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The Likelihood Decoder

The likelihood decoder is a stochastic decoder that randomly selects an

estimated message xm by sampling the underlying posterior:

P (m|y) =
P (y|xm)

PM
m′=1 P (y|xm′)

.

Motivation: Lends itself to easier analysis than the ordinary ML decoder.

Earlier work:

Yassaee, Aref and Gohari (2013): network information theory.

Song, Cuff and Poor (2014): source coding – likelihood encoder.

Scarlett, Martinéz and Fábregas (2015): mismatched likelihood decoder.

Matched case: optimal random coding error exponent.
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Contributions

A more general stochastic decoder: P (m|y) ∝ exp{ng(P̂xmy)}.

Tight error exponent in a single analysis.

Extension to joint source–channel coding with side information.

Expurgated exponent – at least as tight as the classical one.
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Setup

A DMC {W (y|x)}: W (y|x) =
Qn

t=1 W (yi|xi).

Random CCC C = {x0, x1, . . . , xM−1}, M = enR. Xm ∼ {T (QX)}.

Generalized likelihood decoder (GLD):

P (m|y) =
exp{ng(P̂xmy)}

PM−1
m′=0 exp{ng(P̂xm′y)}

.

Relevant choices of g:

Ordinary LD: g(P̂xmy) =
P

x,y P̂xmy(x, y) log W (y|x).

With “temperature”: g(P̂xmy) = β
P

x,y P̂xmy(x, y) log W (y|x).

Mismatched LD: g(P̂xmy) = β
P

x,y P̂xmy(x, y) log W̃ (y|x).

MMI LD: g(P̂xmy) = βI(P̂xmy).
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Basic Result

Theorem: For two joint distributions, Q and Q′, both on X × Y, let

E1(Q, Q′, R) = [I(Q′) − R + [g(Q) − g(Q′)]+]+

Next define
E2(Q, R) = min

{Q′: Q′
X

=QX , Q′
Y

=QY }
E1(Q,Q′, R).

Then, the random coding error exponent of the GLD is given by

E(R) = min
Q

[D(Q‖QX × W ) + E2(Q,R)].
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Comments

The result by Scarlett et al. is obtained as a special case.

Optimal exponent for g(Q) = β
P

x,y Q(x, y) ln W (y|x), β ≥ 1.

Optimal exponent for g(Q) = βI(Q), β ≥ 1.

E(R) > 0 for all R ≤ min{I(Q) : g(Q) ≥ g(QX × W )}.

Single analysis, as opposed to separate upper and lower bounds.
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Main Steps in the Derivation

P̄e(x0, y)

= E

8

<

:

PM−1
m=1 exp{ng(P̂Xmy)}

exp{ng(P̂x0y)} +
PM−1

m=1 exp{ng(P̂Xmy)}

9

=

;

=

Z 1

0
Pr

8

<

:

PM−1
m=1 exp{ng(P̂Xmy)}

exp{ng(P̂x0y)} +
PM−1

m=1 exp{ng(P̂Xmy)}
≥ t

9

=

;

dt

= n ·

Z ∞

0
e−nθPr

8

<

:

PM−1
m=1 exp{ng(P̂Xmy)}

exp{ng(P̂x0y)} +
PM−1

m=1 exp{ng(P̂Xmy)}
≥ e−nθ

9

=

;

dθ

·
=

Z ∞

0
e−nθPr

(

M−1
X

m=1

exp{ng(P̂Xmy)} ≥ exp{n[g(P̂x0y) − θ]}

)

dθ

·
=

Z ∞

0
e−nθPr

8

<

:

X

Q′

Ny(Q′)eng(Q′) ≥ exp{n[g(P̂x0y) − θ]}

9

=

;

dθ
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Joint/Separate Source–Channel Coding with SI

decoderSI channel

channelchannel encoder

(random binning)

source encoderu j x

y

v

û
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Motivation

Many customary models are coveed as special cases:

Joint source–channel with/out SI (very large R).

Pure Slepian–Wolf source coding (clean channel).

Pure channel coding (uniform binary source, very large R).

Systematic channel coding (SI channel = main channel).
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Joint Source–Channel Likelihood Decoder

Randomly select the estimated source û according to

P [û = u|v, y] =
P (u, v)W (y|x[u])

P

u′ P (u′, v)W (y|x[u′])
.

For a generalized version, consider

P [û = u|v, y] =
exp{n[f(P̂uv) + g(P̂x[u]y)]}

P

u′ exp{n[f(P̂u′v) + g(P̂x[u′]y)]}
,

for some given functions f and g.
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Random Coding Exponent

h(QUV , QXY ) = f(QUV ) + g(QXY ),

E1(R, QUV ) = min
QU′V

[[f(QUV ) − f(QU ′V )]+ + R − H(U ′|V )]+,

E2(R) = min
QUV

{D(QUV ‖PUV ) + E1(R,QUV )}

E3(QUV , QXY , QU ′V , QX′Y ) = [[h(QUV , QXY ) − h(QU ′V , QX′Y )]+

+I(X ′; Y ) − H(U ′|V )]+,

E4(QUV , QXY ) = min
QU′V ,QX′Y

E3(QUV , QXY , QU ′V , QX′Y ).

E5 = min
QUV ,QXY

[D(QUV ‖PUV ) + D(QY |X‖W |QX) + E4(QUV , QXY )].

E(R) = min{E2(R), E5}.
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Expurgated Bound

Consider the expression of the conditional error probability:

Pe|m(Cn) =
X

m′ 6=m

X

y

W (y|xm) ·
exp{ng(P̂xm′y)}

exp{ng(P̂xmy)} +
X

m′ 6=m

exp{ng(P̂xm′y)}

| {z }

Zm(y)

.

We show that for the vast majority of codes

Zm(y) ≥ exp{nα(R − ǫ, P̂y)} ∀m, y

where

α(R, QY ) = sup
{QX|Y : I(QXY )≤R}

[g(QXY ) − I(QXY )] + R.
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Expurgated Bound (Cont’d)

Defining

Γ(QXX′ , R) = inf
QY |XX′

˘

EQ log[1/W (Y |X)] − H(Y |X,X ′)+

[max{g(QXY ), α(R, QY )} − g(QX′Y )]+}

we have

E
gld
ex (R, QX) = inf

{QXX′ : IQ(X;X′)≤R, QX′=QX}
[Γ(QXX′ , R) + IQ(X; X ′)] − R.

We prove that for the ordinary LD, this is never worse than the classical

expurgated bound (Csiszár–Körner–Marton, 1977).
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Example – Z–Channel

Let QX(0) = QX(1) = 1/2 and consider the Z–channel

W (y|x) =

8

>

>

>

>

<

>

>

>

>

:

0.9 x = y = 0

0.1 x = 0, y = 1

0 x = 1, y = 0

1 x = y = 1
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random coding, classical expurgated bound, and new expurgated bound.
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