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Abstract

We consider the problem of modulating the value of a parameter onto a band-limited signal to be

transmitted over a continuous-time, additive white Gaussian noise (AWGN) channel, and estimating this

parameter at the receiver. The performance is measured by the mean power-α error (MPαE), which is

defined as the worst-case α-th order moment of the absolute estimation error. The optimal exponential

decay rate of the MPαE as a function of the transmission time, is investigated. Two upper (converse)

bounds on the MPαE exponent are derived, on the basis of known bounds for the AWGN channel of

inputs with unlimited bandwidth. The bounds are computed for typical values of the error moment and

the signal-to-noise ratio (SNR), and the SNR asymptotics of the different bounds are analyzed. The new

bounds are compared to known converse and achievability bounds, which were derived from channel

coding considerations.

Index Terms

Parameter estimation, modulation, error exponents, reliability function, additive white Gaussian noise

(AWGN), bandwidth constraints.

I. INTRODUCTION

The problem of waveform communication, as termed in the classic book by Wozencraft and Jacobs

[1, Chapter 8], is about conveying the value of a continuous valued parameter to a distant location, via a
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u = 0

u = 1

Figure 1. The signal space with a locus obtained from a Shannon-Kotel’inkov mapping [3, Fig. 4]. As the parameter exhausts the
interval [0, 1), the point on the signal space travels from the top left point of the locus to its bottom right point. Dots corresponds
to actual parameter values. The solid (red) arrows represent the effect of the noise, and the circles represent estimated parameter
values. The dotted (blue) arrows represent the estimation stage.

communication channel. Formally, at the input of the channel, a modulator maps a parameter1 u ∈ [0, 1)

to a signal {s(t, u), 0 ≤ t ≤ T}, which is transmitted over the continuous-time AWGN channel, under a

power constraint, 1
T

∫ T
0 s2(t, u)dt ≤ P . At the output of the channel, an estimator processes the received

signal, y(t) = s(t, u) + z(t), 0 ≤ t ≤ T , to obtain an estimate of the parameter. Here, z(t) is a Gaussian

white noise process with two-sided spectral density N0/2.

Such a modulation-estimation system can be depicted in a geometrical way, as shown in Fig. 1. As

noticed by Kotel’inkov [2] and Shannon [3], the various signals {s(t, u), 0 ≤ u < 1} can be represented

as vectors in some signal space. The modulator can therefore be viewed as mapping the parameter into

a point in the signal space, and as the parameter exhausts its domain, a locus (possibly, discontinuous)

in the signal space is obtained. The additive noise then shifts the transmitted point to a different point

in the signal space, and the estimator maps it back to a point on the locus, which in turn corresponds

to an estimated value of the parameter. The estimation performance is usually evaluated by the α-th

order moment of the absolute estimation error, which we term the mean power-α error (MPαE). Most

commonly, the mean square error (MSE) is used (α = 2). As can be discerned from Fig. 1, the estimation

error can be roughly categorized into two types: (i) weak noise errors, which result in small estimation

errors, and are associated with the local, linearized behavior of the locus (right red arrow in Fig. 1), and

1The range of values the parameter may take is assumed [0, 1) for reasons of convenience only, with no essential loss of
generality.
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(ii) anomalous errors, that yield relatively large estimation errors, which are associated with the twisted

curvature of the locus in the signal space for non-linear modulation systems (left red arrow in Fig. 1).

A good communication system should properly balance between the two types of errors. Nonetheless,

when the SNR falls below a certain threshold, the anomalous error quickly dominates and the MPαE

becomes catastrophic. This phenomenon is known as the threshold effect, see, e.g., [1], [4], and many

references therein.2

A natural question, for such systems, is how small can the MPαE be made for an arbitrary modulation-

estimation system, operating over transmission time T ? As usual, answering this question exactly is

prohibitively complex, even in very low dimensions [2], [5]. However, it turns out that if the modulator

and estimator are designed carefully, the MPαE may decay exponentially with T , to wit

sup
u∈[0,1)

Eu
{∣∣∣Û − u∣∣∣α} ≈ e−E·T (1)

for some constant E > 0, where Û is the estimator3 and Eu{·} is the expectation operator with respect to

(w.r.t.) the channel noise, when the underlying parameter is u. As we next review, the optimal exponential

decay rate of the MPαE was investigated, in the same spirit that the optimal exponential decay of the

error probability was studied for the problem of channel coding (e.g. [6, Chapter 5] and [7, Chapter 10]).

Most of the previous research has focused on the AWGN channel without bandwidth constraints on the

input signals. The goal of this paper is to develop bounds on the MPαE for band-limited input signals,

with emphasis on lower bounds. Since a lower bound on the MPαE is associated with an upper bound

on its exponent and vice-versa, then to avoid confusion, throughout the paper the term ‘converse bound’

will be used in the sense of an upper bound on the MPαE exponent. Similarly, the term ‘achievability

bound’ will be used for a lower bound on the MPαE exponent. Nevertheless, the terms ‘converse’ and

‘achievability’ are only used here in a loose way, in the sense that it does not necessarily imply that the

lower bound on the exponent coincides with the upper bound.

We begin with a short review on existing bounds for the continuous-time, unlimited-bandwidth case.

For achievability results, a few simple systems were considered. In [1, Chapter 8], a frequency position

modulation (FPM) system with a central frequency and bandwidth that both increase exponentially with

T , i.e., as exp(RT ), for some optimized R, was shown to achieve an exponential decrease of the MSE

according to exp(− P
3N0

T ). In the same spirit, a pulse position modulation (PPM) can be used, again, with

2We refer the reader to [4, Section 2] and [2, Section 2], for a more detailed discussion on the waveform communication
problem.

3A more precise definition will be given in the sequel.

June 21, 2016 DRAFT



4

exponentially increasing bandwidth, to achieve the same exponent. More recently, a modulation scheme

which employs uniform quantization of the parameter to exp(RT ) values (where R > 0 is again a design

parameter), followed by an optimal rate-R channel code for AWGN channel (i.e., its reliability function),

was shown to achieve the same exponent (see [8, Introduction]). A similar system will be discussed in

Section III.

To assess the performance of the above schemes, converse bounds have also been derived. On the face

of it, as this problem lies in the intersection between information theory and estimation theory, methods

from both fields are expected to have the potential to provide answers. While estimation theory offers an

ample of Bayesian and non-Bayesian bounds [9] (see also [10, Introduction] and references therein for

an overview), the vast majority of them strongly depend on the specific modulator, and so, they are less

useful for us in the quest for universal bounds, i.e., when there is freedom to optimize the modulator.

From the information-theoretic perspective, one can view the parameter as an information source, and

assume that it is a random variable U , say, distributed uniformly over [0, 1). The estimate Û , is then

chosen to minimize the average distortion, under a distortion measure defined as the α-th order moment

of the absolute error. The MPαE is then the average distortion D of this joint source-channel coding

system, and, in principle, the data processing theorem (DPT) [11, Section 7.13] can be harnessed to obtain

a converse bound of the form D ≥ R−1(C), where R(D) is the rate-distortion function of the source

and C is the channel capacity. However, this bound may be too optimistic, since to achieve this bound

using a separation-based system, the source should be compressed at a rate close to its rate-distortion

function, which is impossible when there is merely a single source symbol (scalar quantization).4

In the unlimited-bandwidth case, C = P
N0

, and while the rate-distortion function is not known to have

a closed form formula, it can be lower bounded using Shannon’s lower bound (e.g. [12, Corollary 7.7.5],

[13, Section 4.3.3]) as

R(D) ≥ h(U)− 1

2
log(2πeD) = −1

2
log(2πeD) (2)

where h(U) = 0 is the differential entropy of U . Therefore, the DPT lends itself to obtain a lower bound

on the MSE, given by

D = E(U − Û)2 ≥ 1

2πe
exp(−2CT ) =

1

2πe
exp

(
−2P

N0
T

)
. (3)

In [14, Section 6] the idea of using a DPT with generalized information measures [15], which pertain

4The same is true for any given finite dimension, that does not grow with T .
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to a general univariate convex function, was extended to multivariate convex functions, and harvested in

order to obtain the improved bound of the exponential order of exp(− P
N0
T ).

In a different line of work, a more direct approach was taken, and a lower bound on the MPαE was

developed from an analysis of the channel coding system introduced above, namely, a modulation system

which maps a quantized value of the parameter to a codeword from a channel code (or a signal from

a signal set). Rather complicated arguments were used to obtain a converse bound which is valid for

any signal set. Research in this direction was initiated by Cohn in his Ph.D. thesis [16], who derived

a lower bound of the exponential order exp(− P
2.89·N0

T ) for the MSE (α = 2). Later on, Burnashev

[17], [18] has revised and generalized Cohn’s arguments, and his efforts eventually culminated in [18,

Theorem 3], which provides, among other results, the lower exponential bound of the exponential order

of exp(− P
3N0

T ) for α = 2. As this converse bound coincides exponentially with the achievability bound,

then the optimal exponent is precisely characterized for the unlimited-bandwidth AWGN channel.

The exploration of universal bounds to modulation-estimation problem was not confined only to AWGN

channels and the MPαE. In [19, Section IV], a large deviations performance metric was considered,

namely, the exponential behavior of the probability that the estimation error would exceed some threshold.

This exponent was fully characterized in [8]: For an optimal communication system, the probability that

the absolute estimation error would exceed exp(−RT ) behaves exponentially as exp[−T ·E(R)], where

E(R) is the reliability function of the channel.5

The exponential behavior of the MPαE discussed above for continuous-time channels, holds when there

is no limitation on the bandwidth of the input signals. In [20], a converse bound and an achievability

bound on exponent of the MPαE were derived, for a discrete memoryless channel (in discrete-time), rather

than the AWGN channel (in continuous-time). In this paper, we consider the problem of characterizing

the maximal achievable exponent of the MPαE for the AWGN channel fed by a band-limited input, with

emphasis on converse bounds. We are not aware of earlier works that focus concretely on this setting.

As a simple benchmark, the DPT bound mentioned above can be adapted to input signals band-limited

to W , by simply replacing the capacity of the unlimited-bandwidth case with the capacity of AWGN

channel with band-limited inputs, i.e.,

C = W log

(
1 +

P

N0W

)
. (4)

5The result in [8] assumes an unlimited-bandwidth AWGN channel, for which the reliability function is known exactly (c.f.
Remark 5). However, the proofs in [8] are general, and in fact pertain to any channel for which a reliability function exists.
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The resulting lower bound on the MPαE has exponential order of6

exp

[
−T · αW log

(
1 +

P

N0W

)]
. (5)

Thus, unlike the unlimited-bandwidth case, for which the MPαE scales linearly with P
N0

, for the band-

limited case, it only scales logarithmically with P
N0

.

In this paper, we improve on the converse bound of (5) using two different mechanisms. In the first,

channel coding considerations, as the ones used in the converse bound of [20], will be used to derive a

converse bound to the problem at hand. In the second method, we utilize the results of the unlimited-

bandwidth case from [16], [17], [18], in a somewhat indirect way, rather than revising the complicated

bounding techniques used to prove them. The general idea is to begin with a band-limited system, and

transform it, by some means, to a new system. We will then relate the MPαE exponent of the new system

to the MPαE exponent of the original system, and use the converse bound of the unlimited-bandwidth

case, for the new system. This, in turn, will provide a converse bound on the original, band-limited

system. Two new bounds will be derived from this general methodology. It turns out that none of the

three converse bounds mentioned above dominates the other two, and for each of these bounds, there

exists a region in the plane of the variables α and SNR such that this is the best bound out of the three.

To assess the tightness of the converse bounds, we will briefly discuss also achievability bounds.

Specifically, the achievability bound of [20] will be adapted to the AWGN channel, just as the converse

bound of [20] was. We will also speculate on a possible approach for improving this achievability bound,

based on unequal error protection (even though, thus far, we were not able to demonstrate that it actually

improves). It should be mentioned, that for this problem, converse bounds which are based on other, well-

known, estimation-theoretic lower bounds, such as the Weiss-Weinstein bound [21], [22], have failed to

provide stronger bounds, at least in the various ways we have tried to harness them.

The rest of the paper is organized as follows. In Section II, the modulation-estimation problem is

formulated, and known results for the unlimited-bandwidth AWGN channel are reviewed. In Section III,

the converse bound adapted from [20] is presented, and our main results, which are the two new converse

bounds on the MPαE exponent. The achievability bound, also adapted from [20], is discussed as well.

6The DPT bounds as stated in (5) is suitable for α = 2, since Shannon’s lower bound was used for the MSE distortion
measure. To generalize it to other values of α, we recall that for difference distortion measures, Shannon’s lower bound is given
by the entropy of the source minus the maximum entropy [11, Chapter 12] over all random variables satisfying the distortion
constraint. For a distortion measure of the form d(u, û) = |u− û|α the maximum entropy is obtained by a generalized Gaussian
density with parameter α, i.e., f(x) ∼ exp{−

∣∣x
s

∣∣α} where s is a scaling parameter. So, the Shannon lower bound in this case
is given by h(U) + dα − 1

α
logD, where dα depends only on α, and does not affect the exponential behavior of the bound.

This and (4) immediately imply (5).
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+Modulator Estimator

z(t)

u ∈ [0, 1) ûs(t, u) y(t)

Figure 2. A Modulation-estimation system.

In Section IV, the various converse bounds are compared to each other, as well as to the achievability

bound. Numerical results are displayed, and a systematic comparison between the bounds is made, based

on asymptotic SNR analysis.

II. SYSTEM MODEL AND BACKGROUND

Throughout the paper, real random variables will be denoted by capital letters, and specific values they

may take will be denoted by the corresponding lower case letters. Random vectors and their realizations

will be denoted, respectively, by capital letters and the corresponding lower case letters, both in the bold

face font. Real random processes will be denoted by capital letters with a time argument, and specific

sample paths will be denoted by the corresponding lower case letters. For example, the random vector

X = (X1, . . . , XN ), (N positive integer) may take a specific vector value x = (x1, . . . , xN ), and the

random process X(t) may have the sample path x(t). The probability of an event E , for an underlying

parameter u ∈ [0, 1), will be denoted by Pu[E ], and the expectation operator will be denoted by Eu[·].
The indicator for a set A will be denoted by I{A}. Logarithms and exponents will be understood to be

taken to the natural base. For the sake of brevity, for large integers, we will ignore integer constraints

throughout, as they do not have any effect on the results. For example, we will assume a blocklength

N = 2WT , rather than N = d2WT e, provided that 2WT � 1.

Let u ∈ [0, 1) be a parameter and consider the continuous-time AWGN channel

y(t) = s(t, u) + z(t), (6)

where s(t, u) and y(t) are the channel input and output, respectively, at time t, and {z(t)} is a white

Gaussian noise process with two-sided spectral density N0

2 .

A modulation-estimation system ST of time duration T is defined by a modulator and an estimator.
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The modulator maps7 a parameter value u to a signal {s(t, u), 0 ≤ t ≤ T}, where s(t, u) = 0 for t < 0

and t > T , and where the mapping u→ s(t, u) is assumed measurable. The estimator maps the received

signal {y(t), 0 ≤ t ≤ T} to an estimated parameter, û. The system ST is power-limited to P if

1

T

∫ T

0
s2(t, u) · dt ≤ P (7)

for all u ∈ [0, 1). The system is considered band-limited to W if there exists an orthonormal basis of

N , 2WT functions {φn(t), 0 ≤ t ≤ T}Nn=1, such that for all u ∈ [0, 1), there exists a vector of

coefficients, s(u) , (s1(u), . . . , sN (u)), such that

s(t, u) =

N∑
n=1

sn(u) · φn(t), 0 ≤ t ≤ T. (8)

Following a procedure similar to that of [12, Section 2.1], the continuous-time channel can be converted

to an equivalent N -dimensional channel. As discussed there, the projections

yn ,
∫ T

0
y(t) · φn(t) · dt, 1 ≤ n ≤ N, (9)

are sufficient statistics for the estimation of u. We may define the noise projections

zn ,
∫ T

0
z(t) · φn(t) · dt, 1 ≤ n ≤ N, (10)

and group the projections into vectors, y = (y1, . . . , yN ) and z = (z1, . . . , zN ), to obtain an equivalent

vector model

y , s(u) + z. (11)

In this model, the power constraint is given by ‖s(u)‖2 ≤ PT , but for the purpose of converse bounds, it

can be assumed, without loss of generality (w.l.o.g.), that the constraint is satisfied with equality. Indeed,

as was discussed in [18, p. 249], [23, pp. 291-292], if ‖s(u)‖2 < PT for some u, then a single dummy

coordinate can be appended to {s(u)}, which will make ‖s(u)‖ = PT . For N � 1, this additional

coordinate has a negligible effect on the time or bandwidth of the signals, and, in fact, can be totally

ignored by the estimator. Regarding the noise, as the projection in (10) is performed on an orthogonal

set, the resulting projections are independent, and thus Z ∼ N (0, N0

2 · IN ), where IN is the identity

matrix of dimension N . The estimator, based on the channel (11), can then be denoted as a function of

y, i.e., û(y) rather than û{y(t), 0 ≤ t ≤ T} for (6).

7The mapping u→ s(t, u) does not have to be necessarily injective (one-to-one).
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At this point, a justification for adopting (11) as a proper model for a physically band-limited channel

is required. The correspondence between the continuous-time model (6) and the discrete-frequency model

(11) is a delicate, yet a mature subject. In short, signals cannot be both strictly time-limited and strictly

band-limited. Thus, the basis functions {φn(t), 0 ≤ t ≤ T}Nn=1 are chosen to span the linear space of

signals of duration T exactly, and a bandwidth of approximately W .8 If N = 2WT � 1, the proximity

of the real bandwidth to W can be made arbitrarily sharp. A detailed discussion can be found in [24],

[25], and [6, Chapter 8].

For α > 0 (not necessarily integer), the mean power-α error (MPαE) of ST is defined as

eα(ST ) , sup
u∈[0,1)

Eu {|û(Y)− u|α} , (12)

where Y is the random counterpart of y. As we shall see, eα(ST ) can be made exponentially decreasing

with T , and so, it is natural to ask what is the fastest possible exponential rate of decrease. Specifically,

we say that E is an achievable MPαE exponent if there exists a family {ST } of modulation-estimation

systems, parametrized by T , such that

lim sup
T→∞

[
− 1

T
· log eα(ST )

]
≥ E. (13)

The objective of the paper is to derive converse bounds on Eα(P/No,W ), which is defined as the largest

achievable MPαE exponent, for a given power constraint P , bandwidth constraint W , and noise spectral

density N0

2 . Let us define the SNR as Γ , P
N0W

. Noting that power constraint on the input to the channel

(11) can be written as
‖s(u)‖2
N

≤ PT

N
=

PT

2WT
=

P

2W
. (14)

Scaling y by
√

2
N0

, we get an equivalent channel

ỹ , s̃(u) + z̃, (15)

with a power input constraint
‖s̃(u)‖2
N

≤ Γ, (16)

and z̃ ∼ N (0, IN ). Note that the dimension of the channel (11) and (15) is given by N = 2WT . Since

the properties of the channel (15) depend on W and T only via their product WT , for a fixed SNR,

8These basis functions are known as prolate spheroidal functions.

June 21, 2016 DRAFT



10

scaling the bandwidth W by a factor a > 0 has the same effect as scaling T by a instead.9 Thus, the

MPαE exponent will always have the form

Eα

(
P

N0
,W

)
= W · Fα(Γ), (17)

where Fα(Γ) is a certain function. The same comment applies to the converse and achievability bounds

that will be encountered along this work. So, henceforth, we will be interested in the MPαE exponent

per unit bandwidth Fα(Γ). Note that the resulting MPαE has the exponential form exp[−TW ·Fα(Γ)] =

exp[−N
2 ·Fα(Γ)]. Most of the time, it will be convenient to carry out the exponent analysis in the discrete

domain, and then finally, translate the result to the exponent (17), simply by doubling the exponent.

To review the known converse bounds for the unlimited-bandwidth case, we begin by formulating the

appropriate scaling of their MPαE exponent. Writing (17) as

Eα

(
P

N0
,W

)
= W · Fα(Γ) = W · Fα(Γ)

Γ
· Γ (18)

and noting that as W →∞ then Γ→ 0, we can define unlimited-bandwidth MPαE exponent as

γα , lim
Γ→0

Fα(Γ)

Γ
. (19)

Thus, for W →∞, (18) has the same form as (17), with the exponent per unit bandwidth being a linear

function of the SNR, as γαΓ. By contrast, as we shall see in Section III, and as was mentioned earlier,

for band-limited signals, Fα(Γ) scales logarithmically with Γ.

The value of γα was bounded by Cohn [16], and later on by Burnashev [17], [18]. The best known

converse bound is given by [17, Theorem 2], [18, Theorem 3] 10

γα ≤


1

(1+α) min {α,ψ(α)} , 0 < α ≤ α0

α
2(1+α)

[
1 + α+5−4

√
α+1

3α+1

]
, α0 ≤ α ≤ 2

α
2(1+α) , α ≥ 2

, (20)

where α0 is the unique root of the equation α2 − (α− 1)
√
α+ 1− 2 = 0 (α0 ≈ 1.5875) and

ψ(α) , 1 + α−max
q≥1/2

[
2αq + 4q

√
(1− q)q(1 + α)− q2(3α+ 1)

]
. (21)

9Of course, to keep the SNR fixed, the power should be changed to a · P .
10To translate Burnashev’s results to our defintions, the value of the exponent in [17], [18] should be doubled. In the notation

of [17], [18], the MPαE is an exponential function of the energy per noise spectral density, and has the form exp(−γα · A)
where A = PT

N0/2
(compare with (18)).
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In fact, for α ≥ 2 this is the exact value of γα as there are schemes that achieve it ([17, Theorem 1] and

c.f. Remark 5).

III. EXPONENTIAL BOUNDS ON THE MPαE

In this section, we present three new converse bounds on the MPαE exponent. The first bound is

an adaptation of the converse bound of [20], originally derived for modulation-estimation over discrete

memoryless channels, and this bound will be termed the channel coding converse bound. The proof idea

is to relate the MPαE exponent of a modulation-estimation system to the error exponent of an optimal

channel code (reliability function). Since the error exponent of channel codes is lower bounded by the

sphere-packing exponent (or any other upper bound on the reliability function), a converse bound on the

MPαE exponent is obtained.

We then derive two additional converse bounds by converting the unlimited-bandwidth bound to the

band-limited case, and these are the main results of this paper. An appealing property of these two bounds

is that their proof is only based on the value of the unlimited-bandwidth converse bound, and not on

the way it was proved. Consequently, there is no need to repeat the intricate proofs of the unlimited-

bandwidth bound in order to derive the new bounds. Further, any future improvement of the bound (20)

will immediately lend itself to a corresponding improvement of our band-limited bounds.

The first bound of this type will be referred to as the spherical cap bound, and its derivation is based

on the following idea. The signal vectors of any band-limited system reside on the surface of a sphere

of radius
√
PT , centered at the origin. For any given angle, there exists a spherical cap in the surface

of this sphere, such that the signal vectors confined to this spherical cap pertain to a significant portion

(depending on the angle) of the parameter domain [0, 1). Then, a new modulation-estimation system can

be constructed, which is based only on signals which lie in this spherical cap. While this new system

is still band-limited, its exponent must obviously obey the unlimited converse bound. This in turn leads

to a converse bound on the original system, whose tightest value is obtained by optimization of the

aforementioned angle.

The second bound will be referred to as the spectrum replication bound, and it is based on creating

many replicas of the signal set of a given band-limited modulation system in higher frequency bands. This

results in a new system, where the value of the modulated parameter determines which of the frequency

bands will be active, and which signal will be transmitted within the band. As this new system has much

larger bandwidth, it is proper to bound its MPαE exponent by the unlimited-bandwidth bound, which

in turn, leads to a bound on the original system, whose MPαE exponent is easily related to that of the

June 21, 2016 DRAFT
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duplicated wideband system.

In the rest of the section, we will outline the derivation of each of the bounds in somewhat more detail,

and then formally state it. The formal proofs of the spherical cap bound and the spectrum replication

bound will be relegated to Appendix A. Then, we will briefly discuss also the weaknesses of the various

bounds. Finally, we will discuss and state an achievability bound, which is also based on an analogous

bound from [20], and then discuss its possible weaknesses, along with some speculations on how it might

be strengthened.

The proof of the channel coding converse bound begins by employing Chebyshev’s inequality, to link

the MPαE and the large deviations performance of the system as follows

Eu {|û(Y)− u|α} ≥ ∆α · Pu {|û(Y)− u| > ∆} . (22)

Then, an arbitrary rate R is chosen and ∆ = exp(−NR) is set. In [8, Theorem 1], it is shown that if there

exists a modulation-estimation system such that Pu
{
|û(Y)− u| > e−NR

}
decays with some exponent

E(R), then an ordinary channel code of rate R can be constructed which achieves the same exponent.

Thus, as E(R) cannot be larger than the reliability function of channel coding, it follows from (22) that

the MPαE exponent cannot be larger than E(R) +αR. Finally, the best bound is obtained by optimizing

over the rate R, to yield minR≥0 [E(R) + αR].

To state the bound more explicitly, let us define Gallager’s random coding function [6, p. 339, eq.

(7.4.24)]

E0(ρ,Γ) ,
1

2

[
(1− β0)(1 + ρ) + Γ + log

(
β0 −

Γ

1 + ρ

)
+ ρ log(β0)

]
, (23)

where [6, p. 339, eq. (7.4.28)]

β0 ,
1

2

(
1 +

Γ

1 + ρ

)[
1 +

√
1− 4Γρ

(1 + ρ+ Γ)2

]
, (24)

and Gallager’s expurgated function [6, p. 341, eq. (7.4.43)]

Ex(ρ,Γ) , (1− βx)ρ+
Γ

2
+
ρ

2
log

[
βx

(
βx −

Γ

2ρ

)]
, (25)

where [6, p. 342, eq. (7.4.45)]

βx ,
1

2
+

Γ

4ρ
+

1

2

√
1 +

Γ2

4ρ2
. (26)

It should be remarked that for the converse bound on the MPαE exponent, Gallager’s random coding

exponent is used only at rates for which it equals to the reliability function of channel codes, namely,
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where it coincides with the sphere-packing exponent. In addition, it is well known that the channel coding

reliability function at zero communication rate is equal to the expurgated exponent, which in turn is given

by

lim
ρ→∞

Ex(ρ,Γ) =
Γ

4
. (27)

We now have the following Proposition.

Proposition 1 (Channel coding converse bound). The MPαE exponent per unit bandwidth is upper

bounded as

Fα(Γ) ≤ min {2E0(α,Γ), γαΓ} . (28)

Proof: Using the same proof as in [20, Theorem 1, Appendix A] and outlined above, we have that

Fα(Γ) ≤ 2 ·min

{
E0(α,Γ),

Γ

4

}
. (29)

For the band-limited AWGN channel, we may also add to the minimization the unlimited-bandwidth

bound, and so

Fα(Γ) ≤ min

{
2E0(α,Γ),

Γ

2
, γαΓ

}
. (30)

Now, by definition, γα is non-decreasing with α, and from (20) limα→∞ γα = 1
2 . Thus, γα ≤ 1

2 and so
Γ
2 never dominates the minimization in (30).

Note that in the channel coding converse bound, the variable ρ of Gallager’s random coding function is

set to α, and can be larger than 1, because the function E0(α,Γ) actually arises from the sphere-packing

exponent, for which ρ is positive and not limited to [0, 1].

The outline of the derivation of the spherical cap bound is as follows. With some abuse of notation,

the system SN will be identified with the projection vectors of its signal set, SN , {s(u) : u ∈ [0, 1)},
and its MPαE will be denoted by eα(SN ). We begin with an arbitrary band-limited system SN . As can

be seen in Fig. 3, only part of the locus, created by the signals in SN , is contained in a given spherical

cap of angle 2θ. If we focus only on the subset of parameters values pertaining to signals within the

spherical cap, and join these subsets to the left (see Fig. 3), we get a new system SN which modulates

parameters in [0, u) for some u ≤ 1, and uses the signals within the spherical cap only. If we then

rescale the interval [0, u) back to [0, 1) (while still using only signals within the same spherical cap),

we get a new system S̃N , for parameters in [0, 1). The MPαEs of the various systems SN , SN and S̃N
obey a simple relationship, and thus any bound on the MPαE of S̃N implies a bound on the MPαE
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0 1

u = 0
u = 1

A B C D

A B = C D

A B = C D

SN

S̄N

S̃N

A B C D

0

0 1

2θ
joining

rescaling

ū = |UN |

Figure 3. Illustration of the mechanism of the spherical cap bound.

of SN . Specifically, using the unlimited-bandwidth converse bound (20) on the MPαE exponent of S̃N
(even though it is a band-limited system) leads to the spherical cap bound. A key point in the proof is

a measuring argument similar to [23, pp. 293-294], which is used to prove the existence of a spherical

cap which contains a significant portion of the signal set locus. Finally, as the angle θ of the spherical

cap was arbitrary, it is optimized to obtain the tightest bound. The following theorem is then obtained.

Theorem 2 (Spherical cap bound). The MPαE exponent per unit bandwidth is upper bounded as

Fα(Γ) ≤

γαΓ, Γ < α
γα

α
[
log
(
γαΓ
α

)
+ 1
]
, Γ ≥ α

γα

. (31)

Next, we outline the derivation of the spectrum replication bound. The proof relies on the idea of

superimposing a frequency position modulation over a system ST for bandwidth W . Suppose that we

have a system ST whose signals are band-limited to [0,W ). Imagine that we duplicate its signal set by

a simple frequency shifts, from the frequency band [0,W ) to all the frequency bands [mW, (m+ 1)W )

for 0 ≤ m ≤ M − 1, where M is integer, thus obtaining a new signal set for a system S̃T . Now, a

specific signal in the new signal set is specified by two components of the parameter: (i) the frequency

band index m, and (ii) the signal within the band, which is nothing but a frequency translation of a

signal from ST . The spectrum of the signals of ST and S̃T is illustrated in Fig. 4. Accordingly, we can

construct a modulation-estimation system S̃T which modulates both parameters.

Specifically, let the newly constructed system be denoted by S̃T . The parameter at the input of this
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φ6(t)φ1(t) φ2(t) φ3(t) φ4(t) φ5(t)

W 2W
f

3W

φ9(t)φ7(t) φ8(t)

Figure 4. The system ST is band-limited to W , and uses a linear combination of the orthonormal basis {φn(t)}Nn=1 to modulate
the parameter u, where, here N = 3. The orthonormal basis {φn(t)}3n=1 is duplicated, using a frequency translation to the
bands [W, 2W ) and [2W, 3W ). The new system S̃T , shown here with M = 3, modulates the parameter v by first choosing a
frequency band m ∈ {0, 1, 2}, and then modulates {φn(t)}mM+N

n=mM+1, just as ST modulates {φn(t)}Nn=1.

system is first uniformly quantized to M values, and then the quantization error, after a proper scaling

to [0, 1), is used as an input to the original system ST . The signal chosen from ST is then modulated to

one of M possible non-overlapping frequency bands according to the quantized value of the parameter,

and then transmitted over the channel.

At the receiver, first the active frequency band is decoded using a non-coherent decoder, and the

quantized part is estimated. Then, the signal is demodulated to baseband (assuming a correct decoding

at the first stage), and the estimator of ST is used to estimate the quantization error. Afterwards, an

estimation of the parameter is obtained using both the decoded quantized value and the estimation of the

quantization error.

Now, on the one hand, the MPαE exponent of the new system S̃T can be lower bounded by an

expression which depends on the MPαE exponent of ST , i.e., Fα(Γ), and the probability of correct

modulation frequency decoding. On the other hand, the signals of S̃T occupy the frequency band [0,MW ),

and if M � 1, 11 these signals have a much larger bandwidth than the original system. Thus, it is proper

to upper bound the MPαE exponent of the new system S̃T by the unlimited-bandwidth bound (20). Using

these relations, a bound on Fα(Γ) can be readily obtained.

To state the spectrum replication bound, we need the following definitions. For ρ ∈ [0, 1] define12

Φ(ρ,Γ) , ρ[η − 1− log η] + η + Γ + log

[√
4ηΓ + 1 + 1

2η

]
−
√

4ηΓ + 1, (32)

11As we shall see, M is in fact chosen to exponentially increasing with T .
12This function plays the role of Gallager’s E0(ρ) function in the random coding exponent for ordinary channel coding [6,

Section 5.6].
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where

η =
Γ +

√
Γ2 − 4(ρ2 + 1)(ρ+ 1)2

2(ρ+ 1)2
, (33)

and also define

Λα(Γ) , sup
0<ρ≤1

{
Φ(ρ,Γ)− γαΓ

ρ

}
. (34)

Theorem 3 (Spectrum replication bound). The MPαE exponent per unit bandwidth is upper bounded as

Fα(Γ) ≤ γαΓ− [αΛα(Γ)]+ (35)

where [t]+ , max{t, 0}.

It is evident that both bounds of (31) and (35) are monotonically increasing with γα. Thus, in the

range where the true value of γα is not known (0 < α < 2), any upper bound on γα can be used, in

particular, the bound (20).

As we shall see in Section IV, all the three converse bounds mentioned above, as far as we know, are

the best available, at least for some α and Γ. However, for the sake of potential future improvement of

these bounds, it is insightful to point out also their weaknesses. As discussed in [20, p. 839, footnote 6],

the weakness of the channel coding converse bound does not stem from the use of Chebyshev’s inequality,

but from the fact that there is no apparent single estimator which minimizes Pu
{
|û(Y)− u| > e−NR

}
,

uniformly for all R. The spherical cap bound suffers from the fact that an unlimited-bandwidth bound is

used as a converse bound within the cap. The spectrum replication bound has the weakness that it is based

on analyzing a two-stage estimator, which first decodes the frequency band, and then uses the signal in

this band to estimate the parameter. Furthermore, in the first step, the frequency band is decoded using

a sub-optimal, non-coherent decoder. Nonetheless, the above weaknesses are the result of compromises

made to make the analysis reasonably tractable, and, as said, give non-trivial results.

We conclude this section with an achievability bound. The idea is to use a separation-based scheme,

which first uniformly quantizes the parameter to exp(NR) points, for some R > 0. Then, it maps

the quantized parameter to a codeword from an ordinary channel code, which achieves the reliability

function, E(R,Γ). At the receiver, the maximum likelihood channel decoder is used to decode the

transmitted codeword, and the estimated parameter is defined as the midpoint of the quantization interval

of the decoded codeword. Note that increasing the rate R, reduces the quantization error, but increases

the probability of decoding error and vice-versa. Thus, the rate is optimized in order to maximize the

MPαE exponent.
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The derivation of this bound is a straightforward extension of [20]. We denote by E(R,Γ) the reliability

function of the AWGN channel (11) with SNR Γ, i.e., the maximal achievable error exponent for sequence

of codes of rate R. As is well known, it can be assumed that the reliability function is for the maximal

error probability over all codewords. We will use the definitions in (23) and (25).

Proposition 4 (Achievability bound). The MPαE exponent per unit bandwidth is lower bounded as

Fα(Γ) ≥ 2 ·max
R≥0

min {E(R,Γ), αR} (36)

≥ 2 ·max

{
sup

0≤ρ≤1

αE0(ρ,Γ)

ρ+ α
, sup
ρ≥1

αEx(ρ,Γ)

ρ+ α

}
. (37)

Remark 5. An achievable bound for the unlimited-bandwidth AWGN channel can be proved similarly to

Proposition 4. In this case, the reliability function E(R,Γ) in (36) is known exactly for all rates. With

a slight change of arguments, it is given by [26]

E(R,C) =


C
2 −R, 0 ≤ R ≤ C

4

(
√
C −

√
R)2, C

4 ≤ R ≤ C
, (38)

where C = P
N0

. Since αR (E(R,C)) is an increasing (respectively, decreasing) function of R, when

α ≥ 2, the solution of 2 · maxR≥0 min {E(R,C), αR} is obtained at R = C
2(α+1) = 1

2(α+1) · PN0
. This

proves the tightness of (20) for α ≥ 2.

Remark 6. It was shown in [20] that this bound is tight in the extreme cases of α→ 0 and α→∞. This

is indeed plausible since when α→ 0 the error |û− u|α behaves like a “zero-one” loss function, in the

sense that large errors do not incur more penalty than small errors. Thus, in this case, the quantization

error dominates the MPαE, and the rate is maximized, i.e. chosen to be the channel capacity. A similar

situation occurs when α → ∞, but that in this case, the error |û − u|α tends to be a “zero-infinity”

loss function. Large errors still do not penalize more than small errors, but any error event causes a

catastrophically large penalty. Thus, in this case, the decoding error dominates the MPαE, and the rate

is minimized in order to maximize the decoding reliability, i.e. chosen to be zero. It should be stressed,

however, that the achievability and converse bound are tight for a given Γ, as α → 0 and α → ∞, but

may not be the best bounds for a given 0 < α <∞.

An apparent weakness of the achievability bound is that it is derived from analyzing a separation-

based system, which means that the mapping between one of the M possible quantized parameter values

and the M signal is arbitrary. A better system should choose this mapping such that nearby (quantized)
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parameter values will be mapped to nearby signals. In this case, a decoding error will typically cause

only a small error in the parameter value. In other words, if one maps the quantized parameter value

into bits, an unequal error protection scheme should be used to communicate these bits [27], with larger

reliability for the most significant bits than for the least significant bits.

Typically, such a scheme uses an hierarchical channel code (also called superposition coding) [28],

just like the one used, e.g., for the broadcast channel [29, Chapter 5]. Each codeword, in this case,

is given by the sum of a ‘cloud’ codeword and a ‘satellite’ codeword,13 where the most significant

bits determine the cloud codeword, and the least significant bits determine the satellite codeword. The

advantage of such a system is that pairs of signals pertaining to nearby parameter values belong to the

same ‘cloud’, whereas pairs of signals that are associated with distant parameter values are allowed to

belong to different clouds. Thus, when a satellite decoding error occurs, this results in only an error in

the refined part of the quantized parameter. Since the cloud centers have a rate lower than the entire

codebook, the decoding error probability of the cloud centers can be significantly reduced, and overall,

lead to a better MPαE exponent. It can also be noticed that a scheme in the same spirit was used in the

spectrum replication bound (Theorem 3), as a method to prove a converse bound on the exponent.

Unfortunately, despite a considerable effort in this direction, we were not able to find a concrete bound

which improves the achievability bound. It seems that the problem is that strong bounds on the MPαE

can be obtained only by analyzing the optimal cloud decoder (as, e.g., in [30]), and not a decoder which

treats the interference from the satellite as noise (as, e.g., in [31]). Especially, it seems that expurgated

bounds for optimal cloud decoding are most useful for the problem of bounding the MPαE. However,

the best expurgated bound we are aware of was not sufficiently strong to improve the achievability bound

on the MPαE.

IV. RESULTS AND COMPARISON AMONG THE BOUNDS

In Figures 5-8, the values α = 0.1, 1, 2, 10 are considered, and the channel coding converse bound (28),

the spherical cap bound (31), and the spectrum replication bound (35) are plotted (using (20) to bound

γα). For the sake of comparison, the unlimited-bandwidth converse bound (20), and the achievability

bound (37) are also plotted.

It is evident that for α = 0.1, the channel coding converse bound dominates all other bounds; for

α = 1 the spherical cap bound is better for some values of Γ, but for most SNRs the channel coding

13In a two-users degraded broadcast channel, the cloud codeword carries the message to be decoded by both users, while the
satellite codeword carries the private message, intended for the strong user only.
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Figure 5. Various bounds on Fα(Γ) for α = 0.1.
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Figure 6. Various bounds on Fα(Γ) for α = 1.

converse bound is the best; for α = 2 the spherical cap bound is best for some values of Γ, but for most

SNRs the spectrum replication bound is the best; and, for α = 10 the spherical cap bound dominates all

other bounds.

To investigate systematically the behavior of the bounds for different values of α, we explore the high

and low SNR regimes. At high SNR, Γ → ∞, it turns out that the all the converse bounds have the
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Figure 7. Various bounds on F ∗
α(Γ) for α = 2.
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Figure 8. Various bounds on Fα(Γ) for α = 10.

same asymptotic form α log(Γ) + cα + o(Γ), for some cα. Thus, the various upper bounds differ by their

additive constant cα. The next proposition gives the value of the constant cα. Its proof, as well as the

proofs of all the other propositions in this section can be found in Appendix C.
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Figure 9. cα for the various bounds, when using (20) as an upper bound to γα.

Proposition 7. The converse bounds at Γ→∞ are given by

Fα(Γ) ≤ α log(Γ) + cα + o(Γ) (39)

with

cα =


α− (1 + α) log(1 + α), Channel coding converse bound (Prop. 1)

α log
(γα
α

)
+ α, Spherical cap bound (Thm. 2)

α log
(
e
8

)
, Spectrum replication bound (Thm. 3 ), α ≥ 2.

(40)

For α < 2 the spectrum replication bound of Theorem 3 increases linearly with Γ, and is thus useless

for high SNR.

Fig. 9 shows the value of cα versus α. As can be seen, for 0 < α ≤ 1.34, the channel coding converse

bound has the best constant, for 1.34 < α ≤ 2 and α ≥ 3, the spherical cap bound has the best constant,

and for 2 < α ≤ 3, the spectrum replication bound has the best constant. Nonetheless, if the bound (20)

is not really tight for α < 2, and its actual value is γα = α
2(1+α) , just as for α ≥ 2, then the spectrum

replication bound would be the best for all α ≤ 3 (see Remark 12). We remark that the DPT based bound

(5), given by

Fα(Γ) ≤ α · log(1 + Γ), (41)
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is not displayed in Figures 5-8, since it is worse than the best all other converse bounds. For high SNR,

this is also evident from Fig. 9, by noting that cα < 0 if we take the minimum over of all bounds (cf.

(39) and (41)). Regarding the achievability bound of Proposition 4, a slightly weaker statement can be

made.

Proposition 8. The achievability bound of Prop. 4 scales as [1 + o(Γ)] · α log(Γ) as Γ→∞.

At the other extreme, at low SNR (Γ → 0), it is apparent that just like in channel coding, the

bandwidth constraint is immaterial, and the performance of band-limited systems approaches that of

unlimited-bandwidth systems. In this regime, the additional dimensions offered by a possible increase

of the bandwidth do not improve the exponent, because the increase in the MPαE exponent due to the

additional dimensions is lower than the decrease in the exponent due to energy reduction in the original

dimensions. Proposition 9 describes the behavior of the channel coding converse bound for small Γ.

Proposition 9. The channel coding converse bound of Prop. 4 scales as α
2(1+α)Γ + Θ(Γ2) as Γ→ 0.

For α ≥ 2 the channel coding converse bound is linear in Γ, and has the same slope as the unlimited-

bandwidth converse bound γαΓ (see (20)). For α < 2, however, there is still a gap.

Nevertheless, as the SNR increases, the band-limited exponent should be strictly less than the unlimited-

bandwidth exponent. From this aspect, an interesting figure merit for a bound is the minimal SNR for

which the bound deviates from the unlimited-bandwidth bound. For the spherical cap bound, this SNR

is clearly Γsc , α
γα

. For the channel coding converse bound, such an SNR Γcc exists, but it is difficult

to find it analytically. Indeed, as Γ→ 0, we get β0 → 1 and the channel coding converse bound reads

Fα(Γ) ≤ α

1 + α
Γ + Θ(Γ2), (42)

and as evident from (20), the minimization in (28) is dominated by the term γαΓ. For the spectrum

replication bound, the minimal SNR Γsp for which the bound deviates from the unlimited-bandwidth

bound is also difficult to find analytically14. Thus, numerical results are displayed in Fig. 10. From this

aspect, it is seen that the spherical cap bound is usually better than the two other bounds, except for very

low values of α.

14The existence of such an SNR is also difficult to prove. Note that Λα(Γ) = 0. Thus, if Λα(Γ) is a convex function of
Γ then a critical SNR Γsp, such that Λα(Γ) > 0 for all Γ > Γsp does exist. In turn, Λα(Γ) is the pointwise supremum of
Φ(ρ,Γ)−γαΓ

ρ
, and so if Φ(ρ,Γ) is a convex function of Γ, then so is Λα(Γ). Unfortunately, verifying that Φ(ρ,Γ) is a convex

function of Γ is not a trivial task. Nonetheless, we were not able to find any counterexample for the convexity of Φ(ρ,Γ).
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Figure 10. The minimal SNR for which a band-limited bound deviates from the unlimited-bandwidth bound, as a function of
α.

It is also interesting to note that for a given Γ, all bounds tend to zero as α → 0. For α → ∞
the spectrum replication bound is useless, whereas the channel coding and spherical cap bounds tend

to Γ
2 ; the latter being the channel capacity of the unlimited-bandwidth channel (per unit time per unit

bandwidth).

APPENDIX A

PROOFS OF CONVERSE BOUNDS

Proof of Theorem 2: As said in Section II, any band-limited signal s(t, u) of energy PT can be

identified with a vector s(u) , (s1(u), . . . sN (u)) ∈ RN , where N = 2WT (see (8)). Due to the power

constraint, s(u) lies on the surface of the of radius
√
PT , centered at the origin.

We begin with a few definitions. With some abuse of notation, the system SN will be identified with

the projection vectors of the signals in ST , i.e., SN , {s(u) : u ∈ [0, 1)}, and its MPαE will be denoted

by eα(SN ), where the estimator will be understood from context. We denote the set of parameters values

pertaining to a signal subset SN ⊆ SN , by U(SN ), i.e., u ∈ U(SN ) iff s(u) ∈ SN . Also, we denote

by
∣∣U(SN )

∣∣ the standard Lebesgue measure of the set U(SN ) ⊆ [0, 1). Furthermore, for any unit vector

g ∈ RN and an angle θ ∈ [0, π] we define the spherical cap as

Aθ(g,SN ) ,
{
s(u) ∈ SN : 〈s(u),g〉 ≥

√
PT · cos θ

}
, (A.1)
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where, as usual, the inner product is defined as 〈s(u),g〉 ,∑N
n=1 sn(u) ·gn. We begin with the following

measuring argument.

Lemma 10. Let θ ∈ (0, π2 ) and SN be given. Then, there exists unit vector g for which

|U [Aθ(g,SN )]| ≥ exp

{
N

2
·
[
log
(
sin2 θ

)
−Θ

(
logN

N

)]}
. (A.2)

Proof of Lemma 10: The idea of the proof is similar to [23, pp. 293-294]. Let AN (θ) denote the

surface area of a spherical cap of angle θ on a sphere of radius
√
PT , in an N dimensional space. Note

that AN (π) is the surface area of the entire sphere. Now, define

Ξ ,
∫ 1

0

∫
BN

I {〈s(u),g〉 ≥ S · cos θ} dBN (g) · du (A.3)

where BN is the surface of the N -dimensional unit sphere and dBN (g) is a differential surface area

around g. On the one hand, Ξ is trivially given by AN (θ). On the other hand, using Fubini’s theorem

[32, Chapter 18], Ξ can also be expressed with the integration order exchanged, and so

Ξ =

∫
BN

∫ 1

0
I {〈s(u),g〉 ≥ S · cos θ} du · dBN (g) (A.4)

=

∫
BN
|U [Aθ(g,SN )]| dBN (g) (A.5)

≤ AN (π) · max
g∈BN

|U [Aθ(g,SN )]| . (A.6)

Thus, there exists g ∈ BN such that

|U [Aθ(g,SN )]| ≥ AN (θ)

AN (π)
. (A.7)

To conclude, we use [33, eqs. (27) and (28)]

AN (θ)

AN (π)
=

exp [N log (sin θ)]√
2πN · sin θ · cos θ

·
[
1 +O

(
1

N

)]
= exp

{
N

2

[
log
(
sin2 θ

)
− log(N)

N
− O(1)

N

]}
. (A.8)

Let SN be given, and denote its estimator by û(y). In addition, let g be a unit vector that satisfies

(A.2), and let UN , U [Aθ(g,SN )] the corresponding parameter values of its spherical cap. We shall now

construct from SN , two modulation-estimation systems, SN and S̃N , using signals only from Aθ(g,SN ),

such that

eα(SN ) ≥ eα(SN ) ≥ |UN |α · eα(S̃N ). (A.9)
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Now, although S̃N is band-limited just like SN , we will bound eα(S̃N ) using the unlimited-bandwidth

bound. This and (A.9) will provide a bound on Fα(Γ).

To construct SN , we shall map UN onto UN , [0, |UN |) in an order preserving manner (see Fig. 3).

For example, if UN =
⋃I
i=1 Ii, where Ii are disjoint intervals of the form [ai, bi), and a1 < b1 ≤ a2 <

· · · < aI ≤ bI then such a mapping is easily obtained by eliminating the spaces between every two

consecutive intervals. Indeed, at the first step, the interval II will be shifted by aI−bI−1 to the left, such

that II−1 and II are combined into a single interval I(1)
I−1, while I(1)

i = Ii is set for 1 ≤ i < I − 1. At

the second step, the interval I(1)
I−1 is combined with I(1)

I−2 to a single interval I(2)
I−2 in the same manner.

Continuing in this manner for I−1 steps, we obtain a single interval, which can be translated to [0, |UN |).

More generally, it is easy to verify that the mapping

Ψ[u] ,
∫ u

0
I [w ∈ UN ] dw (A.10)

satisfies the required properties. Note that the integral in (A.10) exists since the mapping u→ s(t, u) is

assumed to be measurable. The function Ψ[·] is monotonic and Lipschitz continuous with constant 1 as

|u1 − u2| ≥ |Ψ[u1]−Ψ[u2]| (A.11)

for any u1, u2 ∈ [0, 1). So, using the estimator u(y) , Ψ[û(y)] for SN , we have

Eu {|û(Y)− u|α} ≥ EΨ[u] {|Ψ[û(Y)]−Ψ[u]|α} , (A.12)

for any u ∈ UN , where in the left-hand side (right-hand side) the system SN (respectively, SN ) is

assumed. Hence,

eα(SN ) ≥ eα(SN ). (A.13)

Now, consider the signal set

S̃N , {s̃(u) = s(u)− 〈s(u),g〉 · g : s(u) ∈ Aθ(g,SN )} . (A.14)

To wit, geometrically, this is the signal set obtained by removing the projecting of the signal vector s(u)

onto g from s(u). Clearly, for any s(u) ∈ Aθ(g,SN ) and it corresponding s̃(u) ∈ S̃N according to

(A.14),

PT = ‖s(u)‖2 (A.15)

= ‖s(u)− 〈s(u),g〉 · g + 〈s(u),g〉 · g‖2 (A.16)
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(a)
= ‖s̃(u)‖2 + ‖〈s(u),g〉 · g‖2 (A.17)

≥ ‖s̃(u)‖2 + PT · cos2 θ, (A.18)

where (a) follows from the Pythagorean theorem and the orthogonality of s̃(u) and g. Thus, the signal

set S̃N satisfies an energy constraint of PT [1− cos2 θ] = PT · sin2 θ.

We can now construct a modulation-estimation system which is based on the signal set S̃N and the

original domain of the parameter. This is simply done by scaling back UN = [0, |UN |) to the original

interval [0, 1) = |UN |−1·[0, |UN |). The system operates as follows. To modulate a parameter v ∈ [0, 1),

first u(v) is set to

u(v) = Ψ−1
[
|UN |−1·v

]
, (A.19)

i.e. the parameter v ∈ [0, 1) is first mapped to UN and then mapped to the u ∈ [0, 1) that satisfies

s (u(v)) ∈ Aθ(g,SN ). Then, s (t, u(v)) =
∑
sn (u(v)) · φn(t) is transmitted over the channel (6). The

estimator v̂(y) of v, is given by

v̂(y) = |UN |−1·u(y). (A.20)

Now, due to the scaling operation from SN to S̃N by a factor of |UN |−1, the ratio between their MPαE’s

is not larger than |UN |−α, to wit, for any given v ∈ [0, 1)

Ev {|v̂(Y)− v|α} ≤ |UN |−α·E|UN |·v {|u(y)− |UN |·v|α} (A.21)

where in the left-hand side (right-hand side) the system S̃N (respectively, SN ) is assumed. This, together

with (A.13) implies (A.9).

Now, we note that the modulation-estimation system for v has a power limitation of PT · sin2 θ. So,

a lower bound for the MPαE of unlimited-bandwidth systems can be used to obtain to lower bound the

left-hand side of (A.21), and hence,

Ev {|v̂(Y)− v|α} ≥ exp

[
−N

2
γαΓ sin2 θ

]
. (A.22)

This, along with (A.9) and Lemma 10, implies that for any given δ > 0, there exists N sufficiently large

such that

Eu {|û(Y)− u|α} ≥ exp

{
N

2
· α
[
log
(
sin2 θ

)
− δ
]}

exp

[
−N

2
γαΓ sin2 θ

]
. (A.23)
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Now, the angle θ ∈ (0, π2 ) is arbitrary, and thus can be optimized. Denoting τ , sin2 θ we get

Eu {|û(Y)− u|α} ≥ exp

{
−N

2

[
sup

0<τ<1
(γαΓτ − α log τ)− αδ

]}
, (A.24)

and after maximizing over τ , and taking δ ↓ 0, (31) is immediately obtained.

Proof of Theorem 3: Let δ > 0 be given. As in the proof of the spherical cap bound, let a signal

set SN , {s(u) : u ∈ [0, 1)} be given. As was discussed in Section II, for any given dimension, we

can transform a vector s(u) to a signal s(t, u) using an orthonormal basis {φn(t)}. Specifically, let us

consider an orthonormal basis of L , MN signals {φl(t), 0 ≤ t ≤ T}Ll=1, where M � 1, and M

integer. We assume that the system SN uses {φl(t), 0 ≤ t ≤ T}Nl=1 to transform s(u) ∈ RN to a

signal s(t, u). We now construct a new system, that modulates a parameter v ∈ [0, 1), using a signal

set S̃N ∈ RL , which is transformed to a signal using {φl(t), 0 ≤ t ≤ T}Ll=1. Since N = 2WT and

L = 2MWT , as said in Section III, one can think of the system S̃N as using bandwidth MW �W . Its

total frequency band [0,MW ) is partitioned into M consecutive frequency bands [0,W ), [W, 2W ),...,

[(M−1)W,MW ), and the value of the parameter is modulated using both the choice of active frequency

band 0 ≤ m ≤M − 115, and the specific signal within the band.

We now describe the system S̃N which modulates v ∈ [0, 1). Let vc = bM ·vc
M , where b·c is the floor

operation, and vr = v − vc. The idea is to use vc to choose one of M possible sets of basis functions{
{φl}Nl=1, {φl}2Nl=N+1, . . . {φl}MN

l=(M−1)N+1

}
, and to use vr to choose which vector to transmit over the

chosen N basis functions, while utilizing the original system SN .

The modulation-estimation system S̃N is depicted in Fig. 11 (in continuous time). Specifically, to

modulate v, a modulation index is chosen using the coarse part as

m(v) ,M · vc ∈ {0, . . . ,M − 1}, (A.25)

and a vector of coefficients is chosen as s(M · vr). Then, s̃(v), the coefficient vector of S̃N , is chosen

with the entries

s̃l(v) =

sl−m(v)(M · vr), m(v)N + 1 ≤ l ≤ m(v)N +N

0, otherwise
(A.26)

15Nothing it transmitted at all other bands. However, as discussed in Section II the system ST is, in essence, only approximately
band-limited to [0,W ), and thus its signals have out-of-band energy. In the frequency position modulation described here, this
could create interference between neighboring frequency bands. However, since we eventually bound the MPαE of S̃T by
a bound for an unlimited-bandwidth system, our proof remains in tact even if we choose the modulation frequencies to be
f(m) = mKW , for any arbitrarily large integer K. Hence, the effect of the interference can made negligible.
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Modulator

v ∈ [0, 1) s(t, u)

ỹ(t)

Quantizer

−

vc ×

M

vr ×

M

s̃(t, v)Frequency

m(v)

shift
ST

m(v)W

u ∈ [0, 1)

Non-coherent m̂

Frequency
shift

−m̂W
Estimator

ST û

+ ÷

M

v̂

Decoder

Figure 11. Modulation-Estimation system for the proof of the spectrum replication bound.

(note that M · vr ∈ [0, 1)), and s̃(t, v) =
∑L

l=1 s̃l(v) · φl(t) is transmitted over the channel (6). To wit,

only the signals {φl(t)}m(v)N+N
l=m(v)N+1, which represent the frequency band [m(v)W, (m(v) + 1)W ), have

non-zero coefficients.

At the receiver, a proper projection vector ỹ is obtained as in (9), but this time, over L basis functions.

Specifically, we define the projections

ỹm,n ,
∫ T

0
y(t) · φ̃mN+n(t) · dt 0 ≤ m ≤M − 1, 1 ≤ n ≤ N, (A.27)

and ỹm , (ỹm,1, . . . , ỹm,N ), as well as the (scaled) energies qm , 2
N0
‖ỹm‖2 = 2

N0

∑N
n=1 ỹ

2
m,n. The

estimator v̂(ỹ) of S̃N is obtained in two steps. In the first, we decode m(v), using a non-coherent decoder,

which decides based on the maximum projection energy, i.e.

m̂(ỹ) , arg max
m∈{0,...,M−1}

qm. (A.28)

In the second step, we estimate the parameter v as

v̂(ỹ) =
m̂+ û(ỹm̂)

M
, (A.29)
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where û(y) is the estimator of the original system SN , and for clarity, the dependence of m̂ on ỹ was

omitted. In words, in the second step, we assume that m̂ is the correct index, and use the vector ỹm̂ as

the input to the estimator of SN .

The exponential behavior of the MPαE of the system S̃N will be different from that of SN only if M

increases exponentially with N . Hence, we assume that M , exp(TWR) = exp(N2 ·R) for some ‘rate’

R > 0. In Appendix B, we analyze the reliability of the non-coherent decoder, using large deviations

analysis of chi-square random variables. Denoting the error event, in the first step of the estimation, by

E , it is shown there that for all v ∈ [0, 1)

Pv[E ] ≤ exp

[
−N

2
·G(Γ, R)

]
(A.30)

where

G(Γ, R) , max
0≤ρ≤1

{Φ(ρ,Γ)− ρR} (A.31)

and Φ(ρ,Γ) is as defined in (32). The MPαE of S̃N is then bounded as follows. For all N sufficiently

large

Ev
{∣∣∣v̂(Ỹ)− v

∣∣∣α} = Pv[E ] · Ev
{∣∣∣v̂(Ỹ)− v

∣∣∣α |E}+ Pv[Ec] · Ev
{∣∣∣v̂(Ỹ)− v

∣∣∣α |Ec} (A.32)

≤ Pv[E ] + Ev
{∣∣∣v̂(Ỹ)− v

∣∣∣α |Ec} (A.33)

≤ exp

[
−N

2
·G(Γ, R)

]
+ Ev

{∣∣∣v̂(Ỹ)− v
∣∣∣α |Ec} (A.34)

= exp

[
−N

2
·G(Γ, R)

]
+ Ev

{∣∣∣∣∣m̂(Ỹ)

M
+
û(Ỹm̂(Ỹ))

M
− vc − vr

∣∣∣∣∣
α∣∣∣∣∣ Ec

}
(A.35)

(a)

≤ exp

[
−N

2
·G(Γ, R)

]
+ 2 · Ev

{∣∣∣∣∣ û(Ỹm(v))

M
− vr

∣∣∣∣∣
α}

(A.36)

= exp

[
−N

2
·G(Γ, R)

]
+

2

Mα
Eu
{∣∣∣û(Ỹm(v))−M · ur

∣∣∣α} (A.37)

≤ exp

[
−N

2
·G(Γ, R)

]
+ 2 · exp

{
−N

2
· [αR+ Fα(Γ)]

}
(A.38)

≤ 2 · exp

{
−N

2
·min [G(Γ, R), αR+ Fα(Γ)]

}
. (A.39)

In (a), we have used the fact that conditioned on Ec, we have û(Ỹm̂)
M = vc and the fact that for G(Γ, R) > 0

(which is our regime of interest), (A.30) implies that Pv[Ec]→ 1 as N →∞. So, for any random variable
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X , and all N sufficiently large,

Ev {X|Ec} =
1

Pv[Ec]
Ev {X · I[X ∈ Ec]} (A.40)

≤ 1

Pv[Ec]
Ev[X] (A.41)

≤ 2 · Ev[X]. (A.42)

Clearly, for any given R ≥ 0, the proposed system cannot achieve an MPαE exponent better than the

converse bound of the unlimited-bandwidth system, exp(−N
2 · γαΓ). Hence,

min {G(Γ, R), αR+ Fα(Γ)} ≤ γαΓ, (A.43)

or, equivalently

Fα(Γ) ≤

γαΓ− αR, G(Γ, R) > γαΓ

∞, G(Γ, R) ≤ γαΓ

. (A.44)

The relation G(Γ, R) > γαΓ can be easily seen to be equivalent to R < Λα(Γ), where Λα(Γ) is defined

in (34), and thus

Fα(Γ) ≤

γαΓ− αR, R ≤ Λα(Γ)

∞, R > Λα(Γ)

. (A.45)

Since R ≥ 0 is arbitrary, the tightest bound is obtained by choosing R = Λα(Γ) which leads to (35).

APPENDIX B

RELIABILITY ANALYSIS OF THE MODULATION SCHEME OF THE SPECTRUM REPLICATION BOUND

In this appendix, we evaluate the reliability of the non-coherent decoder (A.28). Let us denote the

random variables of the system by uppercase letters, e.g. Qm. Due to symmetry, it can be assumed w.l.o.g.

that mv = 0. Then, it is straightforward to verify that for any given m 6= 0, we have Ỹm,n ∼ N (0, 1) and

{Ỹm,n} are independent. Consequently, Qm is a chi-square random variable of N degrees of freedom.

Similarly, for m = 0, we have Ỹ0,n ∼ N (ςM ·vr,n, 1) i.e., Q0 is a non-central chi-square random variable

of N degrees of freedom, and a non-centrality parameter λ , 1
N0/2

∑N
n=1 ς

2
M ·vr,n = 2PT

N0
. We build on the

analysis in [12, Section 2.5, Section 2.12.2, Problem 2.14 and Problem 2.15]. Let f0(·) be the probability

density function of Q0 given that mv = 0. Then, for any 0 ≤ ρ ≤ 1, the decoding error probability can
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be bounded as

Pv[E ] = 1− P [Q0 > Qm, ∀m 6= 0|mv = 0] (B.1)

=

∫ ∞
0

f0(q)
{

1− (P[Q1 ≤ q|mv = 0])M−1
}
· dq (B.2)

≤Mρ

∫ ∞
0

f0(q)Pρ[Q1 > q|mv = 0] · dq (B.3)

where the inequality is obtained from 1 − (1 − α)M ≤ (Mα)ρ (known as Gallager’s union bound [6,

Lemma, p. 136]). Let {KN}∞N=1 and {κN}∞N=1 be two positive sequences which satisfy KN ↑ ∞ and

κN ↓ 0 as N →∞. The appropriate choices for them will be discussed later on. For notational simplicity,

let us assume that KN/κN is integer, and temporarily omit the subscript N in their notation. Then,

Pv[E ] ≤Mρ

∫ ∞
0

f0(q) · Pρ[Q1 > q|mv = 0] · dq (B.4)

≤Mρ

K

κ
−1∑
l=0

∫ (l+1)κN

lκN
f0(q) · Pρ[Q1 > q|mv = 0] · dq +MρP (Q0 > KN |mv = 0) (B.5)

≤Mρ

K

κ
−1∑
l=0

∫ (l+1)κN

lκN
f0(q) · Pρ[Q1 > lκN |mv = 0] · dq +MρP (Q0 > KN |mv = 0) (B.6)

= Mρ

K

κ
−1∑
l=0

Pρ[Q1 > lκN |mv = 0] · P [lκN ≤ Q0 ≤ (l + 1)κN |mv = 0]

+MρP [Q0 > KN |mv = 0] (B.7)

≤MρK

κ
·
{

max
0≤l≤K

κ
−1

Pρ[Q1 > lκN |mv = 0] · P [lκN ≤ Q0 ≤ (l + 1)κN |mv = 0]

+ P [Q0 > KN |mv = 0]

}
, (B.8)

where in the last inequality, we have used the assumption that K
κ > 1 for sufficiently large N . In order

to evaluate the exponential behavior of Pv[E ], it will be convenient to partition the maximization to a

few intervals. In each interval, we upper bound the objective

Pρ[Q1 > lκN |mv = 0] · P [lκN ≤ Q0 ≤ (l + 1)κN |mv = 0] (B.9)

by an asymptotically tight upper bound. In essence, we are replacing the probability of an interval by

the tail probability of one of its endpoints, according to the relative position of lκN w.r.t. E[Q0] = N

and E[Q1] = N + λ = N + 2PT
N0

= N(1 + Γ), see Fig. 12. Let l1 be such that l1κ ≤ 1 ≤ (l1 + 1)κ and
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q
N1 1 + Γ

l1κ l2κ

f1(q)

f0(q)

Figure 12. The probability distribution functions of Q0 and Q1, for N = 10 and Γ = 2.

l2 be such that l2κ ≤ 1 + Γ ≤ (l2 + 1)κ. Then, for l ≤ l1 − 1 we upper bound (B.9) by

P [Q0 ≤ (l + 1)κN |mv = 0] , (B.10)

for l1 ≤ l ≤ l2 − 1 we upper bound it by

Pρ[Q1 > lκN |mv = 0] · P [Q0 ≤ (l + 1)κN |mv = 0] , (B.11)

for l = l2 we upper bound it by

Pρ[Q1 > lκN |mv = 0], (B.12)

and for l2 + 1 ≤ l ≤ K
κ − 1 we upper bound it by

Pρ[Q1 > lκN |mv = 0] · P [Q0 ≥ lκN |mv = 0] . (B.13)

We can now analyze the behavior of the probabilities above, as N →∞. To this end, we use the Chernoff

bound for chi-square random variables, using the known expressions for their moment generating functions
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[34, Section 19.8, eq. (19.45)]. For the energy Q1, we have that for η ≥ 1

P[Q1 ≥ ηN |mv = 0] ≤ inf
s≥0

E[esQ1 ]

esηN
(B.14)

= inf
0≤s<1/2

(1− 2s)−
N/2

esηN
(B.15)

= η
N/2 · exp

−N ·
(

1− 1
η

)
2

 (B.16)

= exp

{
−N ·

[
η − 1− log(η)

2

]}
, (B.17)

where the critical point is s = 1
2η − 1

2 , and for 0 < η < 1 we use the trivial bound

P[Q1 ≥ ηN |mv = 0] ≤ 1. (B.18)

In the same manner, for Q0 and 0 ≤ η ≤ 1 + Γ such that E[Q1] = N ≤ ηN ≤ E[Q0] = N(1 + Γ),

P[Q0 ≤ ηN |mv = 0] ≤ inf
s≤0

E[esQ0 ]

esηN
(B.19)

= inf
s≤0

(1− 2s)−
N/2 · exp

[
λs

1−2s

]
esηN

(B.20)

= exp

{
−N · sup

s≤0

[
− s

1− 2s
Γ + sη +

log(1− 2s)

2

]}
. (B.21)

The critical point is

s(η) ,
1

2
− 1

4η
−
√(

1

2
− 1

4η

)2

+
1 + Γ− η

4η
.

After inserting back s(η), and straightforward algebra, we get

P[Q0 ≤ ηN |mv = 0] ≤ exp

{
−N · 1

2

(
η + Γ + log

[√
4ηΓ + 1 + 1

2η

]
−
√

4ηΓ + 1

)}
. (B.22)

A similar analysis for η > 1 + Γ gives a similar result, and so

P[Q0 > ηN |mv = 0] ≤ exp

{
−N · 1

2

(
η + Γ + log

[√
4ηΓ + 1 + 1

2η

]
−
√

4ηΓ + 1

)}
. (B.23)

Returning to the error probability evaluation (B.8) and using the derived Chernoff bounds (B.17) and

(B.23) in the bounds (B.10), (B.11), (B.12) and (B.13), along with the continuity of the exponents in
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(B.17) and (B.23) 16 we get

G(Γ, R) ≥ − 1
N/2

logPv[E ] (B.24)

≥ min

{
min

0≤η≤1

{
2 ·
[
− s(η)

1− 2s(η)
Γ + s(η) · η +

log(1− 2s(η))

2

]
+ o(κN )

}
,

min
1≤η≤KN

{
2 ·
[
ρ[η − 1− log(η)]

2
− s(η)

1− 2s(η)
Γ + s(η) · η +

log(1− 2s(η))

2

]
+ o(κN )

}
,

2 ·
[
− s(KN )

1− 2s(KN )
Γ + s(KN ) ·KN +

log(1− 2s(KN ))

2

]}
− 2

N
log

KN

κN
− ρR. (B.25)

Now, in the inner minimization, the second term decreases as KN increases, and the third term increases.

Thus, for N sufficiently large, the third term will not be the minimal term. Also, since log η ≤ 1− η the

first term is always not smaller than the second term. Hence, the second term dominates the minimization.

Choosing KN and κN such that limN→∞
1
N log KN

κN
= 0, and optimizing over 0 ≤ ρ ≤ 1 we obtain

G(Γ, R) ≥ max
0≤ρ≤1

{Φ(ρ,Γ)− ρR} (B.26)

where Φ(ρ,Γ) is as defined in (32). It is easy to verify that the objective function, in the optimization

problem pertaining to Φ(ρ,Γ), is a convex function of η (positive second derivative), and decreasing

for η ≤ 1 (negative first derivative). Thus, the infimum over η ≥ 1 is achieved by the point where

the derivative w.r.t. η of the objective function in (32) vanishes. After some straightforward algebra, we

obtain that the optimal η∗ is the larger solution of the quadratic equation

(ρ+ 1)2η2 − [(ρ+ 1)(2ρ+ 1) + Γ] η + ρ2 + 1 = 0 (B.27)

given by (33).

Remark 11. The inequality 1− (1− α)M ≤ (Mα)ρ for 0 ≤ ρ ≤ 1 can be replaced with [35, Lemma 1]

1

2
min{1,Mα} ≤ 1− (1− α)M ≤ min{1,Mα} (B.28)

which states that the union bound, when clipped to 1, is asymptotically tight. Our analysis above can

also be carried out using (B.28) in (B.3), to obtain the exact exponential behavior of the error probability.

However, the resulting expressions are more complicated, and we have not found any specific cases for

16Note also that s(η) = 0 for η = 1 + Γ, which leads to a trivial Chernoff bound (zero exponent).
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which the numerical value of the bound derived with (B.28) is better than the bound derived above.

APPENDIX C

PROOFS FOR ASYMPTOTIC SNR ANALYSIS

Proof of Prop. 7: First, we approximate Gallager’s function in the regime Γ� 1. We have

β0 =
1

2

(
1 +

Γ

1 + ρ

)[
1 +

√
1− 4Γρ

(1 + ρ+ Γ)2

]
(C.1)

=
1

2

(
1 +

Γ

1 + ρ

)[
1 + 1− 2Γρ

(1 + ρ+ Γ)2
+ Θ

(
1

Γ2

)]
(C.2)

=

(
1 +

Γ

1 + ρ

)[
1− Γρ

(1 + ρ+ Γ)2
+ Θ

(
1

Γ2

)]
(C.3)

= 1 +
Γ

1 + ρ
− ρ

1 + ρ
· Γ2

(1 + ρ+ Γ)2
+ Θ

(
1

Γ

)
(C.4)

=
1 + Γ

1 + ρ
+ o(Γ). (C.5)

for (24), and

E0(ρ,Γ) = (1− β0)(1 + ρ) + Γ + log

(
β0 −

Γ

1 + ρ

)
+ ρ log(β0) (C.6)

= ρ+ log

(
1

1 + ρ

)
+ ρ log

(
1 + Γ

1 + ρ

)
+ o(Γ), (C.7)

= ρ− (1 + ρ) log(1 + ρ) + ρ log(Γ) + o(Γ), (C.8)

for (23).

For the channel coding converse bound of Proposition 1, observing (C.8), it evident that the minimum

in (28) is attained by E0(α,Γ) for high SNR, which leads directly to the first case in (40). The spherical

cap bound of Theorem 2 at high SNR simply reads

Fα(Γ) ≤ α log(Γ) + α log
(γα
α

)
+ α. (C.9)

It remains to analyze the behavior of the spectrum replication bound (Theorem 3) for high SNR

(Γ→∞). Approximating (33), we get

η∗ =
Γ +

√
Γ2 − 4(ρ2 + 1)(ρ+ 1)2

2(ρ+ 1)2
(C.10)

=
Γ + Γ

√
1− 4(ρ2+1)(ρ+1)2/Γ2

2(ρ+ 1)2
(C.11)
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=
Γ + Γ

[
1− 2(ρ2+1)(ρ+1)2/Γ2 + Θ

(
1

Γ4

)]
2(ρ+ 1)2

(C.12)

=
Γ

(ρ+ 1)2
+ Θ

(
1

Γ

)
. (C.13)

Inserting back to (32), we get

Φ(ρ,Γ) = ρ

[
Γ

(ρ+ 1)2
− 1− log

(
Γ

(ρ+ 1)2

)]
+

Γ

(ρ+ 1)2
+ Γ + log(ρ+ 1)− 2Γ

ρ+ 1
+ o(Γ). (C.14)

Then,

Λα(Γ) = sup
0<ρ≤1

Φ(ρ,Γ)− γαΓ

ρ
(C.15)

= sup
0<ρ≤1

Γ

(ρ+ 1)2
− 1− log

(
Γ

(ρ+ 1)2

)
+

Γ

ρ(ρ+ 1)2
+

Γ

ρ
+

log(ρ+ 1)

ρ
− 2Γ

ρ(ρ+ 1)
− γαΓ

ρ
+ o(Γ) (C.16)

= sup
0<ρ≤1

[
1

(ρ+ 1)2
+

1

ρ(ρ+ 1)2
+

(1− γα)

ρ
− 2

ρ(ρ+ 1)

]
Γ−

log

[
Γ

(ρ+ 1)2

]
− 1 +

log(ρ+ 1)

ρ
+ o(Γ) (C.17)

= sup
0<ρ≤1

[
ρ+ 1 + (1− γα)(ρ+ 1)2 − 2(ρ+ 1)

ρ(ρ+ 1)2

]
Γ

− log

[
Γ

(ρ+ 1)2

]
+

log(ρ+ 1)

ρ
− 1 + o(Γ) (C.18)

= sup
0<ρ≤1

[−ρ− 1 + (1− γα)(ρ+ 1)2

ρ(ρ+ 1)2

]
Γ− log

[
Γ

(ρ+ 1)2

]
+

log(ρ+ 1)

ρ
− 1 + o(Γ) (C.19)

= sup
0<ρ≤1

[
(1− γα)ρ2 + (1− 2γα)ρ− γα

ρ(ρ+ 1)2

]
Γ− log

[
Γ

(ρ+ 1)2

]
+

log(ρ+ 1)

ρ
− 1 + o(Γ).

(C.20)

Clearly, for Γ→∞ the maximizer ρ is chosen to maximize the coefficient of the linear dependence on

Γ. Differentiating this coefficient w.r.t. ρ, we get

(γα − 1)ρ3 + (3γα − 1)ρ2 + 3γαρ+ γα
ρ2(1 + ρ)3

, (C.21)

and when this derivative is strictly positive for all ρ ∈ (0, 1], the supremum is attained for ρ = 1. It can

be verified (e.g., numerically) that this happens as long as γα & 0.0175. If we use the bound (20) instead

of the actual value of γα, then this results that ρ = 1 is optimal for all α & 0.0178. In all these cases,
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we get

Λα(Γ) =

[
1

2
− γα

]
Γ− log(Γ) + log 8− 1 + o(Γ), (C.22)

and inserting back to (35) we get the bound

Fα(Γ) ≤ (1 + α)

[
γα −

α

2(1 + α)

]
Γ + α log(Γ)− α log

(
8

e

)
+ o(Γ). (C.23)

Further, for α ≥ 2, using the expression in (20) we have γα = α
2(1+α) which implies

Fα(Γ) ≤ α log(Γ)− α log

(
8

e

)
+ o(Γ). (C.24)

Remark 12. If one can prove that the reverse inequality in (C.23) holds, i.e.,

Fα(Γ) ≥ (1 + α)

[
γα −

α

2(1 + α)

]
Γ + α log(Γ)− α log

(
8

e

)
+ o(Γ), (C.25)

then this could lead to stronger results for the unlimited-bandwidth case, showing that γα = α
2(1+α)

for all α (rather than α ≥ 2, as was previously known), along with a simpler proof than [18] (albeit

somewhat indirect). Indeed, if γα > α
2(1+α) then Fα(Γ) would increase linearly with Γ, which is clearly

unacceptable. To obtain a contradiction, one can derive and channel encoder and decoder by a proper

quantization of the optimal modulator and estimator, and show that the communication rate increases

linearly with Γ with a negligible error probability. This evidently contradicts the logarithmic behavior

of the capacity in Γ. The main gap in such a proof method, however, is to show a reverse inequality in

(A.43). In turn, this corresponds to the hypothesis that the unlimited-bandwidth system constructed in

the proof of the spectrum replication bound is asymptotically optimal. Even more specifically, it seems

difficult to argue why the restriction of the estimator to a two steps procedure is asymptotically optimal.

Proof of Prop. 8: Using the approximations for β0 and E0(ρ,Γ) in (C.5) and (C.8), the first term

in (37) is approximated as

sup
0≤ρ≤1

αE0(ρ,Γ)

ρ+ α
= sup

0≤ρ≤1

α [ρ− (1 + ρ) log(1 + ρ) + ρ log Γ + o(Γ)]

ρ+ α
. (C.26)

At high SNR, the optimal choice for ρ is the one maximizing the coefficient of log(Γ), i.e. αρ
ρ+α which

is ρ = 1. This results the lower bound

α

1 + α
[1− 2 log 2 + log Γ + o(Γ)]
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=
α

1 + α
· [1 + o(Γ)] · log Γ. (C.27)

Now, let us inspect the second term in (37), i.e.,

sup
ρ≥1

αEx(ρ,Γ)

ρ+ α
. (C.28)

Let ρ∗x(Γ) be the maximizing value of ρ. Consider the hypothesis that ρ∗x(Γ) increases linearly with Γ.

Then, the denominator of (C.28) increases linearly with Γ. It can easily be seen that the nominator cannot

increase faster then linear, and so the value of (C.28) is bounded as Γ→∞. Such a behavior is of course

unreasonable, and as will shall see, better value for (C.28) can be attained. Next, consider the hypothesis

that ρ∗x(Γ) increases sub-linearly with Γ, which implies that Γ
ρ∗x(Γ) →∞ as Γ→∞. In this event,

βx =
1

2
+

Γ

4ρ∗x(Γ)
+

1

2

√
1 +

Γ2

4ρ∗x(Γ)2
(C.29)

=
1

2
+

Γ

2ρ∗x(Γ)
+ o(Γ), (C.30)

and then the objective in (C.28) is approximated as

α

ρ∗x(Γ) + α

[
2(1− βx)ρ+ Γ + ρ log

[
βx

(
βx −

Γ

2ρ

)]]
=

α

ρ∗x(Γ) + α

[
ρ∗x(Γ) + ρ∗x(Γ) · log

(
1

4

)
+ ρ∗x(Γ) · log

[
1 +

Γ

ρ∗x(Γ)

]]
+ o(Γ) (C.31)

=
α · ρ∗x(Γ)

ρ∗x(Γ) + α
· log

[
e · Γ

4ρ∗x(Γ)

]
+ o(Γ). (C.32)

Now, if ρ∗x(Γ) = Γν(Γ) for some function ν(Γ) such that ν(Γ) → 0 yet ρ∗x(Γ) → ∞ as Γ → ∞ (e.g.

ν(Γ) = log(Γ)) then last expression is asymptotically given by

α · [1 + o(Γ)] · log Γ. (C.33)

Comparing the last expression with (C.27) it is apparent that as Γ→∞ the expurgated term dominates

the maximization of (37), and the bound scales as claimed.

Proof of Prop. 9: As we are interested in Γ → 0 we may clearly assume that Γ < 1 and so, e.g.,

Θ(Γ2) + Θ(Γ) = Θ(Γ). First, we approximate Gallager’s function. We have

β0 =
1

2

(
1 +

Γ

1 + ρ

)[
1 +

√
1− 4Γρ

(1 + ρ+ Γ)2

]
(C.34)

=
1

2

(
1 +

Γ

1 + ρ

)[
2− 2Γρ

(1 + ρ+ Γ)2
+ Θ(Γ2)

]
(C.35)
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= 1 +
Γ

1 + ρ
− Γρ

(1 + ρ+ Γ)2
+ Θ(Γ2) (C.36)

= 1 +
Γ

1 + ρ
− Γρ

(1 + ρ)2
+ Θ(Γ2) (C.37)

= 1 +
1

(1 + ρ)2
Γ + Θ(Γ2) (C.38)

for (24), and

E0(ρ,Γ) = (1− β0)(1 + ρ) + Γ + log

(
β0 −

Γ

1 + ρ

)
+ ρ log β0 (C.39)

= − 1

(1 + ρ)
Γ + Γ + log

[
1 +

1

(1 + ρ)2
Γ− Γ

1 + ρ

]
+ ρ log

[
1 +

1

(1 + ρ)2
Γ

]
+ Θ(Γ2) (C.40)

=
ρ

(1 + ρ)
Γ + log

[
1− ρ

(1 + ρ)2
Γ

]
+ ρ log

[
1 +

1

(1 + ρ)2
Γ

]
+ Θ(Γ2) (C.41)

=
ρ

(1 + ρ)
Γ− ρ

(1 + ρ)2
Γ +

ρ

(1 + ρ)2
Γ + Θ(Γ2) (C.42)

=
ρ

(1 + ρ)
Γ + Θ(Γ2), (C.43)

for (23). Thus, the first term in (37) is approximated as

sup
0≤ρ≤1

αE0(ρ,Γ)

ρ+ α
= sup

0≤ρ≤1

αρΓ

(1 + ρ)(ρ+ α)
+ Θ(Γ2), (C.44)

and clearly, the maximizer ρ is the one maximizing αρ
(1+ρ)(ρ+α) , i.e. ρ = 1. Hence, the first term is

αΓ

2(1 + α)
+ Θ(Γ2). (C.45)

Analyzing the second term in (37) only leads to a worse behavior and thus may be disregarded.
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