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Abstract

This paper focuses on the problem of separately modulating and jointly estimating two independent continuous-valued
parameters sent over a Gaussian multiple-access channel (MAC) under the mean square error (MSE) criterion. To this end,
we first improve an existing lower bound on the MSE that is obtained using the parameter modulation-estimation techniques
for the single-user additive white Gaussian noise (AWGN) channel. As for the main contribution of this work, this improved
modulation-estimation analysis is generalized to the model of the two-user Gaussian MAC, which will likely become an
important mathematical framework for the analysis of remote sensing problems in wireless networks. We present outer
bounds to the achievable region in the plane of the MSE’s of the two user parameters, which provides a trade-off between
the MSE’s, in addition to the upper bounds on the achievable region of the MSE exponents, namely, the exponential decay
rates of these MSE’s in the asymptotic regime of long blocks.

Index terms— Parameter modulation-estimation, multiple-access channel, error exponents, MSE

I. INTRODUCTION

Before addressing the problem of joint modulation-estimation for the Gaussian MAC, let us refer first to the more
fundamental single-user modulation-estimation problem. In this setting, a single continuous—valued random parameter U
is encoded (modulated) into an N-dimensional power-limited vector x(U) and transmitted over an additive-white Gaussian
noise (AWGN) channel [1]-[3] as shown in Fig. 1(a). The corresponding N-dimensional channel output vector is given
by y = x(U) + z, where z is a Gaussian noise vector with independent and identically distributed (i.i.d.) components,
which are independent also of U. The channel output vector y is used by the receiver to estimate U by an estimator
U(y). The goal is to derive a lower bound to the MSE, E(U — U(y))2, that applies to every modulator x(-), that is
subjected to a given power constraint, and to every estimator U (y) [3, Chapter 8]. More recently in [4], this class of
transmission problems was given the name parameter modulation-estimation, which we believe, will likely become an
important mathematical framework to analyze various remote sensing problems that may arise in fifth generation wireless
networks. The purpose of this work is to extend the described problem, as well as its analysis and results, to the model
of the discrete-time two-user Gaussian MAC, where two independent parameters, denoted by U; and Us, are conveyed

from two separate transmitters and jointly estimated at the receiver. This model is shown in Fig. 1(b). The aim is to derive
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Fig. 1: System Models

outer bounds on the region of best achievable MSE’s associated with any modulators (subjected to power constraints) and
estimators of these parameters. It should be noted that in the context of the MAC model considered here, there exists an
interesting trade—off that is not seen in the single—user case described in the first paragraph above. A better modulator
for one of the users is good, of course, for the estimation of the corresponding parameter at the receiver side, because it
amounts to high sensitivity of the likelihood function to this parameter. However, at the same time, and for the very same
reason, it comes at the expense of the estimation performance of the other user (for which the parameter of the first user
is a nuisance parameter). Indeed, such a trade—off is manifested in the boundary curves of the achievable regions that we
obtain, which are always monotonically non-increasing functions, namely, smaller MSE values in one parameter impose
higher lower bounds on the MSE values of the other. This paper builds on relationships between modulation and coding
and between estimation and detection.

The remote-sensing application is one where the random-variables U; are measured by a communicating device equipped
with some form of analog sensor. The resulting measurements are conveyed to the network via the uplink of a wireless
communication system. In the near future such devices will use conventional cellular access, albeit with specially-tailored
waveforms, to feed data centers with physical information observed in so-called smart cities or remote areas. These
applications will often impose extremely low-periodicity sporadic transmission coupled with long lifetime batteries or
solar cells in order to remain embedded in nature with little or no maintenance for long periods of time. In addition,
the problem addressed here is also related to more general ranging estimation problems where the random parameters
are induced by the channel. As an example, consider a satellite or cellular positioning system where the U; represent
two time-delays which, when estimated at the receiver, are used to estimate the position of the receiver. The framework

considered here can therefore be extended to analyze the fundamental performance limits in such systems.

A. Related Work

The majority of work dealing with this class of problems considers transmission on a continuous-time channel using
finite-energy waveforms without bandwidth constraints. In [1], Goblick provided a lower bound of the exponential order
of exp (—2E/Ny), where & is the energy used to convey U and Ny/2 is the two-sided power spectral density of the

channel noise process. Goblick also provided several examples of parameter modulation-estimation schemes, one of them



turns out to achieve the best asymptotic performance, namely, MSE of the exponential order of exp (—&/3Np). This is
a simple digital scheme, which is based on first uniformly quantizing the parameter into one out of M points and then
transmitting the index of the quantized parameter to the receiver, using M-ary orthogonal modulation scheme. Another
modulation strategy, considered this problem in continuous-time, was given in [3, pp. 623] where the parameter is reflected
in the delay of a purely analog signaling pulse sent across the channel, namely, pulse position modulation (PPM). When
the pulse bandwidth is unlimited, this system achieves the same exponential behaviour as Goblick’s scheme. This scheme
also provided a link to the classical ranging problem where the objective is to estimate the random delay of an incoming
waveform corrupted by Gaussian noise [5]. In [2], Wyner and Ziv showed that Goblick’s lower bound could be improved
to the order of exp (—&/2Ny). Cohn [6] and Burnashev [7], [8], [9], further improved the multiplicative factor at the MSE
exponent, progressively from 1/2.889 to 1/2.896. then 1/2.970, and finally to 1/3.000, thus closing the gap to Goblick’s
practical scheme. In particular, despite the significance of the presented results, unfortunately, [6] is not well known as it
has never been published and hence is not easily accessible to the general public. In a nutshell, in [6] Cohn presented lower
bounds on the average MSE in estimating the message of a single user using a geometric approach for simplex signal sets
as well as the general case. The main contribution of [4] was the characterization of the parameter modulation-estimation
problem for infinite-dimensional transmission over the continuous-time AWGN channel. A recent example of a similar
scenario as the present paper can be found in [10], [11], where lower bounds on the MSE region are provided for the
transmission of two correlated analog source samples with and without causal feedback on the discrete-time AWGN MAC
without a constraint on the number of signal dimensionality. The main difference between the current paper and [10],

[11] is the analysis technique that is used. [10], [11] use an information—theoretic approach to obtain lower bounds.

B. Contributions

This paper studies the problem of jointly modulating and estimating two independent continuous-valued random variables
encoded into an N—dimensional vector and transmitted over an AWGN channel to be estimated at the receiver end. The
performance criterion is chosen as the MSE, which is characterized in two different ways as follows. Firstly, we derive
outer bounds on the achievable region of pairs (MSE;, MSE5), where MSE; and MSE, are the MSE’s associated with
arbitrary parameters, using a generalization of Shannon’s zero-rate lower bound [12] for the two-user discrete-time MAC,
which allows us to characterize the MSE region in terms of the signal-to—noise ratios. We present outer bounds to the
achievable region in the plane of the MSE’s, basically one MSE associated to one of the users is bounded by a function
that depends on the MSE associated to the other user. Thus, we obtain a trade-off between the MSE’s based on some
parameter.

In addition, we investigate the exponential behaviour of (MSE;, MSEs) by characterizing a lower bound to the region
of achievable pairs of MSE exponents for any joint parameter-modulation estimation scheme. To this end, we adapt the
multiple-access results of [13] to the discrete-time AWGN channel. In order to find the tightest characterization, we also
use the bounds on the on the reliability function of the Gaussian channel proposed in [12], [14]. Coupled with the results

of [15], we provide the means to make use of single-user error exponents for the characterization of multiuser channels.

C. Outline

In Section II, we describe the system model and formalize the problem. In Section III, we begin with the single-user
case and present lower bounds on the MSE itself and its MSE exponent, as a preparatory step to be used later in the MAC
model. Section IV is focused on the generalization of parameter modulation-estimation problem to a two-user Gaussian

MAC in two subsections. In Subsections IV-A and IV-B, respectively, we present new lower bounds on the MSE’s and the



MSE exponents. The proposed bounds are numerically compared in Section V. Finally, in Section VI, we draw conclusions

from our results.

II. PROBLEM FORMULATION AND SIGNAL MODELS
A. Single-user setting

We consider lower bounds on the MSE of modulation-estimation schemes for a random parameter U, that is uniformly
distributed over the interval [0, 1). ! The parameter U is conveyed by a modulator, which maps U into a channel input vector
x(U) that is transmitted over an N-dimensional memoryless AWGN channel, which is assumed to be phase-synchronous.
In general, we have the following signal model

y=x(U) +z (D)

where x(U) is constrained in energy as

Ix(U)|I* < NS =&, 2)
S and £ being the power and energy limitations, respectively, and the noise covariance matrix is given by
Ezz? = o%Iy. 3)

Here the superscript 7' denotes the transposition of a vector and Iy is the NV x N identity matrix. At the receiver, we
consider an estimator U (y) with corresponding MSE; = E[U — U(y)]?. Let us also define the asymptotic MSE exponent
as

5 bminf A 6 2
€ = —lgriglofﬁlogE[U(y) - U)~. 4)

B. Two-user setting

For this setting, we generalize the model of eq. (1) to a model that includes two independent random variables, U;
and Us, both uniformly distributed over [0,1). These two parameters are separately conveyed by the modulators of two
different users, which generate the channel input vectors x;(U;) and x2(Us) over an N-dimensional real-valued AWGN
MAC obeying the following signal model

y =x1(U1) +x2(U2) + z. )

The modulators are constrained in energy as
I (U)II < NS; = &, YU, for j=1,2 ©)

and the noise covariance matrix is as before. As in the single—user case of Subsection II-A, at the receiver, we consider
estimators U (y) with MSE’s, MSE; = E[U; — U;(y)]?, j = 1,2. As mentioned earlier, in Section IV, we derive outer
bounds to the region of achievable MSE pairs (MSE;, MSEs), which apply to arbitrary modulators and estimators subject
to the aforementioned power limitations, S; and S,. The first characterization is for a given finite NV and it provides
a direct characterization of (MSE;, MSE,), whereas the second characterization is asymptotic and it characterizes the
region in terms of the exponents (€1, €2) where

4
6].77

| ~ ,
1}\1{1;135 N log E[U;(y) — Uj]*, forj =1,2. @)

III. SINGLE-USER CHANNEL

In this section, we first recall the single-user approach from [4] and improve the lower bound on the MSE for any

parameter-modulator scheme. Additionally, we present a new bound on the MSE exponent of a single—user channel.

I'The results presented in this paper can be quite easily adapted to other source distributions.



A. An improved lower bound

It is shown in [4, eq. (21)] that for the single-user problem, the probability that the absolute estimation error |U (y) — U|

would exceed A/2, for a given A > 0, is lower bounded as follows
Pr{|U(y) = U| > A/2} > Lp(A) ®)

where Lp(A) designates a lower bound to be specified later. To derive such a bound, one considers the following

hypothesis testing problem with M equiprobable hypotheses,
Hi:y =x(u+iA) +z, €))

for i € {1,---, M} where u is considered a parameter taking values in [0,1 — (M — 1)A). The lower bound Lg(A) is
derived by combining the Ziv-Zakai approach with any lower bound on the average probability of error of an arbitrary
code at a given rate. Specifically, let i denote the maximum likelihood (ML) estimate of , and let P(u,A) =Pr (% #* z|u)

denote the corresponding conditional probability of error, which is upper bounded as follows:

1-(M-1)A ] Mol
du- Po(u,A) < —
/0 U (u, A) Y ;/0

1 M-1 - (M-1)A+iA
/

1-(M-1)A R
du- Pr{|U(y) —Ul> A/2‘U = u—H’A}

i A
- du~Pr{|U(y)—U|>2‘U:u}

i=0 YA
1 M-—1 R
@M pr{|U(y)_U|>A/2,iA§U§1—(M—1)A+iA}
1=0
1 ~
< P —
< Pr{|U(y) Ul > A/Q} (10)

We note that (10) is valid for all M and A such that (M — 1)A < 1. If we add the condition that MA > 1, which
amounts to 1/A < M < 1+ (1/A) or equivalently M = [1/A], the intervals in step (a) become disjoint. This yields

[1/A]-1
WlM > pr{|ﬁU|>§,mgug1<n/A11)A+iA}£W1MPr{U<Y>U>§} (v

Bounding the left hand side (Lh.s.) of (10) using any zero-rate bound for M-ary signals, Pz (€, [+]) yields the bound
[1/A] (14 A~ [1/A] A) - Pas (€, [1/A)) < Pr {|0(y) ~ U] > A /2) 12

which is M times larger than the original result given by [4, eq. (21)]. The lower bound Lg(A) corresponds to the Lh.s.
of (12). The right hand side of the last inequality is related to the MSE according to

/1dA A-PH{|U(y) - U| > A2}

a 1 N A
< 4/ ds-5-Pr{|U(y) — Ul > 6} Y 2E[U(y) — U2 (13)
0

where in (a), we changed the integration variable to 6 = A/2 and the integration interval was extended to [0, 1), whereas

in (b), the following identity was used
1
E[0(y) - U]? = 2/ dA - A -Pr{|U(y) — U] > A}, (14)
0
Combining (10) with (13), the improved single-user lower bound is given by

MSE, > ;/1% [1/ATA(1+A — A1/A]) Pyr (€, [1/A])

1 & /G-
== Z/ dA - (Ai + A% — A%i?) - Pyg (€,1)

2= i
1ex 3i—2

==Yy — -~ _p ) . 15
2;&m_wzﬂm) (15)
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Fig. 2: Comparison of Zero-Rate Bounds with the error-probability of a Simplex (M = 256)

In what follows we consider two zero-rate bounds.
1) Shannon zero-rate bound [12]: In [12, eq. (81)] we have the general zero-rate lower bound

Shannon &
PaRmmen (£, M) MZQ( (%2)> (16)

m=2

which is valid for all N and can be used in conjunction with (15) to bound the MSE for a point-to-point AWGN channel.
2) A new zero-rate lower bound : Using the Polyanskiy et al. converse [16, Theorem 41] for the AWGN channel which
provides a lower bound on the average error probability for any M-ary signal set in N-dimensions, we propose a new

lower bound on the error-probability for N — co under the finite-energy constraint in (2) given as
VE (1
PER(&M)éQ<U(1+u>—Q 1<M) (17

for any arbitrarily small ;> 0. The derivation of P}y (€, M) can be found in detail in Appendix VII-A. The expression
in (17) is potentially tighter than (16) for low signal energies since it increases to 1 with M for a fixed energy as is the
case for any real signal set. It is clearly looser asymptotically since the energy exponent for fixed M is £/202 and not
&/40%. We show a comparison of (17) and (16) with the error probability of the simplex signal set for M = 256 in Figure
2. The latter is widely believed to be the optimal signal set for M-ary equal-energy signals. We see that (17) is much
closer to the Simplex error-probability for low signal-energies (error probabilities below 1072) and crosses the Shannon

bound at an error-probability around 10710,

B. Upper bound on the MSE exponent

In this subsection, we introduce a new bound on the MSE exponent €5 defined by (4) that makes use of any upper

bound on the error exponent in a single user AWGN channel.

Theorem 1. For an arbitrary N-dimensional modulator x(U) subject to a power constraint given by (2) for transmission

over the AWGN channel defined (1) and for R > 0, the MSE exponent ¢5 as defined in (4) is bounded by

& < min[2R + E,(R)], (18)



where E,(R) is any upper bound on the error exponent function of the single user Gaussian channel.

Proof. Let us select A = e~V where R > 0 is a parameter (to be chosen later) in the general form of the bound

BU(y) - UF 22 | LdA- A Li(A), (19)

where Lp(A) is the Lh.s. of (12). Changing the integration variable on the right-hand side (r.h.s.) of (19) to R, we obtain
N N [
BU()-UP2 5 [ dR-e ™ Ly ™) (20)
0

The r.h.s. of (20) is bounded by an expression of the exponential order of exp{—N ming[2R + E,(R)]} = e~ where
F 2 min r[2R+ E,(R)]. Finally, by taking the logarithms of both sides of (20), dividing by — N, and passing to the limit

N — o0, the proof of Theorem 1 is completed. O

As for an upper bound on the error exponent, E,(R), of the Gaussian channel, there are many options in the literature,
such as Shannon’s sphere-packing bound on the reliability function of the Gaussian channel [12], or a more recent bound
by Ashikhmin et al. [14], or others such as [17] and [18]. In this paper, we will use the results of [12] and [14] in our
numerical evaluations due to their lower computational complexity relative to the others.

1) Sphere-packing bound : For rates confined to [0,C), where C = (1/2)log(1 + A) is the Gaussian channel capacity,
A = §/0? being the signal-to-noise ratio (SNR), Shannon’s sphere-packing bound E,,(¢)(R), A) is an upper bound on
the reliability function of the Gaussian channel E(R, A) [12] where 1)(R) = arcsin(e~%). The sphere-packing bound is

given by
B (6(R), A) g _AQ —46_2R) N VA - e—QR)(Zl(l —e2R) +4) +R
+log2 —log <\/A(1 —e2R) 4 \/A(l — e 2R) + 4> (21)

The only positive and real minimizer of E_(¢(R), A) + 2R where E,(¢(R), A) is given by (21) is obtained as

1 A+ VAT 24
Rmmzlog{ n g +9+3}'

2

(22)

2) Upper Bound by Ashikhmin et al.: As for the second alternative to be used for E,(R) we have a more recent result
by Ashikhmin et al. [14, Theorem 1], which states that F(R, A) < E, (R, A), with E,; (R, A) being defined as
E A)= mi in (Ad®/8, Aw* /8 — L d 23
(R, A) = min max [min (Ad*/8, Aw? /8 — Lys (w,d, p))] (23)
where 0 < d < dpax and d < w < wpax With

. V2(VT+ pri — /pii)
max \/m

and

L VAVTER - )
max — m b)

respectively. py; is the root of the equality
R—(1+p)H(p/(1+p))=0.

Here H(z) denotes the binary entropy function. Lastly, for the inner minimization function of the bound E,, (R, A),

Ly (w,d, p) is given by
. Ad*w? 9
LAB[_(U}, d7 p) = min m’ FABL(l —w /27 l)) (24)



with

Fau(z,p) = R— (1+ p)H(p/(1+ p)) +log((z + /(1 + 2p)%a? — 4p(1 + p)) /2)
(14 2p)x + /(1 + 2p)%22 — 4p(1 + p)) o)

2(1+p)

In Section IV, the relation of these bounds with the two-user setting are analyzed and in Section V, their performances are

—(1+2p)log (

numerically compared. It is worth mentioning that, unlike Shannon’s results, the rate that minimizes E, (R, A) cannot

be derived analytically.

IV. MULTIPLE-ACCESS CHANNEL

In order to derive outer bounds for the two—user modulation—estimation problem, we consider the following auxiliary

hypothesis testing problem, in analogy to the technique used for the single—user case:
Hirin 0y = X1 (u1 +i1A1) + x2(ug +1i2A) + 2, (26)

fori; € {1,--- , My} and i € {1, -+, Ma}, where uy € [0,1 — (M7 — 1)Ay), ug € [0,1 — (M2 — 1)Ay). Both u; and
ug are known to the receiver. As in the single—user case, we will derive two types of results. The first corresponds to
fixed values of My and M (and A1, A,), which will yield non-asymptotic results on the MSE’s themselves. The second
type of results refers to the asymptotic regime of large N, where M7 and M are allowed to grow exponentially with N,

at arbitrary rates to be optimized, and our asymptotic results concern the asymptotic exponential rates of the two MSE’s.

A. Outer bounds on the region of achievable MSE pairs

We denote the conditional probability of error as a function of (u,us) by
P.(u1,uz, A1, Bz) = Pr {(i1,2) # (ir, i2) us, uz | &)

where the overall probability of error is P, = ful duyp(uy) fu2 duyp(ug) P.(u1, ug, A1, Ay) with p(.), 2; and 75 being the
probability density function, the estimates of ¢; and 72, respectively. As noted in Section II-B, the results in this paper are
presented for the case where the sources are uniformly distributed over [0, 1) and the adaptation to other choices of source
distributions is straightforward. A lower bound on P.(u1,u2) will now be derived by generalizing Shannon’s zero-rate
lower bound for the Gaussian MAC. The overall probability of error for this channel can be decomposed into three terms

as follows:
Po=Pr(iv v =ia) +Pr (b =in i £2) + Pr (i1 £ 0,02 # o) (28)
Here we need a two-user counterpart of Lz (A) (8) which depends on two parameters, Ay, Ay for Uy, Us, respectively,

that is
Pr{|U.(y) — Ui| > A1/2 or |Us(y) — Us| > Ag/2} > Lp(A1, Ay),

with the Lh.s. being further upper bounded using the union bound, to yield
Pr{|U1(y) — U1| > A1/2} + Pr{|U2(y) — Uz| > Ag/2} > Lp(A1, As). (29)

The lower bound Lp(A1,As) is to be specified later. Using considerations similar to those of the derivation in (10), one

obtains

1—(My—1)A, 1—(Mz—1)As
/ dulp(ul)/ dugp(u2) Pe(u1, u2, A1, Ag) <
0 0

(Pr {|ff1(y) AR A1/2} +Pr {\UQ(y) Uy > A2/2})
[1/A1] [1/Ag] '

(30)



The Lh.s. of (30) is obtained by introducing the condition of M;A; > 1, which is equivalent to M; = [1/A;], for
j =1,2. We note that (30) is valid for all M/; and A; such that (M; —1)A; < 1. A detailed derivation of (30) can be
found in Appendix VII-C. Combining (29) and (30) with (35), we ﬁnally have

Lp(A1,Az) 2 [1/A1][1/A2] (1 + Ay = [1/A1]7 A1) (1 + Az — [1/A2] Ag)
Pzr (&1,&2, [1/A1],[1/Az]). (€29)

1) Shannon’s zero-rate bound adapted to the MAC: Shannon’s bound is based on first upper bounding the average
squared Euclidean distance between all pairs of modulated signals and this should be carried out for each of the three
terms of eq. (28). In the first term in (28) there are M;(M; — 1)/2 possible signal pairs, and so, the average squared

Euclidean distance between all such pairs is upper bounded by

2M1 &,
D? 32
1(U1,U2) (Ml—l) ( )
Similarly, for the second term of (28),
2MoEo
D? < e 33
3(u1,uz) < b — 1) (33)

with Ma(Ms — 1)/2 signal pairs of user 2. For the third term, there are M; My(M; — 1)(My — 1) possible pairs that

differ in both indices, so that
2M: &1 2MoEo

Diy(u1,ug) < (My—1)  (My—1)

(34)

The reader is referred to Appendix VII-B for a detailed derivation of eqs. (33)-(34). By progressively removing points at

the average distance as in [12, eq. (81)], we obtain the overall bound as follows.

Pe(ulaUQaAhA?) 2 ngllzannon(glvg%MlaMQ)

1 & m & 1 L m &
_ [.m ) b [ c2
_Mlsz< m12a2>+M2mZQ< m1202>

=2 =2

WL my & my &
1 1 2 2
M Z ZQ( m1—12a2+m2—1202> (35)

mi1= 2m2 2

2) An alternative zero-rate bound: In the proof of Theorem 4 from [15], the authors showed that the overall error
probability (28) of a two-user Gaussian MAC with codebooks C; and Cs is lower bounded by the error probability of
the single-user code C; + Co under an average power constraint. In our case, the resulting lower bound using an average
power constraint is still valid since a peak energy/power constraint can only increase the error probability. Note that in
our case the sum codebook has energy £ + &2 and cardinality M; Ms. The error probability of the sum codebook can
then be lower bounded by (17) using & + & and M; M for £ and M. Including the single-user lower bounds for each

user, the overall bound on the zero rate error probability is the maximum of three functions as
Pl (&1, &, My, My) = max { Py (&1, M1) , Pyg (€2, Ma) , Py (&1 + Ea, M1 Mb)} (36)

where P} (€, M) is given by (17).

In the next theorem, we state the first main result for the two-user setting.

Theorem 2. For arbitrary modulators x;(U;), j = 1,2, transmitting subject to power limitations, Sy and Ss, respectively,

over the two—user Gaussian MAC (5), the following inequalities hold

MSE, )
MSE; > max <MSEb 1, IilaX (C’l( )/2 — 92> ,01293%(19 (C2(0)/2 — MSE2)) , 37
MSE, > MSE Ca(0)/2 — MSE1 0% (C1(0)/2 — MSE;) (38)
2 Z Inax 5,25 01352{1 , 01251%(1 1 1 )



where MSE ; denotes the lower bound on the MSE in estimating the parameter U;, j = 1,2, in the single—user case (or

equivalently, when the other parameter is known), given by (15), with

C1(9)

1
/ dA - A - Ly(A,0A)
0

1
C(6) /O dA - A - Lp(0A,A)

and Lg(.,.) is given by (31).

Proof. Let 6 be an arbitrary parameter, taking on values in [0, 1], and for a given A, set A; = A and Ay = A. Now,

by integrating both sides of (29) w.r.t. A we have

/0 dA - A (Pr{|Ul(y) — Uyl > AJ2} + Pr{|Us(y) — Us| > 6A/2}> > C4(0). (39)

For the derivation of C(6), the reader is referred to Appendix VII-D. Now, the first term on the lh.s. is upper bounded
by 2E[U;(y) — U1]2. As for the second term, similarly, we get

/1 dA - A -Pr{|Us(y) — Us| > 0A/2} < 932 "E[Us(y) — Us)%
0

Combining this with (39), we readily obtain

MSE
Mg, 0Pz G0 (40)

or equivalently, )
vse, > O TSR 1)

Since this inequality holds true for every 6 € [0, 1], the tightest bound of this form is obtained by maximizing the r.h.s.

over # in this interval, which yields

[01(9) - MSEQ} . )
1

>
MSE, = 0%152{ 2 02

We also observe that the single—user bound MSE; > MSE; ; trivially holds since it is equivalent to a “genie-aided”
scenario, where user no. 1 is fully informed on the exact value of Us,.

The equivalence of (40) using C7(6) could be given also for user 2 as

6
6>MSE, + MSE, > 92017(). (43)
By the same token, eq. (43) implies that
MSE; > max 62 [01(9) — MSEl] ) (44)
0<6<1 2

To obtain the remaining bounds, interchange the roles of the two users, which amounts to the use of C5(#). This completes

the proof of Theorem 2. O

In Section V we present numerical evaluation results of (37)-(38) for different values of 6 and SNR.

B. Upper Bounds on the MSE exponents

In this subsection, we modify the bounds presented in Theorem 2 in order to obtain upper bounds of the achievable
region of the MSE exponents defined as in (7). The core idea is to pass from the zero-rate bound of the previous subsection,
where M, and M, were fixed (independent of N), to positive rate bounds, where M; = eNE1 and My = eV P2, Ry and

R, being subjected to optimization. Our main result, in this subsection, is asserted in the following theorem.
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Theorem 3. For arbitrary N-dimensional parameter modulators x;(U;), j = 1,2 transmitting subject to power con-

straints given by (6) across the two—user Gaussian MAC (5), the MSE exponents are bounded by

€1 < min {es)l, inf F(a), inf G(a)+ Qa} (45)
a: F(a)+2a>e a: G(a)>ez
€ < min {63)2, inf G(a), inf F(a)+ Qa} (46)
a: G(a)+2a>e; a: F(a)>er
where
Fla) = m}%n[Eu(R, R+ a) + 2R]},

Gla) 2 min[E, (R + o, R) + 2R]}

and E,(R1, Ry) and €5 ; denote any upper bound on the reliability function of the two—user Gaussian MAC and the

single-user bound on the MSE exponent in estimating the parameter U;, j = 1,2, given by Theorem I, respectively.

Proof. Substituting A = e~ %N and § = e~V into (40) and changing the integration variable on the r.h.s. of (40) to R,
we obtain

N (o ]
MSE; + ¢**NMSE, > 5 / dR - e 2N . [ p(e BN o= (Fta)N) (47)
0

By the Laplace integration method [19] the r.h.s. of (47) is of the exponential order of exp{—N ming[E,(R, R+ «) +
2R|} = exp{—NF(«a)}. The Lh.s. is of the exponential order of exp{min{e;,es — 2a}}. Thus, we obtain

min{ey, e2 — 20} < F(a)  Va > 0. (48)

In other words, for every o > 0, there exists A € [0, 1] such that Ae; + (1 — A)(e2 — 2a) < F(a) or equivalently:

. F(a) + (1= A)(es — 2a) _
< inf su = nf F(a). 49
‘= olzzo OS)\El A a: F((i)-i-?aZeg ( ) “9)

Substituting A = e 2N and § = e~V into (43) and changing the integration variable on the rh.s. to R, we get

max{e; — 2, €2} < G(a) ,Va > 0 that yields the following bound on ¢; as

1— A
e1 < inf sup (G(O‘) + (1= Ve +2a) = inf  G(a)+2a (50)
a>0g<a<1 A a: G(a)>ez

The overall bound on ¢; is the maximum of the three bounds given by (49), (50) and the bound on the single—user MSE

exponent given by (18). The bound to €, is obtained in the very same manner. O

For the purpose of numerical evaluation, we will study three different alternatives for E, (R1, R2) to be used in bounding
the MSE exponents (45)-(46) assuming equal energy on both transmitters, i.e. S; = So = S. Clearly, equal energy on
both users will result in the same exponent F'(a) (or G(a)).

1) Divergence bound: E,(R;,Rs) is chosen as the sphere-packing bound of [13], taking the auxiliary channel W to
be a Gaussian MAC with noise variance o2. For inputs of powers as defined by (6), the rate region of the auxiliary

Gaussian MAC W is given by

1 S
1 2

Ri+Ry < Zlog 1+—S , (52)
2 o

which implies that for W to exclude (R;, R2) from the achievable region,

S S 28 N
2 . A
O = mln{eQR1 1’ o2Rs 1’ c2(RatRa) — 1} = 05(R1, Ry), (53)

11



and its assumed that 02(Ry, R2) > o2. Thus,

o 1 U%(Rl,Rg) U%(Rl,RQ)
Esp(Rl, RQ) - 5 |:0_2 - ln T - 1
= min{D(Ry,S),D(R2,S),D(Ry + R2,25)}, (54)
where the divergence function is defined using [13, eq. (5.27)] as
Al S S
D == -1 —-1].
192  |grar=y " (=) e

The derivation of the upper bound on the sphere-packing bound E,(R;, R2) for the Gaussian MAC can be found in
Appendix VII-E. We first need to calculate

Fla) = zi?gfo {2R+ E,(R,R+ a)}
2 2
— inf {2R—|— L [UO(R’R+O‘) —In ("O(R’R+ O‘)> - 1} }
R>0 2 o2 o2
= min{Fl, FQ(Q), Flg(a)}, (56)
with

Fi = inf[2R+ D(R,S)] (57)
Fa) = Ii%ng[QR—i-D(R—l—a,S)] (58)
Fio(a) = Ii%gfopR + D(2R + ,2S)). (59)

The channel rates that minimize the three exponents Fy, Fs(a) and Fia(«) given by (57)-(59) are denoted respectively
by R}, R5 and Rj, that are derived and given in detail in Appendix VII-F. Using these rate functions we can reformulate
the minimum functions FY}, Fy(a) and F}5(«) as functions of R, R; and Rj,, respectively. Considering the constraint
in (45), we choose the « satisfying

€2 < min{Fy, Fy (o), Fiy(a)} + 2. (60)

The constraint e < F}' + 2« yields

Fr—
a< 220 (). 1)

- 2

The constraint €5 < Fi(a) + 2« gives no requirement concerning «, it is simply the single-user bound for user 2. For

the two-user component e5 < Fj5 () + 2a we get

a< %(F{E(a) — €2) 2 as(€2). (62)
Thus, the constraint becomes
a < a*(es) 2 max{a (e2), as(ez)} 63)
resulting in the overall bound
e < Fla'(e)]
= min{Fy, Fr[a*(e2)], Fi2[a”(e2)]}. (64)

The roles of the users should be interchanged to obtain the upper bound for €5 as a function of €;. The overall upper
bound on the achievable region of the MSE exponents is the intersection of the two. Note that the upper bound on the

MSE exponent in a point-to-point channel that is derived from (20) in the previous part is equivalent to (57).

12



2) Shannon’s sphere-packing bound : As a second alternative to the divergence bound by Nazari, we adopt Shannon’s
sphere-packing bound studied Section III-B1 to the two-user setting. Before defining the exponents using (21), we remind
the reader concerning the error exponent region for a MAC, introduced in [15, Theorem 4]. The authors of [15] show that
for the Gaussian MAC with equal signal powers, denoted by S, an outer bound on the error exponent region is dictated by
three inequalities. The first two error exponents E;, j = 1,2 are bounded from above by Ey,(R;,S/0?) and correspond
to the two single-user error events, and the third exponent Fg, (R + R, 25/ 02) corresponds to the joint error event. In
all inequalities, F,(R) represents any upper bound on the reliability function of the single-user AWGN channel. Let us
denote the three exponents which make use of (21) in the minimization by F} g, F5 s () and for the two-user component
by Fia ().

Using the results of [15], the single-user components are functions of the minimum rate given as (22).

Fl*,sh == 2Igmin + Esp("/)(Rmin)7 A) (65)
F;,Sh(a) = Fl*,Sh -2« (66)

Fio6(a) has to be optimized numerically since it does not lend itself to closed form analysis. Using (21) the third

exponent as the two-user component is

Fio () = Inin 2R —a+ E,(¢(2R'),2A4)] (67)

where R = R+ «/2 and A = §/0?. Similarly the two—user component Fs () with the minimum rate is denoted by
FY (). The derivation of the bounds on the error exponents follow through in the same way as shown in the previous
case that makes use of the divergence bound by simply replacing the three exponents in (64) by Fy g, Fy, and F7, .
3) The upper bound by Ashikhmin et. al. : As for the third alternative for F, (R, R2), we have a more recent result
by Ashikhmin er al. [14, Theorem 1], which is a tighter bound on the reliability function F(R, A) with SNR A, and we
denote it by E,; (R, A). Note that E,; (R, A) coincides with (21) above a certain rate. It is, in fact, a convex combination
of (21) with a tighter low-rate bound which coincides with the zero-rate exponent unlike (21). We were not able to
characterize the MSE exponents analytically for the Ashikhmin e al. upper bound on the reliability function. Similar to
the Shannon’s sphere—packing bound, we denote the three error exponents by Fi 5, Fo rp (@) and Fio sp (), which are

evaluated as
Fi g =min2R + Ey (R, A)
R>0

FQ,ABL(a) = FI,AB[_ -2« (68)

Fio (@) = min[2R + Eu (2R + «, 24)]
R>0

where R’ = R+ «/2. The optimal values are replaced in (49) to determine the MSE exponents. It should be mentioned
that the MSE exponent region in this case may coincide for some choice of SNR with the region based on (21) since the
two error exponents coincide for some rates. In Section V the three bounds on the MSE exponents in a two-user MAC

are numerically evaluated and their performances are compared as a function of various values of SNR.

V. NUMERICAL RESULTS

In Figure 3, we first present a numerical evaluation of the bounds for the single-user problem that was treated in Section
IIT with several bounds proposed for the same problem from the literature alongside one achievable scheme. Following the
order of the curves in the legend, M-ary Scalar Quantization and M-ary Simplex refers to the exact MSE of a uniform

scalar quantizer with log, M bits that is mapped to a regular M -ary simplex. Note that this combination has an exponential
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behaviour as O(e~¢/%) which is higher than that of all the lower bounds. We also show the rate-distortion lower bound
from Goblick [1] D = ﬁe‘g for the sake of comparison. The four remaining lower bounds make use of the results
from [4] and the work reported here. The two new lower bounds correspond to (17) and (16) combined with (15). The
previously best lower bound corresponds to (16) combined with the lower bound through the use of [4, eq. 13]. We also
show a conjectured bound which results from the combination of (15) with the exact error-probability of a regular M-ary
simplex. The validity of this bound depends on the validity of the Weak Simplex Conjecture. It is interesting to note that
the bound obtained through the use of (17) with (15) comes very close to the conjectured bound even for moderate signal
energies.

In Figure 4, we present numerical evaluation of (37) for different values of 6. Note that signal-to-noise ratio (SNR)
which is chosen equal for both transmitters as £/02. The wall and floor, the vertical and horizontal parts of the black
curve to the axes, correspond to MSEqingle,;. The red and blue curves represent all possible bounds for 6 € [0,1). The
convex hulls are depicted in solid and dotted black curves using the two-user adaption of the classical Shannon’s zero-rate
bound given by (35) and the lower bound given by (36).

In Figure 5, the three bounds on the MSE exponents are numerically evaluated for different values of SNR, which
is chosen equal for both transmitters. Clearly, the divergence bound is the weakest one for all values of SNR, whereas
the outer bound evaluated using the reliability function bound by Ashikhmin ef al., labeled as ABL in the legend, is the
tightest. It seems to coincide with the bound using (21) for high SNR levels in the portion not dominated by the single-user
error-event. It is worth mentioning the difference between the performance of the divergence bound and reliability function

is most significant for low SNR levels.

0
M-ary Scalar Quantization + M-ary Simplex
----- Source-Channel Mutual Information Bound
10 = = = Previous lower bound (Shannon zero rate)

—O— New lower bound (Shannon zero rate)
—>— New lower bound (Polyanskiy et al.)
—+— Conjectured bound (Simplex)

»
.
\

\

‘\ \
-‘ \
50 [} 7
\
)
\
)
\
.
'60 | K} | |
0 5 10 15 20 25

E (dB)

Fig. 3: Comparison of lower bounds on the MSE for a point-to-point channel

14



Inner-bound on (MSE, MSE,) for SNR=3.0 dB Inner-bound on (MSE, ,MSE ) for SNR=6.0 dB
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25
%107

Fig. 4: Numerical evaluation of (37) for different values of SNR and all possible values of # where the dotted and solid

boundaries represent the bounds using (35) and (36), respectively.

VI. CONCLUSION

New lower bounds on any linear combination of the MSE’s are derived for two-user separate modulation and joint
estimation of parameter on a discrete-time Gaussian MAC without bandwidth constraints. To this end, we used zero-rate
lower bounds on the error probability of Gaussian channels by Shannon and Polyanskiy ef al.. Numerical results showed
that, the multi-user adaptation of the zero-rate lower bound by Polyanskiy et al. provides a tighter overall lower bound on
the MSE pairs than the classical Shannon bound. Additionally, we introduced upper bounds on the MSE exponents that
could make use of any bound on the error exponent of a single-user AWGN channel. The obtained results are numerically
evaluated for three different bounds on the reliability function of the Gaussian channel. It is shown that applying the
reliability function by Ashikhmin et al. [14] to the MAC provides a significantly tighter characterization than Shannon’s

sphere-packing bound [12] and the divergence bound [13].
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Region for MSE exponents

=~ : I : SNR=3dB(Shannon)
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(
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L] S R Y I SNR=13dB(ABL)

Fig. 5: Numerical evaluation of the upper bounds on the error exponents for different values of SNR.

VII. APPENDIX

A. The derivation of the new zero-rate lower bound

[16, Theorem 41] provides a lower bound on the average error probability for the AWGN channel as a function of the

statistics of two random variables Hy and G . Specifically, H is defined as [16, eq. 205]

log, e (226/N — 1) & , 20
Hy =C+ =1 "mm Z; L= Zi+ 2 ) (69)

where C' = ﬁ log, ( + %) and Z; are all i.i.d. N(0,1). In order to simplify this for the finite-energy case, consider the
random variables Qg = \F Zl 1 Z; so that Qo ~ N(0,1) and Q1 n = 7 Zz | Z2, so that Var(Qy n) = % The first

condition for the Polyanskiy et al. converse is that
Pr(Hy >v,) =1—¢€(&,M,N) (70)

where (€, M, N) is the average probability of error. Expressing the right-hand tail of the c.d.f. of Hy in terms of Qg
and @, yields

N(22¢/N _ 1)1 N(22¢/N _ 1)1
Pr(HNZ')/N)_Pr(C"‘ ( )Ong ( )Og2€

92C/N+1 (1 - QI,N) + 92C/N QO > '771) (71)

and rearranging (71) in terms of ¢ provides

- C 220/N £
%f/a +\/;( o) N>> (72)

Now, 1 — Q1 v converges to 0 with IV, so we have the following bound on (72) which is tight for large /N and some

Pr(Hy > vn) = (Qo >

un >0

N — C) 922C/N E
log, e f/g THN 20

Pr(Hy >vn) <Pr(Qin <1+ pun)Pr (QO ( ) +Pr(Qin > 14 pn)

16



,.YN C 22C/N
log, e \/E/g
where 0y = Pr(Qinv > 1+ puny) =1— F(lﬁ)v ({X, M) (14 pn)e” 22120, p.1325,Lemma 1]. Combining
2
(73) with (70) yields

2C/N
0> w ~€) 2 NNE +on
logae VE/o 20

— UN f) + 0N (73)

(7N - C) 220/N \/E -1
W\/E/U_MNESQ (1—€(E,M,N)—dn) (74)

Turning now to the Gy, from [16, eq. 204] we have

N
(22¢/N — 1) log, e 5 [
=C - E 14+ 77 —24/14+ —=Z;
GN C 2 + i + S 7

i=1
1 1
—o BBl g )4 Bl /g, (75)
202 o
Rearranging Pr (Gy > 7yn) in terms of Q) yields
(vw = 0) VE 1+ Q1N
Pr G > = Pr > + 5
( N = ’YN) <Q0 = 10g26 (5/0—)20/1\7 2C/N 2%

(v = O) VE 14+ Q1N
>(1-65)P > + : n<1+
= n)Pr (QO ~ logy en/(E/a)2C/N 2C/N 94 @, HN
(@) Q' (1—e€(&,M,N)—6y) VE VE [ | un
z (1=on)Pr (QO = 93C/N TN oson+ T goN o %)
Q_l(l_G(gvMaN)_(sN) \/g \/g —1 UN
= (1 — (5N)Q ( 230/]\, + MN023C/N+1 + 2C/N (0’ + %> (76)

where step (a) is obtained using (74). Polyanskiy’s bound in [16, €q.208] on the signal-set cardinality becomes

-1
—1 _ _
M- < [(1—61\[)@ (Q a Eéffc’%’m ) 4 Y | VE (a‘%’éij)ﬂ (77)

~ Pr(Gn > ) 523C/N+1 T 9C/N

which when rearranged for the error probability becomes

e(E,M,N)2Q<\f (<1+Ng2> (1+“2]V)+”2]V>_<1+NZ>3/2Q1 <M(11—5N))>_6N (78)

Now, limy_, o dn = 0, so the limiting expression becomes
VE 1
li M,N) > 1 -Q ' =
Jim e(€, M, )_Q<J( +u)—Q <M> (79)

for any arbitrarily small ;> 0. The obtained bound is given by (17) in Section III-A2.

B. The average squared Euclidean distance derivation for a two-user MAC

The average squared Euclidean distance for the pairs represented by the first term in (28) is given by

2

Mo
Dg(uhuQ) ]\42 2_1 Z ZZ"rZzl,n m27,2,77,‘

ii=1i,=1n=1

2

N
n=1

2 Z )
= - \/ﬁ il
My(My — 1) 21.,:1 Iz

Zmz,z",n
i/
2 &
2
< —— X9 i1
— (M2 _1) ’LZ:ZIH 2,1 ||

< =& (80)
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Note that the derivation given above applies to D?(uy,us) with M; as well. For the third term we have

My Mo

D2y (uy, ug) = N (M — 1 0L =1 Z Z Z Z Z’ (T1iyn = T1ign) + (P26 0 —:Bg,ig,n)‘2

i1=114)=11427i1 i)#1) n=1

My

Ml _1 Z Z Z|$1 i1,m — L1 12,n| + M2 Mg—l Z Z Z|x211,n ) 12,n| +

i1=114i97%#i1 n=1

iy =11i,7#i) n=1

2 My Mo
M1M2(M1 — 1 Z Z Z Z Z Re 181 i1, — Lliig,n )(x2,i/1,n - ‘T2,i’2,n)*)

t1=114)=1142711 i4#i) n=1
My M,

B 3D ) M

i1=1is=1n=1

- 131,1;2,71|2

My Mz M; M

M1M2(M1—1 Y(Ms — 1) ZZZZZRG

1= 1117112 lzfln 1

My M,

Ml — 1 Z Z Z |x1 it,n — L1 12,n| N M2

i1=1is=1n=1

My M,y

2
M1M2(M1—1)(M2_1 Z ZZ Lliy,m —

i1=1is=1n=1

My Mo
2
Vhh 1) 2 2 Z [2,61.n = 2.1y.0l+
11—1 ihb=1n=1
*
33'1 i1, — Llyig,n )(xZ i, _xQ,i’z,n) )
My Mo
2
1) |x2 it~ T2l |t
2 _1 12_171 1
M2 Mo
*
T1,ig,n 1‘2 il 332,1”2,n)

11—11 =1n=1

0
M, 2
= [ 2 ol 35 S
oM, oM,
< E E
_(M171)1+(M2—1)2

C. Bounding the error probability in a MAC

0

M, 2{:\|X21'H

2

Mo
§ T2i'n

/=1

>

n=1

Mg( —1)

81

Here we will apply the modification applied to the single-user derivation that resulted in the improved lower bound

(15) to the two-user MAC. The upper bound on the overall error probability given by (30) is derived as follows

17(M171)A1 17(M271)A2
P, :/ dulp(ul)/ dugp(uz) Pe(u1, uz)
0

Ml 1—(M;—1)A,

= 11’ 1
My, M,

M1M2 — =

M,y 1— (M1 —1)A1+iAy 1—(Ma—1)As+i' Ay
d duy P {U -
MlMQZ / » / us Pr {0,

i=14=1 i Az

My

M2 1— (M1 —1)A1+iAy 1—(Ma—1)As+i' Ay
E du1 /
M1M2 /Z Ay

i=114'=1
My Mo

~ MM,

1=11=1
My Mo

MM

i=114¢=1

lf(Mgfl)Ag
du1 / dU2 PI‘{|U1 -
0

Ui(y)| > A1 /2|01 = up + iy, Us = us +m2}

1— (M1 —1)Aq 1—(Ma—1)As .
Z / dul/ duQPr{\UQ—UQ(yM >A2/2|U1:u1+¢A1,U2:u2+m2}
0

Ui(y)| > A1 /2|0y = up, Us = ug}

du Pr{ |Us = Oa(y)] > Da/20Us = un, Us = s }

1
ZZPF{|U1 U1( )‘ > 7‘ZA1 <U; < 1—(M1 —1)A1—|—ZA1,Z Ny < Uy < 1—(M2—1)A2+ZA2}

1
ZZPr{UQUQ( )| > 7|ZA1 <U1 <17(M171)A1 +ZA1,Z AQ <U2<1(M21)A2+ZA2}
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We set the following relationships as My = [1/A;] and My = [1/A2] so that the lower bound Lp(A;, Ay) becomes

[1/A1]-1[1/A]-1

TATAT 2

=0

[Pr{|U1 —Ui(y)| > 7|z’A1 <Up <1— (M —1)A1 +iA1,i Ay <Us <1 — (My —1)As +¢’A2}

- A
+PI‘{U2 — Ug(y)| > 72|ZA1 < U1 < 1-— (Ml — 1)A1 +iA1,i/A2 < U2 < 1-— (M2 — 1)A2 +Z/A2}:|

_ W Pr{i00v) = Ul > A2} + Pr{(0a(y) — Vsl > 22}

(e [2]) (o []3)meen 2] 2]

D. Derivation of C1(0)
As in Theorem 2, setting Ay = A and Ay = A in (83) yields C1(0) as follows.

[loms (5] =2 (5] - [5] o) (7] +oa ] [as] o) ron (5 5] [55])

_ i I(wm:((i—no})/lm an- A ([i0] + A[i6]  [i6]° A) (i + 050 — 0A)
=i+ 3] W

Y z(fz'm#f(z'—wm)(/“” dn - A ([~ 101 + AT — 18] — [~ DFI* A) (i + 02 — %)

=144 e

+ /ﬁ an - A (Tio] + A [io] - [i6]” A) (i + 640 - ¢20A)> Pz (61,62, [#],4)

97

+/1j(9m)dA.2A.<1_A) (m NHE m?%) P (582 }])

@ 5 N c(i)(2i— 1) (3i% = 3i + 1)e(i)(0(1 — i) + 1 — c(i))
@ 4:1%:[1] {I(c(z) =c(i—1)) (22.92(1. —1)e + 3G 1) )

+Z(c(i)=c(i—1))

(c(i) — 1)e(d)(2i — 1)(2:2 — 2i 4 1)
463(i — 1)33

c(t—1 1 1
HI (i) £ cli = 1) (2 )(02(1—1)2 T ei—1)2

) . irc(t—1)(1—-c(i—1)+0(1 —1 1 1
+I (c(i) # c(i — 1)) - 1X (3 Jroa-i) (93(i—1)3 - c(i—1)3)

HT (o) # ofi - 1y A=A ()

i {Z; <2_1 9212>+i (i) - (1_c(z)+0(1—z))(Ciil)g_egligﬂ

3
FE (i) # of - 1) L0 AN (L 91) P (61,8

1 2(0—607[1/6] —1) o(11/61 1)
*{(“/m‘ozn/m)* 3 ( Y0~ e ) ( ET 1/91) 2 }

Pzr (&1,62,2,[1/0])

=C1(9) (84)

In order to simplify the presentation, in step (a), we used the following change of variables ¢(i) = [i] and ¢(i — 1) =
[(i — 1)0]. Combining both sides of the inequality results in the lower bound given by (40) in Section IV-A. By analogy,

C5(0) can be obtained the same way by swapping the roles of the two users.
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E. Divergence Bound- Upper Bounding Es,(R1, R2) for the Gaussian MAC

Consider the Gaussian MAC defined in (5). For convenience, let us consider the subclass W of additive Gaussian
MAC’s Y ~ N (z1 + x2,02). First, let us calculate the maximum conditional mutual informations, I(X7;Y|X>) and

I(X;Y|Xe) = (X X1+ Xo + N|Xo)
= h(X1+ X2+ N|X3) — h(X1 + X2+ N| X1, X2)
— h(X) + N|Xs) — A(N)
< /0:0 dz - pa(x) - h(X1 + N| Xy =x) — %log(%reafu)
< /OO dzx - pa(x) - %111[27reVar{X1 + N|Xe =z}] — %log(%reai)
< %1n[27re CEVar{X, + N|Xs}] - %log@weoi)
= %1n[27re -mmse{X; + N|Xo}] — %log(Qweai)
< %1n[27re ‘E{(X1 + N)?}] - % log(2mec?)
< %log <1 + U‘;U) . (85)

Similarly, I(X2;Y|X;) < $log(l + S/02). Both upper bounds are achieved at the same time if X; and X, are
independent, zero—mean, Gaussian random variables with variances S; = So = S. Thus, the conditions Ry > I(X1;Y|X3)
and Ry > I(X2;Y|X;), are equivalent to the condition

S S A
JZJ>max{62R1_1,62R2_1}:03(R1,R2), (86)

where 02(R1, Ry) is assumed larger than o2 since (Ry, Ry) are assumed in the achievable region of the real underlying

channel P. Now,

DN (x1 + 29,02 | N(z1 + 02))71 ﬁfln % -1 (87)
1 2,00 1 2 - 9 0_2 0_2 9
whose minimum under the constraint (86) is
1 [o2(Ri, R 2(Ri,R

D(N (21 + 22,05 (R, R2))|N (21 + 32,0%)) = 3 ["0( 012 2) _ In (UO( 012 2>> — 1} : (88)

Since this is independent of (z1,x2), the outer maximization over ) degenerates, and the end result is
1 [o2(Ri, R 2(Ry, R _
Esp(Rl,RQ)S 5 |:0'0( 0-123 2) —In (UO( 0127 2)) 1:| éEsp(RhRQ) (89)

F. Minimization of the error exponents for the divergence bound

The minimization of the first exponent F; given by (57) can be written explicitly as

. 1 S S
Fl—ré1§%2R+2{62Rl—lne2R1—1} (90)

Taking the first derivative of the function above based on R and equating to zero as follows

d 1 { —28e2l 221 } _0

RV =245 @ YR

yields 322 — (S + 5)z + 2 = 0, with z = e?f. The rate value that minimizes the first error exponent is obtained as

Ry = %(log(S +5+/(S8)2+108 + 1) — log(6)).

20



Using R7, we finally get

S+5+vVS2+10S+1 +1 6S 1n< 6S >1]
6 218-1V/82+108 +1 S—1V/82+10S+1 '

There is no difference in the minimization the second exponent F»(«) apart from the role of «. The minimum of F5(«)

Ff=In 9D

is given by

Fy(a)* = FF — 2a (92)

where Ry = 2(log(S + 5 + /8% +10S + 1) — log(6)). Lastly, for the last exponent Fy2(c) we have the following

minimization based on R for simplification we use the following change of variables R’ = R+ 5. Using our new variable
R’ the minimization becomes Fi3(a) = ming>s 2R —a + 3 {64,%78_1 —In 641?99—1 - 1}. Taking the first derivative of
the third exponent and equating to zero
d 1f —8Set 4t
—Fp(R) =2+ =
a2 =2+5 (@ 1) R 1

we get 222 — (28 +3)z+1 =0, with o = AR R7, denotes the root of this equality which gives the minimum for the

last exponent as follows.

. 1 28 +3+4/(25)2 + 128 + 1 48 1 88
Fi5(a) = -1ln + = +-1In = —«
2 4 28 —1++/(28)2+1285+1 2 285—-1+./(28)2+128+1

93)
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