

Universal Decoding for Source–Channel Coding With Side Information

Neri Merhav

Department of Electrical Engineering
Technion—Israel Institute of Technology
Haifa 3200004, Israel

ISIT 2016, July 10–15, 2016.

Some Related Earlier Work

Universal channel decoding

Goppa (1975); Csiszár & Körner (1981); Csiszár (1982); Ziv (1985); Merhav (1993); Liu & Hughes (1996); Feder & Lapidot (1998); Lapidot & Ziv (1998); Feder & Merhav (2002); Lomnitz & Feder (2012); Merhav (2013); ...

Universal source decoding (Slepian–Wolf)

Csiszár & Körner (1981); Oohama & Han (1994); Draper (2004); Chen, He, Jagmohan & Lastras–Montaño (2008); Sarvotham, Baron & Baraniuk (2005); ...

Universal joint source–channel decoding

Csiszár (1980).

Background: Csiszár's Universal JSC Decoder

A DMS $u \in \mathcal{U}^n$ is directly mapped into a channel input vector $x[u] \in \mathcal{X}^n$ and fed into a DMS whose output y is used to decode \hat{u} .

The error exponent is **upper bounded** by

$$E^{\text{jsc}} \leq \min_R \left[E^{\text{s}}(R) + E^{\text{c}}(R) \right],$$

where

$E^{\text{s}}(R)$ = the **source coding exponent** and

$E^{\text{c}}(R)$ = the **channel reliability function**.

The error exponent is **lower bounded** by

$$E^{\text{jsc}} \geq \min_R \left[E^{\text{s}}(R) + E^{\text{r}}(R) \right],$$

where $E^{\text{r}}(R)$ = the **random coding exponent**.

Background: Csiszár's Universal JSC Decoder (Cont'd)

Some comments:

- An equivalent lower bound

$$E^{\text{JSC}} \geq \max_Q \min_{P', W'} \{ \textcolor{red}{D(P' \| P)} + \textcolor{blue}{D(W' \| W | Q)} + [I(X; Y') - H(U')]_+ \},$$

where: P = source, Q = random coding distribution, and W = channel.

- Idea of upper bound: Each source type P' induces a **sub-code** at rate $R = H(P')$. Counting errors only **within** the worst sub-code.
- The bounds coincide when R^* of the former is above R_{crit} .

Background: Csiszár's Universal JSC Decoder (Cont'd)

Comments (continued):

- \Rightarrow for $R^* \geq R_{\text{crit}}$, errors within sub-codes dominate.
- Universal decoder – “generalized MMI”: asymptotically equivalent to

$$\hat{u} = \arg \max_{\mathbf{u}} [\hat{I}_{\mathbf{x}[\mathbf{u}]\mathbf{y}}(X; Y) - \hat{H}_{\mathbf{u}}(U)].$$

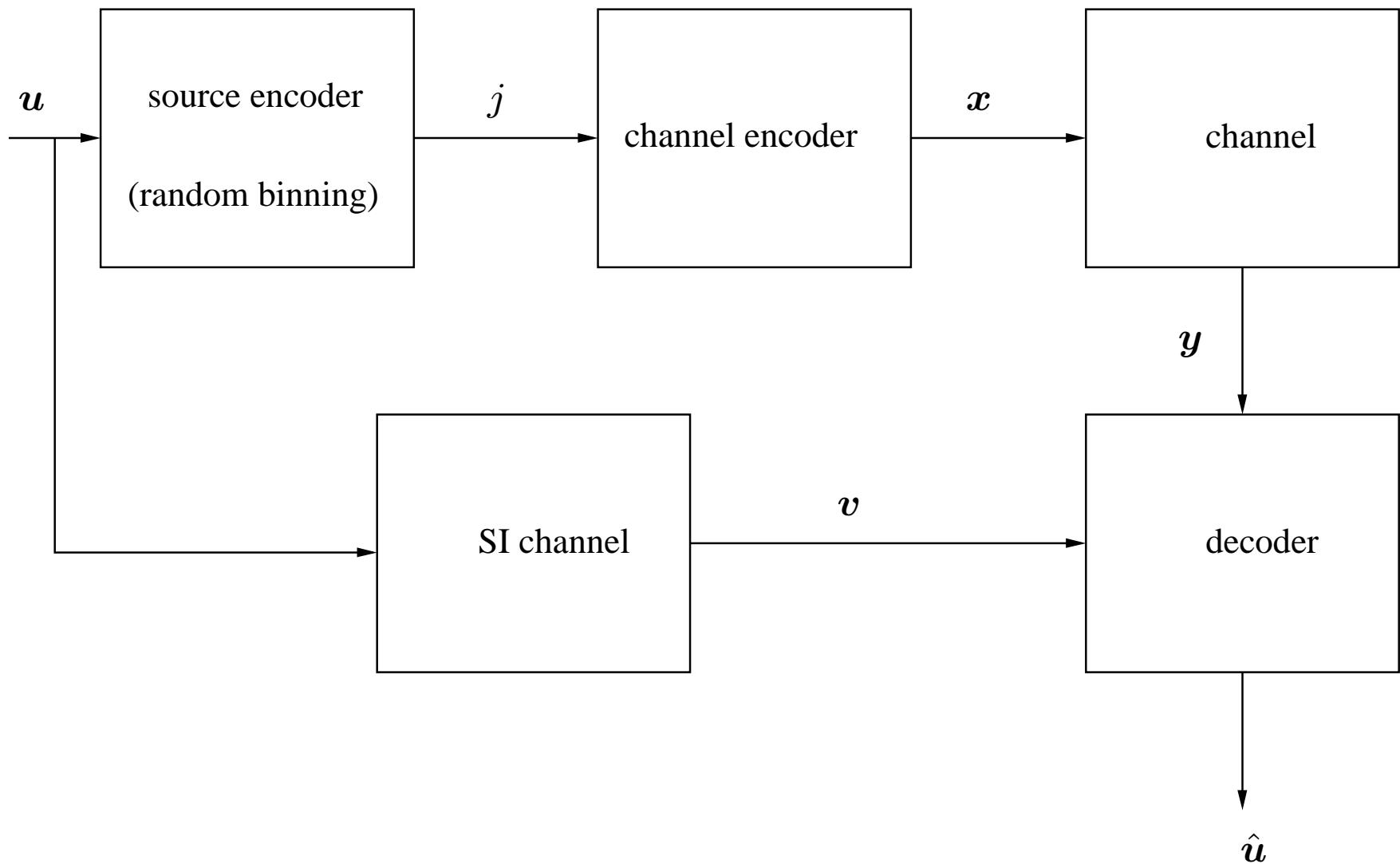
- GMMI is proved optimal for $R \geq R_{\text{crit}}$.
- Everything generalizes easily to bandwidth expansion factor $\neq 1$.

Our Settings

We extend Csiszár's setting in several directions:

- Setting 1:
 - Availability of source side info @ decoder.
 - Slepian–Wolf source coding and channel coding.
- Setting 2: separate encodings + joint decoding of correlated sources.
- Further extensions:
 - FS sources/channels – universal decoding based on LZ coding.
 - Arbitrary sources/channels – universality w.r.t. classes of decoders.

Setting 1



Motivations

- Separate S–W source coding and channel coding:
 - A general framework – includes JSC as a special case.
 - May be dictated by system constraints: different units/locations, modularity, etc.
- A common framework for many important special cases:
 - Separate source– and channel coding without SI: v – degenerate.
 - Pure SW source coding: clean, large–alphabet channel $y \equiv x$.
 - Pure channel coding: source = BSS, v – degenerate.
 - Joint source–channel coding with/out SI: high binning rate.
 - Systematic coding.

Formulation

We are given:

- A memoryless source pair $\{(U_i, V_i)\}$, with $(U_i, V_i) \sim P$:
 - $\mathbf{u} = (u_1, \dots, u_n) =$ source to be communicated.
 - $\mathbf{v} = (v_1, \dots, v_n) =$ side information @ decoder.
- A memoryless channel $W(\mathbf{y}|\mathbf{x}) = \prod_t W(y_t|x_t)$.
- Bandwidth expansion factor = 1 without essential loss of generality.

Formulation (Cont'd)

Communication system:

- u is mapped into a bin $j = f(u)$ at rate R (selected at random).
- The bin is channel-coded into $x[u] = x[f(u)]$ (random coding $\sim \mathcal{T}(Q)$).
- The message u is estimated by $\hat{u} = g(y)$.
- The optimal MAP decoder

$$\hat{u} = \arg \max_{\mathbf{u}} P_{UV}(\mathbf{u}, \mathbf{v}) W(\mathbf{y} | \mathbf{x}[\mathbf{u}]).$$

Our goals are:

- Find the random-coding exponent of the MAP decoder, $E(R, Q)$.
- Find a universal decoder (ignorant of P and W) that achieves $E(R, Q)$.

Basic Result

Theorem 1

1. The random-coding error exponent of the MAP decoder is given by (see also Chang 2011):

$$E(R, Q) = \min_{P_{U'V'}, W'} \{D(P_{U'V'} \| P_{UV}) + D(W' \| W|Q) + [R \wedge I(X; Y') - H(U'|V')]_+\}.$$

2. The universal decoders,

$$\hat{\mathbf{u}} = \arg \max_{\mathbf{u}} [\hat{I}_{\mathbf{x}[\mathbf{u}]\mathbf{y}}(X; Y) - \hat{H}_{\mathbf{u}\mathbf{v}}(U|V)]$$

and

$$\hat{\mathbf{u}} = \arg \max_{\mathbf{u}} [R \wedge \hat{I}_{\mathbf{x}[\mathbf{u}]\mathbf{y}}(X; Y) - \hat{H}_{\mathbf{u}\mathbf{v}}(U|V)]$$

both achieve $E(R, Q)$.

Discussion

$$E(R, Q) = \min_{P_{U'V'}, W'} \{ D(P_{U'V'} \| P_{UV}) + D(W' \| W|Q) + [\textcolor{red}{R} \wedge I(X; Y') - H(U'|V')]_+ \}$$

- $E(R, Q)$ is monotonically non-decreasing, which is not trivial.
- When R is large enough, there is saturation – equivalence to JSC.
- For a clean, large alphabet channel, we recover the SW error exponent.

$$\hat{\mathbf{u}} = \arg \max_{\mathbf{u}} [\hat{I}_{\mathbf{x}[\mathbf{u}]\mathbf{y}}(X; Y) - \hat{H}_{\mathbf{u}\mathbf{v}}(U|V)]$$

$$\hat{\mathbf{u}} = \arg \max_{\mathbf{u}} [R \wedge \hat{I}_{\mathbf{x}[\mathbf{u}]\mathbf{y}}(X; Y) - \hat{H}_{\mathbf{u}\mathbf{v}}(U|V)]$$

- Decoder 1 is a natural extension of Csiszár's GMMI decoder.
- Decoder 2 has no apparent advantage, but later results will be related.

A Word About the Analysis

- Exponentially tight analysis based on new techniques.
- Averaging for both random binning and random coding (one at a time).
- Lower bounding $\overline{P_e}$ for the MAP decoder.
- Upper bounding $\overline{P_e}$ for the universal decoders.
- Distinguishing between errors within the same bin and errors across bins.
- Error events are dominated by pairwise errors within the types.

Extension – Finite–State Sources and Channels

Let the source be given by

$$P(\mathbf{u}, \mathbf{v}) = \prod_{t=1}^n P(u_t, v_t | s_t), \quad s_t = g(s_{t-1}, u_{t-1}, v_{t-1}).$$

Similarly, let the channel be given by

$$W(\mathbf{y} | \mathbf{x}) = \prod_{t=1}^n W(y_t | x_t, z_t), \quad z_t = h(z_{t-1}, x_{t-1}, y_{t-1}),$$

We have some technical assumptions on the random coding distribution $Q(x)$.

Extension (Cont'd)

We use the notion of **conditional LZ compressibility** [Ziv 1985]: Given $(\mathbf{x}, \mathbf{y}) = [(x_1, y_1), \dots, (x_n, y_n)]$, apply LZ parsing to this sequence pair. Let

- $c(\mathbf{x}, \mathbf{y})$ = number of phrases.
- $c(\mathbf{y})$ = number of distinct phrases of \mathbf{y} .
- $\mathbf{y}(l)$ = the l th distinct \mathbf{y} -phrase, $l = 1, 2, \dots, c(\mathbf{y})$.
- $c_l(\mathbf{x}|\mathbf{y})$ = number of $\mathbf{y}(l)$ in parsing of \mathbf{y} .

$$\hat{H}_{LZ}(\mathbf{x}|\mathbf{y}) = \frac{1}{n} \sum_{l=1}^{c(\mathbf{y})} c_l(\mathbf{x}|\mathbf{y}) \log c_l(\mathbf{x}|\mathbf{y}).$$

For example, $n = 6$ and

$$\begin{aligned} \mathbf{x} &= 0 \mid 1 \mid 0 0 \mid 0 1 \mid \\ \mathbf{y} &= 0 \mid 1 \mid 0 1 \mid 0 1 \mid \end{aligned}$$

then

$$c(\mathbf{x}, \mathbf{y}) = 4, \quad c(\mathbf{y}) = 3, \quad \mathbf{y}(1) = 0, \quad \mathbf{y}(2) = 1, \quad \mathbf{y}(3) = 01,$$

$$c_1(\mathbf{x}|\mathbf{y}) = c_2(\mathbf{x}|\mathbf{y}) = 1, \quad c_3(\mathbf{x}|\mathbf{y}) = 2.$$

Extension (Cont'd)

We also define

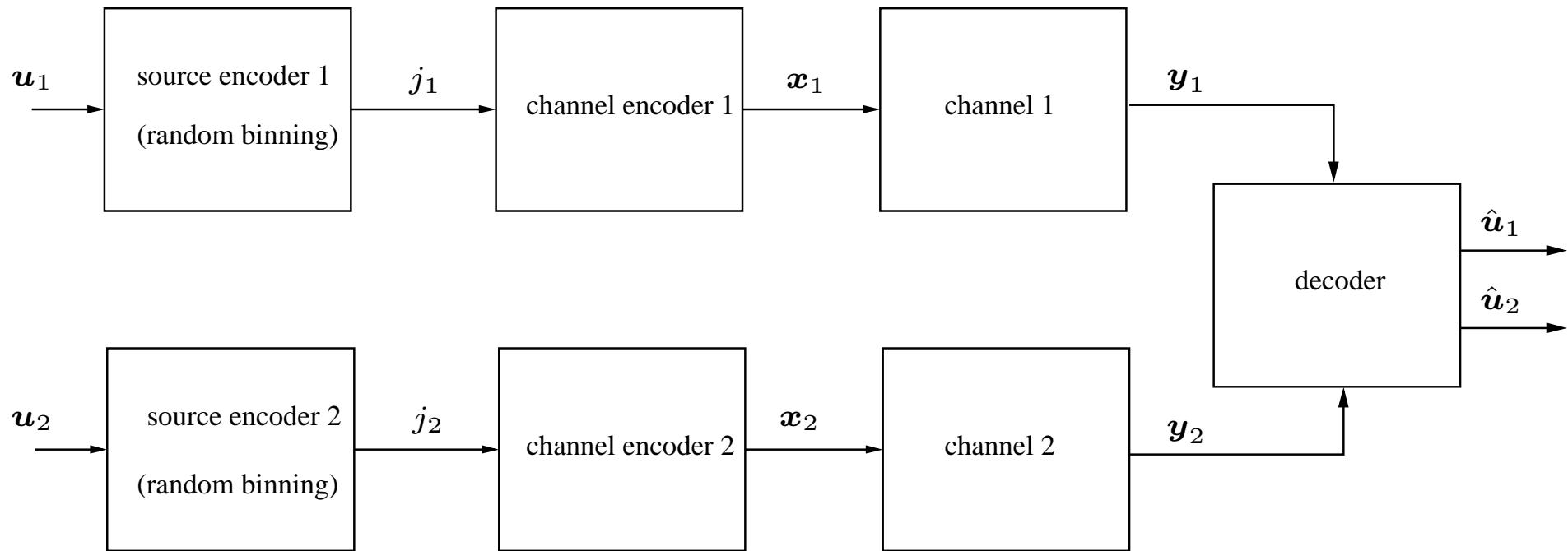
$$\hat{I}_{\text{LZ}}(\mathbf{x}; \mathbf{y}) = -\frac{\log Q(\mathbf{x})}{n} - \hat{H}_{\text{LZ}}(\mathbf{x}|\mathbf{y}),$$

and finally, the universal decoding metric

$$\tilde{\mathbf{u}} = \arg \max_{\mathbf{u}} \left[\hat{I}_{\text{LZ}}(\mathbf{x}[\mathbf{u}]; \mathbf{y}) - \hat{H}_{\text{LZ}}(\mathbf{u}|\mathbf{v}) \right].$$

The extension of Theorem 1 to FS sources/channels asserts that the above universal decoder achieves the same random-coding error exponent as the MAP decoder, in the spirit of [Ziv 1985].

Setting 2



The optimal (MAP) decoder:

$$(\hat{u}_1, \hat{u}_2) = \arg \max_{u_1, u_2} P(u_1, u_2) W_1(y_1 | x_1[u_1]) W_2(y_2 | x_2[u_2]).$$

Setting 2 (Cont'd)

Here, five types of pairwise errors should be handled differently:

- $u'_1 \neq u_1$ and $u'_2 = u_2$.
- $u'_2 \neq u_2$ and $u'_1 = u_1$.
- $u'_1 \neq u_1$ and $u'_2 \neq u_2$, but u'_2 is in the bin of u_2 .
- $u'_1 \neq u_1$ and $u'_2 \neq u_2$, but u'_1 is in the bin of u_1 .
- $u'_1 \neq u_1$, $u'_2 \neq u_2$, and neither u'_1 nor u'_2 are in the correct bins.

Setting 2 (Cont'd)

Each type of error “demands” a different universal decoding metric:

- Errors of types 1 and 2 are handled the same as before:

$$f_1(\mathbf{u}_1, \mathbf{u}_2, \mathbf{x}_1, \mathbf{x}_2, \mathbf{y}_1, \mathbf{y}_2) = R_1 \wedge \hat{I}(X_1; Y_1) - \hat{H}(U_1|U_2)$$

$$f_2(\mathbf{u}_1, \mathbf{u}_2, \mathbf{x}_1, \mathbf{x}_2, \mathbf{y}_1, \mathbf{y}_2) = R_2 \wedge \hat{I}(X_2; Y_2) - \hat{H}(U_2|U_1).$$

- Errors of types 3 and 4 “would like to be handled” by:

$$f_3(\mathbf{u}_1, \mathbf{u}_2, \mathbf{x}_1, \mathbf{x}_2, \mathbf{y}_1, \mathbf{y}_2) = R_1 \wedge \hat{I}(X_1; Y_1) + R_2 - \hat{H}(U_1, U_2)$$

$$f_4(\mathbf{u}_1, \mathbf{u}_2, \mathbf{x}_1, \mathbf{x}_2, \mathbf{y}_1, \mathbf{y}_2) = R_2 \wedge \hat{I}(X_2; Y_2) + R_1 - \hat{H}(U_1, U_2).$$

- Error of type 5:

$$\begin{aligned} f_5(\mathbf{u}_1, \mathbf{u}_2, \mathbf{x}_1, \mathbf{x}_2, \mathbf{y}_1, \mathbf{y}_2) \\ = [R_1 \wedge \hat{I}(X_1; Y_1) + R_2 \wedge \hat{I}(X_2; Y_2) - \hat{H}(U_1, U_2)]_+ + \\ [\hat{I}(X_1; Y_1) - R_1]_+ + [\hat{I}(X_2; Y_2) - R_2]_+. \end{aligned}$$

Setting 2 (Cont'd)

But we need a **single** decoding metric and we have to confront all five types of errors at the same time!

Q: How can we integrate all these decoding metrics into one metric?

Setting 2 (Cont'd)

But we need a **single** decoding metric and we have to confront all five types of errors at the same time!

Q: How can we integrate all these decoding metrics into one metric?

A: It turns out that this is achieved by taking the minimum of them.

Define

$$f_0(\mathbf{u}_1, \mathbf{u}_2, \mathbf{x}_1, \mathbf{x}_2, \mathbf{y}_1, \mathbf{y}_2) = \min_{1 \leq i \leq 5} f_i(\mathbf{u}_1, \mathbf{u}_2, \mathbf{x}_1, \mathbf{x}_2, \mathbf{y}_1, \mathbf{y}_2).$$

Then, the universal decoder

$$(\tilde{\mathbf{u}}_1, \tilde{\mathbf{u}}_2) = \arg \max_{\mathbf{u}_1, \mathbf{u}_2} f_0(\mathbf{u}_1, \mathbf{u}_2, \mathbf{x}_1[\mathbf{u}_1], \mathbf{x}_2[\mathbf{u}_2], \mathbf{y}_1, \mathbf{y}_2)$$

achieves the same error exponent as the MAP decoder for Setting 2.

Summary

- We extended Csiszár's universal JSC decoder in various directions:
 - Availability of decoder side information.
 - Separate source binning and channel coding.
 - Finite-state sources and channels.
- The extension to FS sources/channels can be applied also to Setting 2.
- Another extension: arbitrary sources/channels + given family of decoders.