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Motivation and Background

Ziv & Lempel (1978): individual–sequence approach to data compression.

Finite–State (FS) compressibility ⇔ entropy rate.

Campbell (1965): logE{exp[λ · code-length]} ≥ λ · Rényi entropy.

Motivation: risk–sensitivity, robustness, tail behavior (large deviations)...

What would be the individual–sequence counterpart of the Rényi entropy?

Wanted: tight lower bound on the empirical CGF of the code–length ...
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Finite–State (FS), Information Lossless (IL) Encoder

y1, y2, . . .

zi+1

zi

state

next state

delay

Finite-State Encoder

compressed bit-stream

source sequence

x1, x2, . . .

yi = f(zi, xi, )

zi+1 = g(zi, xi)

L(yn) =

n
X

t=1

l(yt)

Information losslessness = (z1, yn, zn) uniquely determine xn.
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Defining the Empirical CGF

Compression ratio = 1
n

Pn
t=1 l(yt) = empirical expectation of code–length.

First attempt to define empirical CGF:
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Difficulty: For many codes, ℓ(yt) = 0 for most t.

Possible solutions:

Simply ignore terms with ℓ(yt) = 0.

Define in the block level: fixed–to–variable CGF:
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Main Result for Fixed–to–Variable Length CGF’s

Theorem: For every IL encoder with s states,

1

λℓ
log2

2

4

ℓ

n

n/ℓ−1
X

t=0

2λL(ytℓ+ℓ

tℓ+1
)

3

5 ≥ Ĥℓ
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P̂ (aℓ) being the empirical probability of aℓ in xn along its n/ℓ non–overlapping
ℓ–blocks, and

γ(s, ℓ) = 2 log s + log

"
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The proof is based on the generalized Kraft inequality [ZL78].

“Achievability” – by an optimal Campbell code w.r.t. {P̂ (·)}.
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Another (Conceptually Simple) Lower Bound

Theorem: For every IL encoder with s states,
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where ct = maximum number of phrases at block no. t.

This is a simple application of the lower bound of [ZL78] on L(ytℓ+ℓ
tℓ+1).
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Variable–to–Variable Length CGFs – Discussion

Problem with V–F CGF: large ℓ – large fluctuations.

Extending the scope to V–V setting: more flexibility to reduce fluctuations.

Sequence–dependent segmentation instead of fixed–length blocks.

Dictionary of different phrases with P̂ (phrase) ∼ Unif.

Same probabilities – same code lengths.

Simple strategy: parse xn to c distinct phrases, each appearing just once.
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V–V Length CGFs – Discussion (Cont’d)

In particular, let xn be parsed as

xn1

1 , xn2

n1+1, . . . , xn
nc−1+1

and define

ρλ
E(xn) =
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, n0 ≡ 0, nc ≡ n

Observation: Even if the decoder knew the dictionary in advance and there
was no FS structure, L(yni

ni−1+1) ∼ log c, and so, one would expect
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in agreement with the ordinary compressibility.
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Main Result for V–V CGFs

Theorem: For any IL encoder with no more than s states, and given a source
sequence xn with c distinct phrases,
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The proof is based on the assumed IL property, like in the converse theorem of
[ZL78].
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Alternative Lower Bound

Theorem: For any IL encoder with no more than s states, and given a source

sequence xn with c distinct phrases,

c
X

i=1

exp2{λL(yni

ni−1+1)} ≥ exp2{(λ + 1) log c − λγ(s, logα c)}.

This one is based on the generalized Kraft inequality.
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Compatible Achievability Result

Theorem: Let xn be given and let c denote the number of phrases resulting

from the incremental parsing procedure. Let LLZ(xni

ni−1+1) denote the total

length associated with the compression of the i–th phrase according to the

LZ78 algorithm. Then,

c
X
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exp2{λLLZ(xni

ni−1+1)} ≤ (2α)λ2(λ+1) log c.

The proof is by a simple performance analysis of the LZ78 algorithm.
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FS, IL Encoder with Side Information

y1, y2, . . .
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compressed bit-stream

source sequence
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x1, x2, . . .
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yi = f(zi, xi, ui)

zi+1 = g(zi, xi, ui)

L(yn) =

n
X

t=1

l(yt)

Information losslessness = (z1, yn, un, zn) uniquely determine xn.
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F–V CGFs

Theorem: For every IL encoder with s states and SI,
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Proof: very similar to the case without SI.
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Conditional LZ Parsing [Ziv85]

Given (x, u) = [(x1, u1), . . . , (xn, un)], apply LZ parsing to this sequence pair.

c(x, u) = number of phrases.

c(u) = number of distinct phrases of u.

u(l) = the lth distinct u–phrase, l = 1, 2, ..., c(u).

cl(x|u) = number of u(l) in parsing of u.

conditional compressibility =
1

n

c(u)
X

l=1

cl(x|u) log cl(x|u).

For example, n = 6 and

x = 0 | 1 | 0 0 | 0 1|

u = 0 | 1 | 0 1 | 0 1|

then
c(x, u) = 4, c(u) = 3, u(1) = 0, u(2) = 1, u(3) = 01,

c1(x|u) = c2(x|u) = 1, c3(x|u) = 2.
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A Lower Bound to the V–V CGF

For every IL encoder with s states and SI,
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On the other hand, the conditional LZ algorithm achieves

(2α)λ
c(un)
X
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exp2{(λ + 1) log ck(xn|un)}.

Here, in contrast to the case without SI, there is a difference between the best
achievable CGF and the compressibility,
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cl(x|y) log cl(x|u).
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