

Universal Decoding Using a Noisy Codebook

Neri Merhav

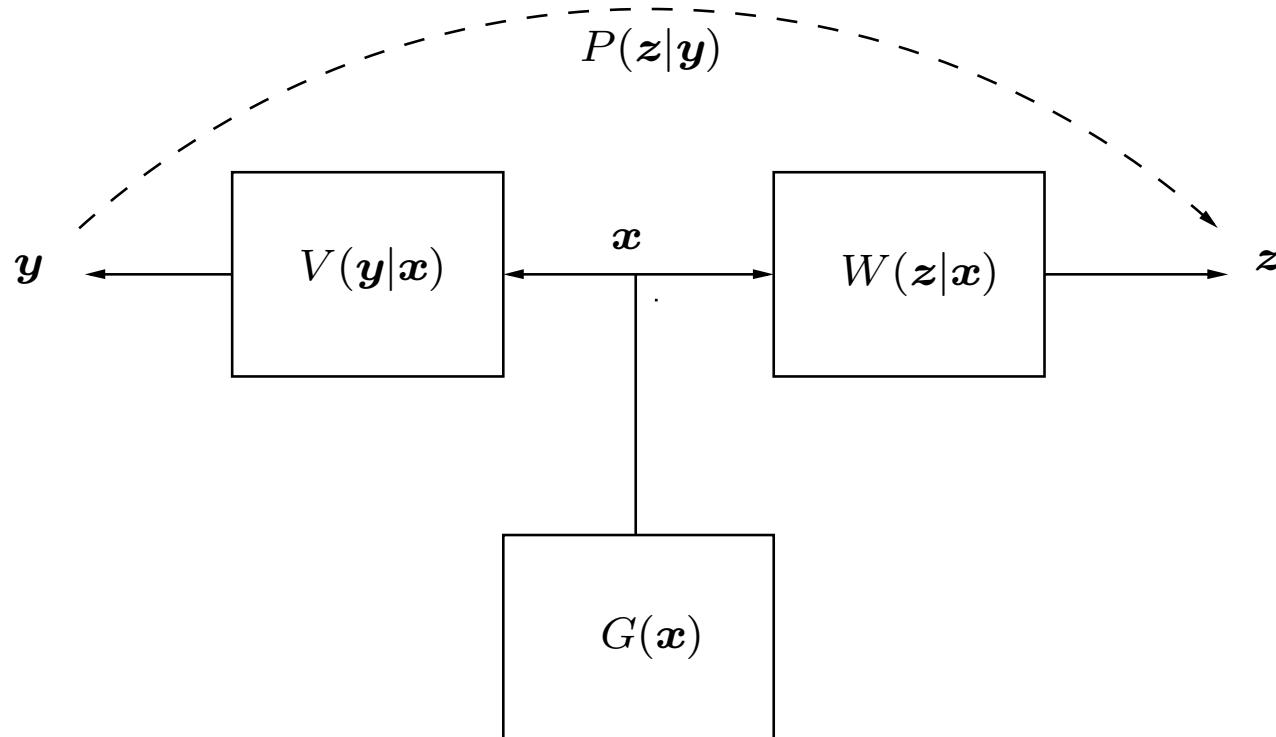
The Andrew & Erna Viterbi Faculty of Electrical Engineering
Technion—Israel Institute of Technology
Haifa 3200004, Israel

ISIT 2017, Aachen, Germany, June 2017.

Motivation and Background

- Ziv (1985): universal decoding for unifilar FS channels.
- Lapidoth & Ziv (1998): extension to “hidden Markov” channels.
- In both: universal decoder achieves optimal random coding exponents.
- Random coding distribution = uniform.
- This work: further extension to noisy codewords.

Communication System with Noisy Codewords

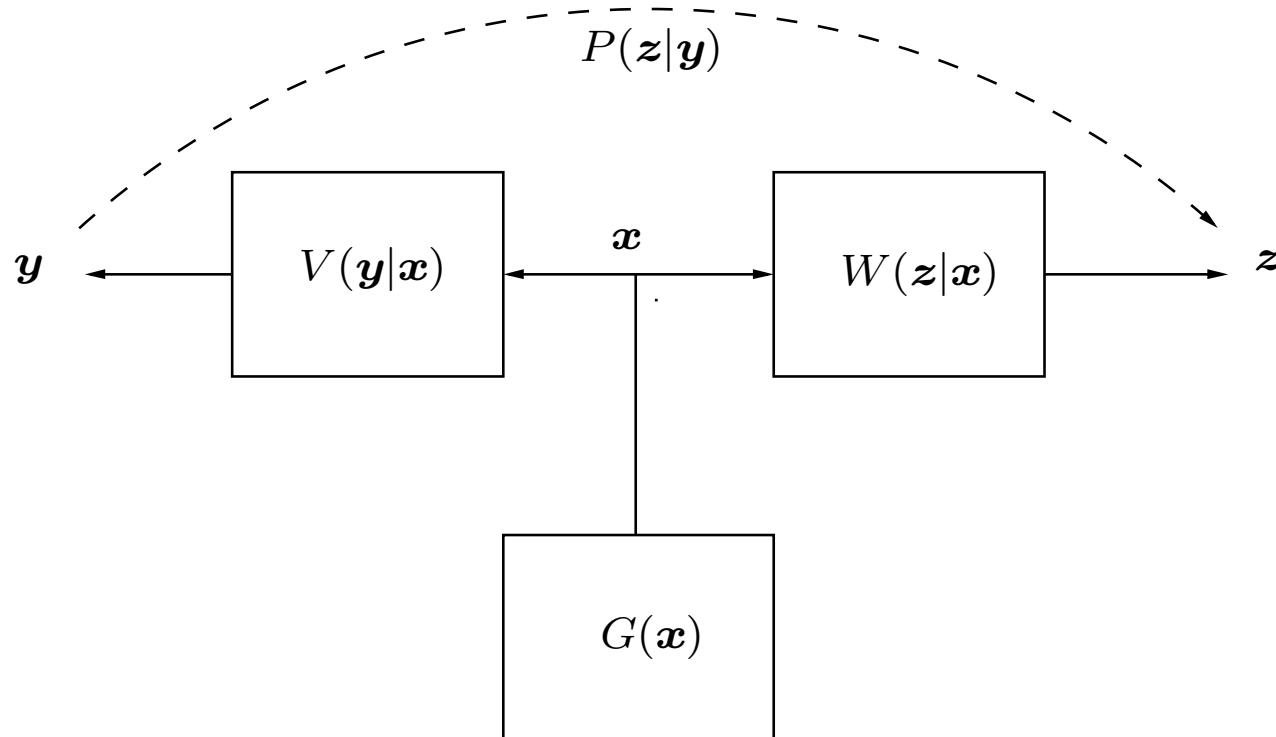


$$G(\mathbf{x}) = \sum_{\boldsymbol{\omega}} \prod_{i=1}^n G(x_i, \omega_i | \omega_{i-1})$$

$$W(\mathbf{z}|\mathbf{x}) = \sum_{\boldsymbol{\sigma}} \prod_{i=1}^n W(z_i, \sigma_i | x_i, \sigma_{i-1})$$

$$V(\mathbf{y}|\mathbf{x}) = \sum_{\boldsymbol{\theta}} \prod_{i=1}^n V(y_i, \theta_i | x_i, \theta_{i-1})$$

Communication System with Noisy Codewords



- Non-uniform effective random coding dist. $-P(\mathbf{y}) = \sum_{\mathbf{x}} G(\mathbf{x})V(\mathbf{y}|\mathbf{x})$.
- Effective channel – $P(\mathbf{z}|\mathbf{y}) = \sum_{\mathbf{x}} G(\mathbf{x})V(\mathbf{y}|\mathbf{x})W(\mathbf{z}|\mathbf{x})$ – **not FS**.
- A rate- R “codebook” of \mathbf{y} -vectors generated by corresponding \mathbf{x} ’s.
- Motivation: biometric identification (enrollment vs. authentication).
- Code randomness – part of the model.
- **Assumption:** $\{P(\mathbf{y})\}$ is known (estimable from the noisy codebook).

Universal Decoding Metric – Conditional LZ Parsing

Given $(\mathbf{y}, \mathbf{z}) = [(y_1, z_1), \dots, (y_n, z_n)]$, apply LZ parsing to this sequence pair.

- $c(\mathbf{y}, \mathbf{z})$ = number of phrases.
- $c(\mathbf{z})$ = number of distinct phrases of \mathbf{u} .
- $z(l)$ = the l th distinct \mathbf{u} -phrase, $l = 1, 2, \dots, c(\mathbf{z})$.
- $c_l(\mathbf{y}|\mathbf{z})$ = number of $z(l)$ in parsing of \mathbf{z} .

$$\text{conditional "code length"} = \sum_{l=1}^{c(\mathbf{z})} c_l(\mathbf{y}|\mathbf{z}) \log c_l(\mathbf{y}|\mathbf{z}).$$

For example, $n = 6$ and

$$\begin{aligned}\mathbf{y} &= 0 \mid 1 \mid 0 0 \mid 0 1 \mid \\ \mathbf{z} &= 0 \mid 1 \mid 0 1 \mid 0 1 \mid\end{aligned}$$

then

$$c(\mathbf{y}, \mathbf{z}) = 4, \quad c(\mathbf{z}) = 3, \quad z(1) = 0, \quad z(2) = 1, \quad z(3) = 01,$$

$$c_1(\mathbf{y}|\mathbf{z}) = c_2(\mathbf{y}|\mathbf{z}) = 1, \quad c_3(\mathbf{y}|\mathbf{z}) = 2.$$

Universal Decoding Metric

Consider the decoding metric

$$u(\mathbf{y}, \mathbf{z}) = \log P(\mathbf{y}) + \underbrace{\sum_{l=1}^{c(\mathbf{z})} c_l(\mathbf{y}|\mathbf{z}) \log c_l(\mathbf{y}|\mathbf{z})}_{\text{Ziv's metric}}$$

The proposed decoder is

$$\hat{m} = \operatorname{argmin}_m u(\mathbf{y}_m, \mathbf{z}).$$

Discussion: A kind of a generalized MMI decoder:

$$\hat{m} = \operatorname{argmax}_m \left\{ \underbrace{\frac{1}{n} \log \left[\frac{1}{P(\mathbf{y}_m)} \right]}_{\hat{H}(\mathbf{y}_m)} - \underbrace{\frac{1}{n} \sum_{l=1}^{c(\mathbf{z})} c_l(\mathbf{y}|\mathbf{z}) \log c_l(\mathbf{y}|\mathbf{z})}_{\hat{H}(\mathbf{y}_m|\mathbf{z})} \right\}$$

Main Result

Theorem. Under certain assumptions, the universal decoder \hat{m} satisfies

$$\overline{P}_{e,u} \leq e^{n\epsilon(n)} \overline{P}_{e,o},$$

where

$\overline{P}_{e,u}$ = expected error probability of \hat{m} ,

$\overline{P}_{e,o}$ = expected error probability of the ML decoder,

and

$$\epsilon(n) = O\left(\frac{\log \log n}{\log n}\right),$$

with a leading term that is linear in $\log |\mathcal{Y} \times \mathcal{Z}|$.

Technical assumption: The hidden Markov source $P(y)$ has strictly positive transition probabilities, $\{p(y, \omega, \theta | \omega', \theta')\}$.

Comments About the Proof

The proof follows essentially the same lines of thought as in [Ziv85] and [Lapidoth-Ziv98], but there are two main extra difficulties:

- The effective channel, $\{P(z|y)\}$, is **not finite-state**, in general:

$$\begin{aligned} P(z|y) &= \frac{P(y, z)}{P(y)} \\ &= \frac{\sum_x G(x)V(y|x)W(z|x)}{\sum_x G(x)V(y|x)} \end{aligned}$$

- The random coding distribution, $\{P(y)\}$ is **not uniform**, in general (HMM).

Not a FS Channel

- While $P(z|y)$ is not a FS channel, as said,

$$P(z|y) = \frac{P(y, z)}{P(y)}$$

and $P(y, z)$ and $P(y)$ are **both finite-state** (hidden Markov).

- Approximating both $P(y, z)$ and $P(y)$ as product measures using their (possibly different) dominant state sequences.
- Applying combinatorial arguments (like the method of types) of permuting phrases w.r.t. both state sequences.

Not a Uniform Random Coding Distribution

- In [Lapidoth–Ziv98], there is a technical lemma, where one of the key steps is the calculation of

$$\sum_{\mathbf{y}} \frac{1}{M_{\mathbf{O}}(\mathbf{y}, z)},$$

where $M_{\mathbf{O}}(\mathbf{y}, z)$ is the **rank** of \mathbf{y} according to $\{P(z|\mathbf{y})\}$.

- Since $\{M_{\mathbf{O}}(\mathbf{y}, z)\}$ take on the values $1, 2, \dots$ in some order, then

$$\sum_{\mathbf{y}} \frac{1}{M_{\mathbf{O}}(\mathbf{y}, z)} = \sum_{i=1}^N \frac{1}{i} \leq 1 + \ln N.$$

Not a Uniform Distribution (Cont'd)

- Here, with a non-uniform input, the above quantity is generalized to

$$\sum_{\mathbf{y}} \frac{P(\mathbf{y})}{P[\mathcal{E}_0(\mathbf{y}, z)]},$$

where

$$\mathcal{E}_0(\mathbf{y}, z) = \{\mathbf{y}' : M_0(\mathbf{y}', z) \leq M_0(\mathbf{y}, z)\}.$$

- Fortunately enough, there is a relatively simple trick to bound this quantity by a sub-exponential quantity in a rather general manner.

Since There is Still a Minute, Here is the Trick:

Let $a_i \geq 0$ and $A_i = \sum_{j=1}^i a_j$. Then,

$$\begin{aligned}\sum_{i=1}^N \frac{a_i}{A_i} &= 1 + \sum_{i=2}^N \frac{a_i}{A_{i-1} + a_i} \\ &= 1 + \sum_{i=2}^N \frac{a_i/A_{i-1}}{1 + a_i/A_{i-1}} \\ &\leq 1 + \sum_{i=2}^N \ln \left(1 + \frac{a_i}{A_{i-1}} \right) \\ &= 1 + \sum_{i=2}^N \ln \left(\frac{A_{i-1} + a_i}{A_{i-1}} \right) \\ &= 1 + \sum_{i=2}^N \ln \left(\frac{A_i}{A_{i-1}} \right) \\ &= 1 + \ln \left(\frac{A_N}{A_1} \right)\end{aligned}$$