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Motivation and Background

Ziv & Lempel (1978): individual-sequence approach to data compression.
Finite—State (FS) compressibility < entropy rate.

Campbell (1965): log E{exp[) - code-length]} > X - Rényi entropy.
Motivation: risk—sensitivity, robustness, tail behavior (large deviations)...
What would be the individual-sequence counterpart of the Renyi entropy?

Wanted: tight lower bound on the empirical CGF of the code—length ...
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Finite—State (FS), Information Lossless (IL) Encoder

L1, L2y« ..

source sequence

Information losslessness = (z1, 4", z» ) uniquely determine z".

Finite-State Encoder

compressed bit-stream

Zi4+1

next state

state

<4

delay =
yi = flz,7,)
zigr = 9(zi, i)

L") = > )

UY1,Y2, ...
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Defining the Empirical CGF

Compression ratio = % > i1 l(yt) = empirical expectation of code—length.
First attempt to define empirical CGF:

log

Z 2>‘l(yt ] .

Difficulty: For many codes, ¢(y;) = 0 for most ¢.
Possible solutions:

$» Simply ignore terms with ¢(y:) = 0.

® Define in the block level: fixed—to—variable CGF:

n/l

1 14 i
- log { Zexpg{xuyzﬁif)}} .

t=0
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Main Result for Fixed—to—Variable Length CGF’s

Theorem: For every IL encoder with s states,

n/l—1 .
! 17 log [ Z L (iein) } > A5 (z") — W(Sg,g),

where

“l . n 14+ A A
Hi(2") = =7 log ( > [P(a%]l/(””),

ate Xt

P(a%) being the empirical probability of a* in z™ along its n/¢ non—overlapping

/—blocks, and
2 Y
1+ log <S —|—2a >
S

The proof is based on the generalized Kraft inequality [ZL78].

v(s,4) = 2log s + log

“Achievability” — by an optimal Campbell code w.r.t. {P(-)}.
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Another (Conceptually Simple) Lower Bound

Theorem: For every IL encoder with s states,

1 / nf—1 i
vlog n Z eXP2{>\L(y§gi1)}]
L t=0

AV,

[ n/l—1
1 1 2 2 2
36108 | 2 o {Aer 7 togl(e 5745 ]}}

where ¢; = maximum number of phrases at block no. ¢.

This is a simple application of the lower bound of [ZL78] on L(y},}).
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Variable—to—Variable Length CGFs — Discussion
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Problem with V—-F CGF: large ¢ — large fluctuations.

Extending the scope to V-V setting: more flexibility to reduce fluctuations.

Seguence—dependent segmentation instead of fixed—length blocks.
Dictionary of different phrases with P(phrase) ~ Unif.

Same probabilities — same code lengths.

Simple strategy: parse x™ to c distinct phrases, each appearing just once.
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V-V Length CGFs — Discussion (Cont’d)

In particular, let ™ be parsed as
n2

mn1 n
L1 9Ly 410 s Tne1+1

and define
,Oi\g(ﬂfn = — log [ ZQAL(y” 1+1)] ng =0, ne=n

Observation: Even if the decoder knew the dictionary in advance and there
was no FS structure, L(y,* ;) ~ loge, and so, one would expect

n

1
pE (" >—10g[ Zz“ogclz—c 28 c

In agreement with the ordinary compressibility.
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Main Result for V=V CGFs

Theorem: For any IL encoder with no more than s states, and given a source
sequence z" with ¢ distinct phrases,

c s [expz{()\—i—l)log(?;‘f)}—l}
1=1

The proof is based on the assumed IL property, like in the converse theorem of
[ZL78].
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Alternative Lower Bound

Theorem: For any IL encoder with no more than s states, and given a source

sequence z" with ¢ distinct phrases,

&

> expo{AL(yy’ 1)} > expof{ (A + 1) loge — Ay(s,log, ) }.
1=1

This one is based on the generalized Kraft inequality.
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Compatible Achievability Result

Theorem: Let 2™ be given and let ¢ denote the number of phrases resulting

from the incremental parsing procedure. Let LLZ(C’?ZZ_1+1) denote the total

length associated with the compression of the i—th phrase according to the
LZ78 algorithm. Then,

C

i Aa(A+1)1
S expo{ALz(zl 1)} < ()2 T ese
1=1

The proof is by a simple performance analysis of the LZ78 algorithm.
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FS, IL Encoder with Side Information

L1, L2y«

source sequence

side information

U, U2, ...

compressed bit-stream

> Y1,Y2, - -.
Finite-State Encoder
Zi+1
next state
S
State ey =
vi = f(zi, 4, u;)
Ziv1 =  g(zi,xi,u4)

Ly") = > Uy

Information losslessness = (z1, ", u"", zn) uniquely determine x".
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F-V CGFs

Theorem: For every IL encoder with s states and Sl,

n/€ 1

1+
= Z expo {AL(ylp 1)} > 2720 Z {Z Pz, u )]1/““)} .
xe

Proof. very similar to the case without SI.
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Conditional LZ Parsing [Ziv85]

Given (x,u) = [(z1,u1),. .., (zn,un)], apply LZ parsing to this sequence pair.

® ((x,u) =number of phrases.

@)

(z,
® c(u) = number of distinct phrases of w.

® u(l) =the ith distinct u—phrase, | = 1,2, ..., c(u).
® ¢ (x|u) =number of u(l) in parsing of w.

c(u)

. I 1
conditional compressibility = = > ¢;(z|u) log ¢;(|u).
n
=1
For example, n = 6 and
r = 0[1]00]01
= 0|1]01]01

then
c(x,u) =4, c(u)=3, u(l) =0, u(2) =1, u(3) =01,

ci(x|lu) = co(xz|u) =1, c3(xju) = 2.
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A Lower Bound to the V-V CGF

For every IL encoder with s states and Sl,

c(u™)

¢ 2 n|, n 2
n; S Cr(x|u")+ s A
ZGXPZ{)\L(yni_1+1)} > e Z (exp2 {()\ + 1) log [ k |252) ] } — 1/
1=1

k=1

On the other hand, the conditional LZ algorithm achieves

c(u™)

20)™ Y expo{(A + 1) log ey (e [u")}

k=1

Here, in contrast to the case without Sl, there is a difference between the best
achievable CGF and the compressibility,

3|*—*

u
Z zly)log ¢;(z|u).

—pn. 15/1



	Motivation and Background
	Finite--State (FS), Information Lossless (IL) Encoder
	Defining the Empirical CGF
	Main Result for Fixed--to--Variable Length CGF's
	Another (Conceptually Simple) Lower Bound
	Variable--to--Variable Length CGFs -- Discussion
	V--V Length CGFs -- Discussion (Cont'd)
	Main Result for V--V CGFs
	Alternative Lower Bound
	Compatible Achievability Result
	FS, IL Encoder with Side Information
	F--V CGFs
	Conditional LZ Parsing [Ziv85]
	A Lower Bound to the V--V CGF

