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Background: Csiszár’s Universal JSC Decoder

A DMS u ∈ Un is directly mapped into a channel input vector x[u] ∈ Xn and

fed into a DMS whose output y is used to decode û.

The error exponent is upper bounded by

E
jsc ≤ min

R

h

E
s(R) + E

c(R)
i

,

where

Es(R) = the source coding exponent and

Ec(R) = the channel reliability function.

The error exponent is lower bounded by

E
jsc ≥ min

R

h

E
s(R) + E

c
r (R)

i

,

where Ec
r (R) = the random coding exponent.
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Background: Csiszár’s Universal JSC Decoder (Cont’d)

Some comments:

An equivalent lower bound

E
jsc ≥ max

Q
min

P ′,W ′

{D(P ′‖P ) + D(W ′‖W |Q) + [I(X; Y ′) − H(U ′)]+},

where: P = source, Q = random coding distribution, and W = channel.

Idea of upper bound: Each source type P ′ induces a sub–code at rate
R = H(P ′). Counting errors only within the worst sub–code.

The bounds coincide when R∗ of the former is above Rcrit.
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Background: Csiszár’s Universal JSC Decoder (Cont’d)

Comments (continued):

⇒ for R∗ ≥ Rcrit, errors within sub–codes dominate.

Universal decoder – “generalized MMI”: asymptotically equivalent to

û = arg max
u

[Îx[u]y(X;Y ) − Ĥu(U)].

GMMI is proved optimal for R ≥ Rcrit.

Everything generalizes easily to bandwidth expansion factor 6= 1.
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Our Settings

We extend Csiszár’s setting in several directions:

Setting 1:

Availability of source side info @ decoder.

Slepian–Wolf source coding and channel coding.

Setting 2: separate encodings + joint decoding of correlated sources.

Further extensions:

FS sources/channels – universal decoding based on LZ coding.

Arbitrary sources/channels – universality w.r.t. classes of decoders.
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Setting 1

decoderSI channel

channelchannel encoder

(random binning)

source encoderu j x

y

v

û
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Motivations

Separate S–W source coding and channel coding:

A general framework – includes JSC as a special case.

May be dictated by system constraints: different units/locations,

modularity, etc.

A common framework for many important special cases:

Separate source– and channel coding without SI: v – degenerate.

Pure SW source coding: clean, large–alphabet channel y ≡ x.

Pure channel coding: source = BSS, v – degenerate.

Joint source–channel coding with/out SI: high binning rate.

Systematic coding.

– p. 8/??



Formulation

We are given:

A memoryless source pair {(Ui, Vi)}, with (Ui, Vi) ∼ P :

u = (u1, . . . , un) = source to be communicated.

v = (v1, . . . , vn) = side information @ decoder.

A memoryless channel W (y|x) =
Q

t W (yt|xt).

Bandwidth expansion factor = 1 without essential loss of generality.
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Formulation (Cont’d)

Communication system:

u is mapped into a bin j = f(u) at rate R (selected at random).

The bin is channel–coded into x[u] = x[f(u)] (random coding ∼ T (Q)).

The message u is estimated by û = g(y).

The optimal MAP decoder

û = arg max
u

PUV (u, v)W (y|x[u]).

Our goals are:

Find the random–coding exponent of the MAP decoder, E(R,Q).

Find a universal decoder (ignorant of P and W ) that achieves E(R,Q).
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Basic Result

Theorem 1

1. The random–coding error exponent of the MAP decoder is given by (see
also Chang 2011):

E(R,Q) = min
P

U′V ′ ,W ′

{D(PU ′V ′‖PUV )+D(W ′‖W |Q)+[R∧I(X;Y ′)−H(U ′|V ′)]+}.

2. The universal decoders,

û = arg max
u

[Îx[u]y(X;Y ) − Ĥuv(U |V )]

and
û = arg max

u
[R ∧ Îx[u]y(X;Y ) − Ĥuv(U |V )]

both achieve E(R,Q).
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Discussion

E(R,Q) = min
P

U′V ′ ,W ′

{D(PU ′V ′‖PUV )+D(W ′‖W |Q)+[R∧I(X; Y ′)−H(U ′|V ′)]+}

E(R,Q) is monotonically non–decreasing, which is not trivial.

When R is large enough, there is saturation – equivalence to JSC.

For a clean, large alphabet channel, we recover the SW error exponent.

û = arg max
u

[Îx[u]y(X;Y ) − Ĥuv(U |V )]

û = arg max
u

[R ∧ Îx[u]y(X;Y ) − Ĥuv(U |V )]

Decoder 1 is a natural extension of Csiszár’s GMMI decoder.

Decoder 2 has no apparent advantage, but later results will be related.
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A Word About the Analysis

Exponentially tight analysis based on new techniques.

Averaging for both random binning and random coding (one at a time).

Lower bounding Pe for the MAP decoder.

Upper bounding Pe for the universal decoders.

Distinguishing between errors within the same bin and errors across bins.

Error events are dominated by pairwise errors within the types.
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Extension – Finite–State Sources and Channels

Let the source be given by

P (u, v) =

n
Y

t=1

P (ut, vt|st), st = g(st−1, ut−1, vt−1).

Similarly, let the channel be given by

W (y|x) =

n
Y

t=1

W (yt|xt, zt), zt = h(zt−1, xt−1, yt−1),

We have some tecnhical assumptions on the random coding distribution Q(x).
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Extension (Cont’d)

We use the notion of conditional LZ compressibility [Ziv 1985]: Given
(x, y) = [(x1, y1), . . . , (xn, yn)], apply LZ parsing to this sequence pair. Let

c(x, y) = number of phrases.

c(y) = number of distinct phrases of y.

y(l) = the lth distinct y–phrase, l = 1, 2, ..., c(y).

cl(x|y) = number of y(l) in parsing of y.

ĤLZ(x|y) =
1

n

c(y)
X

l=1

cl(x|y) log cl(x|y).

For example, n = 6 and

x = 0 | 1 | 0 0 | 0 1|

y = 0 | 1 | 0 1 | 0 1|

then
c(x, y) = 4, c(y) = 3, y(1) = 0, y(2) = 1, y(3) = 01,

c1(x|y) = c2(x|y) = 1, c3(x|y) = 2.
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Extension (Cont’d)

We also define

ÎLZ(x; y) = −
log Q(x)

n
− ĤLZ(x|y),

and finally, the universal decoding metric

ũ = arg max
u

h

ÎLZ(x[u]; y) − ĤLZ(u|v)
i

.

The extension of Theorem 1 to FS sources/channels asserts that the above
universal decoder achieves the same random–coding error exponent as the
MAP decoder, in the spirit of [Ziv 1985].
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Setting 2

channel encoder 1 channel 1
source encoder 1

(random binning)

source encoder 2

(random binning)
channel 2channel encoder 2

decoder

j1 x1

j2

u1

u2 x2

û1

û2

y
1

y
2

The optimal (MAP) decoder:

(û1, û2) = arg max
u1,u2

P (u1, u2)W1(y1|x1[u1])W2(y2|x2[u2]).
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Setting 2 (Cont’d)

Here, five types of pairwise errors should be handled differently:

u
′
1 6= u1 and u

′
2 = u2.

u
′
2 6= u2 and u

′
1 = u1.

u
′
1 6= u1 and u

′
2 6= u2, but u

′
2 is in the bin of u2.

u
′
1 6= u1 and u

′
2 6= u2, but u

′
1 is in the bin of u1.

u
′
1 6= u1, u

′
2 6= u2, and neither u

′
1 nor u

′
2 are in the correct bins.
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Setting 2 (Cont’d)

Each type of error “demands” a different universal decoding metric:

Errors of types 1 and 2 are handled the same as before:

f1(u1, u2, x1, x2, y1, y2) = R1 ∧ Î(X1; Y1) − Ĥ(U1|U2)

f2(u1, u2, x1, x2, y1, y2) = R2 ∧ Î(X2; Y2) − Ĥ(U2|U1).

Errors of types 3 and 4 “would like to be handled” by:

f3(u1, u2, x1, x2, y1, y2) = R1 ∧ Î(X1; Y1) + R2 − Ĥ(U1, U2)

f4(u1, u2, x1, x2, y1, y2) = R2 ∧ Î(X2; Y2) + R1 − Ĥ(U1, U2).

Error of type 5:

f5(u1, u2, x1, x2, y1, y2)

= [R1 ∧ Î(X1; Y1) + R2 ∧ Î(X2; Y2) − Ĥ(U1, U2)]+ +

[Î(X1; Y1) − R1]+ + [Î(X2; Y2) − R2]+.
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Setting 2 (Cont’d)

But we need a single decoding metric and we have to confront all five types of
errors at the same time!

Q: How can we integrate all these decoding metrics into one metric?
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Setting 2 (Cont’d)

But we need a single decoding metric and we have to confront all five types of
errors at the same time!

Q: How can we integrate all these decoding metrics into one metric?

A: It turns out that this is achieved by taking the minimum of them.
Define

f0(u1, u2, x1, x2, y1, y2) = min
1≤i≤5

fi(u1, u2, x1, x2, y1, y2).

Then, the universal decoder

(ũ1, ũ2) = arg max
u1,u2

f0(u1, u2, x1[u1], x2[u2], y1, y2)

achieves the same error exponent as the MAP decoder for Setting 2.
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Summary

We extended Csiszár’s universal JSC decoder in various directions:

Availability of decoder side information.

Separate source binning and channel coding.

Finite–state sources and channels.

The extension to FS sources/channels can be applied also to Setting 2.

Another extension: arbitrary sources/channels + given family of decoders.
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