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Abstract

We study a binary hypothesis testing problem in which a defender must decide whether or not a test
sequence has been drawn from a given memoryless source Py whereas, an attacker strives to impede the
correct detection. With respect to previous works, the adversarial setup addressed in this paper considers
an attacker who is active under both hypotheses, namely, a fully active attacker, as opposed to a partially
active attacker who is active under one hypothesis only. In the fully active setup, the attacker distorts
sequences drawn both from P and from an alternative memoryless source Pj, up to a certain distortion
level, which is possibly different under the two hypotheses, in order to maximize the confusion in
distinguishing between the two sources, i.e., to induce both false positive and false negative errors at
the detector, also referred to as the defender. We model the defender-attacker interaction as a game and
study two versions of this game, the Neyman-Pearson game and the Bayesian game. Our main result
is in the characterization of an attack strategy that is asymptotically both dominant (i.e., optimal no
matter what the defender’s strategy is) and universal, i.e., independent of P, and P;. From the analysis
of the equilibrium payoff, we also derive the best achievable performance of the defender, by relaxing
the requirement on the exponential decay rate of the false positive error probability in the Neyman—
Pearson setup and the tradeoff between the error exponents in the Bayesian setup. Such analysis permits

to characterize the conditions for the distinguishability of the two sources given the distortion levels.
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I. INTRODUCTION

There are many fields in signal processing and communications where the detection problem should
naturally be framed within an adversarial setting: multimedia forensics (MF) [1], spam filtering [2],
biometric-based verification [3], one-bit watermarking [4], and digital/analogue transmission under jam-
mer attacks [5], just to name a few (see [6] for other examples).

In particular, the need for adversarial modeling has become evident in security-related applications
and game theory is often harnessed as a useful tool in many research areas, such as steganalysis [7],
watermarking [4], intrusion detection systems [8] and adversarial machine learning [9], [10]. In recent
literature, game theory and information theory have also been combined to address the problem of
adversarial detection, especially in the field of digital watermarking, see, for instance, [4], [11], [12],
[13]. In all these works, the problem of designing watermarking codes that are robust to intentional
attacks, is studied as a game between the information hider and the attacker.

An attempt to develop a general theory for the binary hypothesis testing problem in the presence
of an adversary was made in [14]. Specifically, in [14] the general problem of binary decision under
adversarial conditions has been addressed and formulated as a game between two players, the defender
and the attacker, which have conflicting goals. Given two discrete memoryless sources, Py and P, the
goal of the defender is to decide whether a given test sequence has been generated by Fy (null hypothesis,
Ho) or P; (alternative hypothesis, H1). By adopting the Neyman-Pearson approach, the set of strategies
the defender can choose from is the set of decision regions for Hg ensuring that the false positive error
probability is lower than a given threshold. On the other hand, the ultimate goal of the attacker in [14]
is to cause a false negative decision, so the attacker acts under #; only. In other words, the attacker
modifies a sequence generated by Pj, in attempt to move it into the acceptance region of Hy. The attacker
is subjected to a distortion constraint, which limits his freedom in doing so. Such a struggle between
the defender and the attacker is modeled in [14] as a competitive zero-sum game and the asymptotic
equilibrium, that is, the equilibrium when the length of the observed sequence tends to infinity, is derived
under the assumption that the defender bases his decision on the analysis of first order statistics only.
In this respect, the analysis conducted in [14] extends the one of [15] to the adversarial scenario. Some
variants of this attack-detection game have also been studied: in [16], the setting was extended to the case
where the sources are known to neither the defender nor the attacker, yet training data from both sources
is available to both parties: within this framework, the case where part of the training data available to

the defender is corrupted by the attacker has also been studied (see [17]).
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There are many situations in which it is reasonable to assume that the attacker is active under both
hypotheses with the goal of causing both false positive and false negative detection errors. For instance,
in applications of camera fingerprint detection, an adversary might be interested to remove the fingerprint
from a given image so that the generating camera would not be identified and at the same time, to implant
the fingerprint from another camera [18], [19]. Another example comes from watermarking, where an
attacker can be interested in either removing or injecting the watermark from an image or a video, to
redistribute the content with a fake copyright and no information (erased information) about the true
ownership [20]. Attacks under both hypotheses may also be present in applications of network intrusion
detection [21]. Network intrusion detection systems, in fact, can be subject to both evasion attacks [22],
in which an adversary tries to avoid detection by manipulating malicious traffic, and overstimulation
attacks [23], [24], in which the network is overstimulated by an adversary who sends synthetic traffic
(matching the legitimate traffic) in order to cause a denial of service.

With the above ideas in mind, in this paper, we consider the game—theoretic formulation of the defender-
attacker interaction when the attacker acts under both hypotheses. We refer to this scenario as a detection
game with a fully active attacker. By contrast, when the attacker acts under hypothesis #; only (as
in [14] and [16]), he is referred to as a partially active attacker. A distinction is made between the
case where the underlying hypothesis is known to the attacker and the case where it is not. A little
thought, however, immediately indicates that the latter is a special case of the former, and therefore, we
focus on the former. We define and solve two versions of the detection game with fully active attackers,
corresponding to two different formulations of the problem: the Neyman—Pearson formulation and the
Bayesian formulation. In contrast to [14], here the players are allowed to adopt randomized strategies.
Specifically, the defender adopts randomized decision strategies, while in [14] the defender’s strategies
were confined to deterministic decision rules. As for the attack, it consists of the application of a channel,
whereas in [14] it was confined to the application of a deterministic function. Moreover, the partially
active case of [14] can easily be obtained as a special case of the fully active case considered here.
The problem of solving the game and then finding the optimum detector in the adversarial setting is not
trivial and may not be possible in general. Thus, we limit the complexity of the problem and make the
analysis tractable by confining the decision to depend on a given set of statistics of the observation. Such
an assumption, according to which the detector has access to a limited set of empirical statistics of the
sequence, is referred to as limited resources assumption (see [15] for an introduction on this terminology).
In particular, as done in [14], [16], we limit the detection resources to first order statistics, which are, as

is well known, sufficient statistics for memoryless systems [25, Section 2.9]. While the sources are indeed

February 3, 2018 DRAFT



IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. X, NO. X, XXXXXXX XXXX 4

assumed memoryless, one might still be concerned regarding the sufficiency of first order statistics, in
our setting, since the attack channel is not assumed memoryless in the first place. Adopting, nonetheless,
the limited-resources assumption to first order statistics, is motivated mainly by its simplicity, but with
the understanding that the results can easily be extended to deal with arbitrarily higher order empirical
statistics as well. Moreover, an important bonus of this framework is that it allows us to obtain fairly
strong results concerning the game between the defender and the attacker, as will be described below.

One of the main results of this paper is the characterization of an attack strategy which is both dominant
(i.e., optimal no matter what the defence strategy is), and universal, i.e., independent of the (unknown)
underlying sources. Moreover, this optimal attack is the same for both the Neyman-Pearson and Bayesian
games. This result continues to hold also for the partially active case, thus creating a significant difference
relative to previous works, where the existence of a dominant strategy was established regarding the
defender only.

Some of our results (in particular, the derivation of the equilibrium point for both the Neyman-—
Pearson and the Bayesian games), have already appeared mostly without proofs in [26]. Here we provide
the full proofs of the main theorems, evaluate the payoff at equilibrium for both the Neyman—Pearson
and Bayesian games and include the analysis of the ultimate performance of the games. Specifically, we
characterize the so called indistinguishability region (to be defined formally in Section VI), namely the set
of the sources for which it is not possible to attain strictly positive exponents for both false positive and
false negative probabilities under the Neyman-Pearson and the Bayesian settings. Furthermore, the setup
and analysis presented in [26] is extended by considering a more general case in which the maximum
allowed distortion levels the attacker may introduce under the two hypotheses are different.

The paper is organized as follows. In Section II, we establish the notation and introduce the main
concepts. In Section III, we formalize the problem and define the detection game with a fully active
adversary for both the Neyman-Pearson and the Bayesian games, and then prove the existence of a
dominant and universal attack strategy. The complete analysis of the Neyman-Pearson and Bayesian
detection games, namely, the study of the equilibrium point of the game and the computation of the
payoff at the equilibrium, are carried out in Sections IV and V, respectively. Finally, Section VI is
devoted to the analysis of the best achievable performance of the defender and the characterization of

the source distinguishability.
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II. NOTATION AND DEFINITIONS

Throughout the paper, random variables will be denoted by capital letters and specific realizations will
be denoted by the corresponding lower case letters. All random variables that denote signals in the system,
will be assumed to have the same finite alphabet, denoted by .A. Given a random variable X and a positive
integer n, we denote by X = (X1, Xs,...,Xp), X; € A, i = 1,2,...,n, a sequence of n independent
copies of X. According to the above—mentioned notation rules, a specific realization of X is denoted by
x = (r1,22,...,2T,). Sources will be denoted by the letter P. Whenever necessary, we will subscript P
with the name of the relevant random variables: given a random variable X, Px denotes its probability
mass function (PMF). Similarly, Pxy denotes the joint PMF of a pair of random variables, (X,Y"). For
two positive sequences, {a,} and {b,}, the notation a,, = b, stands for exponential equivalence, i.e.,
lim,, o0 1/n1n (ay,/by) = 0, and a, < b, designates that limsup,,_,.. 1/n1n (a,/b,) < 0. For a given
real s, we denote [s]4 2 max{s,0}. We use notation U(-) for the Heaviside step function.

The type of a sequence x € A" is defined as the empirical probability distribution Py, that is, the
vector {Pg(z), = € A} of the relative frequencies of the various alphabet symbols in @. A type class
T (x) is defined as the set of all sequences having the same type as . When we wish to emphasize the
dependence of 7 () on Py, we will use the notation 7 (Pg ). Similarly, given a pair of sequences (x, y),
both of length n, the joint type class 7 (x,y) is the set of sequence pairs {(z’,y')} of length n having
the same empirical joint probability distribution (or joint type) as (x,y), P;Dy, and the conditional type
class T (y|x) is the set of sequences {y’} with p$y/ = ﬁmy,

Regarding information measures, the entropy associated with Py, which is the empirical entropy of
x, is denoted by Hg(X). Similarly, flwy(X ,Y) designates the empirical joint entropy of x and y,
and I;Ta;y(X |Y) is the conditional joint entropy. We denote by D(P||Q) the Kullback-Leibler (K-L)
divergence between two sources, P and () with the same alphabet (see [25]).

Finally, we use letter A to denote an attack channel; accordingly, A(y|x) is the conditional probability
of the channel output y given the channel input . Given a permutation-invariant distortion function'
d: A" x A" — IR and a maximum distortion A, we define the class Ca of admissible channels

{A(y|x), =,y € A"} as those that assign zero probability to every y with d(x,y) > nA.

'A permutation—invariant distortion function, d(zx,y), is a distortion function that is invariant if the same permutation is

applied to both  and y.
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A. Basics of Game Theory

For the sake of completeness, we introduce some basic definitions and concepts of game theory.
A two-player game is defined as a quadruple (Si, Sz, u1,u2), where S = {s1,1...51,n,} and Sy =
{s2,1 ... 521, } are the sets of strategies from which the first and the second player can choose, respectively,
and w;(s1,,52),1 = 1,2, is the payoff of the game for player [, when the first player chooses the strategy
s1,; and the second one chooses s ;. Each player aims at maximizing its payoff function. A pair of
strategies (s1,,s2,j) is called a profile. When w1 (s1,4,s2,j) + u2(S1,4, s2,5) = 0, the game is said to be
a zero-sum game. For such games, the payoff of the game u(sy;,s2,;) is usually defined by adopting
the perspective of one of the two players: that is, u(si,s2;) = ui1(s14,52;5) = —ua(si4,S25) if the
defender’s perspective is adopted or vice versa. The sets &1, So and the payoff functions are assumed
known to both players. In addition, we consider strategic games, i.e., games in which the players choose
their strategies ahead of time, without knowing the strategy chosen by the opponent.

A common goal in game theory is to determine the existence of equilibrium points, i.e. profiles that in
some sense represent a satisfactory choice for both players [27]. The most famous notion of equilibrium
is due to Nash [28]. A profile is said to be a Nash equilibrium if no player can improve its payoff by
changing its strategy unilaterally.

Despite its popularity, the practical meaning of Nash equilibrium is often unclear, since there is no
guarantee that the players will end up playing at the Nash equilibrium. A particular kind of games for
which stronger forms of equilibrium exist are the so called dominance solvable games [27]. The concept of
dominance-solvability is directly related to the notion of dominant and dominated strategies. In particular,
a strategy is said to be strictly dominant for one player if it is the best strategy for this player, i.e., the
strategy that maximizes the payoff, no matter what the strategy of the opponent may be. In a similar
way, we say that a strategy s;; is strictly dominated by strategy s; ;, if the payoff achieved by player [
choosing s;; is always lower than that obtained by playing s; ;, regardless of the strategy of the other
player. Recursive elimination of dominated strategies is a common technique for solving games. In the
first step, all the dominated strategies are removed from the set of available strategies, since no rational
player? would ever use them. In this way, a new, smaller game is obtained. At this point, some strategies
that were not dominated before, may become dominated in the new, smaller version of the game, and
hence are eliminated as well. The process goes on until no dominated strategy exists for either player. A

rationalizable equilibrium is any profile which survives the iterated elimination of dominated strategies
In game theory, a rational player is supposed to act in a way that maximizes its payoff.
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[29], [30]. If at the end of the process only one profile is left, the remaining profile is said to be the
only rationalizable equilibrium of the game, which is also the only Nash equilibrium point. Dominance
solvable games are easy to analyze since, under the assumption of rational players, we can anticipate that
the players will choose the strategies corresponding to the unique rationalizable equilibrium. Another,
related, interesting notion of equilibrium is that of dominant equilibrium. A dominant equilibrium is a
profile which corresponds to dominant strategies for both players and is the strongest kind of equilibrium

that a strategic game may have.

III. DETECTION GAME WITH FULLY ACTIVE ATTACKER
A. Problem formulation

Given two discrete memoryless sources, Py and P;, defined over a common finite alphabet A, we
denote by * = (x1,...,2,) € A" a sequence emitted by one of these sources. The sequence x is
available to the attacker. Let y = (y1,¥2,-..,yn) € A™ denote the sequence observed by the defender:
when an attack occurs under both g and H;, the observed sequence y is obtained as the output of an
attack channel fed by x.

In principle, we must distinguish between two cases: in the first, the attacker is aware of the underlying
hypothesis (hypothesis-aware attacker), whereas in the second case it is not (hypothesis-unaware attacker).
In the hypothesis-aware case, the attack strategy is defined by two different conditional probability
distributions, i.e., two different attack channels: Ag(y|x), applied when H holds, and A;(y|x), applied
under H;. Let us denote by Q;(-) the PMF of y under H;,; = 0, 1. The attack induces the following
PMFs on y: Qo(y) = g Pol@) Ao(yla) and Q1(y) = Y Pi(@) i (yl2).

Clearly, in the hypothesis-unaware case, the attacker will apply the same channel under Ho and H1,
that is, Ag = Aj, and we will denote the common attack channel simply by A. Throughout the paper,
we focus on the hypothesis-aware case as in view of this formalism, the hypothesis-unaware case is just
a special case.

Regarding the defender, we assume a randomized decision strategy, defined by ®(#,;|y), which des-
ignates the probability of deciding in favor of H;, + = 0,1, given y. Accordingly, the probability of a
false positive (FP) decision error is given by

Pro(®, Ag) = Y Qo(y)®(Haly), )
Yy
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Fig. 1.  Schematic representation of the adversarial setup considered in this paper. In the case of partially active attacker,

channel Ay corresponds to the identity channel.

and similarly, the false negative (FN) probability assumes the form:
Pr(®, A1) = Y Qu(y)®(Holy). )
Y

Figure 1 provides a block diagram of the system with a fully active attacker. Obviously, the partially
active case, where no attack occurs under Hyp, can be seen as a degenerate case of the fully active one,
where Ag is the identity channel I. As in [14], due to the limited resources assumption, the defender
makes a decision based on first order empirical statistics of y, which implies that ®(-|y) depends on y
only via its type class 7T (y).

Concerning the attack, in order to limit the amount of distortion, we assume a distortion constraint.
In the hypothesis—aware case, we allow the attacker different distortion levels, Ay and A1, under H,
and H;, respectively. Then, Ay € Ca, and A; € Ca,, where, for simplicity, we assume that a common

(permutation-invariant) distortion function d(-, -) is adopted in the two cases.

B. Definition of the Neyman—Pearson and Bayesian Games

One of the difficulties associated with the fully active setting is that, in the presence of a fully active
attacker, both the FP and FN probabilities depend on the attack channels. We therefore consider two
different approaches which lead to different formulations of the detection game: in the first, the detection
game is based on the Neyman-Pearson criterion, and in the second one, the Bayesian approach is adopted.

For the Neyman-Pearson setting, we define the game by assuming that the defender adopts a conser-

vative approach and imposes an FP constraint pertaining to the worst—case attack under H.

Definition 1. The Neyman-Pearson detection game is a zero-sum, strategic game defined as follows.

o The set Sp of strategies allowed to the defender is the class of randomized decision rules {®} that

satisfy
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(1) ®(Holy) depends on y only via its type.
(i)  maxa,eca, Pip(®, Ap) < e~ for a prescribed constant X > 0, independent of n.
o The set Sy of strategies allowed to the attacker is the class of pairs of attack channels (Ao, A1)
such that Ag € Ca,, A1 € Ca,; that is, S4 = Ca, X Ca,.
o The payoff of the game is u(®, A1) = Py (P, A1), the attacker is in the quest of maximizing uw(®, Ay)

whereas the defender wishes to minimize it.

In the above definition, we require that the FP probability decays exponentially fast with n, with an
exponential rate at least as large as A. In the case of partially—active attack (see the formulation in [26]),
the FP probability does not depend on the attack but on the defender only; accordingly, the constraint
imposed by the defender in the above formulation becomes P.(®) < e~™*. Regarding the attacker, we
have S4 = Cy x Ca,, where Cy is a singleton that contains the identity channel only.

Another version of the detection game is defined by assuming that the defender follows a less

conservative approach, that is, the Bayesian approach, and tries to minimize a particular Bayes risk.

Definition 2. The Bayesian detection game is a zero-sum, strategic game defined as follow.
o The set Sp of strategies allowed to the defender is the class of the randomized decision rules {®}
where ®(Hol|y) depends on y only via its type.
o The set Sa of strategies allowed to the attacker is Sy = Ca, X Ca,.

o The payoff of the game is
U(@, (A07 Al)) == PFN(@a Al) + eanPFP(®7 AO); (3)
for some constant a, independent of n.

We observe that, in the definition of the payoff, the parameter a controls the tradeoff between the
two terms in the exponential scale; whenever possible, the optimum defence strategy is expected to yield
error exponents that differ exactly by a, so as to balance the contributions of the two terms of (3).

Notice also that, by defining the payoff as in (3), we are implicitly considering for the defender only the
strategies ®(-|y) such that Py(P, Ag) < e~ In fact, any strategy that does not satisfy this inequality
yields a payoff u > 1, that cannot be optimal, as it can be improved by always deciding in favor of
regardless of y (u = 1).

As in [14], we focus on the asymptotic behavior of the game as n tends to infinity. In particular, we
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are interested in the FP and FN exponents defined as:

. In PFP(CDa AO) .
€p = — limsup ——————; epy = —limsu
n—00 n n—00

In P (®, A
p - L 51 D, )

We say that a strategy is asymptotically optimum (or dominant) if it is optimum (dominant) with respect

to the asymptotic exponential decay rate (or the exponent, for short) of the payoff.

C. Asymptotically Dominant and Universal Attack

In this subsection, we characterize an attack channel that, for both games, is asymptotically dominant
and universal, in the sense of being independent of the unknown underlying sources. This result paves
the way to the solution of the two games.

Let u denote a generic payoff function of the form
U :'YPFN((I)yAl) +5PFP((I)7AO)7 )

where § and ~y are given positive constants, possibly dependent on n.
We notice that the payoff of the Neyman-Pearson and Bayesian games defined in the previous section
can be obtained as particular cases: specifically, v = 1 and 5 = 0 for the Neyman-Pearson game and

v =1 and 8 = e*" for the Bayesian one.

Theorem 1. Let ¢, (x) denote the reciprocal of the total number of conditional type classes {T (y|x)}
that satisfy the constraint d(x,y) < nA for a given A > 0, namely, admissible conditional type classes>.
Define:

el d(x,y) < nA
An(yle) = TUPI (@,y) <nA .
0 elsewhere
Among all pairs of channels (Ao, A1) € Sa, the pair (A} , Aj ) minimizes the asymptotic exponent of

u for every Py, Py, every v, > 0 and every permutation—invariant ®(Hoy|-).

Proof: We first focus on the attack under H; and therefore on the FN probability.
Consider an arbitrary channel A; € Ca,. Let IT : A" — A" denote a permutation operator that

permutes any member of A" according to a given permutation matrix and let

An(y|z) 2 A (Iy|lz). 7

3From the method of the types it is known that 1 > ¢, () > (n + 1)"“4"('“4'_1) for any x [25].
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Since the distortion function is assumed permutation—invariant, the channel Ar(y|x) introduces the same
distortion as A; and hence satisfies the distortion constraint. Due to the memorylessness of P; and the

assumption that ®(H|y) belongs to Sp, we have:

Poy(®, A) = }:fﬁ )An (y|z)®(Holy)
= Zpl )AL (Iy[Hz) P (Holy)

= Zpl (Ilz) A1 (TTy |Tz) D (Ho|y)

= Zpl )AL (y|z)®(Holy)
= PFN(<I>,A1), 8
and so, Ppy(®, A1) = Pon(®, A) where we have defined
A(ylz) = ZAH ylz) = Zx‘h My| M), ©)

which also introduces the same distortion as Al. Now, notice that this channel assigns the same conditional
probability to all sequences in the same conditional type class 7 (y|x). To see why this is true, we
observe that any sequence ¥y’ € 7 (y|x) can be seen as being obtained from y through the application

of a permutation IT" which leaves x unaltered. Then, we have:

Ay'le) = A(l'y|Il'z) Z Ay (I(I'y) |TI(IT))
1 —
= Zz‘h(ﬂylﬂx) = A(y|x). o
S
Therefore, since A(7 (y|x)|x) < 1, we argue that
1
Ayle) <] To@) @Y <nd
0 elsewhere
RN
cn(x)
<+ DAL (wle), ay

which implies that, for every permutation—invariant defence strategy @,
Prs(®, A1) < (n+ DHAAITD Py (AR, @) (12)

or equivalently

Pu(®, AR,) > (n+ 1)"HAIAED B (4, @), (13)

February 3, 2018 DRAFT



IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. X, NO. X, XXXXXXX XXXX 12

We conclude that A%, minimizes the error exponent of Fu(®, A1) across all channels in Ca, and for
every ¢ € Sp, regardless of P;.
A similar argument applies to the FP probability to derive the optimum channel under Hy; that is,

from the memorylessness of Py and the permutation—invariance of ®(#|-), we have:
P(®, Ax,) > (n+ 1) AU Ry (4, @), (14)

for every Ag € Ca,. Accordingly, A%\ minimizes the error exponent of Py(®, Ag).

We then have:

’YPFN((I)a Al) + 5PFP(q)7 AO)
< (n+ YA (yPy(@, AR,) + BBe(®, AR,))
i’)/-PFN((P)AA)kAl) +/BPFP((I)7A*AO)a (15)

for every Ap € Ca, and A; € Ca,. Notice that, since the asymptotic equality is defined in the logarithmic
scale, eq. (15) holds no matter what the values of 3 and + are, including values that depend on n. Hence,
the pair of channels (A} , A} ) minimizes the asymptotic exponent of u for any permutation-invariant
decision rule ®(Hy|-) and for any ~, 3 > 0. [ |

According to Theorem 1, for every zero-sum game with payoff function of the form in (5), if ®
is permutation-invariant, the pair of attack channels which is the most favorable to the attacker is
(AA,> AR, ), which does not depend on ®. Then, the optimum attack strategy (Aj , AR, ) is dominant.
Specifically, given «, in order to generate y which causes a detection error with the prescribed maximum
allowed distortion, the attacker cannot do any better than randomly selecting an admissible conditional
type class according to the uniform distribution and then choose at random y within this conditional
type class. Figure 2 illustrates the intuition behind the definition of the attack channel in (6): since the
number of conditional type classes is only polynomial in n, the random choice of the conditional type
class does not affect the exponent of the error probabilities; besides, since the decision is the same for
all sequences within the same conditional type class, the choice of y within that conditional type class
is immaterial.

As an additional result, Theorem 1 states that, whenever an adversary aims at maximizing a payoff
function of the form (5), and as long as the defence strategy is confined to the analysis of the first order
statistics, the (asymptotically) optimum attack strategy is universal w.r.t. the sources Fy and P, i.e., it

depends neither on Py nor on P;.
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T YQ|X

o N T (y1|x)
set of admissible conditional .’ (@(Holy)= cost)

type classes
(y 1 d(x,y) < nd)

Px

Fig. 2. Graphical interpretation of the behavior of the attack channel A}.

Finally, if Ag = A1 = A, the optimum attack consists of applying the same channel A’ regardless of
the underlying hypothesis and then the optimum attack strategy is fully-universal: the attacker needs to
know neither the sources (Fy and P;), nor the underlying hypothesis. In this case, it becomes immaterial
whether the attacker is aware or unaware of the true hypothesis. As a consequence of this property, in
the hypothesis-unaware case, when the attacker applies the same channel under both hypotheses, subject
to a fixed maximum distortion A, the optimum channel remains A’ .

As a final remark, according to Theorem 1, for the partially active case, there exists an (asymptotically)
dominant and universal attack channel. This result marks a considerable difference relative to the results
of [14], where the optimum deterministic attack function is found using the rationalizability argument,
that is, by exploiting the existence of a dominant defence strategy, and hence it is neither dominant nor

universal.

IV. THE NEYMAN-PEARSON DETECTION GAME

In this section, we study the detection game with a fully active attacker in the Neyman-Pearson setup
as defined in Definition 1. From the analysis of Section III-C, we already know that there exists a
dominant attack strategy. Regarding the defender, we will determine the asymptotically optimum strategy
regardless of the dominant pair of attack channels; in particular, as will been seen in Lemma 1 below, an
asymptotically dominant defense strategy can be derived from a detailed analysis of the FP constraint.

As a consequence, the Neyman-Pearson detection game has a dominant equilibrium.

A. Optimal Detection and Game Equilibrium

The following lemma characterizes the optimal detection strategy in the Neyman-Pearson setting.
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Lemma 1. For the Neyman-Pearson game of Definition 1, the defence strategy

* JAN - - : ®
» <%1|y>—exp{ 4l m:d(ﬁ;}?gmompw“POi}’ 16)

is asymptotically dominant for the defender.

The proof appears in Appendix I-A.
We point out that when the attacker is partially—active, it is known from [26] that the optimum defence

strategy is

o (Ha|y) éexp{—n [A—D(ﬁyHPO)L}. 17)

From (17), it is easy to argue that there exists a deterministic strategy, corresponding to the Hoeffding
test [31], which is asymptotically equivalent to ®*(#1|y). This result is in line with the one in [14]
(Lemma 1), where the class of defence strategies is confined to deterministic decision rules.

Intuitively, the extension from (17) to (16) is explained as follows. In the case of fully active attacker, the
defender is subject to a constraint on the maximum FP probability over S 4, that is, the set of the admissible
channels A € Ca, (see Definition 1). From the analysis of Section III-C, channel A"‘AO minimizes the
FP exponent over this set. In order to satisfy the constraint for a given sequence y, the defender must
handle the worst—case value (i.e., the minimum) of D(Pg||Py) over all the type classes 7 (x|y) which
satisfy the distortion constraint, or equivalently, all the sequences & such that d(x,y) < nA.

According to Lemma 1, the best defence strategy is asymptotically dominant. Also, since ®* depends

on F; only, and not on P4, it is referred to as semi—universal.

Concerning the attacker, since the payoff is a special case of (5) with v =1 and 8 = 0, the optimum
pair of attack channels is given by Theorem 1 and corresponds to (A} , AR )

The following comment is in order. Since the payoff of the game is defined in terms of the FN
probability only, it is independent of Ay € Ca,. Furthermore, since the defender adopts a conservative
approach to guarantee the FP constraint for every Ag, the constraint is satisfied for every Ag and therefore
all channel pairs of the form (Ao, A} ), Ao € Sa, are equivalent in terms of the payoff. Accordingly, in the
hypothesis—aware case, the attacker can employ any admissible channel under Hg. In the Neyman—Pearson
setting, the sole fact that the attacker is active under H forces the defender to take countermeasures that
make the choice of Ay immaterial.

Due to the existence of dominant strategies for both players, we can immediately state the following

theorem.
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Theorem 2. Consider the Neyman-Pearson detection game of Definition 1. Let ®* and (A*AO7A*Al)
be the strategies defined in Lemma 1 and Theorem 1, respectively. The profile (®*, (AL ,AR,)) is an

asymptotically dominant equilibrium of the game.

B. Payoff at the Equilibrium

In this section, we derive the payoff of the Neyman-Pearson game at the equilibrium of Theorem 2.
To do this, we will assume an additive distortion function, i.e., d(x,y) = > ;- ; d(x;,y;). In this case,
d(z,y) can be expressed as » _;; nay(i,j)d(i, j), where ngy(i,j) = nff’;,gy(i,j) denotes the number of
occurrences of the pair (i,j) € A? in (x,y). Therefore, the distortion constraint regarding A can be
rewritten as » ;o 4o ]Sa;y(i,j)d(i,j) < Ap. A similar formulation holds for A;.

Let us define

Di(Py,P)S  min D(Pg| P), (18)
{Pry:Exyd(X,Y)<A}
where Egq denotes the empirical expectation, defined as
Epyd(X,Y)= > Pry(i,j)d(,j) (19)
(i,j)eA®

and the minimization is carried out for a given Py. Accordingly, the strategy in (16) can be rewritten as

* A =0 N
v (aly) 2 exp { -0 [n - B, By} 20
When n — oo, D} becomes*
Da(Py,P) 2 min D(Px||P), @1

{Px)y:Exyd(X,Y)<A}
where E'xy denotes expectation w.r.t. Pxy.

Definition (21) can be stated for any PMF Py in the probability simplex in Rl Note that the
minimization problem in (21) has a unique solution as it is a convex program.

The function Da will have an important role in the remaining part of the paper, especially in the
characterization of the asymptotic behavior of the games. To draw a parallelism, Da plays a role similar
to that of the Kullback—Leibler divergence D in classical detection theory for the non-adversarial case.

The basic properties of the functional ZaA(Py,P) are the following: (i) it is continuous in Py-; (ii)

it has convex level sets, i.e., the set {Py : @A(Py, P) < t} is convex for every ¢ > 0. Point (ii) is a

“Due to the the density of rational numbers on the real line, the admissibility set in (18) is dense in that of (21); since the

the divergence functional is continuous, the sequence {@Z(F’y, P)}n>1 tends to Da(Py, P) as n — oco.
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consequence of the following property, which will turn out to be useful for proving some of the results

in the sequel (in particular, Theorem 3, 7 and also 8).
Property 1. The function Da(Py, P) is convex in Py for every fixed P.

The proof follows from the convexity of the divergence functional (see Appendix I-B).

Using the above definitions, the equilibrium payoff is given by the following theorem:

Theorem 3. Let the Neyman-Pearson detection game be as in Definition 1. Let (®*, (A} , A} )) be the

equilibrium profile of Theorem 2. Then,’

1
EFN()\) = — hm E ln PFN(Q*’ A*Al)

n—oo

=  min Da, (Py, P). (22)
PyIDAO(Py,Po)S)\

The proof, which appears in Appendix I-C, is based on Sanov’s theorem [32], [33], by exploiting the
compactness of the set { Py : [)AO(Py, Py) < A}

From Theorem 3 it follows that e (A) = 0 whenever there exists a PMF Py inside the set {Py :
Da,(Py,Py) < A} with Aj-limited expected distortion from P;. When this condition does not hold,
P (®*, A} ) — 0 exponentially rapidly.

For a partially—active attacker, the error exponent in (22) becomes

em(\) = Da, (Py, Py). (23)

Py D(Py P <
It can be shown that the error exponent in (23) is the same as the error exponent of Theorem 2 in [14] (and
Theorem 2 in [34]), where deterministic strategies are considered for both the defender and the attacker.
Such equivalence can be explained as follows. As already pointed, the optimum defence strategy in (17)
and the deterministic rule found in [14] are asymptotically equivalent (see the discussion immediately
after Lemma 1). Concerning the attacker, even in the more general setup (with randomized strategies)
considered here, an asymptotically optimum attack could be derived as in [14], that is, by considering the
best response to the dominant defence strategy in [14]. Such attack consists of minimizing the divergence
w.r.t. Py, namely D(PyHPO), over all the admissible sequences y, and then is deterministic. Therefore,
concerning the partially active case, the asymptotic behavior of the game is equivalent to the one in [14].

The main difference between the setup in [14] and the more general one addressed in this paper relies

>We make explicit the dependence on the parameter \ in the notation of the error exponent, since this will turn to be useful

in the sequel.
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on the kind of game equilibrium, which is stronger here (namely, a dominant equilibrium) due to the
existence of dominant strategies for both the defender and the attacker, rather than for the defender only.
When the distortion function d is a metric, we can state the following result, whose proof appears in

Appendix I-D.

Theorem 4. When the distortion function d is a metric, eq. (22) can be rephrased as

\) = ' D Py, Py). 24
em(N) Py:D(rlglylﬁPo)SA Ao+, (Py, Pr) (24)

Comparing eq. (24) with (23) is insightful for understanding the difference between the fully active and
partially active cases. Specifically, the FN error exponents of both cases are the same when the distortion
under #H; in the partially-active case is Ag + A; (instead of Aq).

When d is not a metric, (24) is only an upper bound on ex (), as can be seen from the proof of
Theorem 4. Accordingly, in the general case (d is not a metric), applying distortion levels Ag and A;
to sequences from, respectively, Ho and H; (in the fully active setup) is more favorable to the attacker

with respect to applying a distortion Ag + A; to sequences from g only (in the partially active setup).

V. THE BAYESIAN DETECTION GAME

In this section, we study the Bayesian game (Definition 2). In contrast to the Neyman—Pearson game,
in the Bayesian game, the optimal defence strategy is found by assuming that the strategy played by the
attacker, namely the optimum pair of channels (Af, A}) of Theorem 1, is known to the defender, that is, by
exploiting the rationalizability argument (see Section II-A). Accordingly, the resulting optimum strategy
is not dominant, and so, the associated equilibrium is weaker compared to that of the Neyman—Pearson

game.

A. Optimum Defence and Game Equilibrium

Since the payoff in (3) is a special case of (5) with v = 1 and 5 = e, for any defence strategy
® € Sp, the asymptotically optimum attack channels under #y and #; are given by Theorem 1, and
correspond to the pair (A*on AL, ). Then, we can determine the best defence strategy by assuming that the
attacker will play (A} , A} ) and evaluating the best response of the defender to this pair of channels.

Our solution for the Bayesian detection game is given in the following theorem, whose proof appears

in Appendix II-A.
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Theorem 5. Consider the Bayesian detection game of Definition 2. Let Qf(y) and Qi(y) be the

probability distributions induced by channels A*Ao and A*Al’ respectively.
Then,®

QOICE T

is the optimum defence strategy.

If, in addition, the distortion measure is additive, the defence strategy
o' (Haly) = U (DA, (Py, o) — DA, (Py, P1) — a) (26)
is asymptotically optimum.

It is useful to provide the asymptotically optimum strategy, ®', in addition to the optimal one, ®#, for
the following reason: while ®# requires the non-trivial computation of the two probabilities Q1 (y) and
Qo(y), the strategy ®f, which leads to the same payoff asymptotically, is easier to implement because
of its single-letter form.

We now state the following theorem.

Theorem 6. Consider the Bayesian game of Definition 2. Let (A*AUaA*AI) be the attack strategy of
Theorem 1 and let ®# and ®1 be the defence strategies defined, respectively, in (25) and (26). The

profiles (&7 ( A, AA,)) and (@7, (A7, AA,)) are asymptotic rationalizable equilibria of the game.

The analysis in this section can be easily generalized to any payoff function defined as in (5), i.e., for
any v, 3 > 0.

Finally, we observe that, the fact that the equilibrium found in the Bayesian case (namely, a ratio-
nalizable equilibrium) is weaker with respect to the equilibrium derived for the Neyman—Pearson game
(namely, a dominant equilibrium) is a consequence of the fact that the Bayesian game is defined in a less
restrictive manner than the Neyman—Pearson game. This is due to the conservative approach adopted in
the latter: while in the Bayesian game the defender cares about both FP and FN probabilities and their
tradeoff, in the Neymam—Pearson game the defender does not care about the value of the FP probability
provided that its exponent is larger than A\, which is automatically guaranteed by restricting the set of
strategies. This restriction simplifies the game so that a dominant strategy can be found for the restricted

game.

®We remind that U(-) denotes the Heaviside step function.
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B. Equilibrium Payoff
We now derive the equilibrium payoff of the Bayesian game. As in the Neyman—Pearson game, we

assume an additive distortion measure. For simplicity, we focus on the asymptotically optimum defence

strategy ®f. We have the following theorem.

Theorem 7. Let the Bayesian detection game be as in Definition 2. Let (®T, (AA,> ARA,)) be the
equilibrium profile of Theorem 6. The asymptotic exponential rate of the equilibrium Bayes payoff u

is given by

— lim 1 In (u(‘1>T7 (A*AO,A*Al))>

n—oomn,

min (max {ml (Py, P1), (Da,(Py, Py) — a)}) . @7)

The proof appears in Appendix II-B.

According to Theorem 7, the asymptotic exponent of u is zero if there exists a PMF Py with Aq-
limited expected distortion from P; such that Da, (Py, Py) < a. Therefore, when we focus on the case of
zero asymptotic exponent of the payoff, the parameter a plays a role similar to A in the Neyman—Pearson
game. By further inspecting the exponent expressions of Theorems 7 and 3, we observe that, when a = A,
the exponent in (27) is smaller than or equal to the one in (22), where equality holds only when both
(27) and (22) vanish. However, comparing these two cases in the general case is difficult because of the
different definition of the payoff functions and, in particular, the different role taken by the parameters
A and a. In the Neyman—Pearson game, in fact, the payoff corresponds to the FN probability and is not
affected by the value of the FP probability, provided that its exponent is larger than A; in this way, the
ratio between FP and FN error exponent at the equilibrium is generally smaller than X (a part for the case
in which the asymptotic exponent of the payoff is zero). In the Bayesian case, the payoff is a weighted
combination of the two types of errors and then the term with the largest exponent is the dominating
term, namely, the one which determines the asymptotic behavior; in this case, the parameter a determines

the exact tradeoff between the FP and FN exponent in the equilibrium payoff.

VI. SOURCE DISTINGUISHABILITY

In this section, we investigate the performance of the Neyman—Pearson and Bayesian games as functions
of A and a respectively. From the expressions of the equilibrium payoff exponents, it is clear that the
Neyman—Pearson and the Bayesian payoffs increase as A and a decrease, respectively. In particular, by

setting A = 0 and a = 0, we obtain the largest achievable payoffs of both games which correspond to

February 3, 2018 DRAFT



IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. X, NO. X, XXXXXXX XXXX 20

the best achievable performance for the defender. Therefore, we say that two sources are distinguishable
under the Neyman—Pearson (resp. Bayesian) setting, if there exists a value of A\ (resp. «) such that the
FP and FN exponents at the equilibrium of the game are simultaneously strictly positive. When such a
condition does not hold, we say that the sources are indistinguishable. Specifically, in this section, we
characterize, under both the Neyman—Pearson and the Bayesian settings, the indistinguishability region,
defined as the set of the alternative sources that cannot be distinguished from a given source Fy, given
the attack distortion levels Ag and A;. Although each game has a different asymptotic behavior, we will
see that the indistinguishability regions in the Neyman—Pearson and the Bayesian settings are the same.
The study of the distinguishability between the sources under adversarial conditions, performed in this
section, in a way extends the Chernoff-Stein lemma [25] to the adversarial setup (see [34]).

We start by proving the following result for the Neyman—Pearson game.

Theorem 8. Given two memoryless sources Py and Py and distortion levels Ay and A1, the maximum

achievable FN exponent for the Neyman—Pearson game is:

li A) =em(0) = i D, (Py, P 28
,\IL%EFN() erm(0) (Pyix: By d(X,Y) A0, (Pxy)x =Py} 8By, ), (28)

where epy() is as in Theorem 3.

The theorem is an immediate consequence of the continuity of ep()\) as A — 01, which follows
by the continuity of Da with respect to Py and the density of the set {Py : Da,(Py,Py) < A} in
{Py : Da,(Py,Py) =0} as A — 0 7.

We notice that, if Ay = A; = 0, there is only an admissible point in the set in (28), for which
Py = Py; then, e (0) = D(FPy||P1), which corresponds to the best achievable FN exponent known from
the classical literature for the non-adversarial case (Stein lemma [25], Theorem 11.8.3).

Regarding the Bayesian setting, we have the following theorem, the proof of which appears in Appendix

III-A.

Theorem 9. Given two memoryless sources Py and Py and distortion levels Ag and A1, the maximum

achievable exponent of the equilibrium Bayes payoff is

— lim lim lln (u(‘PT,( *AwA*Al)))

a—0n—oon

min <max {@Al(Py, P1), Da, (Py, PO)}> , (29)

"It holds true from Property 1.
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where the inner limit at the left hand side is as defined in Theorem 7.

Since ZNDAl (Py, P1), and similarly f)AO (Py, Py), are convex functions of Py, and reach their minimum
in Py, resp. Pp,® the minimum over Py of the maximum between these quantities (right-hand side
of (29)) is attained when D, (P;, Py) = Da, (P, Po), for some PMF P:. This resembles the best
achievable exponent in the Bayesian probability of error for the non-adversarial case, which is attained
when D(Py; || Py) = D(Py || Py) for some P55 (see [25], Theorem 11.9.1). In that case, from the expression
of the divergence function, such Py is found in a closed form and the resulting exponent is equivalent
to the Chernoff information (see Section 11.9 in [25]).

From Theorem 8 and 9, it follows that there is no positive A, res. a, for which the asymptotic exponent
of the equilibrium payoff is strictly positive, if there exists a PMF Py such that the following conditions

are both satisfied:
Da,(Py,Py) =0
220(F F) (30)
Da,(Py,P1) =0.

In this case, then, Py and P; are indistinguishable under both the Neyman—Pearson and the Bayesian

settings. We observe that the condition f)A(Py, Px) = 0 is equivalent to the following:’

min  Exyd(X,Y) <A, (31)

Qer G
where the expectation Exy is w.r.t Qxy. In computer vision applications, the left-hand side of (31) is
known as the Earth Mover Distance (EMD) between Px and Py, which is denoted by EMD;(Px, Py)
(or, by symmetry, EMDy( Py, Px)) [35]. It is also known as the p-bar distortion measure [36].

A brief comment concerning the analogy between the minimization in (31) and optimal transport theory
is worth. The minimization problem in (31) is known in the Operations Research literature as Hitchcock
Transportation Problem (TP) [37]. Referring to the original Monge formulation of this problem [38], Px
and Py can be interpreted as two different ways of piling up a certain amount of soil; then, Pxy (z,y)
denotes the quantity of soil shipped from location (source) = in Py to location (sink) y in Py and d(z,y)
is the cost for shipping a unitary amount of soil from z to y. In transport theory terminology, Pxy is

referred to as transportation map. According to this perspective, evaluating the EMD corresponds to

finding the minimal transportation cost of moving a pile of soil into the other. Further insights on this

8The fact that ’[)AO (f)Al) is 0 in a Ag-limited (A;-limited) neighborhood of Py (P1), and not just in Py (P;), does not
affect the argument.

°For ease of notation, given a joint PMF Qxy with marginal PMFs Px and Py, we use notation (Qxy)y = Py (res.

(@xvy)x = Px) as short for 3° Qxv(z,y) = Py (y), Vy € A (tes. 30, Qxv(z,y) = Px(z), Vz € A).
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parallel can be found in [34].

We summarize our findings in the following corollary, which characterizes the conditions for distin-

guishability under both the Neyman—Pearson and the Bayesian setting.

Corollary 1 (Corollary to Theorems 8 and 9). Given a memoryless source Py and distortion levels Ay
and A1, the set of the PMFs that cannot be distinguished from Py in both the Neyman—Pearson and

Bayesian settings is given by

= {P : min EMDy,(Py, P) < Al} . (32)
PyZEMDd(Py,Pg)SAO

Set I' is the indistinguishability region. By definition (see the beginning of this section), the PMFs
inside I" are those for which, as a consequence of the attack, the FP and FN probabilities cannot go to zero
simultaneously with strictly positive exponents. Clearly, if Ag = A; = 0, that is, in the non-adversarial
case, I' = { Py}, as any two distinct sources are always distinguishable.

When d is a metric, for a given P € I', the computation of the optimum Py~ can be traced back to the
computation of the EMD between Fy and P, as stated by the following corollary, whose proof appears

in Appendix III-B.

Corollary 2 (Corollary to Theorems 8 and 9). When d is a metric, given the source Py and distortion

levels Ag and A4, for any fixed P, the minimum in (32) is achieved when

Ao
y=aR+{1-a)P a EMD(Py, P) (33)

Then, the set of PMFs that cannot be distinguished from Py in the Neyman—Pearson and Bayesian setting
is given by
I'={P:EMDy(FPy, P) < Ay + A1}. (34)

According to Corollary 2, when d is a metric, the performance of the game depends only on the sum
of distortions, Ay + Ay, and it is immaterial how this amount is distributed between the two hypotheses.
In the general case (d not a metric), the condition on the EMD stated in (34) is sufficient in order for
Py and P be indistinguishable, that is I' O {P : EMD4( Py, P) < Ag+ A1} (see discussion in Appendix
III-B, at the end of the proof of Corollary 2). Furthermore, in the case of an L} distortion function

(p>1),ie., d(x,y) = |x; — yi|P, we have the following corollary.
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Corollary 3 (Corollary to Theorems 8 and 9). When d is the L} distortion function, for some p > 1, the

set I' can be bounded as follows
I C{P:EMD; (R, P) < (Ag'7 + A7)}, (35)

Corollary 3 can be proven by exploiting the Holder inequality [39] (see Appendix II-C).

VII. CONCLUSIONS

We considered the problem of binary hypothesis testing when an attacker is active under both hy-
potheses, and then an attack is carried out aiming at both false negative and false positive errors. By
modeling the defender-attacker interaction as a game, we defined and solved two different detection
games: the Neyman—Pearson and the Bayesian game. This paper extends the analysis in [14] [14], where
the attacker is active under the alternative hypothesis only. Another aspect of greater generality is that
here both players are allowed to use randomized strategies. By relying on the method of types, the main
result of this paper is the existence of an attack strategy which is both dominant and universal, that is,
optimal regardless of the statistics of the sources. The optimum attack strategy is also independent of the
underlying hypothesis, namely fully-universal, when the distortion introduced by the attacker in the two
cases is the same. From the analysis of the asymptotic behavior of the equilibrium payoff we are able to
establish conditions under which the sources can be reliably distinguished in the fully-active adversarial
setup. The theory developed permits to assess the security of the detection in adversarial setting and give
insights on how the detector should be designed in such a way to make the attack hard.

Among the possible directions for future work, we mention the extension to multiple hypothesis testing.
Another interesting direction is the extension to continuous alphabets, which calls for an extension of
the method of types to this case, or to more realistic models of finite alphabet sources, still amenable to
analysis, like Markov sources. As mentioned in the introduction, it would be also relevant to overcome
the limitation to first order statistics, by extending the analysis to higher order statistics and getting
equilibria in a similar fashion. Finally, we mention the case of unknown sources, where the sources are
estimated from training data, possibly corrupted by the attacker. In this scenario, the detection game has
been studied for a partially active case, with both uncorrupted and corrupted training data [16], [17]. The
extension of such analyses to the fully active scenario considered in this paper is a further interesting

direction for future research.
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APPENDIX I

NEYMAN-PEARSON DETECTION GAME

This appendix contains the proofs of the results in Section IV.

A. Proof of Lemma 1

Whenever existent, the dominant defence strategy can be obtained by solving:

min Py (P, A1), @D

®eSp
for any attack channel A;. Below, we first show that P (®*, A1) g P (P, Ay) for every & € Sp and for
every Ay, that is, ®* is asymptotically dominant. Then, by proving that maxaec,, Pr(®*, A) fulfills the
FP constraint, we show that ®* is also admissible. Therefore, we can conclude that *(-|y) asymptotically
solves (I.1). Exploiting the memorylessness of Py and the permutation invariance of ®(H;|y) and d(x, y),
for every y’ € A" we have,

e A > max mz?; Po(x)A(ylx)@(Hily)

> %: (; Po(z) A, (y!w)> ©(Hily)

S Y @2 e
Yy

L:d(X,Y)<nAo T (y|x)|

SERSISETERID ol (N S LCIN PYCTAN

v \wa@ginn, [T W)
(a) AL Al Py(x)
S n 4 1) AHAD Ty ny. to >q> :
>(n+1) IT(y>(x:d(mr%;wol’f(wly)\ Ty ) TP0lY)

(b CLAN(AL
O 4 1)~ AA=D @ (34, |of) o Py(z) - |T ()|

o D(Pr|Py)

> /
>d(H1ly') Tad@ et (4 1)AFTAD

—-n minw:d(m,y’)gnAo D(Pm ||P0)}

/ exp{
:(I)(,Hl‘y ) (n + 1)\A\2-(|A|—1) y

(1.2)
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where (a) is due to the permutation invariance of the distortion function d and (b) is due to the identity
T ()| - |T(ylz)| = [T )| - T (xly)| = [T(z,y)l.

It now follows that

O(Hi1ly) < exp {—n [)\ — $:d(£€rf1:l}§1§nAo D(PxHPO)} } . (1.3)

Since ®(H;|y) is a probability,

®(H1]y) < min {Lexp [—n (A T pgaiin D(Pw‘PO)ﬂ }

T:d(X,Y)<nl,

= O (Hily). 1.4)

Consequently, ®*(Ho|y) < ®(Hop|y) for every y, and so, P (P*, A1) < P (®, Ay) for every A;. For
convenience, let us denote

kn(y) = A — i D(Px|Ry),
(y) . (Px||Po)

so that ®*(H; |y) = min{1, e "* (¥} We now show that ®*(H|y) satisfies the FP constraint, up to a
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polynomial term in n, i.e., it satisfies the constraint asymptotically.

Jnax Po(®, 4) < (n+ )T Py (07, 47)

= (n+ DA ATDN" py(@) AR, (y|2) @ (Haly)

Ty
— DA R ey
(T,Y):d(T,Y)<nl, Y
(L Al— Py(x)
< (n 4 DMHIA-D Po(@)
() 2 Ty Y 04l)

($7y):d($7y)§nAo

(Al Py(z)
< (n+ 1)2HAF1AI-D) < T .o) o+ (%
> (7’L ) ; a::d(:;:?;g)xgnm | ($|y)’ |T(y|m)\ ( 1‘y)

— 1)2M-(A-1) —nk,.(Y) .
(n+1) DI pa e T(@) Pof@) ) +
Py:kn(y)zo

T (s e )

py:kn(y)<0

< (n + 1)2|A|-(\.A\71) e M 4

Py:k”(y)zo

- i D(Py| P
+ Y exp{ i D] o>}
Py:kn(y)<0

< (n -+ 1)(APH2LAD- (A= 1)+ Al = (L5)

B. Proof of Property 1

We next prove that for any two PMFs Py, and Py, and any A € (0, 1),
Da(APy, + (1 = A)Py,, P) < ADa(Py,, P) + (1 — \)Da(Py,, P). (L6)

Let us rewrite Da in (21) by expressing the minimization in terms of the joint PMF Pxy-:
~ A
Da(Py,P) = min D((Qxy)x|IP), 1.7)
( ) {Q@xv:Exyd(X,Y)<A,(Qxv)y=Py} (( x| )

where we used (Qxy)y = Py as short for ) Qxv(z,y) = Py(y), Yy, and we made explicit the

dependence of D(Px||P) on Qxy. Accordingly:

Da(APy, + (1 — \)Py,, P) min D((Q@xy)x|P). (18)

- {Qxv:Exyd(X,Y)<A, (Qxvy)y=APy, +(1-X)Py, }
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We find convenient to rewrite the right-hand side of (I.8) by minimizing over pairs of PMFs (Q'yy, Q%y)
and considering the convex combination of these PMFs with weights A and (1 — \), in place of Qxvy;

hence

Da(APy, + (1 =M\ Py,, P) = (@ in )EHD(A(Q’XY)X + (1= X)(Q%y)x|IP), (1.9)

where
H={(Q%y,Q%y) : MQxy)y + (1 =N (Q%y)y = APy, + (1 = \) Py,
AEyyd(X,Y) + (1 = N Exyd(X,Y) < A}. (1.10)
Let
H ={Q%y : EXxyd(X,Y) <A, (Qxy)y = Py, } x {Q%y : EXxyd(X,Y) <A, (Q%y)y = Py, };
(L11)

then, ' C H, where the set 7’ is separable in Q'yy and Q'yy . Accordingly, (1.9)-(1.10) can be upper
bounded by

i i D(MNQ" 1— M) (Q% P).
Q/XY5E;éyd(X7}I/?1§nAv(leY)Y:PY1 /)/(Y5E$éyd(Xy§I/I)u§nAv( /)/(Y)Y:PYz ( (QXY)X * ( )( XY)X” )
(112)
By the convexity of D((Q XY) X||P) with respect to Q xy'°, it follows that
D(MQxy)x + (1 = N(Q%y)x[IP) < AD((Qxy)x|IP) + (1 = ND((Q%y)x|IP). (1.13)

Note that the above relation is not strict since it might be that (Q'yy ) x = (Q%y)x = P. Then, an upper

bound for Da(APy, + (1 — \)Py,, P) is given by

D ! P i 1-\D " P
(Qxy)x|IP) + . ;gy)yzglyl;,lE;gyd(X,Y)gA( )D((Q%y)x|IP),
(L14)

min
Qv i, Qxy =Py By d(X,Y)<A
thus proving (1.6).

'9This is a consequence of the fact that the divergence function is convex in its arguments and the operation (-)x is linear

(see Theorem 2.7.2 in [25]).
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C. Proof of Theorem 3

We start by proving the upper bound for the FN probability:

PFN o~ AA Zpl AAI y‘w) *(H0|y)

cn(x) _ e_n[A—ﬁgo(P Po)l+
— Z Z Pl(fc)m <1 Y >

Y x:d(x,y)<nA,

Py (x) D =DR (Py,Po)ls
<2 L T (1-e v)

d(T,Y)<nA,

—n[Hg (X)+D(Pg]|P1)] (

T(Payy)|” :
2 T

Y P amy Eryd(X,Y)<A

_ 3 T (Pg) e~z (O+D(P]|Py)] (1 _ efn[%ﬁzo@yfo)h)
Py Pgiy:Exyd(X,Y)<A

Z Z e—n'D(IsmHPl) (1 _ e—n[k—ﬁzo(ﬁyfo)h)

Py Py y:Exyd(X,Y)<A

= > 3 ¢—nD(Pr|Py) (1 _ e—n(A—ﬁzo<Py,Po)>)

py :f)go (py JPo)<A Paj‘y :Ewy d(X,Y)<A;

3 3 o—"D(Pg|P)

py:ﬁzo (ﬁy,Pg)<>\ Px‘yEajyd(X,Y)SAl

— 6—n[>\—1320(]5y7]30)]+)

IN

<(n+1)2AA expd —n  min ) min D(Pg||Py)
Py:'DZO(Py,PQ)<>\ Pm‘yZEwyd(X7Y)§A1

}

<(n+ 1)2AHAD oxp min min D(Px|P1)| p. (I.15)
Py:'ﬁAD(Py,PO)SA Px|y:Exyd(X,)Y)<A;

<(n+1)HAA expl —p inf { min D(PXHPl)}
Py:Day(Py,Po)<A [ Pxy:Exyd(X,Y)<A,

Then:

1
limsup — In Py (9%, A7) < — min { min D(PXHPl)} . (I.16)

n—oo N "~ PyDay(Py,Po)<A [Pxjy:Bxyd(X,Y)<A

February 3, 2018 DRAFT



IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. X, NO. X, XXXXXXX XXXX 29

We now move on to the lower bound.

P (@7, AA,) Zpl JAR, (y|z) 2™ (H1ly)

P —-n _~ZA10+
>(n+ 1) AR N @%(1_6 P=D3,(Py ol )

Y Td(X,y)<nA,
—(n + 1) MHA=D 3 3 e~ (Pz|1Py) (1 _ e—n(A—ﬁzo<Py,Po>>>
ﬁy:ﬁzo(ﬁ’y,Pg)<>\ Pm‘y:Emyd(XQ/)SA]

> (n + 1) MHIAI=D =n D@ P) () _ o=nA=DE, (Py.P)y (1.17)

where, for a fixed n, Py is a PMF that satisfies 1520 (Py, Py) <A —(Inn)/n and ]33;|y is such that the
distortion constraint is satisfied. Since the set of rational PMFs is dense in the probability simplex, two
such sequences can be chosen in such a way that (Py, PSL‘Iy) — (P, P)*fIY)’“ where
Py P = argmin min min D(Px|| P ] ) (I.18)
"y X|Y) (Pyg,wa) Py :Dag (Py,Po)<X [PXY;EXYd(Xﬂy)SAl (Px|lB1)

Therefore, we can assert that:

1 : I
liminf © In P (@%, A% ) > lim ~In [e_”D(PazHPl) (1 L DAU(Py,Po»ﬂ

n—oo n n—oo n

= — lim D(Pg||P))

n—00

=—D(Px||P1)

=— min { min D(PXHPl)] . (1.19)
Py:ﬁAO(PyHPO)S)\ Px|y:Exyd(X,Y)<A,

By combining the upper and lower bounds, we conclude that lim sup and lim inf coincide. Therefore the

limit of the sequence 1/nIn Py exists and the theorem is proven.

D. Proof of Theorem 4

First, observe that, by exploiting the definition of Da, (22) can be rewritten as

€ = _ min ( min D(PXHP1)>
Py:Day(Py,Po)<A \Px|y:Exyd(X,Y)<A,
= min min < min D(PXHP1)> . (1.20)
P2D(P2||P0)SA Py‘z:Eyzd(Y,Z)SAo Px‘yZExyd(X,Y)SAl

""We are implicitly exploiting the fact that set {DR (Py, Po) < A} is dense in {Da, (Py, Py) < A}, for every A > 0, which

holds true from Property 1.
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To prove the theorem, we now show that (I1.20) can be simplified as follows:

€ = min < min D(PXHP1)> , (1.21)
lelD(PzHPO)S)\ P)ﬂzlExzd(X,Z)SAo-‘rAl

which is equivalent to (24) (see Section III). The equivalence of the expressions in (I.20) and (I.21)
follows from the equivalence of the two feasible sets for the PMF Px. We first show that any feasible
Px in (1.20) is also feasible in (I.21). Let then Px be a feasible PMF in (1.20). By exploiting the
properties of the triangular inequality property of the distance, we have that, regardless of the specific

choice of the distributions Py|z and Pxy in (1.20),
Exzd(X,Z) < Exyz[d(X,Y) +d(Y,Z)] = Exyd(X,Y) + Eyzd(Y, Z) < Ag + Ay, (1.22)

and then Py is a feasible PMF in (I.21). To prove the opposite inclusion, we observe that, for any P, and
Px |z such that D(Pz||Fy) < A and Exzd(X, Z) < Ao + Ay, it is possible to define a variable Y, and
then two conditional PMFs Py|z and Py|y, such that Exyd(X,Y) < A; and By zd(Y, Z) < Ag. To
do so, it is sufficient to let Py be the convex combination of Px and Py, that is Py = aPx + (1—«)Pyz

where o = Ag/(Ag+A1). With this choice for the marginal, we can define Px|y so that Pxy satisfies'?

Pxy(i,j) = (1 —a)Pxz(i,j) Vi,Vj# 1,

Pxy (i,i) = (1 — a)Pxz(i,i) + aPx (i) Vi (1.23)
similarly, Py, can be chosen such that Py 7 satisfies

Pyz(i,j) = aPxz(i,j) Vi,¥j #1,

Py z(i,i) = aPxz(i,i) + (1 — a)Pz(i) Vi. (1.24)
It is easy to see that, with the above choices, Exyd(X,Y) = (1 — a)Exzd(X,Z) and Eyzd(Y,Z) =

aExzd(X,Z). Then, Exyd(X,Y) < (1 — a)(Ap + A1) < Ay and Eyzd(Y,Z) < Ag. Consequently,
any Px belonging to the set in (I.21) also belongs to the one in (1.20).

APPENDIX II

BAYESIAN DETECTION GAME
This appendix contains the proofs for Section V.
2By adopting the transportation theory perspective introduced towards the end of Section VI, we can look at Px and Py as
two ways of piling up a certain amount of soil; then Pxy can be interpreted as a map which moves Px into Py (Pxvy (¢,7)

corresponds to the amount of soil moved from position ¢ to 7). The map in (I1.23) is the one which leaves in place a percentage

a of the mass and moves the remaining (1 — «) percentage to fill the pile (1 — a) Pz according to map (1 — ) Pxz.

February 3, 2018 DRAFT



IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. X, NO. X, XXXXXXX XXXX 31

A. Proof of Theorem 5

Given the probability distributions Qo(y) and Qi(y) induced by A} and A} respectively, the

optimum decision rule is deterministic and is given by the likelihood ratio test (LRT) [40]:
L, Qi(y)

n a,
n QoY) 7,
which proves the optimality of the decision rule in (25).

(L.1)

To prove the asymptotic optimality of the decision rule in (26), let us approximate QQo(y) and Q1(y)

using the method of types as follows:
Q) = > Rl@)4}, )
x
= S nlfR(OrDPglR) L iy (1)
T: d(mvy)SnAo

= max

iy (XY) (e—n[ﬁmm)w(ﬁmnw
T: d(T,Y)<nAg

_e—nﬁmy(Y\X))

_ max ey (+D(P o)

T: d(T,Y)<nAg

= exp {—n [ﬁy(Y)—i—

+ min D(Px || Po)
{Ppyy:Exyd(X,Y)<Ao}

}

= exp{nlily(v) + D4, (Py. )]} . (1.2)
where in (a) we exploited the additivity of the distortion function d. Similarly,

Qu(y) = exp { ~n[fy (V) + DY, (Py. P1)]} aL3)

Thus, we have the following asymptotic approximation to the LRT:

- R ~ « Hi
DR, (Py, Py) — DR, (Py, P1) 2 a, (11.4)

Ho

which proves the second part of the theorem.

B. Proof of Theorem 7

In order to make the expression of u( Py (®T, (AA,> AR,))) explicit, let us first evaluate the two error
probabilities at equilibrium. Below, we derive the lower and upper bound on the probability of y under

H1, when the attack channel is A*Al:

(n + 1)—\A||A—1|€fn[Hy(Y)+ﬁzl(Py,ﬂ)] < Qﬂ{(y) < (n + 1)\A\2€fn[f1y(Y)+ﬁzl(Isy,PJ]' (IL5)
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The same bounds hold for Qj(y), with ﬁAO replacing ﬁAO- For the FN probability, the upper bound is

Pu(®1,4%,) =) Qi(y) - ®' (Holy)
Yy

= > Qi(y)

Y:D3, (Py,Po)~D3, (Py.Pr)<a

<(n+1)HA° Z o~y +DL, (Py.Py)]
y:ﬁgo (py,Pg)—ﬁgl (pfy,Pl)<a

<(n + 1)APHHA max o~ "DR, (Py.P1)
Py:ﬁZO(Py,Po)—ﬁzl (lsy,P1)<a
=(n+ DA+ expd —n | min DR (Py,P1) | ¢p. (L6)
Py:DZO(Pyvpo)_DZI (Py7P1)<a
Then,
1 -
—limsup — In(P(®7, AR ) < min Da, (Py, P). (I1.7)
n—oo M Py:Day (Py,Po)~Da, (Py,P1)<a

For the lower bound,

pFN(q)T’ A*Al) >(n + 1)—\A|IA—1\ Z e—n[Herfvgl(ﬁy,pl)]
Y:DR, (Py,Po)—D3, (Py,P1)<a
Py:DR (Py,Po)—Dy, (Py.P1)<a
—(n+1)"MAexpd —n(  min DX, (Py,P1) | ;. (IL8)
PyDZO (Pyvpt))*DZl (Py,P1)<a

Then

o1 . T
—hmlnfﬁln(PpN(q)T,AAl)) Znh_{rgo Dy, (Py, P1)

n—oo

= min Da, (Py, P1), (IL9)
Py Dy (Py,Po)—Da, (Py,P1)<a

where Py is a properly chosen PMF, belonging to the set {@ZO (py, Py) — @Zl (Py, Py) < a} for every

n, and such that Py — P} where"®

Py =arg min Da, (Py, P1). (I1.10)
Py :Da,(Py,Po)—Da, (Py,P1)<a

3By Property 1, set {1520 (ﬁy,Po) — ﬁzl(ﬁy,Pl) < a} is dense in {Py : Da,(Py, Po) — Da, (Py, P1) < a} and then

such a sequence of PMFs can always be found.
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By combining (II.7) and (I1.9), we get

1 -
em = — lim —In(Py(®}, 45 )) = min Da.(Py,P). (LI
n—=00 7 Py :Day(Py,Po)—Da, (Py,P1)<a

Therefore, from (I1.6) and (II.8) we have

Po(®T,AX)=exps—n| _  min DX, (Py.P1) | ¢, (11.12)
Py:'DXO (Py ,PO)*Dzl (Py,P1)<a
and the limit of %ln Pry exists and is finite.

Similar bounds can be derived for the FP probability, resulting in

Pp(®*, A%,)=exp—n| _  min DX, (Py.Py) | ¢ (I1.13)
Py :'DZO (Pry,Po)—Dgl (Py,Pl)Za
and in particular
1 -
erp = — lim —In(BFp(®*, AQ,)) = min Da,(Py, By). (I1.14)
n—oo n

PyiﬁAo(P)mPo)—ﬁAl(PY7P1)ZG
From (I.14), we see that, as argued, the profile (&1, (AA,> AR,)) leads to a FP exponent always at least
as large as a.

We are now ready to evaluate the asymptotic behavior of the payoff of the Bayesian detection game:
U =Py (D, AN+ " Pop( T AR,)

= maX{PFN((I)T; A*Al)a eanPFP(CI)Ta A*Ao)}

—exp{ —nmin | min DR, (Py, P1), min (DR, (Py, Ry) — a)
Py'DZO(

Py,P))—D3, (Py,P1)<a Py:Dy, (Py.Po)-D3, (Py,P)>a

— exp {—n i <max {ﬁgl(ﬁy, Py), (DX, (Py, Po) — a)}) }
= exp {—nn}l)in (max {ﬁAl(Py, P1), (Da,(Py, Py) — a)}) } : (IL15)

where the asymptotic equality in the last line follows from the density of the set of empirical probability
distributions of n-length sequences in the probability simplex and from the continuity of the to-be-

minimized expression in round brackets as a function of Py.

APPENDIX III

SOURCE DISTINGUISHABILITY

This appendix contains the proofs for Section VI.
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A. Proof of Theorem 9

The theorem directly follows from Theorem 7. In fact, by letting
ea(Py) = max {ﬁAl(Py, P1), Da, (Py, Py) — a} : (IL1)
a > 0, the limit in (29) can be derived as follows:

li i Py) = min li P
o T ealTY) = pin i ol )

— min (max {f)Al(Py, P1), Da,(Py, PO)}) , (I11.2)

where the order of limit and minimum can be exchanged because of the uniform convergence of e, (Py)

to eg(Py) as a tends to 0.

B. Proof of Corollary 2

The corollary can be proven by exploiting the fact that, when d is a metric, the EMD is a metric and
then EMD ( Py, P) satisfies the triangular inequality. In this case, it is easy to argue that the Py achieving
the minimum in (32) is the one for which the triangular relation holds at the equality, which corresponds
to the convex combination of Py and P (i.e., the PMF lying on the straight line between Py and P)
with combination coefficient « such that EMD( Py, Py') (or equivalently, by symmetry, EMD4( Py, FPy))
is exactly equal to Ag.

Formally, let X ~ Py and Z ~ P. We want to find the PMF Py which solves
min EMDy(Py, P). (II1.3)
PyZEMDd(Py,P())SAO
For any Y ~ Py and any choice of Pxy and Py z (thatis, Py|x and Pzy), by exploiting the triangular

inequality property of the distance, we can write

Exzd(X,7Z) < Exyd(X,Y)+ Eyzd(Y, Z), (I1L.4)
where Py can be any joint distribution with marginals Py and P. Then,

EMD(Py, P) < Exyd(X,Y) + Eyzd(Y, Z). (TI1.5)

From the arbitrariness of the choice of Pxy and Py z, if we let Py, and Py, be the joint distributions

achieving the EMD between X and Y, and Y and Z, we get

EMD(Py, P) < EMD(P,, Py) + EMD(Py, P). (I1L.6)
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From the above relation, we can derive the following lower bound for the to-be-minimized quantity in

(II.3):
EMD(Py, P) >EMD(Py, P) — EMD(P,, Py) (I1.7)
>EMD(Py, P) — Ag. (I1L.8)

We now show that Py defined as in (33) achieves the above lower bound while satisfying the constraint
EMD(Py, Py) < Ay, and then gets the minimum value in (IIL.3).

Let P%, be the joint distribution achieving the EMD between X and Z. Then, E% ,d(X,Z) =
EMD(P,, P) (where the star on the apex indicates that the expectation is taken under P% ,). Given
the marginal Py = aFPp + (1 — o) P, we can define Pxy and Py, starting from P%,, as in the
proof of Theorem 4 ((1.23) and (I1.24)). With this choice, Fxyd(X,Y) = (1 — «)EMD(F,, P) and
Eyzd(Y,Z) = aEMD(PFy, P). Then, for the value of « in (33) we have that Fxyd(X,Y) = Ay and

Eyzd(Y, Z) = EMD(Py, P) — Ay. (I11.9)

By combining (II1.9) and (IIL.8), we argue that EMD(Py, P) = EMD(P,, P) — A¢'*. Therefore, Py in
(33) solves (1I1.3).
To prove the second part of the corollary, we just need to observe that a PMF P belongs to the

indistinguishability set in (32) if and only if
EMD(Py, P) = EMD(Py, P) — Ay < Aq, (II1.10)

that is EMD(P(), P) < Ag+ Aq

From the above proof, we notice that, for any P in the set in (34), i.e., such that EMD,(Py, P) <
Ay + Aq, the PMF Py = aFPy + (1 — )P with « as in (33) satisfies EMD(Py, Py) = Ag and
EMD(Py, P) = A, for any choice of d. Then, when d is not a metric, the region in (34) is contained

in the indistinguishability region.
“We also argue that the choice made for Py, minimizes the expected distortion between Y and Z, ie., it yields

Eyzd(Y,Z) = EMD(Py, P). Furthermore, being Exyd(X,Y) = Ay, it holds EMD(Py, P) = EMD(P,, P) — Exyd(X,Y)
and then, from the triangular inequality in (IIL.6), it follows that EMD(P,, Py) = Exyd(X,Y) = Ao.

February 3, 2018 DRAFT



IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. X, NO. X, XXXXXXX XXXX 36

C. Proof of Corollary 3

By inspecting the minimization in (32), we see that for any source P that cannot be distinguished
from Py, it is possible to find a source Py such that EMD,(Py, P) < Ay and EMD4(Py, Py) < Ay. In
order to prove the corollary, we need to show that such P lies inside the set defined in (35).

We give the following definition. Given two random variables X and Y, the Holder inequality applied

to the expectation function ( [39]) reads:
Exy|XY| < (Ex[IXI")"" (By[[Y])"", (IL11)

where > 1 and ¢ = r/(r — 1), namely, the Holder conjugate of 7.
We use the notation E% for the expectation of the pair (X,Y") when the probability map is the one

achieving the EMD(Px, Py ), namely P% ,. Then, we can write:
EMDx(Fy, P) = Ex4[||X — Z|7]

(@
< Exyz[([|1X = Y[ +]]Y = Z])"]

()
<Exyz[[IX Y|P+ |[Y = Z|P +p- || X - Y|P ]Y - Z||+

+p(p—1)/2- | X =Y|P2 Y = Z|P + oo 40 || X = Y| Y = Z|P71]
= Exyz[[|X = Y|Pl 4+ Exyz[[|[Y = Z|P] + p- Exvz[|| X = Y|P~ |Y = Z|[]+

+p(p=1)/2 Exyz[IX = YIP2 Y = Z|P] + oo + p- Exyz[[|X = Y[ Y = Z|P71]

(c) p—1 1
<Exyz[[|X =Y[F]+ Exyz[llY — Z|F] + p- (Exyz[[|X = YI|P]) » (Exvz[||Y — Z|[F])»

p—2

+p(p—1)/2- (Exyz[||X = YII")% (Bxyz[[Y = ZIF])7 + ..

p—1
P

b0 (Bxyz[|X = YIP))# (Exy2[[Y — Z|17))

p—1

= Exy[|X = Y|P] + Byz[|[Y = Z|I") +p- (Exv[|X = Y|I'))7 (Byz[|[Y — Z|F"))»

p—

+pp—1)/2- (Exy[lIX —Y|P)T (Byzll|Y — ZI]P])7 + ..
et (BxylllX = YD (ByZlllY — Z|P)
= ((Bxy 211X = YIPDY? + (BxyAAIlY - ZIP)Y7)”
< (A}J/” n A}/P)p , (I11.12)
where in (a) we considered the joint distribution Pxyz such that ), Pxyz = Py, > x Pxvz = Py,

(and, consequently, >, Pxyz = Px,) and in (b) we developed the p-power of the binomial (binomial
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theorem). Finally, in (c¢), we applied the Holder’s inequality to the various terms of Newton’s binomial:

specifically, for each term Exyz[||X — Y|P~ ||Y — Z||!], with t = 1, ..,p — 1, the Holder inequality is

applied with » = p/(p — t) (and ¢ = r/(r — 1)).
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