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Abstract

We consider the problem of modulating the value of a parameter onto a band-limited signal to be
transmitted over a continuous-time, additive white Gaussian noise (AWGN) channel, and estimating this
parameter at the receiver. The performance is measured by the mean power-a error (MPaE), which is
defined as the worst-case a-th order moment of the absolute estimation error. The optimal exponential
decay rate of the MPaE as a function of the transmission time, is investigated. Two upper (converse)
bounds on the MPaE exponent are derived, on the basis of known bounds for the AWGN channel of
inputs with unlimited bandwidth. The bounds are computed for typical values of the error moment and
the signal-to-noise ratio (SNR), and the SNR asymptotics of the different bounds are analyzed. The new
bounds are compared to known converse and achievability bounds, which were derived from channel

coding considerations.

Index Terms

Parameter estimation, modulation, error exponents, reliability function, additive white Gaussian noise

(AWGN), bandwidth constraints.

I. INTRODUCTION

The problem of waveform communication, as termed in the classic book by Wozencraft and Jacobs

[L, Chapter 8], is about conveying the value of a continuous valued parameter to a distant location, via a
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Figure 1. The signal space with a locus obtained from a Shannon-Kotel’inkov mapping [3| Fig. 4]. As the parameter exhausts the
interval [0, 1), the point on the signal space travels from the top left point of the locus to its bottom right point. Dots corresponds
to actual parameter values. The solid (red) arrows represent the effect of the noise, and the circles represent estimated parameter
values. The dotted (blue) arrows represent the estimation stage.

communication channel. Formally, at the input of the channel, a modulator maps a parametelﬂ u € [0,1)
to a signal {s(¢,u), 0 <t < T}, which is transmitted over the continuous-time AWGN channel, under a
power constraint, % OT 52(t,u)dt < P. At the output of the channel, an estimator processes the received
signal, y(t) = s(t,u) +2(t), 0 <t < T, to obtain an estimate of the parameter. Here, z(t) is a Gaussian
white noise process with two-sided spectral density No/2.

Such a modulation-estimation system can be depicted in a geometrical way, as shown in Fig. [T} As
noticed by Kotel’inkov [2] and Shannon [3]], the various signals {s(¢,u), 0 < u < 1} can be represented
as vectors in some signal space. The modulator can therefore be viewed as mapping the parameter into
a point in the signal space, and as the parameter exhausts its domain, a locus (possibly, discontinuous)
in the signal space is obtained. The additive noise then shifts the transmitted point to a different point
in the signal space, and the estimator maps it back to a point on the locus, which in turn corresponds
to an estimated value of the parameter. The estimation performance is usually evaluated by the a-th
order moment of the absolute estimation error, which we term the mean power-a error (MPaE). Most
commonly, the mean square error (MSE) is used (a = 2). As can be discerned from Fig. |1} the estimation
error can be roughly categorized into two types: (i) weak noise errors, which result in small estimation

errors, and are associated with the local, linearized behavior of the locus (right red arrow in Fig. E[), and

'The range of values the parameter may take is assumed [0, 1) for reasons of convenience only, with no essential loss of
generality.
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(ii) anomalous errors, that yield relatively large estimation errors, which are associated with the twisted
curvature of the locus in the signal space for non-linear modulation systems (left red arrow in Fig. [I).
A good communication system should properly balance between the two types of errors. Nonetheless,
when the SNR falls below a certain threshold, the anomalous error quickly dominates and the MPaE
becomes catastrophic. This phenomenon is known as the threshold effect, see, e.g., [1], [4], and many
references therein

A natural question, for such systems, is how small can the MPaE be made for an arbitrary modulation-
estimation system, operating over transmission time 7'? As usual, answering this question exactly is
prohibitively complex, even in very low dimensions [2], [S]. However, it turns out that if the modulator

and estimator are designed carefully, the MPaE may decay exponentially with 7', to wit

~

sup Eu{ U—-u a} ~e BT (1)

u€el0,1)

for some constant E > 0, where U is the estimato and E, {-} is the expectation operator with respect to
(w.r.t.) the channel noise, when the underlying parameter is u. As we next review, the optimal exponential
decay rate of the MPaE was investigated, in the same spirit that the optimal exponential decay of the
error probability was studied for the problem of channel coding (e.g. [6, Chapter 5] and [7, Chapter 10]).

Most of the previous research has focused on the AWGN channel without bandwidth constraints on the
input signals. The goal of this paper is to develop bounds on the MPaE for band-limited input signals,
with emphasis on lower bounds. Since a lower bound on the MPaE is associated with an upper bound
on its exponent and vice-versa, then to avoid confusion, throughout the paper the term ‘converse bound’
will be used in the sense of an upper bound on the MPaE exponent. Similarly, the term ‘achievability
bound” will be used for a lower bound on the MPaE exponent. Nevertheless, the terms ‘converse’ and
‘achievability’ are only used here in a loose way, in the sense that it does not necessarily imply that the
lower bound on the exponent coincides with the upper bound.

We begin with a short review on existing bounds for the continuous-time, unlimited-bandwidth case.
For achievability results, a few simple systems were considered. In [[1, Chapter 8], a frequency position
modulation (FPM) system with a central frequency and bandwidth that both increase exponentially with
T, i.e., as exp(RT), for some optimized R, was shown to achieve an exponential decrease of the MSE
according to exp(—ﬁT). In the same spirit, a pulse position modulation (PPM) can be used, again, with

2We refer the reader to [4] Section 2] and [2, Section 2], for a more detailed discussion on the waveform communication
problem.

3A more precise definition will be given in the sequel.
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exponentially increasing bandwidth, to achieve the same exponent. More recently, a modulation scheme
which employs uniform quantization of the parameter to exp(RT") values (where R > 0 is again a design
parameter), followed by an optimal rate- R channel code for AWGN channel (i.e., its reliability function),
was shown to achieve the same exponent (see [8, Introduction]). A similar system will be discussed in
Section

To assess the performance of the above schemes, converse bounds have also been derived. On the face
of it, as this problem lies in the intersection between information theory and estimation theory, methods
from both fields are expected to have the potential to provide answers. While estimation theory offers an
ample of Bayesian and non-Bayesian bounds [9] (see also [10, Introduction] and references therein for
an overview), the vast majority of them strongly depend on the specific modulator, and so, they are less
useful for us in the quest for universal bounds, i.e., when there is freedom to optimize the modulator.
From the information-theoretic perspective, one can view the parameter as an information source, and
assume that it is a random variable U, say, distributed uniformly over [0,1). The estimate U , 1s then
chosen to minimize the average distortion, under a distortion measure defined as the a-th order moment
of the absolute error. The MPaE is then the average distortion D of this joint source-channel coding
system, and, in principle, the data processing theorem (DPT) [[11, Section 7.13] can be harnessed to obtain
a converse bound of the form D > R™(C), where R(D) is the rate-distortion function of the source
and C is the channel capacity. However, this bound may be too optimistic, since to achieve this bound
using a separation-based system, the source should be compressed at a rate close to its rate-distortion
function, which is impossible when there is merely a single source symbol (scalar quantization)

In the unlimited-bandwidth case, C' = N%’ and while the rate-distortion function is not known to have
a closed form formula, it can be lower bounded using Shannon’s lower bound (e.g. [12, Corollary 7.7.5],
[13, Section 4.3.3]) as

R(D) > h(U) — %log(QﬂeD) = 3 log(2meD) @)

where h(U) = 0 is the differential entropy of U. Therefore, the DPT lends itself to obtain a lower bound
on the MSE, given by
- 1 1 2P
D=EU-U)?> —exp(—2CT) = — exp (—T) . 3)
2me 2me

In [14, Section 6] the idea of using a DPT with generalized information measures [15], which pertain

*The same is true for any given finite dimension, that does not grow with T'.
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to a general univariate convex function, was extended to multivariate convex functions, and harvested in
order to obtain the improved bound of the exponential order of exp(—NﬂoT).

In a different line of work, a more direct approach was taken, and a lower bound on the MPaE was
developed from an analysis of the channel coding system introduced above, namely, a modulation system
which maps a quantized value of the parameter to a codeword from a channel code (or a signal from
a signal set). Rather complicated arguments were used to obtain a converse bound which is valid for
any signal set. Research in this direction was initiated by Cohn in his Ph.D. thesis [16], who derived

a lower bound of the exponential order exp( T) for the MSE (o = 2). Later on, Burnashev

—39W
[17]], [18] has revised and generalized Cohn’s arguments, and his efforts eventually culminated in [18,
Theorem 3], which provides, among other results, the lower exponential bound of the exponential order
of exp(—ﬁT) for oo = 2. As this converse bound coincides exponentially with the achievability bound,
then the optimal exponent is precisely characterized for the unlimited-bandwidth AWGN channel.

The exploration of universal bounds to modulation-estimation problem was not confined only to AWGN
channels and the MPaE. In [19, Section IV], a large deviations performance metric was considered,
namely, the exponential behavior of the probability that the estimation error would exceed some threshold.
This exponent was fully characterized in [8]]: For an optimal communication system, the probability that
the absolute estimation error would exceed exp(—RT') behaves exponentially as exp[—7" - E(R)], where
E(R) is the reliability function of the channelE]

The exponential behavior of the MPaE discussed above for continuous-time channels, holds when there
is no limitation on the bandwidth of the input signals. In [20], a converse bound and an achievability
bound on exponent of the MPaE were derived, for a discrete memoryless channel (in discrete-time), rather
than the AWGN channel (in continuous-time). In this paper, we consider the problem of characterizing
the maximal achievable exponent of the MPaE for the AWGN channel fed by a band-limited input, with
emphasis on converse bounds. We are not aware of earlier works that focus concretely on this setting.

As a simple benchmark, the DPT bound mentioned above can be adapted to input signals band-limited
to W, by simply replacing the capacity of the unlimited-bandwidth case with the capacity of AWGN

channel with band-limited inputs, i.e.,

P
C = Wlog <1+ NoW). @)

>The result in [8] assumes an unlimited-bandwidth AWGN channel, for which the reliability function is known exactly (c.f.
Remark EI) However, the proofs in [8] are general, and in fact pertain to any channel for which a reliability function exists.
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The resulting lower bound on the MPaE has exponential order olﬁ

P
exp [—T -aW log <1 + N0W>] . 5)
Thus, unlike the unlimited-bandwidth case, for which the MPaE scales linearly with N%, for the band-

limited case, it only scales logarithmically with N%.

In this paper, we improve on the converse bound of (5) using two different mechanisms. In the first,
channel coding considerations, as the ones used in the converse bound of [20], will be used to derive a
converse bound to the problem at hand. In the second method, we utilize the results of the unlimited-
bandwidth case from [16], [17], [18], in a somewhat indirect way, rather than revising the complicated
bounding techniques used to prove them. The general idea is to begin with a band-limited system, and
transform it, by some means, to a new system. We will then relate the MPaE exponent of the new system
to the MPaE exponent of the original system, and use the converse bound of the unlimited-bandwidth
case, for the new system. This, in turn, will provide a converse bound on the original, band-limited
system. Two new bounds will be derived from this general methodology. It turns out that none of the
three converse bounds mentioned above dominates the other two, and for each of these bounds, there
exists a region in the plane of the variables o and SNR such that this is the best bound out of the three.

To assess the tightness of the converse bounds, we will briefly discuss also achievability bounds.
Specifically, the achievability bound of [20] will be adapted to the AWGN channel, just as the converse
bound of [20] was. We will also speculate on a possible approach for improving this achievability bound,
based on unequal error protection (even though, thus far, we were not able to demonstrate that it actually
improves). It should be mentioned, that for this problem, converse bounds which are based on other, well-
known, estimation-theoretic lower bounds, such as the Weiss-Weinstein bound [21]], [22], have failed to
provide stronger bounds, at least in the various ways we have tried to harness them.

The rest of the paper is organized as follows. In Section the modulation-estimation problem is
formulated, and known results for the unlimited-bandwidth AWGN channel are reviewed. In Section [I1I]
the converse bound adapted from [20] is presented, and our main results, which are the two new converse

bounds on the MPaE exponent. The achievability bound, also adapted from [20], is discussed as well.

%The DPT bounds as stated in @) is suitable for o« = 2, since Shannon’s lower bound was used for the MSE distortion
measure. To generalize it to other values of «, we recall that for difference distortion measures, Shannon’s lower bound is given
by the entropy of the source minus the maximum entropy [11, Chapter 12] over all random variables satisfying the distortion
constraint. For a distortion measure of the form d(u, @) = |u —@|® the maximum entropy is obtained by a generalized Gaussian
density with parameter «, i.e., f(x) ~ exp{— ’%‘a} where s is a scaling parameter. So, the Shannon lower bound in this case
is given by h(U) + do — é log D, where d, depends only on «, and does not affect the exponential behavior of the bound.
This and (@) immediately imply (3).
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Figure 2. A Modulation-estimation system.

In Section [IV] the various converse bounds are compared to each other, as well as to the achievability
bound. Numerical results are displayed, and a systematic comparison between the bounds is made, based

on asymptotic SNR analysis.

II. SYSTEM MODEL AND BACKGROUND

Throughout the paper, real random variables will be denoted by capital letters, and specific values they
may take will be denoted by the corresponding lower case letters. Random vectors and their realizations
will be denoted, respectively, by capital letters and the corresponding lower case letters, both in the bold
face font. Real random processes will be denoted by capital letters with a time argument, and specific
sample paths will be denoted by the corresponding lower case letters. For example, the random vector
X = (X1,...,Xn), (IV positive integer) may take a specific vector value x = (z1,...,2y), and the
random process X (t) may have the sample path z(¢). The probability of an event £, for an underlying
parameter v € [0, 1), will be denoted by P, [£], and the expectation operator will be denoted by E,|-].
The indicator for a set .A will be denoted by I{.4}. Logarithms and exponents will be understood to be
taken to the natural base. For the sake of brevity, for large integers, we will ignore integer constraints
throughout, as they do not have any effect on the results. For example, we will assume a blocklength
N = 2WT, rather than N = [2WWT'], provided that 2WT > 1.

Let u € [0,1) be a parameter and consider the continuous-time AWGN channel

y(t) = s(t,u) + 2(1), (6)

where s(t,u) and y(t) are the channel input and output, respectively, at time ¢, and {z(¢)} is a white
Gaussian noise process with two-sided spectral density %

A modulation-estimation system St of time duration 7T is defined by a modulator and an estimator.
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The modulator mapq’| a parameter value u to a signal {s(t,u), 0 <t < T}, where s(t,u) =0 for t <0
and ¢ > T, and where the mapping v — s(t, ) is assumed measurable. The estimator maps the received

signal {y(t), 0 <t < T} to an estimated parameter, &. The system St is power-limited to P if

1T,
T/o s*(tyu) -dt < P @)

for all u € [0,1). The system is considered band-limited to W if there exists an orthonormal basis of

N £ 2WT functions {¢,(t), 0 < t < T}N_,, such that for all u € [0,1), there exists a vector of

n=1>
coefficients, s(u) £ (s1(u),...,sn(u)), such that
N
s(tu) = su(u)-gu(t), 0<t<T. (8)
n=1

Following a procedure similar to that of [[12, Section 2.1], the continuous-time channel can be converted

to an equivalent N-dimensional channel. As discussed there, the projections

T
yné/ y(t) - dn(t)-dt, 1<n<N, 9)
0

are sufficient statistics for the estimation of u. We may define the noise projections

T
P / 2(t) - pn(t)-dt, 1<n<N, (10)
0
and group the projections into vectors, y = (y1,...,yn) and z = (21,...,2y), to obtain an equivalent
vector model
y = s(u) + z. (11)

In this model, the power constraint is given by ||s(u)||* < PT, but for the purpose of converse bounds, it
can be assumed, without loss of generality (w.l.o.g.), that the constraint is satisfied with equality. Indeed,
as was discussed in [I8, p. 2491, [23, pp. 291-292], if ||s(u)||* < PT for some u, then a single dummy
coordinate can be appended to {s(u)}, which will make ||s(u)|| = PT. For N > 1, this additional
coordinate has a negligible effect on the time or bandwidth of the signals, and, in fact, can be totally
ignored by the estimator. Regarding the noise, as the projection in (I0) is performed on an orthogonal
set, the resulting projections are independent, and thus Z ~ A(O, % - In), where Iy is the identity
matrix of dimension N. The estimator, based on the channel (TI)), can then be denoted as a function of

y, i.e., u(y) rather than u{y(t), 0 <t < T} for (6).
"The mapping u — s(t,u) does not have to be necessarily injective (one-to-one).
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At this point, a justification for adopting (I 1) as a proper model for a physically band-limited channel
is required. The correspondence between the continuous-time model (6)) and the discrete-frequency model
(TI) is a delicate, yet a mature subject. In short, signals cannot be both strictly time-limited and strictly
band-limited. Thus, the basis functions {¢,(t), 0 <t < T}N_, are chosen to span the linear space of
signals of duration " exactly, and a bandwidth of approximately Wﬂ If N =2WT > 1, the proximity
of the real bandwidth to W can be made arbitrarily sharp. A detailed discussion can be found in [24]],
[25], and [6, Chapter 8].

For o > 0 (not necessarily integer), the mean power-« error (MPaE) of St is defined as

ea(Sr) £ sup E,{la(Y)—u|}, (12)
u€[0,1)
where Y is the random counterpart of y. As we shall see, e, (S7) can be made exponentially decreasing
with 7', and so, it is natural to ask what is the fastest possible exponential rate of decrease. Specifically,
we say that F is an achievable MPaE exponent if there exists a family {Sy} of modulation-estimation
systems, parametrized by 7', such that

lim sup [—; -log ea(ST)] > F. (13)

T—o00

The objective of the paper is to derive converse bounds on E,(P/N,, W), which is defined as the largest

achievable MPaE exponent, for a given power constraint P, bandwidth constraint W, and noise spectral

density % Let us define the SNR as I' £ ﬁ. Noting that power constraint on the input to the channel
0

(TT) can be written as
Is(w)|| _PT _ PT P

N SN TowT oW (9
Scaling y by Nlo, we get an equivalent channel
y £5(u) + 2, (15)
with a power input constraint ) )
\S(Jl\tf)\l T, (16)

and z ~ N(0, Iy). Note that the dimension of the channel and is given by N = 2WT. Since
the properties of the channel (I5) depend on W and T only via their product WT, for a fixed SNR,

8These basis functions are known as prolate spheroidal functions.
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10

scaling the bandwidth W by a factor ¢ > 0 has the same effect as scaling 1" by a insteadﬂ Thus, the
MPaE exponent will always have the form
E, <P, W> =W F,(I), 17)
Ny

where F,,(I") is a certain function. The same comment applies to the converse and achievability bounds
that will be encountered along this work. So, henceforth, we will be interested in the MPaE exponent
per unit bandwidth F,,(I"). Note that the resulting MPaE has the exponential form exp[—TW - F,,(I')] =
exp[—% - Fo(T")]. Most of the time, it will be convenient to carry out the exponent analysis in the discrete
domain, and then finally, translate the result to the exponent (I7)), simply by doubling the exponent.

To review the known converse bounds for the unlimited-bandwidth case, we begin by formulating the
appropriate scaling of their MPaE exponent. Writing as

Fo()
r

Eq <P W)zW-Fa(F):W- T (18)

No’

and noting that as W — oo then I' — 0, we can define unlimited-bandwidth MPoE exponent as

F, (T
Yo £ lim ( )

1
r-o T (19

Thus, for W — oo, (18) has the same form as (I7), with the exponent per unit bandwidth being a linear
function of the SNR, as v,I'. By contrast, as we shall see in Section and as was mentioned earlier,
for band-limited signals, F,, (I") scales logarithmically with T.

The value of 7y, was bounded by Cohn [16], and later on by Burnashev [17], [18]. The best known
converse bound is given by [17, Theorem 2], [18, Theorem 3]

ﬁmin{a7w(a)}v 0<Oé§0[0
Ya < ey |1+ a+5?;i\/1m} Ca<a<?2, 20)

2(1?;-11)’ =2

where «q is the unique root of the equation o — (o — 1)y/a +1 — 2 = 0 (ag ~ 1.5875) and

)2 1+a— max [2aq + 49/ (T — Qg1 + @) — ¢*(3a + 1)] . @1)
q=>1/2

20f course, to keep the SNR fixed, the power should be changed to a - P.

10To translate Burnashev’s results to our defintions, the value of the exponent in [[17]], [18]] should be doubled. In the notation

of [[17], [18]], the MPaE is an exponential function of the energy per noise spectral density, and has the form exp(—~q - A)

where A = 7 (compare with (T8)).
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In fact, for o« > 2 this is the exact value of v, as there are schemes that achieve it ([[17, Theorem 1] and

c.f. Remark [5).

III. EXPONENTIAL BOUNDS ON THE MPaE

In this section, we present three new converse bounds on the MPaE exponent. The first bound is
an adaptation of the converse bound of [20], originally derived for modulation-estimation over discrete
memoryless channels, and this bound will be termed the channel coding converse bound. The proof idea
is to relate the MPaE exponent of a modulation-estimation system to the error exponent of an optimal
channel code (reliability function). Since the error exponent of channel codes is lower bounded by the
sphere-packing exponent (or any other upper bound on the reliability function), a converse bound on the
MPaE exponent is obtained.

We then derive two additional converse bounds by converting the unlimited-bandwidth bound to the
band-limited case, and these are the main results of this paper. An appealing property of these two bounds
is that their proof is only based on the value of the unlimited-bandwidth converse bound, and not on
the way it was proved. Consequently, there is no need to repeat the intricate proofs of the unlimited-
bandwidth bound in order to derive the new bounds. Further, any future improvement of the bound (20)
will immediately lend itself to a corresponding improvement of our band-limited bounds.

The first bound of this type will be referred to as the spherical cap bound, and its derivation is based
on the following idea. The signal vectors of any band-limited system reside on the surface of a sphere
of radius v/PT, centered at the origin. For any given angle, there exists a spherical cap in the surface
of this sphere, such that the signal vectors confined to this spherical cap pertain to a significant portion
(depending on the angle) of the parameter domain [0, 1). Then, a new modulation-estimation system can
be constructed, which is based only on signals which lie in this spherical cap. While this new system
is still band-limited, its exponent must obviously obey the unlimited converse bound. This in turn leads
to a converse bound on the original system, whose tightest value is obtained by optimization of the
aforementioned angle.

The second bound will be referred to as the spectrum replication bound, and it is based on creating
many replicas of the signal set of a given band-limited modulation system in higher frequency bands. This
results in a new system, where the value of the modulated parameter determines which of the frequency
bands will be active, and which signal will be transmitted within the band. As this new system has much
larger bandwidth, it is proper to bound its MPaE exponent by the unlimited-bandwidth bound, which

in turn, leads to a bound on the original system, whose MPaE exponent is easily related to that of the
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duplicated wideband system.

In the rest of the section, we will outline the derivation of each of the bounds in somewhat more detail,
and then formally state it. The formal proofs of the spherical cap bound and the spectrum replication
bound will be relegated to Appendix [Al Then, we will briefly discuss also the weaknesses of the various
bounds. Finally, we will discuss and state an achievability bound, which is also based on an analogous
bound from [20]], and then discuss its possible weaknesses, along with some speculations on how it might
be strengthened.

The proof of the channel coding converse bound begins by employing Chebyshev’s inequality, to link

the MPaE and the large deviations performance of the system as follows
E, {|a(Y) — u*} > A% P, {[a(Y) - u| > A}. 22)

Then, an arbitrary rate R is chosen and A = exp(—NR) is set. In [8, Theorem 1], it is shown that if there
exists a modulation-estimation system such that P, {\Q(Y) —u| >e N R} decays with some exponent
E(R), then an ordinary channel code of rate R can be constructed which achieves the same exponent.
Thus, as E(R) cannot be larger than the reliability function of channel coding, it follows from (22} that
the MPaE exponent cannot be larger than E(R) + aR. Finally, the best bound is obtained by optimizing
over the rate R, to yield ming>¢ [E(R) + aR].

To state the bound more explicitly, let us define Gallager’s random coding function [6, p. 339, eq.
(7.4.24)]

%mmé[wwmuw+mm4&—r)+mmm} 23)

1+p

DN | =

where [6, p. 339, eq. (7.4.28)]

Al r 4Tp
=S |1+— ) |1+l -3, 24
bo =3 1+p (1+p+T)2 @4
and Gallager’s expurgated function [6, p. 341, eq. (7.4.43)]
r » r
Ex r é 1- X o ! X X T 5 ) 2
(p.T) = ( B)p+2+20g[5 <B 2p>] (25)

where [0, p. 342, eq. (7.4.45)]

A1 T 1 2
EN T & [ R 26
Bx 2+4p+2 +4p2 (26)

It should be remarked that for the converse bound on the MPaE exponent, Gallager’s random coding

exponent is used only at rates for which it equals to the reliability function of channel codes, namely,
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where it coincides with the sphere-packing exponent. In addition, it is well known that the channel coding
reliability function at zero communication rate is equal to the expurgated exponent, which in turn is given
by

: r

lim Ex(p,T') = 1 27)

p—00

We now have the following Proposition.

Proposition 1 (Channel coding converse bound). The MPaE exponent per unit bandwidth is upper
bounded as

Fo(T) <min{2Ep(a, ), 7o'} . (28)

Proof: Using the same proof as in [20, Theorem 1, Appendix A] and outlined above, we have that

r
F,(I') < 2~min{E0(a,F),4}. (29)
For the band-limited AWGN channel, we may also add to the minimization the unlimited-bandwidth

bound, and so

F,(T') < min {QEo(a,I‘), g,fyaf} . (30)

Now, by definition, 7, is non-decreasing with «, and from limg 00 Ya = % Thus, v, < % and so
r

5 never dominates the minimization in (30). [ |

Note that in the channel coding converse bound, the variable p of Gallager’s random coding function is
set to a, and can be larger than 1, because the function Fy(«,T") actually arises from the sphere-packing
exponent, for which p is positive and not limited to [0, 1].

The outline of the derivation of the spherical cap bound is as follows. With some abuse of notation,
the system Sy will be identified with the projection vectors of its signal set, Sy = {s(u) : u € [0,1)},
and its MPaE will be denoted by e, (Sy). We begin with an arbitrary band-limited system Sy. As can
be seen in Fig. [3] only part of the locus, created by the signals in Sy, is contained in a given spherical
cap of angle 26. If we focus only on the subset of parameters values pertaining to signals within the
spherical cap, and join these subsets to the left (see Fig. , we get a new system Sy which modulates
parameters in [0,u) for some u < 1, and uses the signals within the spherical cap only. If we then
rescale the interval [0,u) back to [0,1) (while still using only signals within the same spherical cap),

we get a new system S ~, for parameters in [0, 1). The MPaEs of the various systems Sy, Sy and S N

obey a simple relationship, and thus any bound on the MPaE of Sy implies a bound on the MPaE
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Figure 3. Illustration of the mechanism of the spherical cap bound.

of Sy. Specifically, using the unlimited-bandwidth converse bound (20) on the MPaE exponent of Sy
(even though it is a band-limited system) leads to the spherical cap bound. A key point in the proof is
a measuring argument similar to [23| pp. 293-294], which is used to prove the existence of a spherical
cap which contains a significant portion of the signal set locus. Finally, as the angle 6 of the spherical

cap was arbitrary, it is optimized to obtain the tightest bound. The following theorem is then obtained.
Theorem 2 (Spherical cap bound). The MPaE exponent per unit bandwidth is upper bounded as

Yal', <=
F,(m)<{ i 31)

a[log(%)—i—l], Fz%
Next, we outline the derivation of the spectrum replication bound. The proof relies on the idea of
superimposing a frequency position modulation over a system Sr for bandwidth W. Suppose that we
have a system Sy whose signals are band-limited to [0, W'). Imagine that we duplicate its signal set by
a simple frequency shifts, from the frequency band [0, W) to all the frequency bands [mW, (m + 1))
for 0 < m < M — 1, where M is integer, thus obtaining a new signal set for a system ST. Now, a
specific signal in the new signal set is specified by two components of the parameter: (i) the frequency
band index m, and (ii) the signal within the band, which is nothing but a frequency translation of a
signal from S7. The spectrum of the signals of S7 and Sy is illustrated in Fig. 4 Accordingly, we can
construct a modulation-estimation system ST which modulates both parameters.

Specifically, let the newly constructed system be denoted by Sy. The parameter at the input of this
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Figure 4. The system St is band-limited to W, and uses a linear combination of the orthonormal basis {¢» (t) ,1};1 to modulate
the parameter u, where, here N = 3. The orthonormal basis {¢n(t)}3_; is duplicated, using a frequency translation to the

bands [W,2W) and [2W, 3W). The new system S, shown here with M = 3, modulates the parameter v by first choosing a

frequency band m € {0,1,2}, and then modulates {¢, (t)} ¥ 41 just as St modulates {¢n (t) M.

system is first uniformly quantized to M values, and then the quantization error, after a proper scaling
to [0,1), is used as an input to the original system S7. The signal chosen from Sy is then modulated to
one of M possible non-overlapping frequency bands according to the quantized value of the parameter,
and then transmitted over the channel.

At the receiver, first the active frequency band is decoded using a non-coherent decoder, and the
quantized part is estimated. Then, the signal is demodulated to baseband (assuming a correct decoding
at the first stage), and the estimator of St is used to estimate the quantization error. Afterwards, an
estimation of the parameter is obtained using both the decoded quantized value and the estimation of the
quantization error.

Now, on the one hand, the MPaE exponent of the new system St can be lower bounded by an
expression which depends on the MPaE exponent of Sy, i.e., F,,(I'), and the probability of correct
modulation frequency decoding. On the other hand, the signals of Sr occupy the frequency band [0, M V),
and if M > 1, E] these signals have a much larger bandwidth than the original system. Thus, it is proper
to upper bound the MPaE exponent of the new system Sr by the unlimited-bandwidth bound (20). Using
these relations, a bound on F,(I") can be readily obtained.

To state the spectrum replication bound, we need the following definitions. For p € [0, 1] deﬁneE]

Vanl'+1+4+1
®(p,T) 2 pln —1—1logn] +n+T +log [?7277] — /4T + 1, (32)

"As we shall see, M is in fact chosen to exponentially increasing with 7.

"2This function plays the role of Gallager’s Eo(p) function in the random coding exponent for ordinary channel coding [6]
Section 5.6].
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where

_ D+ /T2 4% + 1)(p + 1)
o 2(p+1)? ’

(33)

and also define

(1>

A(T) 2 sup {‘I’(ﬂ)p‘”} . (34)

0<p<1

Theorem 3 (Spectrum replication bound). The MPaE exponent per unit bandwidth is upper bounded as
Fa(F) < 'VaF - [O‘Aa(l—‘)h- (35)
where [t]; = max{t,0}.

It is evident that both bounds of (31)) and (35)) are monotonically increasing with +,. Thus, in the
range where the true value of 7, is not known (0 < « < 2), any upper bound on v, can be used, in
particular, the bound (20).

As we shall see in Section all the three converse bounds mentioned above, as far as we know, are
the best available, at least for some « and I'. However, for the sake of potential future improvement of
these bounds, it is insightful to point out also their weaknesses. As discussed in [20, p. 839, footnote 6],
the weakness of the channel coding converse bound does not stem from the use of Chebyshev’s inequality,
but from the fact that there is no apparent single estimator which minimizes P, {]ﬂ(Y) —u| >e N R},
uniformly for all R. The spherical cap bound suffers from the fact that an unlimited-bandwidth bound is
used as a converse bound within the cap. The spectrum replication bound has the weakness that it is based
on analyzing a two-stage estimator, which first decodes the frequency band, and then uses the signal in
this band to estimate the parameter. Furthermore, in the first step, the frequency band is decoded using
a sub-optimal, non-coherent decoder. Nonetheless, the above weaknesses are the result of compromises
made to make the analysis reasonably tractable, and, as said, give non-trivial results.

We conclude this section with an achievability bound. The idea is to use a separation-based scheme,
which first uniformly quantizes the parameter to exp(NR) points, for some R > 0. Then, it maps
the quantized parameter to a codeword from an ordinary channel code, which achieves the reliability
function, F(R,T"). At the receiver, the maximum likelihood channel decoder is used to decode the
transmitted codeword, and the estimated parameter is defined as the midpoint of the quantization interval
of the decoded codeword. Note that increasing the rate R, reduces the quantization error, but increases
the probability of decoding error and vice-versa. Thus, the rate is optimized in order to maximize the

MPoE exponent.
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The derivation of this bound is a straightforward extension of [20]. We denote by E(R,I") the reliability
function of the AWGN channel with SNR T, i.e., the maximal achievable error exponent for sequence
of codes of rate R. As is well known, it can be assumed that the reliability function is for the maximal

error probability over all codewords. We will use the definitions in (23)) and (23).
Proposition 4 (Achievability bound). The MPaE exponent per unit bandwidth is lower bounded as

F,(I')>2- max min {E(R,T"),aR} (36)

> 2 - max { sup , sup (37)

aky(p,T') abyx(p,1)

0<p<t pta 1 pta |
Remark 5. An achievable bound for the unlimited-bandwidth AWGN channel can be proved similarly to
Proposition |4, In this case, the reliability function F(R,T") in is known exactly for all rates. With

a slight change of arguments, it is given by [26]]

~Q

E(R,C) =

<R<
: (38)
<R<C(C

where C' = N%. Since aR (E(R,C)) is an increasing (respectively, decreasing) function of R, when

a > 2, the solution of 2 - maxp>omin{E(R,C),aR} is obtained at R = 57 Cc - L. N%. This

atl) ~ 2(atl)
proves the tightness of for a > 2.

Remark 6. It was shown in [20] that this bound is tight in the extreme cases of & — 0 and o — oo. This
is indeed plausible since when av — 0 the error |4 — u|® behaves like a “zero-one” loss function, in the
sense that large errors do not incur more penalty than small errors. Thus, in this case, the quantization
error dominates the MPaE, and the rate is maximized, i.e. chosen to be the channel capacity. A similar
situation occurs when o — oo, but that in this case, the error |i — u|* tends to be a “zero-infinity”
loss function. Large errors still do not penalize more than small errors, but any error event causes a
catastrophically large penalty. Thus, in this case, the decoding error dominates the MP«aE, and the rate
is minimized in order to maximize the decoding reliability, i.e. chosen to be zero. It should be stressed,
however, that the achievability and converse bound are tight for a given I', as o — 0 and o« — o0, but

may not be the best bounds for a given 0 < o < o0.

An apparent weakness of the achievability bound is that it is derived from analyzing a separation-
based system, which means that the mapping between one of the M possible quantized parameter values

and the M signal is arbitrary. A better system should choose this mapping such that nearby (quantized)
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parameter values will be mapped to nearby signals. In this case, a decoding error will typically cause
only a small error in the parameter value. In other words, if one maps the quantized parameter value
into bits, an unequal error protection scheme should be used to communicate these bits [27]], with larger
reliability for the most significant bits than for the least significant bits.

Typically, such a scheme uses an hierarchical channel code (also called superposition coding) [28]],
just like the one used, e.g., for the broadcast channel [29, Chapter 5]. Each codeword, in this case,
is given by the sum of a ‘cloud’ codeword and a ‘satellite’ codewordE] where the most significant
bits determine the cloud codeword, and the least significant bits determine the satellite codeword. The
advantage of such a system is that pairs of signals pertaining to nearby parameter values belong to the
same ‘cloud’, whereas pairs of signals that are associated with distant parameter values are allowed to
belong to different clouds. Thus, when a satellite decoding error occurs, this results in only an error in
the refined part of the quantized parameter. Since the cloud centers have a rate lower than the entire
codebook, the decoding error probability of the cloud centers can be significantly reduced, and overall,
lead to a better MPaE exponent. It can also be noticed that a scheme in the same spirit was used in the
spectrum replication bound (Theorem [3), as a method to prove a converse bound on the exponent.

Unfortunately, despite a considerable effort in this direction, we were not able to find a concrete bound
which improves the achievability bound. It seems that the problem is that strong bounds on the MPaE
can be obtained only by analyzing the optimal cloud decoder (as, e.g., in [30]), and not a decoder which
treats the interference from the satellite as noise (as, e.g., in [31]]). Especially, it seems that expurgated
bounds for optimal cloud decoding are most useful for the problem of bounding the MPaE. However,
the best expurgated bound we are aware of was not sufficiently strong to improve the achievability bound

on the MPaE.

IV. RESULTS AND COMPARISON AMONG THE BOUNDS

In Figures the values o = 0.1, 1,2, 10 are considered, and the channel coding converse bound (28],
the spherical cap bound (1)), and the spectrum replication bound (33)) are plotted (using (20) to bound
Ya)- For the sake of comparison, the unlimited-bandwidth converse bound (20), and the achievability
bound are also plotted.

It is evident that for @ = 0.1, the channel coding converse bound dominates all other bounds; for

a = 1 the spherical cap bound is better for some values of I', but for most SNRs the channel coding

BIn a two-users degraded broadcast channel, the cloud codeword carries the message to be decoded by both users, while the
satellite codeword carries the private message, intended for the strong user only.
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Figure 5. Various bounds on F, (T") for o = 0.1.
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Figure 6. Various bounds on F,(I") for o = 1.

converse bound is the best; for @ = 2 the spherical cap bound is best for some values of I', but for most
SNRs the spectrum replication bound is the best; and, for a = 10 the spherical cap bound dominates all
other bounds.

To investigate systematically the behavior of the bounds for different values of o, we explore the high

and low SNR regimes. At high SNR, I' — oo, it turns out that the all the converse bounds have the
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Figure 8. Various bounds on F,(I") for o = 10.

same asymptotic form alog(I") 4 ¢, + o(T"), for some ¢,. Thus, the various upper bounds differ by their
additive constant c,. The next proposition gives the value of the constant c,. Its proof, as well as the

proofs of all the other propositions in this section can be found in Appendix [C|
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Figure 9. ¢, for the various bounds, when using (20) as an upper bound to 4.

Proposition 7. The converse bounds at I' — oo are given by
F\(T) < alog(T') + ¢4 + o(T) (39)

with

a— (1+a)log(l+ «), Channel coding converse bound (Prop.
ca = § alog (12) + a, Spherical cap bound (Thm. (40)
alog (g) , Spectrum replication bound (Thm. |3|), o > 2.

For o < 2 the spectrum replication bound of Theorem 3| increases linearly with T, and is thus useless

for high SNR.

Fig. E] shows the value of ¢, versus a.. As can be seen, for 0 < a < 1.34, the channel coding converse
bound has the best constant, for 1.34 < o < 2 and « > 3, the spherical cap bound has the best constant,
and for 2 < a < 3, the spectrum replication bound has the best constant. Nonetheless, if the bound
is not really tight for o < 2, and its actual value is vy, = m just as for o > 2, then the spectrum
replication bound would be the best for all o < 3 (see Remark [12)). We remark that the DPT based bound

(@), given by
Fo(T) <a-log(l+1), 41)
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is not displayed in Figures [S}{8] since it is worse than the best all other converse bounds. For high SNR,
this is also evident from Fig. [0 by noting that ¢, < 0 if we take the minimum over of all bounds (cf.
(39) and @I))). Regarding the achievability bound of Proposition [4] a slightly weaker statement can be

made.
Proposition 8. The achievability bound of Prop. 4| scales as [1 + o(T")] - alog(T’) as T' — .

At the other extreme, at low SNR (I' — 0), it is apparent that just like in channel coding, the
bandwidth constraint is immaterial, and the performance of band-limited systems approaches that of
unlimited-bandwidth systems. In this regime, the additional dimensions offered by a possible increase
of the bandwidth do not improve the exponent, because the increase in the MPaE exponent due to the
additional dimensions is lower than the decrease in the exponent due to energy reduction in the original

dimensions. Proposition [9] describes the behavior of the channel coding converse bound for small I.

Proposition 9. The channel coding converse bound of Prop. scales as mf +0O(?%) as T — 0.

For o« > 2 the channel coding converse bound is linear in I', and has the same slope as the unlimited-
bandwidth converse bound 7,I" (see (20)). For o < 2, however, there is still a gap.

Nevertheless, as the SNR increases, the band-limited exponent should be strictly less than the unlimited-
bandwidth exponent. From this aspect, an interesting figure merit for a bound is the minimal SNR for
which the bound deviates from the unlimited-bandwidth bound. For the spherical cap bound, this SNR

o

is clearly T'yc £ Pt For the channel coding converse bound, such an SNR I'.. exists, but it is difficult

to find it analytically. Indeed, as I' — 0, we get 39 — 1 and the channel coding converse bound reads

(0}

Fo() < e o(Ir?), (42)

+ o

and as evident from (20), the minimization in (28) is dominated by the term ~,I'. For the spectrum
replication bound, the minimal SNR I'g, for which the bound deviates from the unlimited-bandwidth
bound is also difficult to find analyticall Thus, numerical results are displayed in Fig. From this
aspect, it is seen that the spherical cap bound is usually better than the two other bounds, except for very
low values of a.

The existence of such an SNR is also difficult to prove. Note that Ao (") = 0. Thus, if An(T") is a convex function of
I then a critical SNR Ty, such that Ao (I') > 0 for all I' > Ty, does exist. In turn, A, (T") is the pointwise supremum of

2D =%l "and so if ®(p,T) is a convex function of T, then so is A, (T'). Unfortunately, verifying that ®(p,T) is a convex
function of I is not a trivial task. Nonetheless, we were not able to find any counterexample for the convexity of ®(p,T").

June 21, 2016 DRAFT



23

Channel coding converse bound
—-Spherical cap bound
|—Spectrum replication bound

Figure 10. The minimal SNR for which a band-limited bound deviates from the unlimited-bandwidth bound, as a function of
o.

It is also interesting to note that for a given I', all bounds tend to zero as a — 0. For a — o0
the spectrum replication bound is useless, whereas the channel coding and spherical cap bounds tend
to g; the latter being the channel capacity of the unlimited-bandwidth channel (per unit time per unit

bandwidth).

APPENDIX A

PROOFS OF CONVERSE BOUNDS

Proof of Theorem ' As said in Section |II, any band-limited signal s(¢,u) of energy PT can be
identified with a vector s(u) = (s1(u),...sn(u)) € RV, where N = 2WT (see (8)). Due to the power
constraint, s(u) lies on the surface of the of radius v/PT, centered at the origin.

We begin with a few definitions. With some abuse of notation, the system Sy will be identified with
the projection vectors of the signals in Sz, i.e., Sy = {s(u) : u € [0,1)}, and its MPaE will be denoted
by en(Sn), where the estimator will be understood from context. We denote the set of parameters values
pertaining to a signal subset Sy C Sy, by U(Sy), ie., u € U(Sy) iff s(u) € Sn. Also, we denote
by |U(3N)] the standard Lebesgue measure of the set U(Sy) C [0, 1). Furthermore, for any unit vector

g € RY and an angle 6 € [0, 7] we define the spherical cap as

Ag(g,Sn) = {s(u) €Sy (s(u),g) > VPT- COSG}, (A.1)
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where, as usual, the inner product is defined as (s(u), g) = 227:1 Sp(u) - gn. We begin with the following

measuring argument.

s

Lemma 10. Let § € (0, 5) and Sy be given. Then, there exists unit vector g for which

N log N
U [Ag(g, Sn)]| > exp {2 : [log (sin2) — © < Ojgv ﬂ } (A.2)
Proof of Lemma [I0} The idea of the proof is similar to [23| pp. 293-294]. Let Ay (6) denote the
surface area of a spherical cap of angle 6 on a sphere of radius v/ PT, in an IV dimensional space. Note

that Ay (7) is the surface area of the entire sphere. Now, define

1
=2 /0 / I{(s(u),g) > S -cosf}dBn(g) - du (A.3)

where By is the surface of the N-dimensional unit sphere and dBy(g) is a differential surface area
around g. On the one hand, = is trivially given by Ax(#). On the other hand, using Fubini’s theorem

[32, Chapter 18], = can also be expressed with the integration order exchanged, and so

1
== /B /0 1{(s(u),g) > S - cos 0} du - dBy (g) (Ad)
= [ 10LA(e.Sx)lldB ) (A5)
< An(m) - max |U[Ay(g,Sn)]| - (A.6)
g€ByN

Thus, there exists g € By such that

U [Ag(g, Sn)]| = (A7)

To conclude, we use [33) eqgs. (27) and (28)]

o oIl o (§)] —ew {5 e e - A - T s

u

Let Sy be given, and denote its estimator by «(y). In addition, let g be a unit vector that satisfies

(A2), and let Uy = U [Ay(g, Sn)] the corresponding parameter values of its spherical cap. We shall now

construct from Sy, two modulation-estimation systems, Sy and S ~, using signals only from Ay (g, Sn),
such that

ea(SN) > ea(Sn) > UN|" - ea(SN). (A.9)
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Now, although S‘N is band-limited just like Sy, we will bound ea(S‘N) using the unlimited-bandwidth
bound. This and will provide a bound on F,(T).
To construct Sy, we shall map Uy onto Uy = [0, |Ux|) in an order preserving manner (see Fig. .
For example, if Uy = Ule Z;, where Z; are disjoint intervals of the form [a;, b;), and a1 < by < az <
- < ay < by then such a mapping is easily obtained by eliminating the spaces between every two
consecutive intervals. Indeed, at the first step, the interval Z; will be shifted by a; —by_; to the left, such

that 7y, and Z; are combined into a single interval 1}17)1, while Ii(l) =T;issetfor 1 <i<Il—1.At

the second step, the interval I}l_)l is combined with I}l_)Q to a single interval I}z_)Q in the same manner.

Continuing in this manner for / —1 steps, we obtain a single interval, which can be translated to [0, [Ux).

More generally, it is easy to verify that the mapping
u
U[u] é/ I[w € Uy dw (A.10)
0

satisfies the required properties. Note that the integral in (A.10) exists since the mapping u — s(t,u) is

assumed to be measurable. The function W[-| is monotonic and Lipschitz continuous with constant 1 as
lup — ug| > |Wlu1] — Vlus| (A.11)

for any uy,us € [0,1). So, using the estimator u(y) £ ¥[u(y)] for Sy, we have
Eo {|a(Y) — ul*} = By {|[a(Y)] - Ulu]|*}, (A.12)

for any u € Uy, where in the left-hand side (right-hand side) the system Sy (respectively, Sy) is
assumed. Hence,

ea(Sn) > ea(Sn). (A.13)
Now, consider the signal set
Sy = {8(u) = s(u) — (s(u), ) g+ s(u) € Ag(g, Sn)}- (A.14)

To wit, geometrically, this is the signal set obtained by removing the projecting of the signal vector s(u)
onto g from s(u). Clearly, for any s(u) € Ay(g,Sy) and it corresponding §(u) € Sy according to

(A.14),
PT = [|s(u)|® (A.15)

= [Is(u) — (s(u),8) - g + (s(u), 8) - gI° (A.16)
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—

9 52 + [|(s(w), &) - gl (A17)

> ||8(w)||*> + PT - cos® 0, (A.18)

where (a) follows from the Pythagorean theorem and the orthogonality of §(u) and g. Thus, the signal
set Sy satisfies an energy constraint of PT[1 — cos?f] = PT -sin? 6.

We can now construct a modulation-estimation system which is based on the signal set Sy and the
original domain of the parameter. This is simply done by scaling back Uy = [0, [Uy]) to the original
interval [0,1) = |Uxn|71-[0, [Un]). The system operates as follows. To modulate a parameter v € [0, 1),
first u(v) is set to

u(v) =0 Uy o], (A.19)

i.e. the parameter v € [0,1) is first mapped to Uy and then mapped to the u € [0,1) that satisfies
s (u(v)) € Ap(g,Sn). Then, s (t,u(v)) = > sp (u(v)) - ¢n(t) is transmitted over the channel (6). The
estimator 0(y) of v, is given by

i(y) = Un| a(y). (A.20)

Now, due to the scaling operation from Sy to Sy by a factor of |Un|~1, the ratio between their MPaE’s

is not larger than |Ux|~¢, to wit, for any given v € [0, 1)
By {[o(Y) = v[*} < UN ™" Epgy .0 {[a(y) — [Un[-0]"} (A.21)

where in the left-hand side (right-hand side) the system Sy (respectively, Sy ) is assumed. This, together
with (A.T3) implies (A.9).
Now, we note that the modulation-estimation system for v has a power limitation of PT - sin?#. So,

a lower bound for the MPaE of unlimited-bandwidth systems can be used to obtain to lower bound the

left-hand side of (A.21)), and hence,
~ 6% N -2
E, {|o(Y) —v|"} > exp _E%‘F sin“ 0| . (A.22)

This, along with (A.9) and Lemma [10] implies that for any given ¢ > 0, there exists N sufficiently large

such that

E, {|a(Y) — u|*} > exp {];[ - a [log (sin® ) — 4] } exp [—];T%I sin? 0} . (A.23)
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Now, the angle 6 € (0, ) is arbitrary, and thus can be optimized. Denoting 7 £ sin? 6 we get

N
E, {|a(Y) — u|*} > exp {— [ sup (7oI'T — alogT) — aé] } , (A.24)
2 0<r<1
and after maximizing over 7, and taking ¢ | 0, (31)) is immediately obtained. [ ]

Proof of Theorem 3 Let 6 > 0 be given. As in the proof of the spherical cap bound, let a signal
set Sy = {s(u): u € [0,1)} be given. As was discussed in Section [, for any given dimension, we
can transform a vector s(u) to a signal s(¢, ) using an orthonormal basis {¢,(t)}. Specifically, let us
consider an orthonormal basis of L £ MN signals {¢;(t), 0 < t < T}E |, where M > 1, and M
integer. We assume that the system Sy uses {¢;(t), 0 < t < T}, to transform s(u) € RY to a
signal s(¢,u). We now construct a new system, that modulates a parameter v € [0, 1), using a signal
set Sy € RY | which is transformed to a signal using {¢;(t), 0 < t < T} . Since N = 2W7T and
L =2MWT, as said in Section , one can think of the system Sy as using bandwidth MW > W. Its
total frequency band [0, M W) is partitioned into M consecutive frequency bands [0, W), [W,2W),...,
[(M —1)W, MW), and the value of the parameter is modulated using both the choice of active frequency
band 0 <m < M — ]E], and the specific signal within the band.

We now describe the system Sy which modulates v € [0,1). Let v, = L]\]/{/'[UJ, where |-] is the floor

operation, and v, = v — v.. The idea is to use v, to choose one of M possible sets of basis functions
{{qﬁl}l]\il, {0} v irs - {¢I}Z]\ig\4—1)1\7+1}’ and to use v, to choose which vector to transmit over the
chosen N basis functions, while utilizing the original system Sy.

The modulation-estimation system Sy s depicted in Fig. (in continuous time). Specifically, to

modulate v, a modulation index is chosen using the coarse part as
m(v) 2 M -v. €{0,...,M — 1}, (A.25)

and a vector of coefficients is chosen as s(M - v;). Then, §(v), the coefficient vector of Sy, is chosen

with the entries
Sl—m(v (M : Ur)a m(v)N +1<I< m(v)N + N
Si(v) = " (A.26)
0, otherwise

"SNothing it transmitted at all other bands. However, as discussed in Sectionthe system St is, in essence, only approximately
band-limited to [0, W), and thus its signals have out-of-band energy. In the frequency position modulation described here, this
could create interference between neighboring frequency bands. However, since we eventually bound the MPaE of Sr by
a bound for an unlimited-bandwidth system, our proof remains in tact even if we choose the modulation frequencies to be
f(m) = mKW |, for any arbitrarily large integer K. Hence, the effect of the interference can made negligible.
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Sr s(t,u) Frequency 5(t,v)
Modulator shift  »
m(v)W

Quantizer

M

(t) Frequency Sr
shift

—mW

<

Estimator

Non-coherent

3

Decoder

Figure 11. Modulation-Estimation system for the proof of the spectrum replication bound.

(note that M - v, € [0,1)), and 5(¢,v) = Zle S1(v) - ¢y(t) is transmitted over the channel (6). To wit,

m(v)N+N

only the signals {&:(t)},_,,,,)n+1-

which represent the frequency band [m(v)W, (m(v) + 1)W), have
non-zero coefficients.
At the receiver, a proper projection vector y is obtained as in (9), but this time, over L basis functions.

Specifically, we define the projections

T
e 2 [0 Guinl®) - dt 0Sm <M1 1n<N, (A27)
0

and ¥rm, = (Gm.15--->Jm.N), as well as the (scaled) energies g, = N% 1§l = N% SN 7, n- The

estimator ©(y) of Sy is obtained in two steps. In the first, we decode m(v), using a non-coherent decoder,

which decides based on the maximum projection energy, i.e.

AR

m(y) argmax . (A.28)

me{0,...,M—1}

In the second step, we estimate the parameter v as

o(y) = — (A.29)
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where 4(y) is the estimator of the original system Sy, and for clarity, the dependence of 7 on y was
omitted. In words, in the second step, we assume that 7 is the correct index, and use the vector y, as
the input to the estimator of Sy.

The exponential behavior of the MPaE of the system Sy will be different from that of Sy only if M
increases exponentially with N. Hence, we assume that M £ exp(TWR) = exp(% - R) for some ‘rate’
R > 0. In Appendix [B] we analyze the reliability of the non-coherent decoder, using large deviations
analysis of chi-square random variables. Denoting the error event, in the first step of the estimation, by

&, it is shown there that for all v € [0,1)

P,[€] < exp [—];[ -G(T, R)} (A.30)
where
G(I,R) £ Qax {®(p,T) - pR} (A31)

and ®(p,T) is as defined in (32). The MPaE of Sy is then bounded as follows. For all N sufficiently

large
E{[o(0) — o } = Pule] B {[o0) o] 1€} + Polg B {[0(8) - o] <} (A32)
< P,[€] +E, { B(Y) — o |5C} (A33)
< exp [—];7 LG, R)} +E {[o0) — o) (A.34)
~ exp {—‘Z - G(F,R)} +E, { AJS{) + Q(YA’??)) Cve— ) 50} (A35)
Loo|-5 omm]+2m, {' o) _,, } (A36)
~ exp [—];] LG, R)} b B 0T ) — [ (A37)
< exp {_sz et R)} +2-exp {—g (R + Fa(F)]} (A38)
<2 exp {_];7 -min [G(T, R), aR + Fa(l“)]} . (A.39)

In (a), we have used the fact that conditioned on £¢, we have % = v, and the fact that for G(I", R) > 0

(which is our regime of interest), (A.30) implies that P[] — 1 as N — oco. So, for any random variable
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X, and all N sufficiently large,

1

E, {X|£} = WEU {X-I[X €& (A.40)
1

< e E,[X] (A.41)

<2-E,[X]. (A.42)

Clearly, for any given R > 0, the proposed system cannot achieve an MPaE exponent better than the

converse bound of the unlimited-bandwidth system, exp(—% - 7,T'). Hence,
min {G(I', R),aR + Fo(I')} < 7.T, (A.43)

or, equivalently

Yol —aR, G(I',R) > v,
F,(T) <

. (A.44)
00, G, R) <~,T
The relation G(I', R) > v,I" can be easily seen to be equivalent to R < A,(I"), where A, (I") is defined

in (34), and thus

Yol —aR, R < AL(T)
F,(I) <

. (A.45)
00, R > A,(T)

Since R > 0 is arbitrary, the tightest bound is obtained by choosing R = A, (I") which leads to (35). ®

APPENDIX B

RELIABILITY ANALYSIS OF THE MODULATION SCHEME OF THE SPECTRUM REPLICATION BOUND

In this appendix, we evaluate the reliability of the non-coherent decoder (A.28)). Let us denote the
random variables of the system by uppercase letters, e.g. (),,,. Due to symmetry, it can be assumed w.l.o.g.
that m, = 0. Then, it is straightforward to verify that for any given m # 0, we have f/m,n ~ N(0,1) and
{Ymm} are independent. Consequently, (), is a chi-square random variable of N degrees of freedom.
Similarly, for m = 0, we have Yo,n ~N (SM-v.,m, 1) 1.e., Qo is a non-central chi-square random variable
of N degrees of freedom, and a non-centrality parameter A = ﬁ/z Zflvzl §]2V[.v”n = %. We build on the

analysis in [[12, Section 2.5, Section 2.12.2, Problem 2.14 and Problem 2.15]. Let fo(-) be the probability

density function of Q) given that m, = 0. Then, for any 0 < p < 1, the decoding error probability can
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be bounded as

P[] =1— ]P’[Qo > Qm, Ym # 0|m, = 0] (B.1)
/ fola (P[Q1 < qlme = 0))M~ 1} dq (B.2)
SWAﬁMW&MWFWM (B.3)

where the inequality is obtained from 1 — (1 — )™ < (Ma)? (known as Gallager’s union bound [6,
Lemma, p. 136]). Let {Kn}3_; and {xn}37_; be two positive sequences which satisty Ky 1 oo and
kN 4 0as N — oo. The appropriate choices for them will be discussed later on. For notational simplicity,

let us assume that K~/xy is integer, and temporarily omit the subscript N in their notation. Then,

mWSM%.MWWWQﬂmzww (B.4)
Tl RN
<MPY / fo(q) - P*[Q1 > qlm, = 0] - dg + MPP (Qo > KN|m, = 0) (B.5)
1=0 IkN
ERg (=)
< MP Z / fo(q) - PP[Q1 > IkN|m, = 0] - dg + MPP(Qo > KN|m, =0)  (B.6)
kN

=
5

:MWX: ?[Q1 > IN|my = 0] - P[IsN < Qo < (I + 1)sN|m, = 0]
=0
+ MPP[Qo > KN|m, = 0] (B.7)

K
< MP—. { max PP[Q1 > IkN|my, =0]-P[IkN < Qo < (I + 1)kN|m, = 0]
Ko |o<i<E-1

P@0>KNm%=m}, (B.8)

where in the last inequality, we have used the assumption that % > 1 for sufficiently large N. In order
to evaluate the exponential behavior of P,[£], it will be convenient to partition the maximization to a

few intervals. In each interval, we upper bound the objective
PP[Q1 > IkN|my, = 0] - P[IkN < Qo < (I 4+ 1)kN|m, = 0] (B.9)

by an asymptotically tight upper bound. In essence, we are replacing the probability of an interval by
the tail probability of one of its endpoints, according to the relative position of Ik N w.r.t. E[Qo] = N
and E[Q1]=N+A=N+ % = N(1+T), see Fig. Let [ be such that [1x <1 < (I + 1)k and
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S Ay

2o

1 1+T

Figure 12. The probability distribution functions of Qo and @1, for N =10 and I' = 2.

l2 be such that losx < 1+ T < (lo + 1)k. Then, for [ <1 — 1 we upper bound (B.9) by
P[Qo < (I +1)kN|my = 0], (B.10)
for [; <1 <ly — 1 we upper bound it by
PY[Q1 > InN|m,, = 0] - B[Qo < (I + 1)xN|m, = 0], B.11)

for [ = I3 we upper bound it by
PP[Q1 > IkN|m, = 0], (B.12)

and for b +1 <[ < % — 1 we upper bound it by
PP[Q1 > IkN|my, = 0] - P[Qo > IkN|m, = 0]. (B.13)

We can now analyze the behavior of the probabilities above, as N — co. To this end, we use the Chernoff

bound for chi-square random variables, using the known expressions for their moment generating functions
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[34, Section 19.8, eq. (19.45)]. For the energy (21, we have that for n > 1

P[Q1 > nV|my = 0] < inf P B.14
(@1 > Imv—]_;go ol (B.14)
. (1—25)7 "
= f — B.15
0§1;1<1/2 esnN ( )
(-3)
— ™2 exp |-N - 5 i (B.16)
—-1-1
:exp{—N- [772("%(77)] } (B.17)
where the critical point is s = ﬁ — %, and for 0 < 7 < 1 we use the trivial bound
P[Q1 > nN|m, = 0] < 1. (B.18)

In the same manner, for Qo and 0 <7 < 1+ 1T such that E[Q1] = N <nN <E[Qo] = N(1+T),

P[Qo < nN|m, = 0] < i ¢ Ele] (B.19)
0> 77 m’U - = ;Iglo ean .
—N/2 As
o (1—2s)~" . exp [1725} .20
o ;Iglo esnN (B.20)
log(1 — 2
=expq —N -sup —LF + sn+ M . (B.21)
s<0 | 1—2s 2

The critical point is

11 1 1\? 1+47-
s ———f(z-=) + ——1
2 4n 2 4y 4n

After inserting back s(n), and straightforward algebra, we get

1 VETFT41
P[Qo < nN|my = 0] < exp {—N- . <n+r +log {”;Jr} _ T+ 1) } (B.22)
n

A similar analysis for n > 1 4 I" gives a similar result, and so

1 VETFT+1
P[Qo > nN|my = 0] < exp {—N. 5 <n+r + log [W] — /&I + 1) } (B.23)

Returning to the error probability evaluation (B.8) and using the derived Chernoff bounds and
(B.23) in the bounds (B.10), (B.11)), (B.12) and (B.13), along with the continuity of the exponents in
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and (B23) [ we get
1
>
G(T,R) > s log P, [€] (B.24)

zmin{ min {2- [ "’1(77)F+s(n)-n+bg(1_2s(n))] —|—O(I€N)}7

0<n<1 1-23(n) 2
iy {2 [P Ss()g EOS RO o)}
2. {—%r T+ 3(Ky) - Ky + 220 _ES(KN))] }
_ %log I;JVV — pR. (B.25)

Now, in the inner minimization, the second term decreases as K increases, and the third term increases.
Thus, for N sufficiently large, the third term will not be the minimal term. Also, since logn < 1 —rn the

first term is always not smaller than the second term. Hence, the second term dominates the minimization.

Choosing Ky and sy such that limpy_ % log f—;j = 0, and optimizing over 0 < p < 1 we obtain
G(I', R) > max {®(p,I) — pR} (B.26)
0<p<1

where ®(p,T") is as defined in (32)). It is easy to verify that the objective function, in the optimization
problem pertaining to ®(p,I'), is a convex function of 1 (positive second derivative), and decreasing
for n < 1 (negative first derivative). Thus, the infimum over n > 1 is achieved by the point where
the derivative w.r.t. n of the objective function in (32) vanishes. After some straightforward algebra, we

obtain that the optimal n* is the larger solution of the quadratic equation
(p+ 1% —[(p+ 1)2p+ 1) +T)n+p* +1=0 (B.27)

given by (33).

Remark 11. The inequality 1 — (1 — o)™ < (Ma)? for 0 < p < 1 can be replaced with [35, Lemma 1]
1
§min{1,Ma} <1—-(1-a) <min{l, Ma} (B.28)

which states that the union bound, when clipped to 1, is asymptotically tight. Our analysis above can
also be carried out using (B.28) in (B.3), to obtain the exact exponential behavior of the error probability.

However, the resulting expressions are more complicated, and we have not found any specific cases for

'Note also that 3(n) = 0 for n =1+ I, which leads to a trivial Chernoff bound (zero exponent).
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which the numerical value of the bound derived with (B.28)) is better than the bound derived above.

APPENDIX C

PROOFS FOR ASYMPTOTIC SNR ANALYSIS

Proof of Prop.[7} First, we approximate Gallager’s function in the regime I' > 1. We have

,80:;<1+1£p> 1+\/1_(1—|—4;j—1“)2 (C.1)
=5 (i) et e () ©2
)
:1+1£p_1—ip'(1+£2+r)2+@<11*> €4
- iz +o(T). (C:5)

for (), and
Ealp.T) = (1= 3o)(1+ ) + T+ log (o — 1) + plog(h) o)
— )t log (1;) + plog (ii) +o(l), 7
=p—(1+p)log(1+ p) + plog(L') + o(T'), (C.8)
for (@3).

For the channel coding converse bound of Proposition [I] observing (C.8), it evident that the minimum
in is attained by Ey(«,T) for high SNR, which leads directly to the first case in (40). The spherical
cap bound of Theorem 2] at high SNR simply reads

Fo(T") < alog(T) + alog (%) ta (C.9)

@
It remains to analyze the behavior of the spectrum replication bound (Theorem [3) for high SNR

(I' — 00). Approximating (33), we get

L _DHVT2 42+ D(p+ 1)

n L (C.10)
T+ /1 — 4P+ D+ 7=
_DHryi—de i /T (C.11)
2(p+1)
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DT [1 =20 +0)(+1)°/r2 + © (1) |

205 1)? (C.12)
T 1
= m +0 (F) . (C.13)
Inserting back to (32), we get
r T T 2r
D(p,T)=0p e 1—1log ((p+ 1)2>] + TESIE + I +log(p+1) — il +o(I"). (C.14)
Then,
Ao(I) = sup M (C.15)
0<p<1 P
= su _r 1-1lo < > + 2 +
T osper (p 12 E\p+12) o1
' log(p+1) 2r Yol
P - ———+ol C.16
P p plp+1)  p o) (.16)
1 1 (1—7) 2 ]
= + + - r—
02pe1 [(P+1)2 p(p+1)? P p(p+1)
log [P] _pq ot o (C.17)
(p+1) p
pH1+(1—7)p+1)°—2(p+ 1)]
= T
0<ptt [ plp+1)?
B r log(p+1)
log {(/H— 1)2] + ; 1+0o() (C.18)
—p—1+(1—7)(p+ 1)2] [ r ] log(p +1)
= I'—1 -1 T C.1
0221 [ p(p+1)2 08 (p+ 1)2 +o(I') (C.19)
(1—7a)p* + (1 = 27a)p — 'Va] { r ] log(p+1)
= r-1 -1 r).
02pe1 [ plp+1)2 I IPrFie] — +o(T)
(C.20)

Clearly, for I' — oo the maximizer p is chosen to maximize the coefficient of the linear dependence on

T". Differentiating this coefficient w.r.t. p, we get

(Yo — 1)p> + (370 — 1)p? + 37ap + 7a
P2 (14 p)3

) (C.21)

and when this derivative is strictly positive for all p € (0, 1], the supremum is attained for p = 1. It can

be verified (e.g., numerically) that this happens as long as 7, = 0.0175. If we use the bound instead

~

of the actual value of 7,, then this results that p = 1 is optimal for all & = 0.0178. In all these cases,
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we get

A (1) = [2 - va] I' —log(I") + log8 — 1 + o(I), (C.22)

and inserting back to (35) we get the bound

o 8
F,T)<(1+a) [%1 - 2(1‘1‘04)] I' + alog(l") — alog <€> + o(I). (C.23)
Further, for o > 2, using the expression in (20) we have 7, = ﬁ which implies
8
F,o(T) < alog(T) — alog () +o(I). (C.24)
e
|
Remark 12. If one can prove that the reverse inequality in (C.23) holds, i.e.,
o 8
Fo(T) > (1+«) [%l - 2(1‘1‘04)] I' + alog(I') — alog <e) +o(I"), (C.25)
then this could lead to stronger results for the unlimited-bandwidth case, showing that ~, = ﬁ

for all o (rather than @ > 2, as was previously known), along with a simpler proof than [18] (albeit
somewhat indirect). Indeed, if v, > m then F,(I") would increase linearly with I', which is clearly
unacceptable. To obtain a contradiction, one can derive and channel encoder and decoder by a proper
quantization of the optimal modulator and estimator, and show that the communication rate increases
linearly with I" with a negligible error probability. This evidently contradicts the logarithmic behavior
of the capacity in I'. The main gap in such a proof method, however, is to show a reverse inequality in
(A.43). In turn, this corresponds to the hypothesis that the unlimited-bandwidth system constructed in
the proof of the spectrum replication bound is asymptotically optimal. Even more specifically, it seems

difficult to argue why the restriction of the estimator to a two steps procedure is asymptotically optimal.

Proof of Prop.[8 Using the approximations for 8y and Ey(p,I") in (C3) and (C-8), the first term

in (37) is approximated as

Eo(p,T — (14 p)log(1 log T + o(T
sup & olp,T) _ sup alp—(1+p)log(l+p)+plogl' +o(I)] (C.26)
0<p<1 P 0<p<1 p+a

At high SNR, the optimal choice for p is the one maximizing the coefficient of log(T'), i.e. p‘%é which

is p = 1. This results the lower bound
2 [1—2log2 +logT + o(I")]

—[1-2lo 0 0
1+« 8 8
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o«
14w

-1+ o()] - logT. (C.27)

Now, let us inspect the second term in (37), i.e.,

E.(p,T
sup 2= 1). (C.28)
pz1 pta

Let p%(T") be the maximizing value of p. Consider the hypothesis that p3(T") increases linearly with T".
Then, the denominator of (C.28)) increases linearly with I'. It can easily be seen that the nominator cannot
increase faster then linear, and so the value of (C.28) is bounded as I" — co. Such a behavior is of course

unreasonable, and as will shall see, better value for (C.28) can be attained. Next, consider the hypothesis

that p¥(T") increases sub-linearly with I', which implies that % — 00 as I' = oo. In this event,
b=ty T 1y T (C.29)
T2 4p(T) 2 4px(T)? '
1 r
=-+ +o(I"), (C.30)
2 2p5(T)

and then the objective in (C.28)) is approximated as

(e [2<1 — BJp+T + plog [ﬁx (m - ;p)”
o [ o () i)t 1+ ] [ e ean
A [0

Now, if p*(T') = () for some function v(I') such that v(I') — 0 yet p*(T') — oo as I' — oo (e.g.

v(I") = log(I")) then last expression is asymptotically given by
a-[1+o()] logT. (C.33)

Comparing the last expression with it is apparent that as I' — oo the expurgated term dominates
the maximization of (37), and the bound scales as claimed. [ ]
Proof of Prop.[9; As we are interested in I' — 0 we may clearly assume that I" < 1 and so, e.g.,

O(T'?) + O(T") = O(T"). First, we approximate Gallager’s function. We have

_1 r 4Dy

60_2<1+1+p) 1+\/ (1+p+T1)2 (C.34)
_1 Y P VA )
T2 (H 1+p> [2 (EvESy i )] (C.35)

June 21, 2016 DRAFT



39

r Lp 2
=1+ —~ o C.36
1+p (1+p+1“)2+ () (€36)
r Lp 2
=1 - or C.37
+ 17 PRRCEE + O(I) (C.37)
1
=1+——T+06(? C.38
+ TEE +O(I') (C.38)
for (24), and
r
Eo(p,T) = (1= Bo)(1+p) +T +log <ﬁo - 1+p) + plog Bo (C.39)
! I+TI+1 [1+ I 1 ]+ 1 [1+ ! r}u@(r?) (C.40)
= —— o) — o) —_— .
(1+7) LT ] TP T U
P P 2
=" I'+lo [1—r]+ lo [1+F]+®F (C.41)
o) T8N et Pols [T et e
p p p 2
_ r_ T+ I +o(r (C.42)
T+ v T T
P 2
_ T +O(?), (C.43)
T+p) T
for (23). Thus, the first term in is approximated as
Eo(p,T r
sup 20T _ ap +O(1?), (C.44)

= sup ————
0<p<1 Pt a 0<p<1 (14 p)(p + )

and clearly, the maximizer p is the one maximizing %, i.e. p = 1. Hence, the first term is
al’
——— +O(I?). C.45
i+a 00 (€4
Analyzing the second term in (37) only leads to a worse behavior and thus may be disregarded. [ ]
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