

On the Empirical Cumulant Generating Function of Code Lengths for Individual Sequences

Neri Merhav

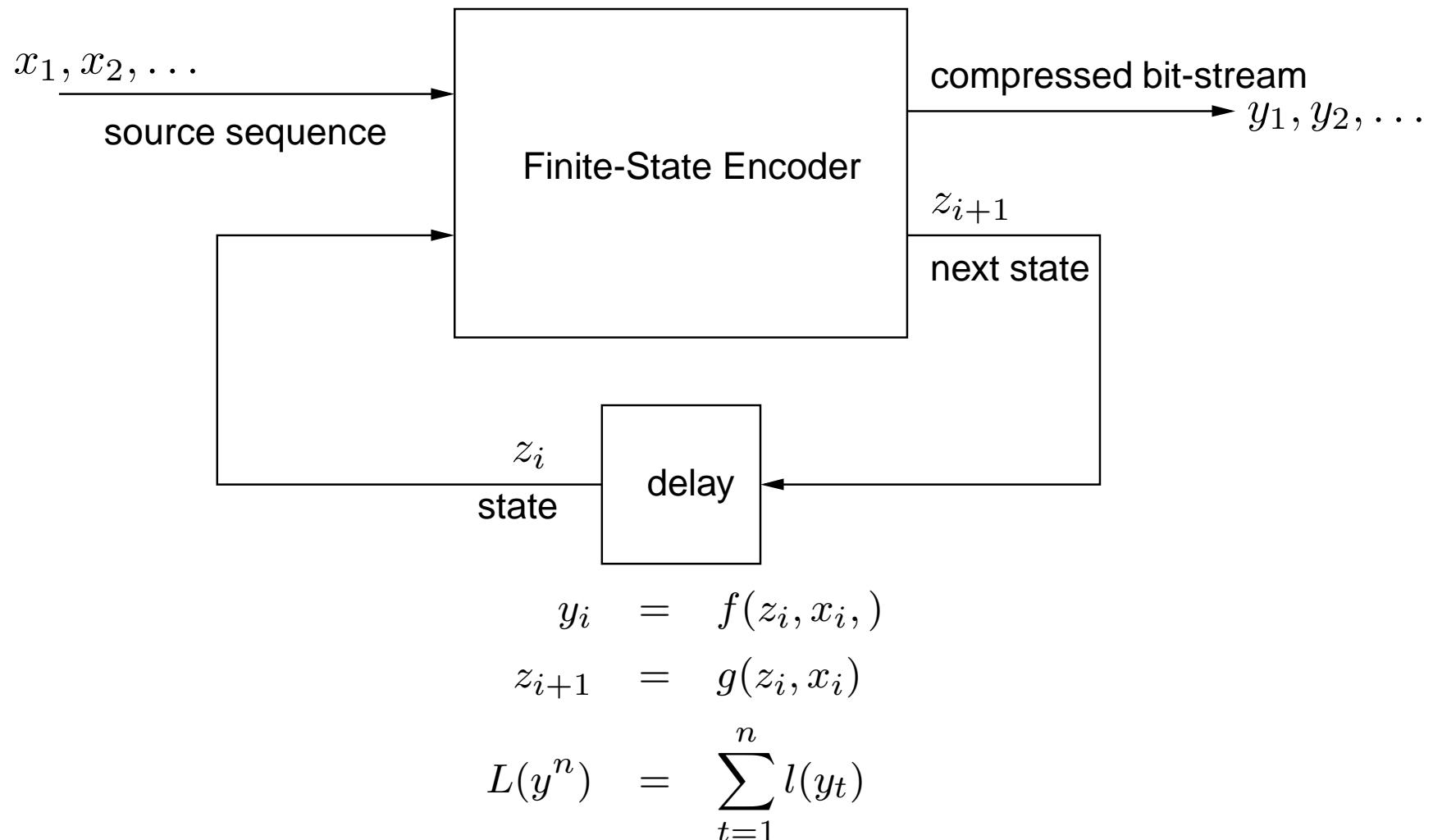
The Andrew & Erna Viterbi Faculty of Electrical Engineering
Technion—Israel Institute of Technology
Haifa 3200004, Israel

ISIT 2017, Aachen, Germany, June 2017.

Motivation and Background

- Ziv & Lempel (1978): individual–sequence approach to data compression.
- Finite–State (FS) compressibility \Leftrightarrow entropy rate.
- Campbell (1965): $\log \mathbf{E}\{\exp[\lambda \cdot \text{code-length}]\} \geq \lambda \cdot \text{R\'enyi entropy}$.
- Motivation: risk–sensitivity, robustness, tail behavior (large deviations)...
- What would be the individual–sequence counterpart of the R\'enyi entropy?
- Wanted: tight lower bound on the empirical CGF of the code–length ...

Finite-State (FS), Information Lossless (IL) Encoder



Information losslessness = (z_1, y^n, z_n) uniquely determine x^n .

Defining the Empirical CGF

Compression ratio = $\frac{1}{n} \sum_{t=1}^n l(y_t)$ = **empirical expectation** of code-length.

First attempt to define empirical CGF:

$$\frac{1}{\lambda} \log \left[\frac{1}{n} \sum_{t=1}^n 2^{\lambda l(y_t)} \right].$$

Difficulty: For many codes, $\ell(y_t) = 0$ for **most** t .

Possible solutions:

- Simply ignore terms with $\ell(y_t) = 0$.
- Define in the block level: **fixed-to-variable CGF**:

$$\frac{1}{\lambda \ell} \log \left[\frac{\ell}{n} \sum_{t=0}^{n/\ell} \exp_2 \{ \lambda L(y_{i\ell+1}^{i\ell+\ell}) \} \right].$$

Main Result for Fixed-to-Variable Length CGF's

Theorem: For every IL encoder with s states,

$$\frac{1}{\lambda\ell} \log_2 \left[\frac{\ell}{n} \sum_{t=0}^{n/\ell-1} 2^{\lambda L(y_{t\ell+1}^{t\ell+\ell})} \right] \geq \hat{H}_\lambda^\ell(x^n) - \frac{\gamma(s, \ell)}{\ell},$$

where

$$\hat{H}_\lambda^\ell(x^n) = \frac{1+\lambda}{\lambda\ell} \log_2 \left(\sum_{a^\ell \in \mathcal{X}^\ell} [\hat{P}(a^\ell)]^{1/(1+\lambda)} \right),$$

$\hat{P}(a^\ell)$ being the empirical probability of a^ℓ in x^n along its n/ℓ non-overlapping ℓ -blocks, and

$$\gamma(s, \ell) = 2 \log s + \log \left[1 + \log \left(\frac{s^2 + \alpha^\ell}{s^2} \right) \right].$$

The proof is based on the generalized Kraft inequality [ZL78].

“Achievability” – by an optimal Campbell code w.r.t. $\{\hat{P}(\cdot)\}$.

Another (Conceptually Simple) Lower Bound

Theorem: For every IL encoder with s states,

$$\begin{aligned} & \frac{1}{\lambda\ell} \log \left[\frac{\ell}{n} \sum_{t=0}^{n\ell-1} \exp_2 \{ \lambda L(y_{t\ell+1}^{t\ell+\ell}) \} \right] \\ & \geq \frac{1}{\lambda\ell} \log \left[\frac{\ell}{n} \sum_{t=0}^{n/\ell-1} \exp_2 \left\{ \lambda(c_t + s^2) \log[(c_t + s^2)/4s^2] \right\} \right] \end{aligned}$$

where c_t = maximum number of phrases at block no. t .

This is a simple application of the lower bound of [ZL78] on $L(y_{t\ell+1}^{t\ell+\ell})$.

Variable-to-Variable Length CGFs – Discussion

- Problem with V–F CGF: large ℓ – large fluctuations.
- Extending the scope to V–V setting: more flexibility to reduce fluctuations.
- Sequence–dependent segmentation instead of fixed–length blocks.
- Dictionary of different phrases with $\hat{P}(\text{phrase}) \sim \text{Unif.}$
- Same probabilities – same code lengths.
- Simple strategy: parse x^n to c distinct phrases, each appearing just once.

V–V Length CGFs – Discussion (Cont'd)

In particular, let x^n be parsed as

$$x_1^{n_1}, x_{n_1+1}^{n_2}, \dots, x_{n_{c-1}+1}^n$$

and define

$$\rho_E^\lambda(x^n) = \frac{c}{n\lambda} \log \left[\frac{1}{c} \sum_{i=1}^c 2^{\lambda L(y_{n_{i-1}+1}^{n_i})} \right], \quad n_0 \equiv 0, \quad n_c \equiv n$$

Observation: Even if the decoder knew the dictionary in advance and there was no FS structure, $L(y_{n_{i-1}+1}^{n_i}) \sim \log c$, and so, one would expect

$$\rho_E^\lambda(x^n) \geq \frac{c}{n\lambda} \log \left[\frac{1}{c} \sum_{i=1}^c 2^{\lambda \log c} \right] = \frac{c \log c}{n}$$

in agreement with the ordinary compressibility.

Main Result for V–V CGFs

Theorem: For any IL encoder with no more than s states, and given a source sequence x^n with c distinct phrases,

$$\sum_{i=1}^c \exp_2 \{ \lambda L(y_{n_{i-1}+1}^{n_i}) \} \geq \frac{s^2 \left[\exp_2 \left\{ (\lambda + 1) \log \left(\frac{c+s^2}{2s^2} \right) \right\} - 1 \right]}{2^{\lambda+1} - 1}.$$

The proof is based on the assumed IL property, like in the converse theorem of [ZL78].

Alternative Lower Bound

Theorem: For any IL encoder with no more than s states, and given a source sequence x^n with c distinct phrases,

$$\sum_{i=1}^c \exp_2\{\lambda L(y_{n_{i-1}+1}^{n_i})\} \geq \exp_2\{(\lambda + 1) \log c - \lambda \gamma(s, \log_\alpha c)\}.$$

This one is based on the generalized Kraft inequality.

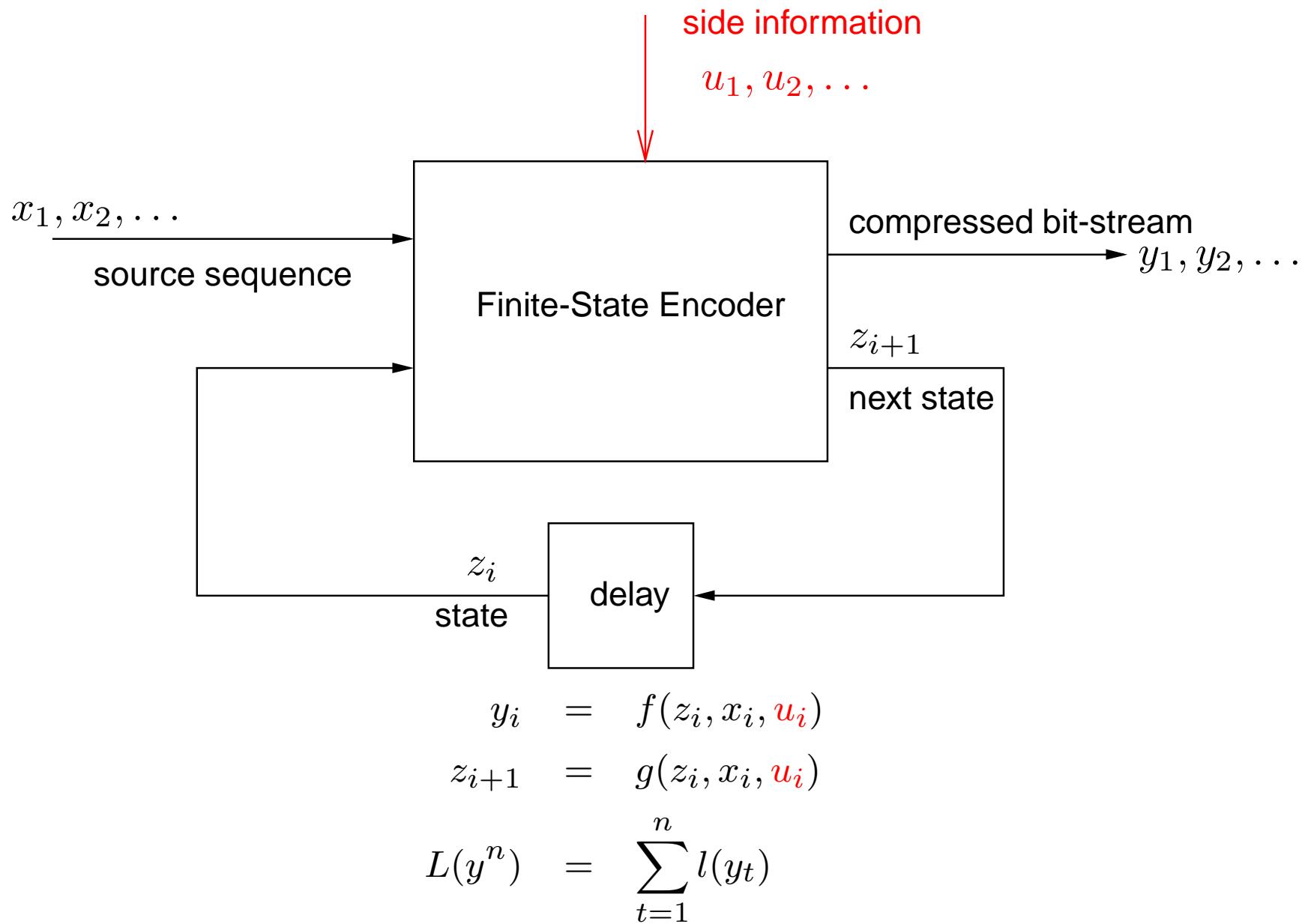
Compatible Achievability Result

Theorem: Let x^n be given and let c denote the number of phrases resulting from the [incremental parsing procedure](#). Let $L_{\text{LZ}}(x_{n_{i-1}+1}^{n_i})$ denote the total length associated with the compression of the i -th phrase according to the LZ78 algorithm. Then,

$$\sum_{i=1}^c \exp_2\{\lambda L_{\text{LZ}}(x_{n_{i-1}+1}^{n_i})\} \leq (2\alpha)^\lambda 2^{(\lambda+1) \log c}.$$

The proof is by a simple performance analysis of the LZ78 algorithm.

FS, IL Encoder with Side Information



Information losslessness = (z_1, y^n, u^n, z_n) uniquely determine x^n .

F–V CGFs

Theorem: For every IL encoder with s states and SI,

$$\frac{\ell}{n} \sum_{t=0}^{n/\ell-1} \exp_2\{\lambda L(y_{t\ell+1}^{t\ell+\ell})\} \geq 2^{-\lambda\gamma(s,\ell)} \sum_{u^\ell} \left\{ \sum_{x^\ell} [\hat{P}(x^\ell, u^\ell)]^{1/(1+\lambda)} \right\}^{1+\lambda}.$$

Proof: very similar to the case without SI.

Conditional LZ Parsing [Ziv85]

Given $(\mathbf{x}, \mathbf{u}) = [(x_1, u_1), \dots, (x_n, u_n)]$, apply LZ parsing to this sequence pair.

- $c(\mathbf{x}, \mathbf{u})$ = number of phrases.
- $c(\mathbf{u})$ = number of distinct phrases of \mathbf{u} .
- $u(l)$ = the l th distinct \mathbf{u} -phrase, $l = 1, 2, \dots, c(\mathbf{u})$.
- $c_l(\mathbf{x}|\mathbf{u})$ = number of $u(l)$ in parsing of \mathbf{u} .

$$\text{conditional compressibility} = \frac{1}{n} \sum_{l=1}^{c(\mathbf{u})} c_l(\mathbf{x}|\mathbf{u}) \log c_l(\mathbf{x}|\mathbf{u}).$$

For example, $n = 6$ and

$$\begin{aligned} \mathbf{x} &= 0 \mid 1 \mid 0 0 \mid 0 1 \mid \\ \mathbf{u} &= 0 \mid 1 \mid 0 1 \mid 0 1 \mid \end{aligned}$$

then

$$c(\mathbf{x}, \mathbf{u}) = 4, \quad c(\mathbf{u}) = 3, \quad u(1) = 0, \quad u(2) = 1, \quad u(3) = 01,$$

$$c_1(\mathbf{x}|\mathbf{u}) = c_2(\mathbf{x}|\mathbf{u}) = 1, \quad c_3(\mathbf{x}|\mathbf{u}) = 2.$$

A Lower Bound to the V–V CGF

For every IL encoder with s states and SI,

$$\sum_{i=1}^c \exp_2 \{ \lambda L(y_{n_{i-1}+1}^{n_i}) \} \geq \frac{s^2}{2^{\lambda+1} - 1} \cdot \sum_{k=1}^{c(u^n)} \left(\exp_2 \left\{ (\lambda + 1) \log \left[\frac{c_k(x^n|u^n) + s^2}{2s^2} \right] \right\} - 1 \right)$$

On the other hand, the conditional LZ algorithm achieves

$$(2\alpha)^\lambda \sum_{k=1}^{c(u^n)} \exp_2 \{ (\lambda + 1) \log c_k(x^n|u^n) \}.$$

Here, in contrast to the case without SI, there is a difference between the best achievable CGF and the compressibility,

$$\frac{1}{n} \sum_{l=1}^{c(\mathbf{u})} c_l(\mathbf{x}|\mathbf{y}) \log c_l(\mathbf{x}|\mathbf{u}).$$