(
V+(x,y) ∩ T nε

)
=

∫
x′∈Rn

1
{
ψ′(x′,y)− ψ′(x,y) + nεC+(α) ≥ 0

}
·
p∏
k=0

1

{∣∣∣∣∣ 1n
n∑
t=1

x′tx
′
t−k − γk

∣∣∣∣∣ ≤ ε
}

dx′. (B.12)

Recalling that 1 {|a| < ε} = [1 {a ≤ ε} − 1 {a ≤ −ε}], and using (A.1), we get

Vol
(
V+(x,y) ∩ T nε

) .
=

∫
x′∈Rn

dx′
∫ cp+1+j∞

cp+1−j∞
dωp+1

exp{ωp+1(ψ′(x′,y)− ψ′(x,y) + nεC+(α))}
ωp+1

·
p∏
k=0

∫ ck+j∞

ck−j∞
dωk exp

{
ωk

(
nγk −

n∑
t=1

x′tx
′
t−k

)}(
enωkε − e−nωkε

wk

)
.

(B.13)

Exchanging the order of integrals and collecting terms, we obtain

Vol
(
V+(x,y) ∩ T nε

) .
=

∫ cp+1+j∞

cp+1−j∞
dωp+1

1

ωp+1
exp{−ωp+1ψ

′(x,y) + nεC+(α)}

·
∫
W̄

dω

[
p∏
k=0

(
enωkε − e−nωkε

wk

)
exp {nωkγk}

]

·
∫
x′∈Rn

dx′ exp{ωp+1ψ
′(x′,y)}

p∏
k=0

exp

{
−ωk

n∑
t=1

x′tx
′
t−k

}
, (B.14)

where W̄ , {ω : ck − j∞ ≤ ωk ≤ ck + j∞, k = 0, . . . , p}. Next, we note that

ωp+1ψ
′(x′,y)−

p∑
l=0

ωl

n∑
t=1

x′tx
′
t−l = ωp+1

K∑
l=0

αl

n∑
t=1

ytx
′
t−l − ωp+1 ·

K∑
l=1+p∧K

Πl(α)

n∑
t=1

x′tx
′
t−l

−
p∑
l=0

ωl

n∑
t=1

x′tx
′
t−l (B.15)

= ωp+1 · yTAx′ − x′TΩ0x
′ (B.16)

= −
(
x′ +

ωp+1

2
Ω−1

0 ATy
)T

Ω0

(
x′ +

ωp+1

2
Ω−1

0 ATy
)

+
ω2
p+1

4
yTAΩ−1

0 ATy, (B.17)
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where the last step follows by completing the square, and Ω0 is the n× n symmetric Toeplitz matrix,

[Ω0]i,j ,



ω0, for |i− j| = 0

0.5 · ω|i−j|, for 1 ≤ |i− j| ≤ p

0.5 · ωp+1 ·Π|i−j|(α), for 1 ≤ p ∧K ≤ |i− j| ≤ K

0, otherwise

. (B.18)

Therefore, ∫
x′∈Rn

dx′ exp{ωp+1ψ(x′,y)}
p∏
l=0

exp

{
−ωl

n∑
t=1

x′tx
′
t−l

}

= exp

{
n

2
log π − 1

2
log det Ω0 +

ω2
p+1

4
yTAΩ−1

0 ATy

}
where in the last equality we have used the fact that Ω0 is a symmetric positive-definite Toeplitz matrix

which follows because ω ∈ W . Using the last result, we finally get

Vol
(
V+(x,y) ∩ T nε

) .
=

∫
W

dω exp{nq̄n(ω,x,y, ε)}, (B.19)

where

q̄n(ω,x,y, ε) =
log π

2
− 1

2n
log det Ω0 +

ω2
p+1

4n
yTAΩ−1

0 ATy − ωp+1

n
ψ′(x,y) +

p∑
l=0

ωlγl

+
1

n

p∑
l=0

log sinh(nωlε) + εC+(α). (B.20)

Using similar steps as in Appendix A, the integral in (B.19) can be evaluated using the saddle-point

method, resulting in

Vol
(
V+(x,y) ∩ T nε

) .
= exp

{
nh̄n(x,y, ε)

}
, (B.21)

where h̄n(x,y, ε) = minω∈W qn(ω, ε). Also, using the same steps as in (A.19)-(A.33), one can show

that the saddle-point solution is in fact real-valued vector, and that the convergence (B.21) is uniform

w.r.t. (x,y). Similarly, one can verify that

lim
ε→0

lim
n→∞

1

n
log Vol(T nε ) =

1

2
log
(
2πeη2

)
. (B.22)

Thus, we may conclude that

P̄e(n,R)
.
= E

[
I {Hn(B)} exp

{
−n
[

1

2
log
(
2πeη2

)
− h̄n(X,Y , ε)−R+ o(ε)

]
+

}]
. (B.23)

The next step is taking the expectation w.r.t. (X,Y ), distributed according to µp ×W . Similarly as in

the proof of Theorem 1, we calculate the limit of each term in q̄n(ω,x,y, ε). By Szegö theorem,

1

n
log det Ω0 =

1

2π

∫ 2π

0

log gω(ν)dν, (B.24)

Sunday 18th June, 2017 DRAFT



28

where gω(·) is defined in (15). Using the same steps as in (52)-(61), by the LLN and Szegö theorem,

we get with overwhelming probability as n→∞,

lim
n→∞

1

n
yTAΩ−1

0 ATy = lim
n→∞

1

n
E
{
Y TAΩ−1

0 ATY
}

(B.25)

= lim
n→∞

1

n
tr
{
AΩ−1

0 ATRy
}

(B.26)

=
1

2π

∫
[0,2π]

dν
SY (ν) |A(ν)|2

gω(ν)
, (B.27)

and

lim
n→∞

1

n
ψ′(x,y) =

K∑
l=0

K∑
i=0

αlhiγl−i −
K∑

l=1+p∧K

Πl(α)γl. (B.28)

Also, recalling the fact that limx→∞(log sinh(x))/x = 1,

lim
n→∞

1

n

p∑
l=0

log sinh(nωlε) = ε

p∑
l=0

ωl. (B.29)

Collecting the last result, with probability approaching 1 as n→∞,

lim
ε→0

lim
n→∞

h̄n(X,Y , ε) = min
ω∈Γ

{
log π

2
− 1

4π

∫ 2π

0

log gω(ν)dν +
ω2
p+1

8π

∫
[0,2π]

dν
SY (ν) |A(ν)|2

gω(ν)

− ωp+1

 K∑
l=0

K∑
i=0

αlhiγl−i −
K∑

l=1+p∧K

Πl(α)γl

+

p∑
k=0

ωkγk

 (B.30)

, −Î2(α,γ). (B.31)

Next, for any δ > 0, define the set

An(δ) ,
{

(x,y) :
∣∣∣h̄n(x,y, ε) + Î2(α,γ)

∣∣∣ < δ
}
. (B.32)

Accordingly, using (B.23) we have

P̄e(n,R) ≤ E

[
I {An(δ)} exp

{
−n
[

1

2
log
(
2πeη2

)
− h̄n(X,Y , ε)−R+ o(ε)

]
+

}]
+ Pr {Acn(δ)} ,

(B.33)

and in light of (B.31), taking δ → 0 and ε→ 0 followed by n→∞, the last term at the r.h.s. of (B.33)

is asymptotically negligible. Hence, in terms of achievable rate, we get that P̄e(n,R) decays to zero as

long as

R <
1

2
log
(
2πeη2

)
+ Î2(α,γ) = Ī2(α,γ). (B.34)

Finally, since {γk}pk=1 ∈ Γ were fixed parameters up to this point, we take the maximum of the r.h.s.

of the above inequality over these parameters, which concludes the proof.
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APPENDIX C

PROOF OF THEOREM 3

We derive the error exponent in the case where αk = 0 for 1 ≤ k ≤ K, using the ensemble in (13)

with p = 0. Some technical details will be omitted, as they follow from similar steps used in the proof of

Theorem 1. We use (B.23) in Appendix B, and we note that in the above special case (B.23) simplifies

to

P̄e(n,R)
.
= E

[
I {Hn(B)} exp

{
−n [I(ρ̂XY , h0, α0)−R+ o(ε)]+

}]
(C.1)

where ρ̂XY is the empirical correlation coefficient defined as

ρ̂XY ,
1
n

∑n
t=1XtYt

√
PX

√
1
n

∑n
t=1 Y

2
t

, (C.2)

and I(ρ̂XY , h0, α0) is defined in (19). The next step is taking the expectation w.r.t. (X,Y ) distributed

according to µ×W . To this end, let υ > 0, and define the set

Lυ,ε(PX , PY , ρXY ) ,

{
x,y ∈ Rn :

∣∣∣∣∣ 1n
n∑
t=1

x2
t − PX

∣∣∣∣∣ < ε,

∣∣∣∣∣ 1n
n∑
t=1

y2
t − PY

∣∣∣∣∣ < υ,∣∣∣∣∣ 1n
n∑
t=1

xtyt − ρXY
√
PXPY

∣∣∣∣∣ < υ

}
. (C.3)

With this definition we see that the exponent term in (C.1) is almost constant over Lυ,ε(PX , PY , ρXY ),

namely, |I(ρ̂XY )− I(ρXY )| < ξ(υ) with ξ(υ)→ 0 as υ → 0. Then, we may write

P̄e(n,R)
.
=

∫
Hn(B)

dxdy exp
{
−n [I(ρ̂XY )−R+ o(ε)]+

}
µ(x)W (y|x)

.
=

∫
PY ∈[0,B],|ρXY |≤1

dPY dρXY

∫
Hn(B)∩Lυ,ε(PX ,PY ,ρXY )

dxdy exp
{
−n [I(ρ̂XY )−R+ o(ε)]+

}
µ(x)W (y|x)

.
= max
PY ,ρXY

∫
Hn(B)∩Lυ,ε(PX ,PY ,ρXY )

dxdy exp
{
−n [I(ρ̂XY )−R+ o(ε)]+

}
µ(x)W (y|x)

.
= max
PY ,ρXY

exp
{
−n [I(ρXY ) + ξ(υ)−R+ o(ε)]+ −

n

2
log(2πePX)

}
×
∫
Hn(B)∩Lυ,ε(PX ,PY ,ρXY )

dxdyW (y|x) (C.4)

where the third (asymptotic) equality follows from the Laplace integration method. We next evaluate the

integral term at the r.h.s. of (C.4) using the saddle-point method as in (B.12)-(B.14). We get∫
Hn(B)∩Lυ,ε

dxdyW (y|x)
.
=

∫
Ŵ

dω̂ exp
{
n
[
ω̂0PX + ω̂1ρXY

√
PXPY + ω̂2PY + o(ε) + o(υ)

]}
×
∫
Rn×Rn

dxdyW (y|x) exp

{
−ω̂0 ‖x‖22 − ω̂1

n∑
t=1

xtyt − ω̂2 ‖y‖22

}
.

(C.5)
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Define

[H1]i,j ,



ω̂0 + 1
2 ‖h‖

2
2 , for |i− j| = 0

0.5 ·Π|i−j|(h), for 1 ≤ |i− j| ≤ K

0, otherwise

. (C.6)

and let H2 be an n× n lower-triangular Toeplitz matrix where for i ≥ j,

[H2]i,j ,



ω̂1 − h0, for 0 ≤ i− j = 0

hi−j , for 1 ≤ i− j ≤ K

0, otherwise

. (C.7)

Then, we have

logW (y|x)− ω̂0 ‖x‖22 − ω̂1

n∑
t=1

xtyt − ω̂2 ‖y‖22 = −n
2

log(2πσ2)− 1

2σ2
‖y‖22 +

K∑
k=0

hk

n∑
t=1

ytxt−k

− 1

2
‖h‖22 ‖x‖

2
2 −

K∑
k=1

Πk(h)

n∑
t=1

xtxt−k − ω̂0 ‖x‖22 − ω̂1

n∑
t=1

xtyt − ω̂2 ‖y‖2 (C.8)

= −n
2

log(2πσ2)−
(

1

2σ2
+ ω̂2

)
yTy − xTH1x− yTH2x (C.9)

= −n
2

log(2πσ2)−

[
λ

∥∥∥∥y +
1

2λ
H2x

∥∥∥∥2

2

+ xT
(

H1 −
1

4λ
HT

2 H2

)
x

]
(C.10)

where λ , 1
2σ2 + ω̂2. Therefore,∫

Rn×Rn
dxdyW (y|x) exp

{
−ω̂0 ‖x‖22 − ω̂1

n∑
t=1

xtyt − ω̂2 ‖y‖22

}

= exp

{
−n

2
log(2πσ2) + n log π − 1

2
log det

(
1

4
HT

2 H2 − λ ·H1

)}
(C.11)

where the last equality follows because ω̂ ∈ Ŵ . Using the last result, we finally get∫
Hn(B)∩Lυ,ε

dxdyW (y|x)
.
=

∫
W

dω̂ exp

{
n

[
q̃n(ω̂, υ)− 1

2
log(2πσ2) + log π + o(ε) + o(υ)

]}
,

(C.12)

where

q̃n(ω̂, PY , ρXY , υ) = ω̂0PX + ω̂1ρXY
√
PXPY + ω̂2PY −

1

2n
log det

(
1

4
HT

2 H2 − λ ·H1

)
. (C.13)

Using similar steps as in Appendix A, the integral in (B.19) can be evaluated using the saddle-point

method, resulting in∫
Hn(B)∩Lυ,ε

dxdyW (y|x)
.
= exp

{
n

[
h̃n(PY , ρXY , υ)− 1

2
log(2πσ2) + log π + o(ε) + o(υ)

]}
,

(C.14)

Sunday 18th June, 2017 DRAFT



31

where h̃n(PY , ρXY , υ) = minω̂∈Ŵ q̃n(ω̂, PY , ρXY , υ). Also, using the same steps as in (A.19)-(A.33),

one can show that the saddle-point solution is in fact real-valued vector. Substituting the last result in

(C.4), we get

P̄e(n,R)
.
= max
PY ,ρXY

exp
{
−n [I(ρXY ) + ξ(υ)−R+ o(ε)]+ −

n

2
log(2πePX)

}
× exp

{
n

[
h̃n(PY , ρXY , υ)− 1

2
log(2πσ2) + log π + o(ε) + o(υ)

]}
(C.15)

= max
PY ,ρXY

exp

{
− n [I(ρXY ) + ξ(υ)−R+ o(ε)]+ −

n

2
log(4ePXσ

2)

+nh̃n(PY , ρXY , υ)
}
. (C.16)

Now, using Szegö theorem,

lim
n→∞

1

n
log det

(
1

4
HT

2 H2 − λ ·H1

)
=

1

2π

∫ 2π

0

log uω̂(ν)dν, (C.17)

where uω̂(·) is defined in (17), and so,

lim
υ→0

lim
n→∞

h̃n(PY , ρXY , υ) = min
ω̂∈Ŵ

{
ω̂0PX + ω̂1ρXY

√
PXPY + ω̂2PY −

1

4π

∫ 2π

0

log uω̂(ν)dν

}
, −V (PY , ρXY ). (C.18)

Using (C.16) and (C.18), we finally get

lim
υ,ε→0

lim
n→∞

− 1

n
log P̄e(n,R) = min

PY ,ρXY

{
V (PY , ρXY ) +

1

2
log(4ePXσ

2) + [I(ρXY )−R]+

}
. (C.19)

APPENDIX D

PROOF OF THEOREM 4

Due to similarities to the proofs of Theorems 1 and 2, we provide only a proof sketch. Fix an

arbitrary ε > 0. Define the sequence of sets T nε (PX), for n = 1, 2, . . ., as follows

T nε (PX) ,

{
x ∈ Rn :

∣∣∣∣∣ 1n
n∑
t=1

x2
t − PX

∣∣∣∣∣ < ε

}
. (D.1)

The codebook Cn is generated by drawing M codewords independently and uniformly at random from

T nε (PX). Then, the probability of error corresponding to the universal decoder in (23) is given by

P̄e(n,R)
.
= E

[
I {Hn(B)} ·min

{
1,M · Pr

{∣∣∣XT
2 Y
∣∣∣ ≥ ∣∣∣XT

1 Y
∣∣∣∣∣∣F0

}}]
. (D.2)

For (X1,Y ) = (x,y) ∈ Hn(B), the inner probability term at the r.h.s. of (D.2) can be represented as

Pr
{∣∣∣XT

2 y
∣∣∣ ≥ ∣∣xTy∣∣} = 2 · Pr

{
XT

2 y ≥
∣∣xTy∣∣} (D.3)

.
=

Vol (V(x,y) ∩ T nε (PX))

Vol(T nε (PX))
(D.4)

where

V(x,y) ,

{
x′ ∈ Rn :

n∑
i=1

x′iyi ≥

∣∣∣∣∣
n∑
i=1

xiyi

∣∣∣∣∣
}
. (D.5)
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Accordingly, using the same methods as in Appendix A, one can show that

Vol (V(x,y) ∩ T nε (PX))
.
= exp

{
n

2
log

[
2πePX

(
1−

|
∑n
i=1 xiyi|

2

PX ·
∑n
i=1 y

2
i

)]}
, (D.6)

and

Vol(T nε (PX))
.
= exp

{n
2

log (2πePX)
}
. (D.7)

Thus, upon substitution in (D.4) and (D.2), and using the LLN, we get that the probability of error

converges to zero as n→∞ as long as,

R < −1

2
log

[
1− h2

0PX

‖h‖22 PX + σ2

]
(D.8)

=
1

2
log

[
1 +

h2
0PX

(‖h‖22 − h2
0) · PX + σ2

]
. (D.9)
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