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Abstract

This paper focuses on the problem of separately modulating and jointly estimating two independent continuous-valued

parameters sent over a Gaussian multiple-access channel (MAC) under the mean square error (MSE) criterion. To this end,

we first improve an existing lower bound on the MSE that is obtained using the parameter modulation-estimation techniques

for the single-user additive white Gaussian noise (AWGN) channel. As for the main contribution of this work, this improved

modulation-estimation analysis is generalized to the model of the two-user Gaussian MAC, which will likely become an

important mathematical framework for the analysis of remote sensing problems in wireless networks. We present outer

bounds to the achievable region in the plane of the MSE’s of the two user parameters, which provides a trade-off between

the MSE’s, in addition to the upper bounds on the achievable region of the MSE exponents, namely, the exponential decay

rates of these MSE’s in the asymptotic regime of long blocks.

Index terms— Parameter modulation-estimation, multiple-access channel, error exponents, MSE

I. INTRODUCTION

Before addressing the problem of joint modulation-estimation for the Gaussian MAC, let us refer first to the more

fundamental single-user modulation-estimation problem. In this setting, a single continuous–valued random parameter U

is encoded (modulated) into an N -dimensional power-limited vector x(U) and transmitted over an additive-white Gaussian

noise (AWGN) channel [1]–[3] as shown in Fig. 1(a). The corresponding N -dimensional channel output vector is given

by y = x(U) + z, where z is a Gaussian noise vector with independent and identically distributed (i.i.d.) components,

which are independent also of U . The channel output vector y is used by the receiver to estimate U by an estimator

Û(y). The goal is to derive a lower bound to the MSE, E(U − Û(y))2, that applies to every modulator x(·), that is

subjected to a given power constraint, and to every estimator Û(y) [3, Chapter 8]. More recently in [4], this class of

transmission problems was given the name parameter modulation-estimation, which we believe, will likely become an

important mathematical framework to analyze various remote sensing problems that may arise in fifth generation wireless

networks. The purpose of this work is to extend the described problem, as well as its analysis and results, to the model

of the discrete-time two-user Gaussian MAC, where two independent parameters, denoted by U1 and U2, are conveyed

from two separate transmitters and jointly estimated at the receiver. This model is shown in Fig. 1(b). The aim is to derive
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Fig. 1: System Models

outer bounds on the region of best achievable MSE’s associated with any modulators (subjected to power constraints) and

estimators of these parameters. It should be noted that in the context of the MAC model considered here, there exists an

interesting trade–off that is not seen in the single–user case described in the first paragraph above. A better modulator

for one of the users is good, of course, for the estimation of the corresponding parameter at the receiver side, because it

amounts to high sensitivity of the likelihood function to this parameter. However, at the same time, and for the very same

reason, it comes at the expense of the estimation performance of the other user (for which the parameter of the first user

is a nuisance parameter). Indeed, such a trade–off is manifested in the boundary curves of the achievable regions that we

obtain, which are always monotonically non-increasing functions, namely, smaller MSE values in one parameter impose

higher lower bounds on the MSE values of the other. This paper builds on relationships between modulation and coding

and between estimation and detection.

The remote-sensing application is one where the random-variables Ui are measured by a communicating device equipped

with some form of analog sensor. The resulting measurements are conveyed to the network via the uplink of a wireless

communication system. In the near future such devices will use conventional cellular access, albeit with specially-tailored

waveforms, to feed data centers with physical information observed in so-called smart cities or remote areas. These

applications will often impose extremely low-periodicity sporadic transmission coupled with long lifetime batteries or

solar cells in order to remain embedded in nature with little or no maintenance for long periods of time. In addition,

the problem addressed here is also related to more general ranging estimation problems where the random parameters

are induced by the channel. As an example, consider a satellite or cellular positioning system where the Ui represent

two time-delays which, when estimated at the receiver, are used to estimate the position of the receiver. The framework

considered here can therefore be extended to analyze the fundamental performance limits in such systems.

A. Related Work

The majority of work dealing with this class of problems considers transmission on a continuous-time channel using

finite-energy waveforms without bandwidth constraints. In [1], Goblick provided a lower bound of the exponential order

of exp (−2E/N0), where E is the energy used to convey U and N0/2 is the two-sided power spectral density of the

channel noise process. Goblick also provided several examples of parameter modulation-estimation schemes, one of them
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turns out to achieve the best asymptotic performance, namely, MSE of the exponential order of exp (−E/3N0). This is

a simple digital scheme, which is based on first uniformly quantizing the parameter into one out of M points and then

transmitting the index of the quantized parameter to the receiver, using M -ary orthogonal modulation scheme. Another

modulation strategy, considered this problem in continuous-time, was given in [3, pp. 623] where the parameter is reflected

in the delay of a purely analog signaling pulse sent across the channel, namely, pulse position modulation (PPM). When

the pulse bandwidth is unlimited, this system achieves the same exponential behaviour as Goblick’s scheme. This scheme

also provided a link to the classical ranging problem where the objective is to estimate the random delay of an incoming

waveform corrupted by Gaussian noise [5]. In [2], Wyner and Ziv showed that Goblick’s lower bound could be improved

to the order of exp (−E/2N0). Cohn [6] and Burnashev [7], [8], [9], further improved the multiplicative factor at the MSE

exponent, progressively from 1/2.889 to 1/2.896. then 1/2.970, and finally to 1/3.000, thus closing the gap to Goblick’s

practical scheme. In particular, despite the significance of the presented results, unfortunately, [6] is not well known as it

has never been published and hence is not easily accessible to the general public. In a nutshell, in [6] Cohn presented lower

bounds on the average MSE in estimating the message of a single user using a geometric approach for simplex signal sets

as well as the general case. The main contribution of [4] was the characterization of the parameter modulation-estimation

problem for infinite-dimensional transmission over the continuous-time AWGN channel. A recent example of a similar

scenario as the present paper can be found in [10], [11], where lower bounds on the MSE region are provided for the

transmission of two correlated analog source samples with and without causal feedback on the discrete-time AWGN MAC

without a constraint on the number of signal dimensionality. The main difference between the current paper and [10],

[11] is the analysis technique that is used. [10], [11] use an information–theoretic approach to obtain lower bounds.

B. Contributions

This paper studies the problem of jointly modulating and estimating two independent continuous-valued random variables

encoded into an N–dimensional vector and transmitted over an AWGN channel to be estimated at the receiver end. The

performance criterion is chosen as the MSE, which is characterized in two different ways as follows. Firstly, we derive

outer bounds on the achievable region of pairs (MSE1,MSE2), where MSE1 and MSE2 are the MSE’s associated with

arbitrary parameters, using a generalization of Shannon’s zero-rate lower bound [12] for the two-user discrete-time MAC,

which allows us to characterize the MSE region in terms of the signal–to–noise ratios. We present outer bounds to the

achievable region in the plane of the MSE’s, basically one MSE associated to one of the users is bounded by a function

that depends on the MSE associated to the other user. Thus, we obtain a trade-off between the MSE’s based on some

parameter.

In addition, we investigate the exponential behaviour of (MSE1,MSE2) by characterizing a lower bound to the region

of achievable pairs of MSE exponents for any joint parameter-modulation estimation scheme. To this end, we adapt the

multiple-access results of [13] to the discrete-time AWGN channel. In order to find the tightest characterization, we also

use the bounds on the on the reliability function of the Gaussian channel proposed in [12], [14]. Coupled with the results

of [15], we provide the means to make use of single-user error exponents for the characterization of multiuser channels.

C. Outline

In Section II, we describe the system model and formalize the problem. In Section III, we begin with the single-user

case and present lower bounds on the MSE itself and its MSE exponent, as a preparatory step to be used later in the MAC

model. Section IV is focused on the generalization of parameter modulation-estimation problem to a two-user Gaussian

MAC in two subsections. In Subsections IV-A and IV-B, respectively, we present new lower bounds on the MSE’s and the
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MSE exponents. The proposed bounds are numerically compared in Section V. Finally, in Section VI, we draw conclusions

from our results.

II. PROBLEM FORMULATION AND SIGNAL MODELS

A. Single-user setting

We consider lower bounds on the MSE of modulation-estimation schemes for a random parameter U , that is uniformly

distributed over the interval [0, 1). 1 The parameter U is conveyed by a modulator, which maps U into a channel input vector

x(U) that is transmitted over an N -dimensional memoryless AWGN channel, which is assumed to be phase-synchronous.

In general, we have the following signal model

y = x(U) + z (1)

where x(U) is constrained in energy as

‖x(U)‖2 ≤ NS = E , (2)

S and E being the power and energy limitations, respectively, and the noise covariance matrix is given by

EzzT = σ2IN . (3)

Here the superscript T denotes the transposition of a vector and IN is the N × N identity matrix. At the receiver, we

consider an estimator Û(y) with corresponding MSEs = E[U − Û(y)]2. Let us also define the asymptotic MSE exponent

as

εs
4
= − lim inf

N→∞

1

N
logE[Û(y)− U ]2. (4)

B. Two-user setting

For this setting, we generalize the model of eq. (1) to a model that includes two independent random variables, U1

and U2, both uniformly distributed over [0, 1). These two parameters are separately conveyed by the modulators of two

different users, which generate the channel input vectors x1(U1) and x2(U2) over an N -dimensional real-valued AWGN

MAC obeying the following signal model

y = x1(U1) + x2(U2) + z. (5)

The modulators are constrained in energy as

‖xj(Uj)‖2 ≤ NSj = Ej , ∀Uj , for j = 1, 2 (6)

and the noise covariance matrix is as before. As in the single–user case of Subsection II-A, at the receiver, we consider

estimators Ûj(y) with MSE’s, MSEj = E[Uj − Ûj(y)]2, j = 1, 2. As mentioned earlier, in Section IV, we derive outer

bounds to the region of achievable MSE pairs (MSE1,MSE2), which apply to arbitrary modulators and estimators subject

to the aforementioned power limitations, S1 and S2. The first characterization is for a given finite N and it provides

a direct characterization of (MSE1,MSE2), whereas the second characterization is asymptotic and it characterizes the

region in terms of the exponents (ε1, ε2) where

εj
4
= − lim inf

N→∞

1

N
logE[Ûj(y)− Uj ]2, for j = 1, 2. (7)

III. SINGLE–USER CHANNEL

In this section, we first recall the single-user approach from [4] and improve the lower bound on the MSE for any

parameter-modulator scheme. Additionally, we present a new bound on the MSE exponent of a single–user channel.

1The results presented in this paper can be quite easily adapted to other source distributions.
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A. An improved lower bound

It is shown in [4, eq. (21)] that for the single-user problem, the probability that the absolute estimation error |Û(y)− U |
would exceed ∆/2, for a given ∆ > 0, is lower bounded as follows

Pr{|Û(y)− U | > ∆/2} ≥ LB(∆) (8)

where LB(∆) designates a lower bound to be specified later. To derive such a bound, one considers the following

hypothesis testing problem with M equiprobable hypotheses,

Hi : y = x(u+ i∆) + z, (9)

for i ∈ {1, · · · ,M} where u is considered a parameter taking values in [0, 1− (M − 1)∆). The lower bound LB(∆) is

derived by combining the Ziv-Zakai approach with any lower bound on the average probability of error of an arbitrary

code at a given rate. Specifically, let î denote the maximum likelihood (ML) estimate of i, and let Pe(u,∆) = Pr
(
î 6= i|u

)
denote the corresponding conditional probability of error, which is upper bounded as follows:∫ 1−(M−1)∆

0

du · Pe(u,∆) ≤ 1

M

M−1∑
i=0

∫ 1−(M−1)∆

0

du · Pr
{
|Û(y)− U | > ∆/2

∣∣∣U = u+ i∆
}

=
1

M

M−1∑
i=0

∫ 1−(M−1)∆+i∆

i∆

du · Pr

{
|Û(y)− U | > ∆

2

∣∣∣U = u

}
(a)
=

1

M

M−1∑
i=0

Pr
{
|Û(y)− U | > ∆/2, i∆ ≤ U ≤ 1− (M − 1)∆ + i∆

}
≤ 1

M
Pr
{
|Û(y)− U | > ∆/2

}
(10)

We note that (10) is valid for all M and ∆ such that (M − 1)∆ < 1. If we add the condition that M∆ > 1, which

amounts to 1/∆ < M < 1 + (1/∆) or equivalently M = d1/∆e, the intervals in step (a) become disjoint. This yields

1

d1/∆e

d1/∆e−1∑
i=0

Pr

{
|Û − U | > ∆

2
, i∆ ≤ U ≤ 1− (d1/∆e − 1)∆ + i∆

}
≤ 1

d1/∆e Pr

{
|Û(y)− U | > ∆

2

}
(11)

Bounding the left hand side (l.h.s.) of (10) using any zero-rate bound for M -ary signals, PZR

(
E ,
⌈

1
∆

⌉)
yields the bound

d1/∆e (1 + ∆− d1/∆e∆) · PZR (E , d1/∆e) ≤ Pr
{
|Û(y)− U | > ∆/2

}
(12)

which is M times larger than the original result given by [4, eq. (21)]. The lower bound LB(∆) corresponds to the l.h.s.

of (12). The right hand side of the last inequality is related to the MSE according to∫ 1

0

d∆ ·∆ · Pr{|Û(y)− U | > ∆/2}

(a)

≤ 4

∫ 1

0

dδ · δ · Pr{|Û(y)− U | > δ} (b)
= 2E[Û(y)− U ]2 (13)

where in (a), we changed the integration variable to δ = ∆/2 and the integration interval was extended to [0, 1), whereas

in (b), the following identity was used

E[Û(y)− U ]2 = 2

∫ 1

0

d∆ ·∆ · Pr{|Û(y)− U | > ∆}. (14)

Combining (10) with (13), the improved single-user lower bound is given by

MSEs ≥
1

2

∫ 1

0

d∆ d1/∆e∆ (1 + ∆−∆ d1/∆e)PZR (E , d1/∆e)

=
1

2

∞∑
i=2

∫ 1/(i−1)

1/i

d∆ ·
(
∆i+ ∆2i−∆2i2

)
· PZR (E , i)

=
1

2

∞∑
i=2

3i− 2

6i2(i− 1)2
PZR (E , i) . (15)
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Fig. 2: Comparison of Zero-Rate Bounds with the error-probability of a Simplex (M = 256)

In what follows we consider two zero-rate bounds.

1) Shannon zero-rate bound [12]: In [12, eq. (81)] we have the general zero-rate lower bound

P Shannon
ZR (E ,M) ,

1

M

M∑
m=2

Q

(√
m

m− 1

( E
2σ2

))
(16)

which is valid for all N and can be used in conjunction with (15) to bound the MSE for a point-to-point AWGN channel.

2) A new zero-rate lower bound : Using the Polyanskiy et al. converse [16, Theorem 41] for the AWGN channel which

provides a lower bound on the average error probability for any M -ary signal set in N -dimensions, we propose a new

lower bound on the error-probability for N →∞ under the finite-energy constraint in (2) given as

PP
ZR (E ,M) , Q

(√
E
σ

(1 + µ)−Q−1

(
1

M

))
(17)

for any arbitrarily small µ > 0. The derivation of PP
ZR (E ,M) can be found in detail in Appendix VII-A. The expression

in (17) is potentially tighter than (16) for low signal energies since it increases to 1 with M for a fixed energy as is the

case for any real signal set. It is clearly looser asymptotically since the energy exponent for fixed M is E/2σ2 and not

E/4σ2. We show a comparison of (17) and (16) with the error probability of the simplex signal set for M = 256 in Figure

2. The latter is widely believed to be the optimal signal set for M -ary equal-energy signals. We see that (17) is much

closer to the Simplex error-probability for low signal-energies (error probabilities below 10−2) and crosses the Shannon

bound at an error-probability around 10−10.

B. Upper bound on the MSE exponent

In this subsection, we introduce a new bound on the MSE exponent εs defined by (4) that makes use of any upper

bound on the error exponent in a single user AWGN channel.

Theorem 1. For an arbitrary N -dimensional modulator x(U) subject to a power constraint given by (2) for transmission

over the AWGN channel defined (1) and for R ≥ 0, the MSE exponent εs as defined in (4) is bounded by

εs ≤ min
R

[2R+ Eu(R)], (18)
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where Eu(R) is any upper bound on the error exponent function of the single user Gaussian channel.

Proof. Let us select ∆ = e−RN where R ≥ 0 is a parameter (to be chosen later) in the general form of the bound

E[Û(y)− U ]2 ≥ 2

∫ 1

0

d∆ ·∆ · LB(∆), (19)

where LB(∆) is the l.h.s. of (12). Changing the integration variable on the right-hand side (r.h.s.) of (19) to R, we obtain

E[Û(y)− U ]2 ≥ N

2

∫ ∞
0

dR · e−2RN · LB(e−RN ) (20)

The r.h.s. of (20) is bounded by an expression of the exponential order of exp{−N minR[2R+ Eu(R)]} = e−NF where

F
4
= minR[2R+Eu(R)]. Finally, by taking the logarithms of both sides of (20), dividing by −N , and passing to the limit

N →∞, the proof of Theorem 1 is completed.

As for an upper bound on the error exponent, Eu(R), of the Gaussian channel, there are many options in the literature,

such as Shannon’s sphere-packing bound on the reliability function of the Gaussian channel [12], or a more recent bound

by Ashikhmin et al. [14], or others such as [17] and [18]. In this paper, we will use the results of [12] and [14] in our

numerical evaluations due to their lower computational complexity relative to the others.

1) Sphere-packing bound : For rates confined to [0, C), where C = (1/2) log(1 +A) is the Gaussian channel capacity,

A = S/σ2 being the signal-to-noise ratio (SNR), Shannon’s sphere-packing bound Esp(ψ(R), A) is an upper bound on

the reliability function of the Gaussian channel E(R,A) [12] where ψ(R) = arcsin(e−R). The sphere-packing bound is

given by

Esp(ψ(R), A) =
A

2
− A(1− e−2R)

4
+

√
A(1− e−2R)(A(1− e−2R) + 4)

4
+R

+ log 2− log

(√
A(1− e−2R) +

√
A(1− e−2R) + 4

)
(21)

The only positive and real minimizer of Esp(ψ(R), A) + 2R where Esp(ψ(R), A) is given by (21) is obtained as

Rmin =
1

2
log

{
A+
√
A2 − 2A+ 9 + 3

6

}
. (22)

2) Upper Bound by Ashikhmin et al.: As for the second alternative to be used for Eu(R) we have a more recent result

by Ashikhmin et al. [14, Theorem 1], which states that E(R,A) ≤ EABL(R,A), with EABL(R,A) being defined as

EABL(R,A) = min
0≤ρ≤ρk,l

max
w,d

[
min

(
Ad2/8, Aw2/8− LABL(w, d, ρ)

)]
(23)

where 0 ≤ d ≤ dmax and d ≤ w ≤ wmax with

dmax =

√
2(
√

1 + ρkl −√ρkl)√
1 + 2ρkl

and

wmax =

√
2(
√

1 + ρ−√ρ)√
1 + 2ρ

,

respectively. ρkl is the root of the equality

R− (1 + ρ)H(ρ/(1 + ρ)) = 0.

Here H(x) denotes the binary entropy function. Lastly, for the inner minimization function of the bound EABL(R,A),

LABL(w, d, ρ) is given by

LABL(w, d, ρ) = min

{
Ad2w2

8(4w2 − d2)
, FABL(1− w2/2, ρ)

}
(24)
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with

FABL(x, ρ) = R− (1 + ρ)H(ρ/(1 + ρ)) + log((x+
√

(1 + 2ρ)2x2 − 4ρ(1 + ρ))/2)

− (1 + 2ρ) log

(
(1 + 2ρ)x+

√
(1 + 2ρ)2x2 − 4ρ(1 + ρ)

2(1 + ρ)

)
. (25)

In Section IV, the relation of these bounds with the two-user setting are analyzed and in Section V, their performances are

numerically compared. It is worth mentioning that, unlike Shannon’s results, the rate that minimizes EABL(R,A) cannot

be derived analytically.

IV. MULTIPLE-ACCESS CHANNEL

In order to derive outer bounds for the two–user modulation–estimation problem, we consider the following auxiliary

hypothesis testing problem, in analogy to the technique used for the single–user case:

Hi1,i2 : y = x1(u1 + i1∆1) + x2(u2 + i2∆2) + z, (26)

for i1 ∈ {1, · · · ,M1} and i2 ∈ {1, · · · ,M2}, where u1 ∈ [0, 1− (M1 − 1)∆1), u2 ∈ [0, 1− (M2 − 1)∆2). Both u1 and

u2 are known to the receiver. As in the single–user case, we will derive two types of results. The first corresponds to

fixed values of M1 and M2 (and ∆1, ∆2), which will yield non-asymptotic results on the MSE’s themselves. The second

type of results refers to the asymptotic regime of large N , where M1 and M2 are allowed to grow exponentially with N ,

at arbitrary rates to be optimized, and our asymptotic results concern the asymptotic exponential rates of the two MSE’s.

A. Outer bounds on the region of achievable MSE pairs

We denote the conditional probability of error as a function of (u1, u2) by

Pe(u1, u2,∆1,∆2) = Pr
{

(̂i1, î2) 6= (i1, i2)|u1, u2

}
(27)

where the overall probability of error is Pe =
∫
u1
du1p(u1)

∫
u2
du1p(u2)Pe(u1, u2,∆1,∆2) with p(.), î1 and î2 being the

probability density function, the estimates of i1 and i2, respectively. As noted in Section II-B, the results in this paper are

presented for the case where the sources are uniformly distributed over [0, 1) and the adaptation to other choices of source

distributions is straightforward. A lower bound on Pe(u1, u2) will now be derived by generalizing Shannon’s zero-rate

lower bound for the Gaussian MAC. The overall probability of error for this channel can be decomposed into three terms

as follows:

Pe = Pr
(
î1 6= i1, î2 = i2

)
+ Pr

(
î1 = i1, î2 6= i2

)
+ Pr

(
î1 6= i1, î2 6= i2

)
(28)

Here we need a two–user counterpart of LB(∆) (8) which depends on two parameters, ∆1,∆2 for U1, U2, respectively,

that is

Pr{|Û1(y)− U1| > ∆1/2 or |Û2(y)− U2| > ∆2/2} ≥ LB(∆1,∆2),

with the l.h.s. being further upper bounded using the union bound, to yield

Pr{|Û1(y)− U1| > ∆1/2}+ Pr{|Û2(y)− U2| > ∆2/2} ≥ LB(∆1,∆2). (29)

The lower bound LB(∆1,∆2) is to be specified later. Using considerations similar to those of the derivation in (10), one

obtains∫ 1−(M1−1)∆1

0

du1p(u1)

∫ 1−(M2−1)∆2

0

du2p(u2)Pe(u1, u2,∆1,∆2) ≤(
Pr
{
|Û1(y)− U1| > ∆1/2

}
+ Pr

{
|Û2(y)− U2| > ∆2/2

})
d1/∆1e d1/∆2e

. (30)
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The l.h.s. of (30) is obtained by introducing the condition of Mj∆j > 1, which is equivalent to Mj = d1/∆je, for

j = 1, 2. We note that (30) is valid for all Mj and ∆j such that (Mj − 1)∆j < 1. A detailed derivation of (30) can be

found in Appendix VII-C. Combining (29) and (30) with (35), we finally have

LB(∆1,∆2)
4
= d1/∆1e d1/∆2e (1 + ∆1 − d1/∆1e∆1) (1 + ∆2 − d1/∆2e∆2)

PZR (E1, E2, d1/∆1e , d1/∆2e) . (31)

1) Shannon’s zero-rate bound adapted to the MAC: Shannon’s bound is based on first upper bounding the average

squared Euclidean distance between all pairs of modulated signals and this should be carried out for each of the three

terms of eq. (28). In the first term in (28) there are M1(M1 − 1)/2 possible signal pairs, and so, the average squared

Euclidean distance between all such pairs is upper bounded by

D2
1(u1, u2) ≤ 2M1E1

(M1 − 1)
(32)

Similarly, for the second term of (28),

D2
2(u1, u2) ≤ 2M2E2

(M2 − 1)
(33)

with M2(M2 − 1)/2 signal pairs of user 2. For the third term, there are M1M2(M1 − 1)(M2 − 1) possible pairs that

differ in both indices, so that

D2
12(u1, u2) ≤ 2M1E1

(M1 − 1)
+

2M2E2
(M2 − 1)

(34)

The reader is referred to Appendix VII-B for a detailed derivation of eqs. (33)-(34). By progressively removing points at

the average distance as in [12, eq. (81)], we obtain the overall bound as follows.

Pe(u1, u2,∆1,∆2) ≥ P Shannon
ZR (E1, E2,M1,M2)

=
1

M1

M1∑
m=2

Q

(√
m

m− 1

E1
2σ2

)
+

1

M2

M2∑
m=2

Q

(√
m

m− 1

E2
2σ2

)

+
1

M1M2

M1∑
m1=2

M2∑
m2=2

Q

(√
m1

m1 − 1

E1
2σ2

+
m2

m2 − 1

E2
2σ2

)
(35)

2) An alternative zero-rate bound: In the proof of Theorem 4 from [15], the authors showed that the overall error

probability (28) of a two-user Gaussian MAC with codebooks C1 and C2 is lower bounded by the error probability of

the single-user code C1 + C2 under an average power constraint. In our case, the resulting lower bound using an average

power constraint is still valid since a peak energy/power constraint can only increase the error probability. Note that in

our case the sum codebook has energy E1 + E2 and cardinality M1M2. The error probability of the sum codebook can

then be lower bounded by (17) using E1 + E2 and M1M2 for E and M . Including the single-user lower bounds for each

user, the overall bound on the zero rate error probability is the maximum of three functions as

PP
ZR(E1, E2,M1,M2) = max

{
PP

ZR (E1,M1) , PP
ZR (E2,M2) , PP

ZR (E1 + E2,M1M2)
}

(36)

where PP
ZR (E ,M) is given by (17).

In the next theorem, we state the first main result for the two-user setting.

Theorem 2. For arbitrary modulators xj(Uj), j = 1, 2, transmitting subject to power limitations, S1 and S2, respectively,

over the two–user Gaussian MAC (5), the following inequalities hold

MSE1 ≥ max

(
MSEs,1, max

0<θ≤1

(
C1(θ)/2− MSE2

θ2

)
, max
0<θ≤1

θ2 (C2(θ)/2−MSE2)

)
, (37)

MSE2 ≥ max

(
MSEs,2, max

0<θ≤1

(
C2(θ)/2− MSE1

θ2

)
, max
0<θ≤1

θ2 (C1(θ)/2−MSE1)

)
, (38)
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where MSEs,j denotes the lower bound on the MSE in estimating the parameter Uj , j = 1, 2, in the single–user case (or

equivalently, when the other parameter is known), given by (15), with

C1(θ) =

∫ 1

0

d∆ ·∆ · LB(∆, θ∆)

C2(θ) =

∫ 1

0

d∆ ·∆ · LB(θ∆,∆)

and LB(., .) is given by (31).

Proof. Let θ be an arbitrary parameter, taking on values in [0, 1], and for a given ∆, set ∆1 = ∆ and ∆2 = θ∆. Now,

by integrating both sides of (29) w.r.t. ∆ we have∫ 1

0

d∆ ·∆
(

Pr{|Û1(y)− U1| > ∆/2}+ Pr{|Û2(y)− U2| > θ∆/2}
)
≥ C1(θ). (39)

For the derivation of C1(θ), the reader is referred to Appendix VII-D. Now, the first term on the l.h.s. is upper bounded

by 2E[Û1(y)− U1]2. As for the second term, similarly, we get∫ 1

0

d∆ ·∆ · Pr{|Û2(y)− U2| > θ∆/2} ≤ 2

θ2
·E[Û2(y)− U2]2.

Combining this with (39), we readily obtain

MSE1 +
MSE2

θ2
≥ C1(θ)

2
(40)

or equivalently,

MSE1 ≥
C1(θ)

2
− MSE2

θ2
. (41)

Since this inequality holds true for every θ ∈ [0, 1], the tightest bound of this form is obtained by maximizing the r.h.s.

over θ in this interval, which yields

MSE1 ≥ max
0≤θ≤1

[
C1(θ)

2
− MSE2

θ2

]
. (42)

We also observe that the single–user bound MSE1 ≥ MSEs,j trivially holds since it is equivalent to a “genie-aided”

scenario, where user no. 1 is fully informed on the exact value of U2.

The equivalence of (40) using C1(θ) could be given also for user 2 as

θ2MSE1 + MSE2 ≥ θ2C1(θ)

2
. (43)

By the same token, eq. (43) implies that

MSE2 ≥ max
0≤θ≤1

θ2

[
C1(θ)

2
−MSE1

]
. (44)

To obtain the remaining bounds, interchange the roles of the two users, which amounts to the use of C2(θ). This completes

the proof of Theorem 2.

In Section V we present numerical evaluation results of (37)-(38) for different values of θ and SNR.

B. Upper Bounds on the MSE exponents

In this subsection, we modify the bounds presented in Theorem 2 in order to obtain upper bounds of the achievable

region of the MSE exponents defined as in (7). The core idea is to pass from the zero–rate bound of the previous subsection,

where M1 and M2 were fixed (independent of N ), to positive rate bounds, where M1 = eNR1 and M2 = eNR2 , R1 and

R2 being subjected to optimization. Our main result, in this subsection, is asserted in the following theorem.
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Theorem 3. For arbitrary N -dimensional parameter modulators xj(Uj), j = 1, 2 transmitting subject to power con-

straints given by (6) across the two–user Gaussian MAC (5), the MSE exponents are bounded by

ε1 ≤ min

{
εs,1, inf

α: F (α)+2α≥ε2
F (α), inf

α: G(α)≥ε2
G(α) + 2α

}
(45)

ε2 ≤ min

{
εs,2, inf

α: G(α)+2α≥ε1
G(α), inf

α: F (α)≥ε1
F (α) + 2α

}
(46)

where

F (α)
4
= min

R
[Eu(R,R+ α) + 2R]},

G(α)
4
= min

R
[Eu(R+ α,R) + 2R]}

and Eu(R1, R2) and εs,j denote any upper bound on the reliability function of the two–user Gaussian MAC and the

single-user bound on the MSE exponent in estimating the parameter Uj , j = 1, 2, given by Theorem 1, respectively.

Proof. Substituting ∆ = e−RN and θ = e−αN into (40) and changing the integration variable on the r.h.s. of (40) to R,

we obtain

MSE1 + e2αNMSE2 ≥
N

2

∫ ∞
0

dR · e−2RN · LB(e−RN , e−(R+α)N ) (47)

By the Laplace integration method [19] the r.h.s. of (47) is of the exponential order of exp{−N minR[Eu(R,R + α) +

2R]} = exp{−NF (α)}. The l.h.s. is of the exponential order of exp{min{ε1, ε2 − 2α}}. Thus, we obtain

min{ε1, ε2 − 2α} ≤ F (α) ∀α ≥ 0. (48)

In other words, for every α ≥ 0, there exists λ ∈ [0, 1] such that λε1 + (1− λ)(ε2 − 2α) ≤ F (α) or equivalently:

ε1 ≤ inf
α≥0

sup
0≤λ≤1

F (α) + (1− λ)(ε2 − 2α)

λ
= inf
α: F (α)+2α≥ε2

F (α). (49)

Substituting ∆ = e−RN and θ = e−αN into (43) and changing the integration variable on the r.h.s. to R, we get

max{ε1 − 2α, ε2} ≤ G(α) ,∀α ≥ 0 that yields the following bound on ε1 as

ε1 ≤ inf
α≥0

sup
0≤λ≤1

(
G(α) + (1− λ)ε2

λ
+ 2α

)
= inf
α: G(α)≥ε2

G(α) + 2α. (50)

The overall bound on ε1 is the maximum of the three bounds given by (49), (50) and the bound on the single–user MSE

exponent given by (18). The bound to ε2 is obtained in the very same manner.

For the purpose of numerical evaluation, we will study three different alternatives for Eu(R1, R2) to be used in bounding

the MSE exponents (45)-(46) assuming equal energy on both transmitters, i.e. S1 = S2 = S. Clearly, equal energy on

both users will result in the same exponent F (α) (or G(α)).

1) Divergence bound: Eu(R1, R2) is chosen as the sphere-packing bound of [13], taking the auxiliary channel W to

be a Gaussian MAC with noise variance σ2
w. For inputs of powers as defined by (6), the rate region of the auxiliary

Gaussian MAC W is given by

Rj ≤ 1

2
log

(
1 +

S
σ2
w

)
(51)

R1 +R2 ≤ 1

2
log

(
1 +

2S
σ2
w

)
, (52)

which implies that for W to exclude (R1, R2) from the achievable region,

σ2
w ≥ min

{ S
e2R1 − 1

,
S

e2R2 − 1
,

2S
e2(R1+R2) − 1

}
4
= σ2

0(R1, R2), (53)
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and its assumed that σ2
0(R1, R2) > σ2. Thus,

Esp(R1, R2) =
1

2

[
σ2

0(R1, R2)

σ2
− ln

(
σ2

0(R1, R2)

σ2

)
− 1

]
= min{D(R1,S), D(R2,S), D(R1 +R2, 2S)}, (54)

where the divergence function is defined using [13, eq. (5.27)] as

D(R,S)
4
=

1

2

[ S
σ2(e2R − 1)

− ln

( S
σ2(e2R − 1)

)
− 1

]
. (55)

The derivation of the upper bound on the sphere-packing bound Esp(R1, R2) for the Gaussian MAC can be found in

Appendix VII-E. We first need to calculate

F (α) = inf
R>0
{2R+ Esp(R,R+ α)}

= inf
R>0

{
2R+

1

2

[
σ2

0(R,R+ α)

σ2
− ln

(
σ2

0(R,R+ α)

σ2

)
− 1

]}
= min{F1, F2(α), F12(α)}, (56)

with

F1 = inf
R≥0

[2R+D(R,S)] (57)

F2(α) = inf
R≥0

[2R+D(R+ α,S)] (58)

F12(α) = inf
R≥0

[2R+D(2R+ α, 2S)]. (59)

The channel rates that minimize the three exponents F1, F2(α) and F12(α) given by (57)-(59) are denoted respectively

by R∗1, R∗2 and R∗12 that are derived and given in detail in Appendix VII-F. Using these rate functions we can reformulate

the minimum functions F ∗1 , F ∗2 (α) and F ∗12(α) as functions of R∗1, R∗2 and R∗12, respectively. Considering the constraint

in (45), we choose the α satisfying

ε2 ≤ min{F ∗1 , F ∗2 (α), F ∗12(α)}+ 2α. (60)

The constraint ε2 ≤ F ∗1 + 2α yields

α ≤ F ∗1 − ε2
2

4
= α1(ε2). (61)

The constraint ε2 ≤ F ∗2 (α) + 2α gives no requirement concerning α, it is simply the single-user bound for user 2. For

the two-user component ε2 ≤ F ∗12(α) + 2α we get

α ≤ 1

2
(F ∗12(α)− ε2)

4
= α2(ε2). (62)

Thus, the constraint becomes

α ≤ α∗(ε2)
4
= max{α1(ε2), α2(ε2)} (63)

resulting in the overall bound

ε1 ≤ F [α∗(ε2)]

= min{F1, F2[α∗(ε2)], F12[α∗(ε2)]}. (64)

The roles of the users should be interchanged to obtain the upper bound for ε2 as a function of ε1. The overall upper

bound on the achievable region of the MSE exponents is the intersection of the two. Note that the upper bound on the

MSE exponent in a point-to-point channel that is derived from (20) in the previous part is equivalent to (57).
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2) Shannon’s sphere-packing bound : As a second alternative to the divergence bound by Nazari, we adopt Shannon’s

sphere-packing bound studied Section III-B1 to the two-user setting. Before defining the exponents using (21), we remind

the reader concerning the error exponent region for a MAC, introduced in [15, Theorem 4]. The authors of [15] show that

for the Gaussian MAC with equal signal powers, denoted by S, an outer bound on the error exponent region is dictated by

three inequalities. The first two error exponents Ej , j = 1, 2 are bounded from above by Esu(Rj ,S/σ2) and correspond

to the two single-user error events, and the third exponent Esu(R1 +R2, 2S/σ
2) corresponds to the joint error event. In

all inequalities, Esu(R) represents any upper bound on the reliability function of the single-user AWGN channel. Let us

denote the three exponents which make use of (21) in the minimization by F1,Sh, F2,Sh(α) and for the two-user component

by F12,Sh(α).

Using the results of [15], the single-user components are functions of the minimum rate given as (22).

F ∗1,Sh = 2Rmin + Esp(ψ(Rmin), A) (65)

F ∗2,Sh(α) = F ∗1,Sh − 2α (66)

F12,Sh(α) has to be optimized numerically since it does not lend itself to closed form analysis. Using (21) the third

exponent as the two-user component is

F12,Sh(α) = min
R′≥α2

[2R′ − α+ Esp(ψ(2R′), 2A)] (67)

where R′ = R+ α/2 and A = S/σ2. Similarly the two–user component F12,Sh(α) with the minimum rate is denoted by

F ∗12,Sh(α). The derivation of the bounds on the error exponents follow through in the same way as shown in the previous

case that makes use of the divergence bound by simply replacing the three exponents in (64) by F ∗1,Sh, F
∗
2,Sh and F ∗12,Sh.

3) The upper bound by Ashikhmin et. al. : As for the third alternative for Eu(R1, R2), we have a more recent result

by Ashikhmin et al. [14, Theorem 1], which is a tighter bound on the reliability function E(R,A) with SNR A, and we

denote it by EABL(R,A). Note that EABL(R,A) coincides with (21) above a certain rate. It is, in fact, a convex combination

of (21) with a tighter low-rate bound which coincides with the zero-rate exponent unlike (21). We were not able to

characterize the MSE exponents analytically for the Ashikhmin et al. upper bound on the reliability function. Similar to

the Shannon’s sphere–packing bound, we denote the three error exponents by F1,ABL, F2,ABL(α) and F12,ABL(α), which are

evaluated as

F1,ABL = min
R≥0

2R+ EABL(R,A)

F2,ABL(α) = F1,ABL − 2α (68)

F12,ABL(α) = min
R≥0

[2R+ EABL(2R+ α, 2A)]

where R′ = R+ α/2. The optimal values are replaced in (49) to determine the MSE exponents. It should be mentioned

that the MSE exponent region in this case may coincide for some choice of SNR with the region based on (21) since the

two error exponents coincide for some rates. In Section V the three bounds on the MSE exponents in a two-user MAC

are numerically evaluated and their performances are compared as a function of various values of SNR.

V. NUMERICAL RESULTS

In Figure 3, we first present a numerical evaluation of the bounds for the single-user problem that was treated in Section

III with several bounds proposed for the same problem from the literature alongside one achievable scheme. Following the

order of the curves in the legend, M -ary Scalar Quantization and M -ary Simplex refers to the exact MSE of a uniform

scalar quantizer with log2M bits that is mapped to a regular M -ary simplex. Note that this combination has an exponential
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behaviour as O(e−E/6) which is higher than that of all the lower bounds. We also show the rate-distortion lower bound

from Goblick [1] D = 1
2πee

−E for the sake of comparison. The four remaining lower bounds make use of the results

from [4] and the work reported here. The two new lower bounds correspond to (17) and (16) combined with (15). The

previously best lower bound corresponds to (16) combined with the lower bound through the use of [4, eq. 13]. We also

show a conjectured bound which results from the combination of (15) with the exact error-probability of a regular M -ary

simplex. The validity of this bound depends on the validity of the Weak Simplex Conjecture. It is interesting to note that

the bound obtained through the use of (17) with (15) comes very close to the conjectured bound even for moderate signal

energies.

In Figure 4, we present numerical evaluation of (37) for different values of θ. Note that signal-to-noise ratio (SNR)

which is chosen equal for both transmitters as E/σ2. The wall and floor, the vertical and horizontal parts of the black

curve to the axes, correspond to MSEsingle,j . The red and blue curves represent all possible bounds for θ ∈ [0, 1). The

convex hulls are depicted in solid and dotted black curves using the two-user adaption of the classical Shannon’s zero-rate

bound given by (35) and the lower bound given by (36).

In Figure 5, the three bounds on the MSE exponents are numerically evaluated for different values of SNR, which

is chosen equal for both transmitters. Clearly, the divergence bound is the weakest one for all values of SNR, whereas

the outer bound evaluated using the reliability function bound by Ashikhmin et al., labeled as ABL in the legend, is the

tightest. It seems to coincide with the bound using (21) for high SNR levels in the portion not dominated by the single-user

error-event. It is worth mentioning the difference between the performance of the divergence bound and reliability function

is most significant for low SNR levels.
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Fig. 3: Comparison of lower bounds on the MSE for a point-to-point channel
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Fig. 4: Numerical evaluation of (37) for different values of SNR and all possible values of θ where the dotted and solid

boundaries represent the bounds using (35) and (36), respectively.

VI. CONCLUSION

New lower bounds on any linear combination of the MSE’s are derived for two-user separate modulation and joint

estimation of parameter on a discrete-time Gaussian MAC without bandwidth constraints. To this end, we used zero-rate

lower bounds on the error probability of Gaussian channels by Shannon and Polyanskiy et al.. Numerical results showed

that, the multi-user adaptation of the zero-rate lower bound by Polyanskiy et al. provides a tighter overall lower bound on

the MSE pairs than the classical Shannon bound. Additionally, we introduced upper bounds on the MSE exponents that

could make use of any bound on the error exponent of a single-user AWGN channel. The obtained results are numerically

evaluated for three different bounds on the reliability function of the Gaussian channel. It is shown that applying the

reliability function by Ashikhmin et al. [14] to the MAC provides a significantly tighter characterization than Shannon’s

sphere-packing bound [12] and the divergence bound [13].
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Fig. 5: Numerical evaluation of the upper bounds on the error exponents for different values of SNR.

VII. APPENDIX

A. The derivation of the new zero-rate lower bound

[16, Theorem 41] provides a lower bound on the average error probability for the AWGN channel as a function of the

statistics of two random variables HN and GN . Specifically, HN is defined as [16, eq. 205]

HN = C +
log2 e

2

(22C/N − 1)

22C/N

n∑
i=1

(
1− Z2

i +
2σ√
S
Zi

)
, (69)

where C = N
2 log2

(
1 + S

σ2

)
and Zi are all i.i.d. N (0, 1). In order to simplify this for the finite-energy case, consider the

random variables Q0 = 1√
N

∑N
i=1 Zi so that Q0 ∼ N (0, 1) and Q1,N = 1

N

∑N
i=1 Z

2
i , so that Var(Q1,N ) = 2

N . The first

condition for the Polyanskiy et al. converse is that

Pr (HN ≥ γn) = 1− ε(E ,M,N) (70)

where ε(E ,M,N) is the average probability of error. Expressing the right-hand tail of the c.d.f. of HN in terms of Q0

and Q1 yields

Pr (HN ≥ γN ) = Pr

(
C +

N(22C/N − 1) log2 e

22C/N+1
(1−Q1,N ) +

N(22C/N − 1) log2 e

22C/N
Q0 ≥ γn

)
(71)

and rearranging (71) in terms of Q0 provides

Pr (HN ≥ γN ) = Pr

(
Q0 ≥

(γN − C)

log2 e

22C/N

√
E/σ

+

√
E

2σ
(1−Q1,N )

)
(72)

Now, 1 − Q1,N converges to 0 with N , so we have the following bound on (72) which is tight for large N and some

µN > 0

Pr (HN ≥ γN ) ≤ Pr(Q1,N ≤ 1 + µN ) Pr

(
Q0 ≥

(γN − C)

log2 e

22C/N

√
E/σ

− µN
√
E

2σ

)
+ Pr(Q1,N > 1 + µN )
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≤ Pr

(
Q0 ≥

(γN − C)

log2 e

22C/N

√
E/σ

− µN
√
E

2σ

)
+ δN

= Q

(
(γN − C)

log2 e

22C/N

√
E/σ

− µN
√
E

2σ

)
+ δN (73)

where δN = Pr(Q1,N > 1 + µN ) = 1 − 1

Γ(N2 )
γ
(
N
2 ,

N(1+µN )
2

)
≤ (1 + µN ) e−

NµN
2 [20, p.1325,Lemma 1]. Combining

(73) with (70) yields
(γN − C)

log2 e

22C/N

√
E/σ

− µN
√
E

2σ
≤ Q−1 (1− ε(E ,M,N)− δN ) (74)

Turning now to the GN , from [16, eq. 204] we have

GN = C − (22C/N − 1) log2 e

2

N∑
i=1

(
1 + Z2

i − 2

√
1 +

σ2

S Zi
)

= C − E log2 e

2σ2
(1 +Q1,N ) +

log2 e

σ
2C/N

√
EQ0 (75)

Rearranging Pr (GN ≥ γN ) in terms of Q0 yields

Pr (GN ≥ γN ) = Pr

(
Q0 ≥

(γN − C)

log2 e
√

(E/σ)2C/N
+

√
E

2C/N
1 +Q1,N

2σ

)

≥ (1− δN ) Pr

(
Q0 ≥

(γN − C)

log2 e
√

(E/σ)2C/N
+

√
E

2C/N
1 +Q1,N

2σ

∣∣∣∣∣Q1,n ≤ 1 + µN

)
(a)

≥ (1− δN ) Pr

(
Q0 ≥

Q−1 (1− ε(E ,M,N)− δN )

23C/N
+ µN

√
E

σ23C/N+1
+

√
E

2C/N

(
σ−1 +

µN
2σ

))

= (1− δN )Q

(
Q−1 (1− ε(E ,M,N)− δN )

23C/N
+ µN

√
E

σ23C/N+1
+

√
E

2C/N

(
σ−1 +

µN
2σ

))
(76)

where step (a) is obtained using (74). Polyanskiy’s bound in [16, eq.208] on the signal-set cardinality becomes

M ≤ 1

Pr(GN ≥ γN )
≤
[

(1− δN )Q

(
Q−1 (1− ε(E ,M,N)− δN )

23C/N
+ µN

√
E

σ23C/N+1
+

√
E

2C/N

(
σ−1 +

µN
2σ

))]−1

(77)

which when rearranged for the error probability becomes

ε(E ,M,N) ≥ Q
(√
E
σ

((
1 +

E
Nσ2

)(
1 +

µN
2

)
+
µN
2

)
−
(

1 +
E

Nσ2

)3/2

Q−1

(
1

M(1− δN )

))
− δN (78)

Now, limN→∞ δN = 0, so the limiting expression becomes

lim
N→∞

ε(E ,M,N) ≥ Q
(√
E
σ

(1 + µ)−Q−1

(
1

M

))
(79)

for any arbitrarily small µ > 0. The obtained bound is given by (17) in Section III-A2.

B. The average squared Euclidean distance derivation for a two-user MAC

The average squared Euclidean distance for the pairs represented by the first term in (28) is given by

D2
2(u1, u2) =

1

M2(M2 − 1)

M2∑
i′1=1

M2∑
i′2=1

N∑
n=1

∣∣x2,i′1,n
− x2,i′2,n

∣∣2
=

2

M2(M2 − 1)

M2

M2∑
i′=1

‖x2,i′‖2 −
N∑
n=1

∣∣∣∣∣∑
i′

x2,i′,n

∣∣∣∣∣
2


≤ 2

(M2 − 1)

M2∑
i′=1

‖x2,i′‖2

≤ 2M2

(M2 − 1)
E2 (80)
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Note that the derivation given above applies to D2
1(u1, u2) with M1 as well. For the third term we have

D2
12(u1, u2) =

1

M1M2(M1 − 1)(M2 − 1)

M1∑
i1=1

M2∑
i′1=1

∑
i2 6=i1

∑
i′2 6=i′1

N∑
n=1

∣∣(x1,i1,n − x1,i2,n) + (x2,i′1,n
− x2,i′2,n

)
∣∣2

=
1

M1(M1 − 1)

M1∑
i1=1

∑
i2 6=i1

N∑
n=1

|x1,i1,n − x1,i2,n|2 +
1

M2(M2 − 1)

∑
i′1=1

∑
i′2 6=i′1

N∑
n=1

|x2,i′1,n
− x2,i′2,n

|2+

2

M1M2(M1 − 1)(M2 − 1)

M1∑
i1=1

M2∑
i′1=1

∑
i2 6=i1

∑
i′2 6=i′1

N∑
n=1

Re
(
(x1,i1,n − x1,i2,n)(x2,i′1,n

− x2,i′2,n
)∗
)

=
1

M1(M1 − 1)

M1∑
i1=1

M1∑
i2=1

N∑
n=1

|x1,i1,n − x1,i2,n|2 +
1

M2(M2 − 1)

M2∑
i′1=1

M2∑
i′2=1

N∑
n=1

|x2,i′1,n
− x2,i′2,n

|2+

2

M1M2(M1 − 1)(M2 − 1)

M1∑
i1=1

M2∑
i′1=1

M1∑
i2=1

M2∑
i′2=1

N∑
n=1

Re
(
(x1,i1,n − x1,i2,n)(x2,i′1,n

− x2,i′2,n
)∗
)

=
1

M1(M1 − 1)

M1∑
i1=1

M1∑
i2=1

N∑
n=1

|x1,i1,n − x1,i2,n|2 +
1

M2(M2 − 1)

M2∑
i′1=1

M2∑
i′2=1

N∑
n=1

|x2,i′1,n
− x2,i′2,n

|2+

2

M1M2(M1 − 1)(M2 − 1)
Re


M1∑
i1=1

M1∑
i2=1

N∑
n=1

(x1,i1,n − x1,i2,n)︸ ︷︷ ︸
0

M2∑
i′1=1

M2∑
i′2=1

N∑
n=1

(x2,i′1,n
− x2,i′2,n

)∗

︸ ︷︷ ︸
0


=

2

M1(M1 − 1)

M1

M1∑
i=1

||x1,i||2 −
N∑
n=1

∣∣∣∣∣
M1∑
i=1

x1,i,n

∣∣∣∣∣
2
+

2

M2(M2 − 1)

M2

M2∑
i′=1

||x2,i′ ||2 −
N∑
n=1

∣∣∣∣∣
M2∑
i′=1

x2,i′,n

∣∣∣∣∣
2


≤ 2M1

(M1 − 1)
E1 +

2M2

(M2 − 1)
E2 (81)

C. Bounding the error probability in a MAC

Here we will apply the modification applied to the single-user derivation that resulted in the improved lower bound

(15) to the two-user MAC. The upper bound on the overall error probability given by (30) is derived as follows

Pe =

∫ 1−(M1−1)∆1

0

du1p(u1)

∫ 1−(M2−1)∆2

0

du2p(u2)Pe(u1, u2)

≤ 1

M1M2

M1∑
i=1

M2∑
i′=1

∫ 1−(M1−1)∆1

0

du1

∫ 1−(M2−1)∆2

0

du2 Pr
{
|U1 − Û1(y)| > ∆1/2|U1 = u1 + i∆1, U2 = u2 + i′∆2

}

+
1

M1M2

M1∑
i=1

M2∑
i′=1

∫ 1−(M1−1)∆1

0

du1

∫ 1−(M2−1)∆2

0

du2 Pr
{
|U2 − Û2(y)| > ∆2/2|U1 = u1 + i∆1, U2 = u2 + i′∆2

}

=
1

M1M2

M1∑
i=1

M2∑
i′=1

∫ 1−(M1−1)∆1+i∆1

i∆1

du1

∫ 1−(M2−1)∆2+i′∆2

i′∆2

du2 Pr
{
|U1 − Û1(y)| > ∆1/2|U1 = u1, U2 = u2

}

+
1

M1M2

M1∑
i=1

M2∑
i′=1

∫ 1−(M1−1)∆1+i∆1

i∆1

du1

∫ 1−(M2−1)∆2+i′∆2

i′∆2

du2 Pr
{
|U2 − Û2(y)| > ∆2/2|U1 = u1, U2 = u2

}

=
1

M1M2

M1∑
i=1

M2∑
i′=1

Pr

{
|U1 − Û1(y)| > ∆1

2
|i∆1 ≤ U1 ≤ 1− (M1 − 1)∆1 + i∆1, i

′∆2 ≤ U2 ≤ 1− (M2 − 1)∆2 + i′∆2

}

+
1

M1M2

M1∑
i=1

M2∑
i′=1

Pr

{
|U2 − Û2(y)| > ∆2

2
|i∆1 ≤ U1 ≤ 1− (M1 − 1)∆1 + i∆1, i

′∆2 ≤ U2 ≤ 1− (M2 − 1)∆2 + i′∆2

}
(82)
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We set the following relationships as M1 = d1/∆1e and M2 = d1/∆2e so that the lower bound LB(∆1,∆2) becomes

1

d1/∆1e d1/∆2e

d1/∆1e−1∑
i=0

d1/∆2e−1∑
i′=0[

Pr

{
|U1 − Û1(y)| > ∆1

2
|i∆1 ≤ U1 ≤ 1− (M1 − 1)∆1 + i∆1, i

′∆2 ≤ U2 ≤ 1− (M2 − 1)∆2 + i′∆2

}
+ Pr

{
|U2 − Û2(y)| > ∆2

2
|i∆1 ≤ U1 ≤ 1− (M1 − 1)∆1 + i∆1, i

′∆2 ≤ U2 ≤ 1− (M2 − 1)∆2 + i′∆2

}]
=

1

d1/∆1e d1/∆2e
[
Pr
{
|Û1(y)− U1| > ∆1/2

}
+ Pr

{
|Û2(y)− U2| > ∆2/2

}]
≥
(

1 + ∆1 −
⌈

1

∆1

⌉
∆1

)(
1 + ∆2 −

⌈
1

∆2

⌉
∆2

)
PZR

(
E1, E2,

⌈
1

∆1

⌉
,

⌈
1

∆2

⌉)
(83)

D. Derivation of C1(θ)

As in Theorem 2, setting ∆2 = θ∆ and ∆1 = ∆ in (83) yields C1(θ) as follows.∫ 1

0

d∆∆

(⌈
1

∆

⌉
+ ∆

⌈
1

∆

⌉
−
⌈

1

∆

⌉2

∆

)(⌈
1

θ∆

⌉
+ θ∆

⌈
1

θ∆

⌉
−
⌈

1

θ∆

⌉2

θ∆

)
PZR

(
E1, E2,

⌈
1

∆

⌉
,

⌈
1

θ∆

⌉)

=

∞∑
i=1+d 1

θ e
I (diθe= d(i− 1)θe)

∫ 1
θ(i−1)

1
θi

d∆ ·∆
(
diθe+ ∆ diθe − diθe2 ∆

) (
i+ θ∆i− i2θ∆

)

+

∞∑
i=1+d 1

θ e
I (diθe 6= d(i− 1)θe)

(∫ 1
θ(i−1)

1
dθ(i−1)e

d∆ ·∆
(
d(i− 1)θe+ ∆ d(i− 1)θe − d(i− 1)θe2 ∆

) (
i+ θ∆i− i2θ∆

)

+

∫ 1
dθ(i−1)e

1
θi

d∆ ·∆
(
diθe+ ∆ diθe − diθe2 ∆

) (
i+ θ∆i− i2θ∆

))
PZR (E1, E2, diθe , i)

+

∫ 1

1/(θd 1
θ e)

d∆ · 2∆ · (1−∆)

(⌈
1

θ

⌉
+ θ∆

⌈
1

θ

⌉
−
⌈

1

θ

⌉2

θ∆

)
PZR

(
E1, E2, 2,

⌈
1

θ

⌉)
(a)
=

∞∑
i=1+d 1

θ e

{
I (c(i) = c(i− 1))

(
c(i)(2i− 1)

2iθ2(i− 1)2
+

(3i2 − 3i+ 1)c(i)(θ(1− i) + 1− c(i))
3θ3i2(i− 1)3

)

+ I (c(i) = c(i− 1))
(c(i)− 1)c(i)(2i− 1)(2i2 − 2i+ 1)

4θ3(i− 1)3i3

+I (c(i) 6= c(i− 1))
i · c(i− 1)

2

(
1

θ2(i− 1)2
− 1

c(i− 1)2

)
+I (c(i) 6= c(i− 1))

i · c(i− 1)(1− c(i− 1) + θ(1− i))
3

(
1

θ3(i− 1)3
− 1

c(i− 1)3

)
+I (c(i) 6= c(i− 1))

i · c(i− 1) · θ(1− i)(1− c(i− 1))

4

(
1

θ4(i− 1)4
− 1

c(i− 1)4

)
+I (c(i) 6= c(i− 1))

[
i · c(i)

2

(
1

c(i− 1)2
− 1

θ2i2

)
+
i · c(i) · (1− c(i) + θ(1− i))

3

(
1

c(i− 1)3
− 1

θ3i3

)]
+I (c(i) 6= c(i− 1))

i · c(i) · θ(1− i)(1− c(i))
4

(
1

c(i− 1)4
− 1

θ4i4

)}
PZR (E1, E2, diθe , i)

+

{(
d1/θe − 1

θ2 d1/θe

)
+

2 (θ − θ d1/θe − 1)

3

(
d1/θe − 1

θ3 d1/θe2

)
+

(
d1/θe − 1

θ4 d1/θe3

)
θ(d1/θe − 1)

2

}

PZR (E1, E2, 2, d1/θe)

= C1(θ) (84)

In order to simplify the presentation, in step (a), we used the following change of variables c(i) = diθe and c(i − 1) =

d(i− 1)θe. Combining both sides of the inequality results in the lower bound given by (40) in Section IV-A. By analogy,

C2(θ) can be obtained the same way by swapping the roles of the two users.
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E. Divergence Bound- Upper Bounding Esp(R1, R2) for the Gaussian MAC

Consider the Gaussian MAC defined in (5). For convenience, let us consider the subclass W of additive Gaussian

MAC’s Y ∼ N (x1 + x2, σ
2
w). First, let us calculate the maximum conditional mutual informations, I(X1;Y |X2) and

I(X2;Y |X1).

I(X1;Y |X2) = I(X1;X1 +X2 +N |X2)

= h(X1 +X2 +N |X2)− h(X1 +X2 +N |X1, X2)

= h(X1 +N |X2)− h(N)

≤
∫ ∞
−∞

dx · p2(x) · h(X1 +N |X2 = x)− 1

2
log(2πeσ2

w)

≤
∫ ∞
−∞

dx · p2(x) · 1

2
ln[2πeVar{X1 +N |X2 = x}]− 1

2
log(2πeσ2

w)

≤ 1

2
ln[2πe ·EVar{X1 +N |X2}]−

1

2
log(2πeσ2

w)

=
1

2
ln[2πe ·mmse{X1 +N |X2}]−

1

2
log(2πeσ2

w)

≤ 1

2
ln[2πe ·E{(X1 +N)2}]− 1

2
log(2πeσ2

w)

≤ 1

2
log

(
1 +

S
σ2
w

)
. (85)

Similarly, I(X2;Y |X1) ≤ 1
2 log(1 + S/σ2

w). Both upper bounds are achieved at the same time if X1 and X2 are

independent, zero–mean, Gaussian random variables with variances S1 = S2 = S. Thus, the conditions R1 ≥ I(X1;Y |X2)

and R2 ≥ I(X2;Y |X1), are equivalent to the condition

σ2
w ≥ max

{ S
e2R1 − 1

,
S

e2R2 − 1

}
4
= σ2

0(R1, R2), (86)

where σ2
0(R1, R2) is assumed larger than σ2 since (R1, R2) are assumed in the achievable region of the real underlying

channel P . Now,

D(N (x1 + x2, σ
2
w)‖N (x1 + x2, σ

2)) =
1

2

[
σ2
w

σ2
− ln

(
σ2
w

σ2

)
− 1

]
, (87)

whose minimum under the constraint (86) is

D(N (x1 + x2, σ
2
0(R1, R2))‖N (x1 + x2, σ

2)) =
1

2

[
σ2

0(R1, R2)

σ2
− ln

(
σ2

0(R1, R2)

σ2

)
− 1

]
. (88)

Since this is independent of (x1, x2), the outer maximization over Q degenerates, and the end result is

Esp(R1, R2) ≤ 1

2

[
σ2

0(R1, R2)

σ2
− ln

(
σ2

0(R1, R2)

σ2

)
− 1

]
4
= Ēsp(R1, R2) (89)

F. Minimization of the error exponents for the divergence bound

The minimization of the first exponent F1 given by (57) can be written explicitly as

F1 = min
R≥0

2R+
1

2

{ S
e2R − 1

− ln
S

e2R − 1
− 1

}
(90)

Taking the first derivative of the function above based on R and equating to zero as follows

d

dR
F1(R) = 2 +

1

2

{ −2Se2R

(e2R − 1)2
+

2e2R

e2R − 1

}
= 0

yields 3x2 − (S + 5)x+ 2 = 0,with x = e2R. The rate value that minimizes the first error exponent is obtained as

R∗1 =
1

2
(log(S + 5 +

√
(S)2 + 10S + 1)− log(6)).
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Using R∗1, we finally get

F ∗1 = ln

(
S + 5 +

√
S2 + 10S + 1

6

)
+

1

2

[
6S

S − 1
√
S2 + 10S + 1

− ln

(
6S

S − 1
√
S2 + 10S + 1

)
− 1

]
. (91)

There is no difference in the minimization the second exponent F2(α) apart from the role of α. The minimum of F2(α)

is given by

F2(α)∗ = F ∗1 − 2α (92)

where R∗2 = 1
2 (log(S + 5 +

√
S2 + 10S + 1) − log(6)). Lastly, for the last exponent F12(α) we have the following

minimization based on R for simplification we use the following change of variables R′ , R+ α
2 . Using our new variable

R′ the minimization becomes F12(α) = minR′≥α2 2R′ − α + 1
2

{
2S

e4R′−1
− ln 2S

e4R′−1
− 1
}

. Taking the first derivative of

the third exponent and equating to zero

d

dR′
F12(R′) = 2 +

1

2

{
−8Se4R′

(e4R′ − 1)2
+

4e4R′

e4R′ − 1

}
we get 2x2− (2S + 3)x+ 1 = 0,with x = e4R′ . R∗12 denotes the root of this equality which gives the minimum for the

last exponent as follows.

F ∗12(α) =
1

2
ln

(
2S + 3 +

√
(2S)2 + 12S + 1

4

)
+

4S
2S − 1 +

√
(2S)2 + 12S + 1

+
1

2
ln

8S
2S − 1 +

√
(2S)2 + 12S + 1

−α
(93)

REFERENCES

[1] T. Goblick, “Theoretical limitations on the transmission of data from analog sources,” IEEE Transactions on Information Theory, vol. 11, pp.

558–567, October 1965.

[2] A. Wyner and J. Ziv, “On communication of analog data from a bounded source space,” The Bell System Technical Journal, vol. 48, pp. 3139–3172,

Dec 1969.

[3] J. Wozencraft and I. M. Jacobs, Principles of Communication Engineering. Wiley, New York, 1965.

[4] N. Merhav, “On optimum parameter modulation-estimation from a large deviations perspective,” IEEE Transactions on Information Theory, vol. 58,

pp. 7215–7225, December 2012.

[5] J. Ziv and M. Zakai, “Some lower bounds on signal parameter estimation,” IEEE Transactions on Information Theory, vol. 15, pp. 386–391,

November 1969.

[6] D. Cohn, “Minimum mean square error without coding,” Ph.D. dissertation, MIT, June 1970.

[7] M. V. Burnashev, “On the minimax detection of an inaccurately known signal in a white Gaussian noise background,” Theory of Probability and

Its Applications, vol. 24, no. 1, pp. 107–119, 1979.

[8] ——, “A new lower bound for the α-mean error of parameter transmission over white gaussian channel,” IEEE Transactions on Information

Theory, vol. 30, pp. 23–34, January 1984.

[9] ——, “On minimum attainable mean-square error in transmission of a parameter over a channel with white Gaussian noise,” Problems of Information

Transmission, vol. 21, pp. 3–16, 1985.

[10] A. Unsal and R. Knopp, “Transmission of correlated Gaussian samples over a Multiple-Access Channel,” in CISS2014, IEEE Conference on

Information Sciences and Systems, March 19-21, 2014, Princeton, NJ, 03 2014.

[11] A. Unsal, “Transmission of analog source samples for remote and distributed sensing,” Ph.D. dissertation, Telecom ParisTech, Nov. 2014.

[12] C. E. Shannon, “Probability of error for optimal codes in a Gaussian channel,” The Bell System Technical Journal, vol. 38, pp. 611–656, May

1959.

[13] A. Nazari, Error Exponent for Discrete Memoryless Multiple-Access Channels. The University of Michigan, Dec. 2011.

[14] A. E. Ashikhmin, A. Barg, and S. N. Litsyn, “A new upper bound on the reliability function of the Gaussian channel,” IEEE Transactions on

Information Theory, vol. 46, pp. 1945–1961, September 2000.

[15] L. Weng, S. Pradhan, and A. Anastasopoulos, “Error exponent regions for Gaussian broadcast and multiple-access channels,” IEEE Transactions

on Information Theory, vol. 54, pp. 2919–2942, July 2008.

[16] Y. Polyanskiy, H. Poor, and S. Verdú, “Channel coding rate in the finite blocklength regime,” IEEE Transactions on Information Theory, vol. 56,

pp. 2307–2359, December 2010.

[17] M. V. Burnashev, “On relation between code geometry and decoding error probability,” in ISIT2001, IEEE International Symposium on Information

Theory, June 24-29, 2001, Washington, DC, 06 2001.

21



[18] Y. Ben-Haim and S. Litsyn, “Improved lower bounds on the reliability function of the Gaussian channel,” IEEE Transactions on Information

Theory, vol. 54, pp. 5–12, January 2008.

[19] P. S. Laplace, “Mémoire sur la probabilité des causes par les évènements,” Mémoire de Mathématique et de Physique, pp. 621–656, 1774.

[20] B. Massart and P. Laurent, “Adaptive estimation of a quadratic functional by model selection,” Annals of Statistics, vol. 28, pp. 1302–1338, 2000.

22


