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Abstract

We study a binary hypothesis testing problem in which a defender must decide whether or not a test

sequence has been drawn from a given memoryless source P0 whereas, an attacker strives to impede the

correct detection. With respect to previous works, the adversarial setup addressed in this paper considers

an attacker who is active under both hypotheses, namely, a fully active attacker, as opposed to a partially

active attacker who is active under one hypothesis only. In the fully active setup, the attacker distorts

sequences drawn both from P0 and from an alternative memoryless source P1, up to a certain distortion

level, which is possibly different under the two hypotheses, in order to maximize the confusion in

distinguishing between the two sources, i.e., to induce both false positive and false negative errors at

the detector, also referred to as the defender. We model the defender-attacker interaction as a game and

study two versions of this game, the Neyman-Pearson game and the Bayesian game. Our main result

is in the characterization of an attack strategy that is asymptotically both dominant (i.e., optimal no

matter what the defender’s strategy is) and universal, i.e., independent of P0 and P1. From the analysis

of the equilibrium payoff, we also derive the best achievable performance of the defender, by relaxing

the requirement on the exponential decay rate of the false positive error probability in the Neyman–

Pearson setup and the tradeoff between the error exponents in the Bayesian setup. Such analysis permits

to characterize the conditions for the distinguishability of the two sources given the distortion levels.
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I. INTRODUCTION

There are many fields in signal processing and communications where the detection problem should

naturally be framed within an adversarial setting: multimedia forensics (MF) [1], spam filtering [2],

biometric-based verification [3], one-bit watermarking [4], and digital/analogue transmission under jam-

mer attacks [5], just to name a few (see [6] for other examples).

In particular, the need for adversarial modeling has become evident in security-related applications

and game theory is often harnessed as a useful tool in many research areas, such as steganalysis [7],

watermarking [4], intrusion detection systems [8] and adversarial machine learning [9], [10]. In recent

literature, game theory and information theory have also been combined to address the problem of

adversarial detection, especially in the field of digital watermarking, see, for instance, [4], [11], [12],

[13]. In all these works, the problem of designing watermarking codes that are robust to intentional

attacks, is studied as a game between the information hider and the attacker.

An attempt to develop a general theory for the binary hypothesis testing problem in the presence

of an adversary was made in [14]. Specifically, in [14] the general problem of binary decision under

adversarial conditions has been addressed and formulated as a game between two players, the defender

and the attacker, which have conflicting goals. Given two discrete memoryless sources, P0 and P1, the

goal of the defender is to decide whether a given test sequence has been generated by P0 (null hypothesis,

H0) or P1 (alternative hypothesis, H1). By adopting the Neyman-Pearson approach, the set of strategies

the defender can choose from is the set of decision regions for H0 ensuring that the false positive error

probability is lower than a given threshold. On the other hand, the ultimate goal of the attacker in [14]

is to cause a false negative decision, so the attacker acts under H1 only. In other words, the attacker

modifies a sequence generated by P1, in attempt to move it into the acceptance region of H0. The attacker

is subjected to a distortion constraint, which limits his freedom in doing so. Such a struggle between

the defender and the attacker is modeled in [14] as a competitive zero-sum game and the asymptotic

equilibrium, that is, the equilibrium when the length of the observed sequence tends to infinity, is derived

under the assumption that the defender bases his decision on the analysis of first order statistics only.

In this respect, the analysis conducted in [14] extends the one of [15] to the adversarial scenario. Some

variants of this attack-detection game have also been studied: in [16], the setting was extended to the case

where the sources are known to neither the defender nor the attacker, yet training data from both sources

is available to both parties: within this framework, the case where part of the training data available to

the defender is corrupted by the attacker has also been studied (see [17]).
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There are many situations in which it is reasonable to assume that the attacker is active under both

hypotheses with the goal of causing both false positive and false negative detection errors. For instance,

in applications of camera fingerprint detection, an adversary might be interested to remove the fingerprint

from a given image so that the generating camera would not be identified and at the same time, to implant

the fingerprint from another camera [18], [19]. Another example comes from watermarking, where an

attacker can be interested in either removing or injecting the watermark from an image or a video, to

redistribute the content with a fake copyright and no information (erased information) about the true

ownership [20]. Attacks under both hypotheses may also be present in applications of network intrusion

detection [21]. Network intrusion detection systems, in fact, can be subject to both evasion attacks [22],

in which an adversary tries to avoid detection by manipulating malicious traffic, and overstimulation

attacks [23], [24], in which the network is overstimulated by an adversary who sends synthetic traffic

(matching the legitimate traffic) in order to cause a denial of service.

With the above ideas in mind, in this paper, we consider the game–theoretic formulation of the defender-

attacker interaction when the attacker acts under both hypotheses. We refer to this scenario as a detection

game with a fully active attacker. By contrast, when the attacker acts under hypothesis H1 only (as

in [14] and [16]), he is referred to as a partially active attacker. A distinction is made between the

case where the underlying hypothesis is known to the attacker and the case where it is not. A little

thought, however, immediately indicates that the latter is a special case of the former, and therefore, we

focus on the former. We define and solve two versions of the detection game with fully active attackers,

corresponding to two different formulations of the problem: the Neyman–Pearson formulation and the

Bayesian formulation. In contrast to [14], here the players are allowed to adopt randomized strategies.

Specifically, the defender adopts randomized decision strategies, while in [14] the defender’s strategies

were confined to deterministic decision rules. As for the attack, it consists of the application of a channel,

whereas in [14] it was confined to the application of a deterministic function. Moreover, the partially

active case of [14] can easily be obtained as a special case of the fully active case considered here.

The problem of solving the game and then finding the optimum detector in the adversarial setting is not

trivial and may not be possible in general. Thus, we limit the complexity of the problem and make the

analysis tractable by confining the decision to depend on a given set of statistics of the observation. Such

an assumption, according to which the detector has access to a limited set of empirical statistics of the

sequence, is referred to as limited resources assumption (see [15] for an introduction on this terminology).

In particular, as done in [14], [16], we limit the detection resources to first order statistics, which are, as

is well known, sufficient statistics for memoryless systems [25, Section 2.9]. While the sources are indeed
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assumed memoryless, one might still be concerned regarding the sufficiency of first order statistics, in

our setting, since the attack channel is not assumed memoryless in the first place. Adopting, nonetheless,

the limited–resources assumption to first order statistics, is motivated mainly by its simplicity, but with

the understanding that the results can easily be extended to deal with arbitrarily higher order empirical

statistics as well. Moreover, an important bonus of this framework is that it allows us to obtain fairly

strong results concerning the game between the defender and the attacker, as will be described below.

One of the main results of this paper is the characterization of an attack strategy which is both dominant

(i.e., optimal no matter what the defence strategy is), and universal, i.e., independent of the (unknown)

underlying sources. Moreover, this optimal attack is the same for both the Neyman-Pearson and Bayesian

games. This result continues to hold also for the partially active case, thus creating a significant difference

relative to previous works, where the existence of a dominant strategy was established regarding the

defender only.

Some of our results (in particular, the derivation of the equilibrium point for both the Neyman–

Pearson and the Bayesian games), have already appeared mostly without proofs in [26]. Here we provide

the full proofs of the main theorems, evaluate the payoff at equilibrium for both the Neyman–Pearson

and Bayesian games and include the analysis of the ultimate performance of the games. Specifically, we

characterize the so called indistinguishability region (to be defined formally in Section VI), namely the set

of the sources for which it is not possible to attain strictly positive exponents for both false positive and

false negative probabilities under the Neyman-Pearson and the Bayesian settings. Furthermore, the setup

and analysis presented in [26] is extended by considering a more general case in which the maximum

allowed distortion levels the attacker may introduce under the two hypotheses are different.

The paper is organized as follows. In Section II, we establish the notation and introduce the main

concepts. In Section III, we formalize the problem and define the detection game with a fully active

adversary for both the Neyman-Pearson and the Bayesian games, and then prove the existence of a

dominant and universal attack strategy. The complete analysis of the Neyman-Pearson and Bayesian

detection games, namely, the study of the equilibrium point of the game and the computation of the

payoff at the equilibrium, are carried out in Sections IV and V, respectively. Finally, Section VI is

devoted to the analysis of the best achievable performance of the defender and the characterization of

the source distinguishability.
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II. NOTATION AND DEFINITIONS

Throughout the paper, random variables will be denoted by capital letters and specific realizations will

be denoted by the corresponding lower case letters. All random variables that denote signals in the system,

will be assumed to have the same finite alphabet, denoted by A. Given a random variable X and a positive

integer n, we denote by X = (X1, X2, ..., Xn), Xi ∈ A, i = 1, 2, . . . , n, a sequence of n independent

copies of X . According to the above–mentioned notation rules, a specific realization of X is denoted by

x = (x1, x2, . . . , xn). Sources will be denoted by the letter P . Whenever necessary, we will subscript P

with the name of the relevant random variables: given a random variable X , PX denotes its probability

mass function (PMF). Similarly, PXY denotes the joint PMF of a pair of random variables, (X,Y ). For

two positive sequences, {an} and {bn}, the notation an
·

= bn stands for exponential equivalence, i.e.,

limn→∞ 1/n ln (an/bn) = 0, and an
·
≤ bn designates that lim supn→∞ 1/n ln (an/bn) ≤ 0. For a given

real s, we denote [s]+
4
= max{s, 0}. We use notation U(·) for the Heaviside step function.

The type of a sequence x ∈ An is defined as the empirical probability distribution P̂x, that is, the

vector {P̂x(x), x ∈ A} of the relative frequencies of the various alphabet symbols in x. A type class

T (x) is defined as the set of all sequences having the same type as x. When we wish to emphasize the

dependence of T (x) on P̂x, we will use the notation T (P̂x). Similarly, given a pair of sequences (x,y),

both of length n, the joint type class T (x,y) is the set of sequence pairs {(x′,y′)} of length n having

the same empirical joint probability distribution (or joint type) as (x,y), P̂xy , and the conditional type

class T (y|x) is the set of sequences {y′} with P̂xy′ = P̂xy .

Regarding information measures, the entropy associated with P̂x, which is the empirical entropy of

x, is denoted by Ĥx(X). Similarly, Ĥxy(X,Y ) designates the empirical joint entropy of x and y,

and Ĥxy(X|Y ) is the conditional joint entropy. We denote by D(P‖Q) the Kullback–Leibler (K-L)

divergence between two sources, P and Q with the same alphabet (see [25]).

Finally, we use letter A to denote an attack channel; accordingly, A(y|x) is the conditional probability

of the channel output y given the channel input x. Given a permutation-invariant distortion function1

d : An × An → IR+ and a maximum distortion ∆, we define the class C∆ of admissible channels

{A(y|x), x,y ∈ An} as those that assign zero probability to every y with d(x,y) > n∆.

1A permutation–invariant distortion function, d(x,y), is a distortion function that is invariant if the same permutation is

applied to both x and y.
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A. Basics of Game Theory

For the sake of completeness, we introduce some basic definitions and concepts of game theory.

A two–player game is defined as a quadruple (S1,S2, u1, u2), where S1 = {s1,1 . . . s1,n1
} and S2 =

{s2,1 . . . s2,n2
} are the sets of strategies from which the first and the second player can choose, respectively,

and ul(s1,i, s2,j), l = 1, 2, is the payoff of the game for player l, when the first player chooses the strategy

s1,i and the second one chooses s2,j . Each player aims at maximizing its payoff function. A pair of

strategies (s1,i, s2,j) is called a profile. When u1(s1,i, s2,j) + u2(s1,i, s2,j) = 0, the game is said to be

a zero-sum game. For such games, the payoff of the game u(s1,i, s2,j) is usually defined by adopting

the perspective of one of the two players: that is, u(s1,i, s2,j) = u1(s1,i, s2,j) = −u2(s1,i, s2,j) if the

defender’s perspective is adopted or vice versa. The sets S1, S2 and the payoff functions are assumed

known to both players. In addition, we consider strategic games, i.e., games in which the players choose

their strategies ahead of time, without knowing the strategy chosen by the opponent.

A common goal in game theory is to determine the existence of equilibrium points, i.e. profiles that in

some sense represent a satisfactory choice for both players [27]. The most famous notion of equilibrium

is due to Nash [28]. A profile is said to be a Nash equilibrium if no player can improve its payoff by

changing its strategy unilaterally.

Despite its popularity, the practical meaning of Nash equilibrium is often unclear, since there is no

guarantee that the players will end up playing at the Nash equilibrium. A particular kind of games for

which stronger forms of equilibrium exist are the so called dominance solvable games [27]. The concept of

dominance-solvability is directly related to the notion of dominant and dominated strategies. In particular,

a strategy is said to be strictly dominant for one player if it is the best strategy for this player, i.e., the

strategy that maximizes the payoff, no matter what the strategy of the opponent may be. In a similar

way, we say that a strategy sl,i is strictly dominated by strategy sl,j , if the payoff achieved by player l

choosing sl,i is always lower than that obtained by playing sl,j , regardless of the strategy of the other

player. Recursive elimination of dominated strategies is a common technique for solving games. In the

first step, all the dominated strategies are removed from the set of available strategies, since no rational

player2 would ever use them. In this way, a new, smaller game is obtained. At this point, some strategies

that were not dominated before, may become dominated in the new, smaller version of the game, and

hence are eliminated as well. The process goes on until no dominated strategy exists for either player. A

rationalizable equilibrium is any profile which survives the iterated elimination of dominated strategies

2In game theory, a rational player is supposed to act in a way that maximizes its payoff.
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[29], [30]. If at the end of the process only one profile is left, the remaining profile is said to be the

only rationalizable equilibrium of the game, which is also the only Nash equilibrium point. Dominance

solvable games are easy to analyze since, under the assumption of rational players, we can anticipate that

the players will choose the strategies corresponding to the unique rationalizable equilibrium. Another,

related, interesting notion of equilibrium is that of dominant equilibrium. A dominant equilibrium is a

profile which corresponds to dominant strategies for both players and is the strongest kind of equilibrium

that a strategic game may have.

III. DETECTION GAME WITH FULLY ACTIVE ATTACKER

A. Problem formulation

Given two discrete memoryless sources, P0 and P1, defined over a common finite alphabet A, we

denote by x = (x1, . . . , xn) ∈ An a sequence emitted by one of these sources. The sequence x is

available to the attacker. Let y = (y1, y2, ..., yn) ∈ An denote the sequence observed by the defender:

when an attack occurs under both H0 and H1, the observed sequence y is obtained as the output of an

attack channel fed by x.

In principle, we must distinguish between two cases: in the first, the attacker is aware of the underlying

hypothesis (hypothesis-aware attacker), whereas in the second case it is not (hypothesis-unaware attacker).

In the hypothesis-aware case, the attack strategy is defined by two different conditional probability

distributions, i.e., two different attack channels: A0(y|x), applied when H0 holds, and A1(y|x), applied

under H1. Let us denote by Qi(·) the PMF of y under Hi,i = 0, 1. The attack induces the following

PMFs on y: Q0(y) =
∑

x P0(x)A0(y|x) and Q1(y) =
∑

x P1(x)A1(y|x).

Clearly, in the hypothesis-unaware case, the attacker will apply the same channel under H0 and H1,

that is, A0 = A1, and we will denote the common attack channel simply by A. Throughout the paper,

we focus on the hypothesis-aware case as in view of this formalism, the hypothesis-unaware case is just

a special case.

Regarding the defender, we assume a randomized decision strategy, defined by Φ(Hi|y), which des-

ignates the probability of deciding in favor of Hi, i = 0, 1, given y. Accordingly, the probability of a

false positive (FP) decision error is given by

PFP(Φ, A0) =
∑

y
Q0(y)Φ(H1|y), (1)
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x
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H0/P0 A0

A1

y HT
[
Φ(H0|y),Φ(H1|y)

]

Fig. 1. Schematic representation of the adversarial setup considered in this paper. In the case of partially active attacker,

channel A0 corresponds to the identity channel.

and similarly, the false negative (FN) probability assumes the form:

PFN(Φ, A1) =
∑

y
Q1(y)Φ(H0|y). (2)

Figure 1 provides a block diagram of the system with a fully active attacker. Obviously, the partially

active case, where no attack occurs under H0, can be seen as a degenerate case of the fully active one,

where A0 is the identity channel I . As in [14], due to the limited resources assumption, the defender

makes a decision based on first order empirical statistics of y, which implies that Φ(·|y) depends on y

only via its type class T (y).

Concerning the attack, in order to limit the amount of distortion, we assume a distortion constraint.

In the hypothesis–aware case, we allow the attacker different distortion levels, ∆0 and ∆1, under H0

and H1, respectively. Then, A0 ∈ C∆0
and A1 ∈ C∆1

, where, for simplicity, we assume that a common

(permutation-invariant) distortion function d(·, ·) is adopted in the two cases.

B. Definition of the Neyman–Pearson and Bayesian Games

One of the difficulties associated with the fully active setting is that, in the presence of a fully active

attacker, both the FP and FN probabilities depend on the attack channels. We therefore consider two

different approaches which lead to different formulations of the detection game: in the first, the detection

game is based on the Neyman-Pearson criterion, and in the second one, the Bayesian approach is adopted.

For the Neyman-Pearson setting, we define the game by assuming that the defender adopts a conser-

vative approach and imposes an FP constraint pertaining to the worst–case attack under H0.

Definition 1. The Neyman-Pearson detection game is a zero-sum, strategic game defined as follows.

• The set SD of strategies allowed to the defender is the class of randomized decision rules {Φ} that

satisfy
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(i) Φ(H0|y) depends on y only via its type.

(ii) maxA0∈C∆0
PFP(Φ, A0) ≤ e−nλ for a prescribed constant λ > 0, independent of n.

• The set SA of strategies allowed to the attacker is the class of pairs of attack channels (A0, A1)

such that A0 ∈ C∆0
, A1 ∈ C∆1

; that is, SA = C∆0
× C∆1

.

• The payoff of the game is u(Φ, A1) = PFN(Φ, A1); the attacker is in the quest of maximizing u(Φ, A1)

whereas the defender wishes to minimize it.

In the above definition, we require that the FP probability decays exponentially fast with n, with an

exponential rate at least as large as λ. In the case of partially–active attack (see the formulation in [26]),

the FP probability does not depend on the attack but on the defender only; accordingly, the constraint

imposed by the defender in the above formulation becomes PFP(Φ) ≤ e−nλ. Regarding the attacker, we

have SA ≡ C0 × C∆1
, where C0 is a singleton that contains the identity channel only.

Another version of the detection game is defined by assuming that the defender follows a less

conservative approach, that is, the Bayesian approach, and tries to minimize a particular Bayes risk.

Definition 2. The Bayesian detection game is a zero-sum, strategic game defined as follow.

• The set SD of strategies allowed to the defender is the class of the randomized decision rules {Φ}
where Φ(H0|y) depends on y only via its type.

• The set SA of strategies allowed to the attacker is SA = C∆0
× C∆1

.

• The payoff of the game is

u(Φ, (A0, A1)) = PFN(Φ, A1) + eanPFP(Φ, A0), (3)

for some constant a, independent of n.

We observe that, in the definition of the payoff, the parameter a controls the tradeoff between the

two terms in the exponential scale; whenever possible, the optimum defence strategy is expected to yield

error exponents that differ exactly by a, so as to balance the contributions of the two terms of (3).

Notice also that, by defining the payoff as in (3), we are implicitly considering for the defender only the

strategies Φ(·|y) such that PFP(Φ, A0)
·
≤ e−an. In fact, any strategy that does not satisfy this inequality

yields a payoff u > 1, that cannot be optimal, as it can be improved by always deciding in favor of H0

regardless of y (u = 1).

As in [14], we focus on the asymptotic behavior of the game as n tends to infinity. In particular, we
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are interested in the FP and FN exponents defined as:

εFP = − lim sup
n→∞

lnPFP(Φ, A0)

n
; εFN = − lim sup

n→∞

lnPFN(Φ, A1)

n
. (4)

We say that a strategy is asymptotically optimum (or dominant) if it is optimum (dominant) with respect

to the asymptotic exponential decay rate (or the exponent, for short) of the payoff.

C. Asymptotically Dominant and Universal Attack

In this subsection, we characterize an attack channel that, for both games, is asymptotically dominant

and universal, in the sense of being independent of the unknown underlying sources. This result paves

the way to the solution of the two games.

Let u denote a generic payoff function of the form

u = γPFN(Φ, A1) + βPFP(Φ, A0), (5)

where β and γ are given positive constants, possibly dependent on n.

We notice that the payoff of the Neyman-Pearson and Bayesian games defined in the previous section

can be obtained as particular cases: specifically, γ = 1 and β = 0 for the Neyman-Pearson game and

γ = 1 and β = ean for the Bayesian one.

Theorem 1. Let cn(x) denote the reciprocal of the total number of conditional type classes {T (y|x)}
that satisfy the constraint d(x,y) ≤ n∆ for a given ∆ > 0, namely, admissible conditional type classes3.

Define:

A∗∆(y|x) =





cn(x)
|T (y|x)| d(x,y) ≤ n∆

0 elsewhere
. (6)

Among all pairs of channels (A0, A1) ∈ SA, the pair (A∗∆0
, A∗∆1

) minimizes the asymptotic exponent of

u for every P0, P1, every γ, β ≥ 0 and every permutation–invariant Φ(H0|·).

Proof: We first focus on the attack under H1 and therefore on the FN probability.

Consider an arbitrary channel A1 ∈ C∆1
. Let Π : An → An denote a permutation operator that

permutes any member of An according to a given permutation matrix and let

AΠ(y|x)
4
= A1(Πy|Πx). (7)

3From the method of the types it is known that 1 ≥ cn(x) ≥ (n+ 1)−|A|·(|A|−1) for any x [25].
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Since the distortion function is assumed permutation–invariant, the channel AΠ(y|x) introduces the same

distortion as A1 and hence satisfies the distortion constraint. Due to the memorylessness of P1 and the

assumption that Φ(H0|y) belongs to SD, we have:

PFN(Φ, AΠ) =
∑

x,y
P1(x)AΠ(y|x)Φ(H0|y)

=
∑

x,y
P1(x)A1(Πy|Πx)Φ(H0|y)

=
∑

x,y
P1(Πx)A1(Πy|Πx)Φ(H0|Πy)

=
∑

x,y
P1(x)A1(y|x)Φ(H0|y)

= PFN(Φ, A1), (8)

and so, PFN(Φ, A1) = PFN(Φ, Ā) where we have defined

Ā(y|x) =
1

n!

∑

Π

AΠ(y|x) =
1

n!

∑

Π

A1(Πy|Πx), (9)

which also introduces the same distortion as A1. Now, notice that this channel assigns the same conditional

probability to all sequences in the same conditional type class T (y|x). To see why this is true, we

observe that any sequence y′ ∈ T (y|x) can be seen as being obtained from y through the application

of a permutation Π′ which leaves x unaltered. Then, we have:

Ā(y′|x) = Ā(Π′y|Π′x) =
1

n!

∑

Π

A1(Π(Π′y)|Π(Π′x))

=
1

n!

∑

Π

A1(Πy|Πx) = Ā(y|x). (10)

Therefore, since Ā(T (y|x)|x) ≤ 1, we argue that

Ā(y|x)
·
≤





1
|T (y|x)| d(x,y) ≤ n∆

0 elsewhere

=
A∗∆1

(y|x)

cn(x)

≤(n+ 1)|A|·(|A|−1)A∗∆1
(y|x), (11)

which implies that, for every permutation–invariant defence strategy Φ,

PFN(Φ, A1) ≤ (n+ 1)|A|·(|A|−1)PFN(A∗∆1
,Φ) (12)

or equivalently

PFN(Φ, A∗∆1
) ≥ (n+ 1)−|A|·(|A|−1)PFN(A1,Φ). (13)
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We conclude that A∗∆1
minimizes the error exponent of PFN(Φ, A1) across all channels in C∆1

and for

every Φ ∈ SD, regardless of P1.

A similar argument applies to the FP probability to derive the optimum channel under H0; that is,

from the memorylessness of P0 and the permutation–invariance of Φ(H1|·), we have:

PFP(Φ, A
∗
∆0

) ≥ (n+ 1)−|A|·(|A|−1)PFP(A0,Φ), (14)

for every A0 ∈ C∆0
. Accordingly, A∗∆0

minimizes the error exponent of PFP(Φ, A0).

We then have:

γPFN(Φ, A1) + βPFP(Φ, A0)

≤ (n+ 1)|A|·(|A|−1)(γPFN(Φ, A∗∆1
) + βPFP(Φ, A

∗
∆0

))

.
= γPFN(Φ, A∗∆1

) + βPFP(Φ, A
∗
∆0

), (15)

for every A0 ∈ C∆0
and A1 ∈ C∆1

. Notice that, since the asymptotic equality is defined in the logarithmic

scale, eq. (15) holds no matter what the values of β and γ are, including values that depend on n. Hence,

the pair of channels (A∗∆0
, A∗∆1

) minimizes the asymptotic exponent of u for any permutation–invariant

decision rule Φ(H0|·) and for any γ, β ≥ 0.

According to Theorem 1, for every zero-sum game with payoff function of the form in (5), if Φ

is permutation-invariant, the pair of attack channels which is the most favorable to the attacker is

(A∗∆0
, A∗∆1

), which does not depend on Φ. Then, the optimum attack strategy (A∗∆0
, A∗∆1

) is dominant.

Specifically, given x, in order to generate y which causes a detection error with the prescribed maximum

allowed distortion, the attacker cannot do any better than randomly selecting an admissible conditional

type class according to the uniform distribution and then choose at random y within this conditional

type class. Figure 2 illustrates the intuition behind the definition of the attack channel in (6): since the

number of conditional type classes is only polynomial in n, the random choice of the conditional type

class does not affect the exponent of the error probabilities; besides, since the decision is the same for

all sequences within the same conditional type class, the choice of y within that conditional type class

is immaterial.

As an additional result, Theorem 1 states that, whenever an adversary aims at maximizing a payoff

function of the form (5), and as long as the defence strategy is confined to the analysis of the first order

statistics, the (asymptotically) optimum attack strategy is universal w.r.t. the sources P0 and P1, i.e., it

depends neither on P0 nor on P1.
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x

T (y1|x)

y2

T (y2|x)

y1

(Φ(H0|y)= cost)

PX

set of admissible conditional
type classes

(y : d(x,y) ≤ n∆)

Fig. 2. Graphical interpretation of the behavior of the attack channel A∗∆.

Finally, if ∆0 = ∆1 = ∆, the optimum attack consists of applying the same channel A∗∆ regardless of

the underlying hypothesis and then the optimum attack strategy is fully-universal: the attacker needs to

know neither the sources (P0 and P1), nor the underlying hypothesis. In this case, it becomes immaterial

whether the attacker is aware or unaware of the true hypothesis. As a consequence of this property, in

the hypothesis-unaware case, when the attacker applies the same channel under both hypotheses, subject

to a fixed maximum distortion ∆, the optimum channel remains A∗∆.

As a final remark, according to Theorem 1, for the partially active case, there exists an (asymptotically)

dominant and universal attack channel. This result marks a considerable difference relative to the results

of [14], where the optimum deterministic attack function is found using the rationalizability argument,

that is, by exploiting the existence of a dominant defence strategy, and hence it is neither dominant nor

universal.

IV. THE NEYMAN-PEARSON DETECTION GAME

In this section, we study the detection game with a fully active attacker in the Neyman-Pearson setup

as defined in Definition 1. From the analysis of Section III-C, we already know that there exists a

dominant attack strategy. Regarding the defender, we will determine the asymptotically optimum strategy

regardless of the dominant pair of attack channels; in particular, as will been seen in Lemma 1 below, an

asymptotically dominant defense strategy can be derived from a detailed analysis of the FP constraint.

As a consequence, the Neyman-Pearson detection game has a dominant equilibrium.

A. Optimal Detection and Game Equilibrium

The following lemma characterizes the optimal detection strategy in the Neyman-Pearson setting.
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Lemma 1. For the Neyman-Pearson game of Definition 1, the defence strategy

Φ∗(H1|y)
4
= exp

{
−n
[
λ− min

x:d(x,y)≤n∆0

D(P̂x‖P0)

]

+

}
, (16)

is asymptotically dominant for the defender.

The proof appears in Appendix I-A.

We point out that when the attacker is partially–active, it is known from [26] that the optimum defence

strategy is

Φ∗(H1|y)
4
= exp

{
−n
[
λ−D(P̂y‖P0)

]
+

}
. (17)

From (17), it is easy to argue that there exists a deterministic strategy, corresponding to the Hoeffding

test [31], which is asymptotically equivalent to Φ∗(H1|y). This result is in line with the one in [14]

(Lemma 1), where the class of defence strategies is confined to deterministic decision rules.

Intuitively, the extension from (17) to (16) is explained as follows. In the case of fully active attacker, the

defender is subject to a constraint on the maximum FP probability over SA, that is, the set of the admissible

channels A ∈ C∆0
(see Definition 1). From the analysis of Section III-C, channel A∗∆0

minimizes the

FP exponent over this set. In order to satisfy the constraint for a given sequence y, the defender must

handle the worst–case value (i.e., the minimum) of D(P̂x‖P0) over all the type classes T (x|y) which

satisfy the distortion constraint, or equivalently, all the sequences x such that d(x,y) ≤ n∆0.

According to Lemma 1, the best defence strategy is asymptotically dominant. Also, since Φ∗ depends

on P0 only, and not on P1, it is referred to as semi–universal.

Concerning the attacker, since the payoff is a special case of (5) with γ = 1 and β = 0, the optimum

pair of attack channels is given by Theorem 1 and corresponds to (A∗∆0
, A∗∆1

).

The following comment is in order. Since the payoff of the game is defined in terms of the FN

probability only, it is independent of A0 ∈ C∆0
. Furthermore, since the defender adopts a conservative

approach to guarantee the FP constraint for every A0, the constraint is satisfied for every A0 and therefore

all channel pairs of the form (A0, A
∗
∆1

), A0 ∈ SA, are equivalent in terms of the payoff. Accordingly, in the

hypothesis–aware case, the attacker can employ any admissible channel underH0. In the Neyman–Pearson

setting, the sole fact that the attacker is active under H0 forces the defender to take countermeasures that

make the choice of A0 immaterial.

Due to the existence of dominant strategies for both players, we can immediately state the following

theorem.
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Theorem 2. Consider the Neyman-Pearson detection game of Definition 1. Let Φ∗ and (A∗∆0
, A∗∆1

)

be the strategies defined in Lemma 1 and Theorem 1, respectively. The profile (Φ∗, (A∗∆0
, A∗∆1

)) is an

asymptotically dominant equilibrium of the game.

B. Payoff at the Equilibrium

In this section, we derive the payoff of the Neyman-Pearson game at the equilibrium of Theorem 2.

To do this, we will assume an additive distortion function, i.e., d(x,y) =
∑n

i=1 d(xi, yi). In this case,

d(x,y) can be expressed as
∑

ij nxy(i, j)d(i, j), where nxy(i, j) = nP̂xy(i, j) denotes the number of

occurrences of the pair (i, j) ∈ A2 in (x,y). Therefore, the distortion constraint regarding A0 can be

rewritten as
∑

(i,j)∈A2 P̂xy(i, j)d(i, j) ≤ ∆0. A similar formulation holds for A1.

Let us define

D̃n∆(P̂y, P )
4
= min
{P̂x|y :Exyd(X,Y )≤∆}

D(P̂x‖P ), (18)

where Exy denotes the empirical expectation, defined as

Exyd(X,Y ) =
∑

(i,j)∈A2

P̂xy(i, j)d(i, j) (19)

and the minimization is carried out for a given P̂y . Accordingly, the strategy in (16) can be rewritten as

Φ∗(H1|y)
4
= exp

{
−n
[
λ− D̃n∆0

(P̂y‖P0)
]

+

}
. (20)

When n→∞, D̃n∆ becomes4

D̃∆(PY , P )
4
= min
{PX|Y :EXY d(X,Y )≤∆}

D(PX‖P ), (21)

where EXY denotes expectation w.r.t. PXY .

Definition (21) can be stated for any PMF PY in the probability simplex in R|A|. Note that the

minimization problem in (21) has a unique solution as it is a convex program.

The function D̃∆ will have an important role in the remaining part of the paper, especially in the

characterization of the asymptotic behavior of the games. To draw a parallelism, D̃∆ plays a role similar

to that of the Kullback–Leibler divergence D in classical detection theory for the non-adversarial case.

The basic properties of the functional D̃∆(PY , P ) are the following: (i) it is continuous in PY ; (ii)

it has convex level sets, i.e., the set {PY : D̃∆(PY , P ) ≤ t} is convex for every t ≥ 0. Point (ii) is a

4Due to the the density of rational numbers on the real line, the admissibility set in (18) is dense in that of (21); since the

the divergence functional is continuous, the sequence {D̃n
∆(P̂y , P )}n≥1 tends to D̃∆(PY , P ) as n→∞.
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consequence of the following property, which will turn out to be useful for proving some of the results

in the sequel (in particular, Theorem 3, 7 and also 8).

Property 1. The function D̃∆(PY , P ) is convex in PY for every fixed P .

The proof follows from the convexity of the divergence functional (see Appendix I-B).

Using the above definitions, the equilibrium payoff is given by the following theorem:

Theorem 3. Let the Neyman-Pearson detection game be as in Definition 1. Let (Φ∗, (A∗∆0
, A∗∆1

)) be the

equilibrium profile of Theorem 2. Then,5

εFN(λ) =− lim
n→∞

1

n
lnPFN(Φ∗, A∗∆1

)

= min
PY :D̃∆0

(PY ,P0)≤λ
D̃∆1

(PY , P1). (22)

The proof, which appears in Appendix I-C, is based on Sanov’s theorem [32], [33], by exploiting the

compactness of the set {PY : D̃∆0
(PY , P0) ≤ λ}.

From Theorem 3 it follows that εFN(λ) = 0 whenever there exists a PMF PY inside the set {PY :

D̃∆0
(PY , P0) ≤ λ} with ∆1-limited expected distortion from P1. When this condition does not hold,

PFN(Φ∗, A∗∆1
)→ 0 exponentially rapidly.

For a partially–active attacker, the error exponent in (22) becomes

εFN(λ) = min
PY :D(PY ,P0)≤λ

D̃∆1
(PY , P1). (23)

It can be shown that the error exponent in (23) is the same as the error exponent of Theorem 2 in [14] (and

Theorem 2 in [34]), where deterministic strategies are considered for both the defender and the attacker.

Such equivalence can be explained as follows. As already pointed, the optimum defence strategy in (17)

and the deterministic rule found in [14] are asymptotically equivalent (see the discussion immediately

after Lemma 1). Concerning the attacker, even in the more general setup (with randomized strategies)

considered here, an asymptotically optimum attack could be derived as in [14], that is, by considering the

best response to the dominant defence strategy in [14]. Such attack consists of minimizing the divergence

w.r.t. P0, namely D(P̂y||P0), over all the admissible sequences y, and then is deterministic. Therefore,

concerning the partially active case, the asymptotic behavior of the game is equivalent to the one in [14].

The main difference between the setup in [14] and the more general one addressed in this paper relies

5We make explicit the dependence on the parameter λ in the notation of the error exponent, since this will turn to be useful

in the sequel.
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on the kind of game equilibrium, which is stronger here (namely, a dominant equilibrium) due to the

existence of dominant strategies for both the defender and the attacker, rather than for the defender only.

When the distortion function d is a metric, we can state the following result, whose proof appears in

Appendix I-D.

Theorem 4. When the distortion function d is a metric, eq. (22) can be rephrased as

εFN(λ) = min
PY :D(PY ‖P0)≤λ

D̃∆0+∆1
(PY , P1). (24)

Comparing eq. (24) with (23) is insightful for understanding the difference between the fully active and

partially active cases. Specifically, the FN error exponents of both cases are the same when the distortion

under H1 in the partially-active case is ∆0 + ∆1 (instead of ∆1).

When d is not a metric, (24) is only an upper bound on εFN(λ), as can be seen from the proof of

Theorem 4. Accordingly, in the general case (d is not a metric), applying distortion levels ∆0 and ∆1

to sequences from, respectively, H0 and H1 (in the fully active setup) is more favorable to the attacker

with respect to applying a distortion ∆0 + ∆1 to sequences from H0 only (in the partially active setup).

V. THE BAYESIAN DETECTION GAME

In this section, we study the Bayesian game (Definition 2). In contrast to the Neyman–Pearson game,

in the Bayesian game, the optimal defence strategy is found by assuming that the strategy played by the

attacker, namely the optimum pair of channels (A∗0, A
∗
1) of Theorem 1, is known to the defender, that is, by

exploiting the rationalizability argument (see Section II-A). Accordingly, the resulting optimum strategy

is not dominant, and so, the associated equilibrium is weaker compared to that of the Neyman–Pearson

game.

A. Optimum Defence and Game Equilibrium

Since the payoff in (3) is a special case of (5) with γ = 1 and β = ean, for any defence strategy

Φ ∈ SD, the asymptotically optimum attack channels under H0 and H1 are given by Theorem 1, and

correspond to the pair (A∗∆0
, A∗∆1

). Then, we can determine the best defence strategy by assuming that the

attacker will play (A∗∆0
, A∗∆1

) and evaluating the best response of the defender to this pair of channels.

Our solution for the Bayesian detection game is given in the following theorem, whose proof appears

in Appendix II-A.
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Theorem 5. Consider the Bayesian detection game of Definition 2. Let Q∗0(y) and Q∗1(y) be the

probability distributions induced by channels A∗∆0
and A∗∆1

, respectively.

Then,6

Φ#(H1|y) = U

(
1

n
log

Q∗1(y)

Q∗0(y)
− a
)

(25)

is the optimum defence strategy.

If, in addition, the distortion measure is additive, the defence strategy

Φ†(H1|y) = U
(
D̃n∆0

(P̂y, P0)− D̃n∆1
(P̂y, P1)− a

)
(26)

is asymptotically optimum.

It is useful to provide the asymptotically optimum strategy, Φ†, in addition to the optimal one, Φ#, for

the following reason: while Φ# requires the non-trivial computation of the two probabilities Q1(y) and

Q0(y), the strategy Φ†, which leads to the same payoff asymptotically, is easier to implement because

of its single-letter form.

We now state the following theorem.

Theorem 6. Consider the Bayesian game of Definition 2. Let (A∗∆0
, A∗∆1

) be the attack strategy of

Theorem 1 and let Φ# and Φ† be the defence strategies defined, respectively, in (25) and (26). The

profiles (Φ#, (A∗∆0
, A∗∆1

)) and (Φ†, (A∗∆0
, A∗∆1

)) are asymptotic rationalizable equilibria of the game.

The analysis in this section can be easily generalized to any payoff function defined as in (5), i.e., for

any γ, β ≥ 0.

Finally, we observe that, the fact that the equilibrium found in the Bayesian case (namely, a ratio-

nalizable equilibrium) is weaker with respect to the equilibrium derived for the Neyman–Pearson game

(namely, a dominant equilibrium) is a consequence of the fact that the Bayesian game is defined in a less

restrictive manner than the Neyman–Pearson game. This is due to the conservative approach adopted in

the latter: while in the Bayesian game the defender cares about both FP and FN probabilities and their

tradeoff, in the Neymam–Pearson game the defender does not care about the value of the FP probability

provided that its exponent is larger than λ, which is automatically guaranteed by restricting the set of

strategies. This restriction simplifies the game so that a dominant strategy can be found for the restricted

game.

6We remind that U(·) denotes the Heaviside step function.
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B. Equilibrium Payoff

We now derive the equilibrium payoff of the Bayesian game. As in the Neyman–Pearson game, we

assume an additive distortion measure. For simplicity, we focus on the asymptotically optimum defence

strategy Φ†. We have the following theorem.

Theorem 7. Let the Bayesian detection game be as in Definition 2. Let (Φ†, (A∗∆0
, A∗∆1

)) be the

equilibrium profile of Theorem 6. The asymptotic exponential rate of the equilibrium Bayes payoff u

is given by

− lim
n→∞

1

n
ln
(
u(Φ†, (A∗∆0

, A∗∆1
))
)

=

min
PY

(
max

{
D̃∆1

(PY , P1), (D̃∆0
(PY , P0)− a)

})
. (27)

The proof appears in Appendix II-B.

According to Theorem 7, the asymptotic exponent of u is zero if there exists a PMF P ∗Y with ∆1-

limited expected distortion from P1 such that D̃∆0
(P ∗Y , P0) ≤ a. Therefore, when we focus on the case of

zero asymptotic exponent of the payoff, the parameter a plays a role similar to λ in the Neyman–Pearson

game. By further inspecting the exponent expressions of Theorems 7 and 3, we observe that, when a = λ,

the exponent in (27) is smaller than or equal to the one in (22), where equality holds only when both

(27) and (22) vanish. However, comparing these two cases in the general case is difficult because of the

different definition of the payoff functions and, in particular, the different role taken by the parameters

λ and a. In the Neyman–Pearson game, in fact, the payoff corresponds to the FN probability and is not

affected by the value of the FP probability, provided that its exponent is larger than λ; in this way, the

ratio between FP and FN error exponent at the equilibrium is generally smaller than λ (a part for the case

in which the asymptotic exponent of the payoff is zero). In the Bayesian case, the payoff is a weighted

combination of the two types of errors and then the term with the largest exponent is the dominating

term, namely, the one which determines the asymptotic behavior; in this case, the parameter a determines

the exact tradeoff between the FP and FN exponent in the equilibrium payoff.

VI. SOURCE DISTINGUISHABILITY

In this section, we investigate the performance of the Neyman–Pearson and Bayesian games as functions

of λ and a respectively. From the expressions of the equilibrium payoff exponents, it is clear that the

Neyman–Pearson and the Bayesian payoffs increase as λ and a decrease, respectively. In particular, by

setting λ = 0 and a = 0, we obtain the largest achievable payoffs of both games which correspond to
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the best achievable performance for the defender. Therefore, we say that two sources are distinguishable

under the Neyman–Pearson (resp. Bayesian) setting, if there exists a value of λ (resp. α) such that the

FP and FN exponents at the equilibrium of the game are simultaneously strictly positive. When such a

condition does not hold, we say that the sources are indistinguishable. Specifically, in this section, we

characterize, under both the Neyman–Pearson and the Bayesian settings, the indistinguishability region,

defined as the set of the alternative sources that cannot be distinguished from a given source P0, given

the attack distortion levels ∆0 and ∆1. Although each game has a different asymptotic behavior, we will

see that the indistinguishability regions in the Neyman–Pearson and the Bayesian settings are the same.

The study of the distinguishability between the sources under adversarial conditions, performed in this

section, in a way extends the Chernoff-Stein lemma [25] to the adversarial setup (see [34]).

We start by proving the following result for the Neyman–Pearson game.

Theorem 8. Given two memoryless sources P0 and P1 and distortion levels ∆0 and ∆1, the maximum

achievable FN exponent for the Neyman–Pearson game is:

lim
λ→0

εFN(λ) = εFN(0) = min
{PY |X :EXY d(X,Y )≤∆0, (PXY )X=P0}

D̃∆1
(PY , P1), (28)

where εFN(λ) is as in Theorem 3.

The theorem is an immediate consequence of the continuity of εFN(λ) as λ → 0+, which follows

by the continuity of D̃∆ with respect to PY and the density of the set {PY : D̃∆0
(PY , P0) ≤ λ} in

{PY : D̃∆0
(PY , P0) = 0} as λ→ 0+ 7.

We notice that, if ∆0 = ∆1 = 0, there is only an admissible point in the set in (28), for which

PY = P0; then, εFN(0) = D(P0||P1), which corresponds to the best achievable FN exponent known from

the classical literature for the non-adversarial case (Stein lemma [25], Theorem 11.8.3).

Regarding the Bayesian setting, we have the following theorem, the proof of which appears in Appendix

III-A.

Theorem 9. Given two memoryless sources P0 and P1 and distortion levels ∆0 and ∆1, the maximum

achievable exponent of the equilibrium Bayes payoff is

− lim
a→0

lim
n→∞

1

n
ln
(
u(Φ†, (A∗∆0

, A∗∆1
))
)

=

min
PY

(
max

{
D̃∆1

(PY , P1), D̃∆0
(PY , P0)

})
, (29)

7It holds true from Property 1.
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where the inner limit at the left hand side is as defined in Theorem 7.

Since D̃∆1
(PY , P1), and similarly D̃∆0

(PY , P0), are convex functions of PY , and reach their minimum

in P1, resp. P0,8 the minimum over PY of the maximum between these quantities (right-hand side

of (29)) is attained when D̃∆1
(P ∗Y , P1) = D̃∆0

(P ∗Y , P0), for some PMF P ∗Y . This resembles the best

achievable exponent in the Bayesian probability of error for the non-adversarial case, which is attained

when D(P ∗Y ‖P0) = D(P ∗Y ‖P1) for some P ∗Y (see [25], Theorem 11.9.1). In that case, from the expression

of the divergence function, such P ∗Y is found in a closed form and the resulting exponent is equivalent

to the Chernoff information (see Section 11.9 in [25]).

From Theorem 8 and 9, it follows that there is no positive λ, res. a, for which the asymptotic exponent

of the equilibrium payoff is strictly positive, if there exists a PMF PY such that the following conditions

are both satisfied: 


D̃∆0

(PY , P0) = 0

D̃∆1
(PY , P1) = 0.

(30)

In this case, then, P0 and P1 are indistinguishable under both the Neyman–Pearson and the Bayesian

settings. We observe that the condition D̃∆(PY , PX) = 0 is equivalent to the following:9

min
QXY :

(QXY )X=PX
(QXY )Y =PY

EXY d(X,Y ) ≤ ∆, (31)

where the expectation EXY is w.r.t QXY . In computer vision applications, the left-hand side of (31) is

known as the Earth Mover Distance (EMD) between PX and PY , which is denoted by EMDd(PX , PY )

(or, by symmetry, EMDd(PY , PX)) [35]. It is also known as the ρ-bar distortion measure [36].

A brief comment concerning the analogy between the minimization in (31) and optimal transport theory

is worth. The minimization problem in (31) is known in the Operations Research literature as Hitchcock

Transportation Problem (TP) [37]. Referring to the original Monge formulation of this problem [38], PX

and PY can be interpreted as two different ways of piling up a certain amount of soil; then, PXY (x, y)

denotes the quantity of soil shipped from location (source) x in PX to location (sink) y in PY and d(x, y)

is the cost for shipping a unitary amount of soil from x to y. In transport theory terminology, PXY is

referred to as transportation map. According to this perspective, evaluating the EMD corresponds to

finding the minimal transportation cost of moving a pile of soil into the other. Further insights on this

8The fact that D̃∆0 (D̃∆1 ) is 0 in a ∆0-limited (∆1-limited) neighborhood of P0 (P1), and not just in P0 (P1), does not

affect the argument.
9For ease of notation, given a joint PMF QXY with marginal PMFs PX and PY , we use notation (QXY )Y = PY (res.

(QXY )X = PX ) as short for
∑

xQXY (x, y) = PY (y), ∀y ∈ A (res.
∑

y QXY (x, y) = PX(x), ∀x ∈ A).
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parallel can be found in [34].

We summarize our findings in the following corollary, which characterizes the conditions for distin-

guishability under both the Neyman–Pearson and the Bayesian setting.

Corollary 1 (Corollary to Theorems 8 and 9). Given a memoryless source P0 and distortion levels ∆0

and ∆1, the set of the PMFs that cannot be distinguished from P0 in both the Neyman–Pearson and

Bayesian settings is given by

Γ =

{
P : min

PY :EMDd(PY ,P0)≤∆0

EMDd(PY , P ) ≤ ∆1

}
. (32)

Set Γ is the indistinguishability region. By definition (see the beginning of this section), the PMFs

inside Γ are those for which, as a consequence of the attack, the FP and FN probabilities cannot go to zero

simultaneously with strictly positive exponents. Clearly, if ∆0 = ∆1 = 0, that is, in the non-adversarial

case, Γ = {P0}, as any two distinct sources are always distinguishable.

When d is a metric, for a given P ∈ Γ, the computation of the optimum PY can be traced back to the

computation of the EMD between P0 and P , as stated by the following corollary, whose proof appears

in Appendix III-B.

Corollary 2 (Corollary to Theorems 8 and 9). When d is a metric, given the source P0 and distortion

levels ∆0 and ∆1, for any fixed P , the minimum in (32) is achieved when

PY = αP0 + (1− α)P, α = 1− ∆0

EMD(P0, P )
. (33)

Then, the set of PMFs that cannot be distinguished from P0 in the Neyman–Pearson and Bayesian setting

is given by

Γ = {P : EMDd(P0, P ) ≤ ∆0 + ∆1}. (34)

According to Corollary 2, when d is a metric, the performance of the game depends only on the sum

of distortions, ∆0 + ∆1, and it is immaterial how this amount is distributed between the two hypotheses.

In the general case (d not a metric), the condition on the EMD stated in (34) is sufficient in order for

P0 and P be indistinguishable, that is Γ ⊇ {P : EMDd(P0, P ) ≤ ∆0 + ∆1} (see discussion in Appendix

III-B, at the end of the proof of Corollary 2). Furthermore, in the case of an Lpp distortion function

(p ≥ 1), i.e., d(x,y) =
∑n

i=1 |xi − yi|p, we have the following corollary.
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Corollary 3 (Corollary to Theorems 8 and 9). When d is the Lpp distortion function, for some p ≥ 1, the

set Γ can be bounded as follows

Γ ⊆ {P : EMDLp
p
(P0, P ) ≤ (∆0

1/p + ∆1
1/p)p}. (35)

Corollary 3 can be proven by exploiting the Hölder inequality [39] (see Appendix III-C).

VII. CONCLUSIONS

We considered the problem of binary hypothesis testing when an attacker is active under both hy-

potheses, and then an attack is carried out aiming at both false negative and false positive errors. By

modeling the defender-attacker interaction as a game, we defined and solved two different detection

games: the Neyman–Pearson and the Bayesian game. This paper extends the analysis in [14] [14], where

the attacker is active under the alternative hypothesis only. Another aspect of greater generality is that

here both players are allowed to use randomized strategies. By relying on the method of types, the main

result of this paper is the existence of an attack strategy which is both dominant and universal, that is,

optimal regardless of the statistics of the sources. The optimum attack strategy is also independent of the

underlying hypothesis, namely fully-universal, when the distortion introduced by the attacker in the two

cases is the same. From the analysis of the asymptotic behavior of the equilibrium payoff we are able to

establish conditions under which the sources can be reliably distinguished in the fully-active adversarial

setup. The theory developed permits to assess the security of the detection in adversarial setting and give

insights on how the detector should be designed in such a way to make the attack hard.

Among the possible directions for future work, we mention the extension to multiple hypothesis testing.

Another interesting direction is the extension to continuous alphabets, which calls for an extension of

the method of types to this case, or to more realistic models of finite alphabet sources, still amenable to

analysis, like Markov sources. As mentioned in the introduction, it would be also relevant to overcome

the limitation to first order statistics, by extending the analysis to higher order statistics and getting

equilibria in a similar fashion. Finally, we mention the case of unknown sources, where the sources are

estimated from training data, possibly corrupted by the attacker. In this scenario, the detection game has

been studied for a partially active case, with both uncorrupted and corrupted training data [16], [17]. The

extension of such analyses to the fully active scenario considered in this paper is a further interesting

direction for future research.
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APPENDIX I

NEYMAN–PEARSON DETECTION GAME

This appendix contains the proofs of the results in Section IV.

A. Proof of Lemma 1

Whenever existent, the dominant defence strategy can be obtained by solving:

min
Φ∈SD

PFN(Φ, A1), (I.1)

for any attack channel A1. Below, we first show that PFN(Φ∗, A1)
·
≤ PFN(Φ, A1) for every Φ ∈ SD and for

every A1, that is, Φ∗ is asymptotically dominant. Then, by proving that maxA∈C∆0
PFP(Φ

∗, A) fulfills the

FP constraint, we show that Φ∗ is also admissible. Therefore, we can conclude that Φ∗(·|y) asymptotically

solves (I.1). Exploiting the memorylessness of P0 and the permutation invariance of Φ(H1|y) and d(x,y),

for every y′ ∈ An we have,

e−λn ≥max
A

∑

x,y
P0(x)A(y|x)Φ(H1|y)

≥
∑

y

(∑

x
P0(x)A∗∆0

(y|x)

)
Φ(H1|y)

=
∑

y


 ∑

x:d(x,y)≤n∆0

P0(x) · cn(x)

|T (y|x)|


Φ(H1|y)

≥(n+ 1)−|A|·(|A|−1)
∑

y


 ∑

x:d(x,y)≤n∆0

· P0(x)

|T (y|x)|


Φ(H1|y)

(a)

≥ (n+ 1)−|A|·(|A|−1)|T (y′)|
(

max
x:d(x,y′)≤n∆0

|T (x|y′)| · P0(x)

|T (y′|x)|

)
Φ(H1|y′)

(b)
=(n+ 1)−|A|·(|A|−1)Φ(H1|y′) max

x:d(x,y′)≤n∆0

P0(x) · |T (x)|

≥Φ(H1|y′) max
x:d(x,y′)≤n∆0

e−nD(P̂x‖P0)

(n+ 1)|A|2·(|A|−1)

=Φ(H1|y′)
exp

{
−nminx:d(x,y′)≤n∆0

D(P̂x‖P0)
}

(n+ 1)|A|2·(|A|−1)
, (I.2)
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where (a) is due to the permutation invariance of the distortion function d and (b) is due to the identity

|T (x)| · |T (y|x)| ≡ |T (y)| · |T (x|y)| ≡ |T (x,y)|.
It now follows that

Φ(H1|y)
·
≤ exp

{
−n
[
λ− min

x:d(x,y)≤n∆0

D(P̂x‖P0)

]}
. (I.3)

Since Φ(H1|y) is a probability,

Φ(H1|y)
·
≤ min

{
1, exp

[
−n
(
λ− min

x:d(x,y)≤n∆0

D(P̂x‖P0)

)]}

= Φ∗(H1|y). (I.4)

Consequently, Φ∗(H0|y)
·
≤ Φ(H0|y) for every y, and so, PFN(Φ∗, A1)

·
≤ PFN(Φ, A1) for every A1. For

convenience, let us denote

kn(y) = λ− min
x:d(x,y)≤n∆0

D(P̂x‖P0),

so that Φ∗(H1|y) = min{1, e−n·kn(y)}. We now show that Φ∗(H1|y) satisfies the FP constraint, up to a
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polynomial term in n, i.e., it satisfies the constraint asymptotically.

max
A∈C∆0

PFP(Φ
∗, A) ≤ (n+ 1)|A|·(|A|−1)PFP(Φ

∗, A∗)

= (n+ 1)|A|·(|A|−1)
∑

x,y
P0(x)A∗∆0

(y|x)Φ∗(H1|y)

= (n+ 1)|A|·(|A|−1)
∑

(x,y):d(x,y)≤n∆0

P0(x) · cn(x)

|T (y|x)| · Φ
∗(H1|y)

≤ (n+ 1)|A|·(|A|−1)
∑

(x,y):d(x,y)≤n∆0

P0(x)

|T (y|x)| · Φ
∗(H1|y)

≤ (n+ 1)2|A|·(|A|−1)
∑

y

(
max

x:d(x,y)≤n∆0

|T (x|y)| · P0(x)

|T (y|x)|

)
Φ∗(H1|y)

= (n+ 1)2|A|·(|A|−1)




∑

P̂y :kn(y)≥0

e−nkn(y)

(
max

x:d(x,y)≤n∆0

|T (x)| · P0(x)

)
+

+
∑

P̂y :kn(y)<0

(
max

x:d(x,y)≤n∆0

|T (x)| · P0(x)

)



≤ (n+ 1)2|A|·(|A|−1)




∑

P̂y :kn(y)≥0

e−nλ+

+
∑

P̂y :kn(y)<0

exp

{
−n min

x:d(x,y)≤n∆0

D(P̂x‖P0)

}



≤ (n+ 1)(|A|2+2|A|)·(|A|−1)+|A|e−nλ. (I.5)

B. Proof of Property 1

We next prove that for any two PMFs PY1
and PY2

and any λ ∈ (0, 1),

D̃∆(λPY1
+ (1− λ)PY2

, P ) ≤ λD̃∆(PY1
, P ) + (1− λ)D̃∆(PY2

, P ). (I.6)

Let us rewrite D̃∆ in (21) by expressing the minimization in terms of the joint PMF PXY :

D̃∆(PY , P )
4
= min
{QXY :EXY d(X,Y )≤∆,(QXY )Y =PY }

D
(
(QXY )X‖P

)
, (I.7)

where we used (QXY )Y = PY as short for
∑

xQXY (x, y) = PY (y), ∀y, and we made explicit the

dependence of D(PX‖P ) on QXY . Accordingly:

D̃∆(λPY1
+ (1− λ)PY2

, P ) = min
{QXY :EXY d(X,Y )≤∆, (QXY )Y =λPY1+(1−λ)PY2}

D
(
(QXY )X‖P

)
. (I.8)
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We find convenient to rewrite the right-hand side of (I.8) by minimizing over pairs of PMFs (Q′XY , Q
′′
XY )

and considering the convex combination of these PMFs with weights λ and (1 − λ), in place of QXY ;

hence

D̃∆(λPY1
+ (1− λ)PY2

, P ) = min
(Q′XY ,Q

′′
XY )∈H

D
(
λ(Q′XY )X + (1− λ)(Q′′XY )X‖P

)
, (I.9)

where

H =
{

(Q′XY , Q
′′
XY ) : λ(Q′XY )Y + (1− λ)(Q′′XY )Y = λPY1

+ (1− λ)PY2
,

λE′XY d(X,Y ) + (1− λ)E′′XY d(X,Y ) ≤ ∆
}
. (I.10)

Let

H′ =
{
Q′XY : E′′XY d(X,Y ) ≤ ∆, (Q′XY )Y = PY1

}
×
{
Q′′XY : E′′XY d(X,Y ) ≤ ∆, (Q′′XY )Y = PY2

}
;

(I.11)

then, H′ ⊂ H, where the set H′ is separable in Q′XY and Q′XY . Accordingly, (I.9)-(I.10) can be upper

bounded by

min
Q′XY :E′′XY d(X,Y )≤∆,(Q′XY )Y =PY1

min
Q′′XY :E′′XY d(X,Y )≤∆,(Q′′XY )Y =PY2

D
(
λ(Q′XY )X + (1− λ)(Q′′XY )X‖P

)
.

(I.12)

By the convexity of D
(
(QXY )X‖P

)
with respect to QXY 10, it follows that

D
(
λ(Q′XY )X + (1− λ)(Q′′XY )X‖P

)
≤ λD

(
(Q′XY )X‖P

)
+ (1− λ)D

(
(Q′′XY )X‖P

)
. (I.13)

Note that the above relation is not strict since it might be that (Q′XY )X = (Q′′XY )X = P . Then, an upper

bound for D̃∆(λPY1
+ (1− λ)PY2

, P ) is given by

min
Q′XY :

∑
xQ
′
XY =PY1

,E′′XY d(X,Y )≤∆
λD
(
(Q′XY )X‖P

)
+ min
Q′′XY :(Q′′XY )Y =PY2

,E′′XY d(X,Y )≤∆
(1−λ)D

(
(Q′′XY )X‖P

)
,

(I.14)

thus proving (I.6).

10This is a consequence of the fact that the divergence function is convex in its arguments and the operation (·)X is linear

(see Theorem 2.7.2 in [25]).
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C. Proof of Theorem 3

We start by proving the upper bound for the FN probability:

PFN(Φ∗, A∗∆1
) =

∑

x,y
P1(x)A∗∆1

(y|x)Φ∗(H0|y)

=
∑

y

∑

x:d(x,y)≤n∆1

P1(x)
cn(x)

|T (y|x)|
(

1− e−n[λ−D̃n
∆0

(P̂y ,P0)]+
)

≤
∑

y

∑

x:d(x,y)≤n∆1

P1(x)

|T (y|x)|
(

1− e−n[λ−D̃n
∆0

(P̂y ,P0)]+
)

=
∑

y

∑

P̂x|y :Exyd(X,Y )≤∆1

|T (P̂x|y)|e
−n[Ĥx(X)+D(P̂x‖P1)]

|T (P̂y|x)|

(
1− e−n[λ−D̃n

∆0
(P̂y ,P0)]+

)

=
∑

P̂y

∑

P̂x|y :Exyd(X,Y )≤∆1

|T (P̂x)|e−n[Ĥx(X)+D(P̂x‖P1)]
(

1− e−n[λ−D̃n
∆0

(P̂y ,P0)]+
)

=
∑

P̂y

∑

P̂x|y :Exyd(X,Y )≤∆1

e−nD(P̂x‖P1)
(

1− e−n[λ−D̃n
∆0

(P̂y ,P0)]+
)

=
∑

P̂y :D̃n
∆0

(P̂y ,P0)<λ

∑

P̂x|y :Exyd(X,Y )≤∆1

e−nD(P̂x‖P1)
(

1− e−n(λ−D̃n
∆0

(P̂y ,P0))
)

≤
∑

P̂y :D̃n
∆0

(P̂y ,P0)<λ

∑

P̂x|y :Exyd(X,Y )≤∆1

e−nD(P̂x‖P1)

≤(n+ 1)2|A|·(|A|−1) exp

{
−n min

P̂y :D̃n
∆0

(P̂y ,P0)<λ

[
min

P̂x|y :Exyd(X,Y )≤∆1

D(P̂x‖P1)

]}

≤(n+ 1)2|A|·(|A|−1) exp

{
−n inf

PY :D̃∆0
(PY ,P0)<λ

[
min

PX|Y :EXY d(X,Y )≤∆1

D(PX‖P1)

]}

≤(n+ 1)2|A|·(|A|−1) exp

{
−n min

PY :D̃∆0
(PY ,P0)≤λ

[
min

PX|Y :EXY d(X,Y )≤∆1

D(PX‖P1)

]}
. (I.15)

Then:

lim sup
n→∞

1

n
lnPFN(Φ∗, A∗∆1

) ≤ − min
PY :D̃∆0

(PY ,P0)≤λ

[
min

PX|Y :EXY d(X,Y )≤∆1

D(PX‖P1)

]
. (I.16)
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We now move on to the lower bound.

PFN(Φ∗, A∗∆1
) =

∑

x,y
P1(x)A∗∆1

(y|x)Φ∗(H1|y)

≥(n+ 1)−|A|·(|A|−1)
∑

y

∑

x:d(x,y)≤n∆1

P1(x)

|T (y|x)|
(

1− e−n[λ−D̃n
∆0

(P̂y ,P0)]+
)

=(n+ 1)−|A|·(|A|−1)
∑

P̂y :D̃n
∆0

(P̂y ,P0)<λ

∑

P̂x|y :Exyd(X,Y )≤∆1

e−nD(P̂x‖P1)
(

1− e−n(λ−D̃n
∆0

(P̂y ,P0))
)

≥(n+ 1)−|A|·(|A|−1)e−nD(P̂x‖P1)(1− e−n(λ−D̃n
∆0

(P̂y ,P0))), (I.17)

where, for a fixed n, P̂y is a PMF that satisfies D̃n∆0
(P̂y, P0) ≤ λ− (lnn)/n and P̂x|y is such that the

distortion constraint is satisfied. Since the set of rational PMFs is dense in the probability simplex, two

such sequences can be chosen in such a way that (P̂y, P̂x|y)→ (P ∗Y , P
∗
X|Y ),11 where

(P ∗Y , P
∗
X|Y ) = arg min

(PY ,PX|Y )
min

PY :D̃∆0
(PY ,P0)≤λ

[
min

PX|Y :EXY d(X,Y )≤∆1

D(PX‖P1)

]
. (I.18)

Therefore, we can assert that:

lim inf
n→∞

1

n
lnPFN(Φ∗, A∗∆1

) ≥ lim
n→∞

1

n
ln
[
e−nD(P̂x‖P1)

(
1− e−n(λ−D̃n

∆0
(P̂y ,P0))

)]

=− lim
n→∞

D(P̂x‖P1)

=−D(P ∗X‖P1)

=− min
PY :D̃∆0

(PY ‖P0)≤λ

[
min

PX|Y :EXY d(X,Y )≤∆1

D(PX‖P1)

]
. (I.19)

By combining the upper and lower bounds, we conclude that lim sup and lim inf coincide. Therefore the

limit of the sequence 1/n lnPFN exists and the theorem is proven.

D. Proof of Theorem 4

First, observe that, by exploiting the definition of D̃∆, (22) can be rewritten as

εFN = min
PY :D̃∆0 (PY ,P0)≤λ

(
min

PX|Y :EXY d(X,Y )≤∆1

D(PX‖P1)

)

= min
PZ :D(PZ‖P0)≤λ

min
PY |Z :EY Zd(Y,Z)≤∆0

(
min

PX|Y :EXY d(X,Y )≤∆1

D(PX‖P1)

)
. (I.20)

11We are implicitly exploiting the fact that set {D̃n
∆0

(P̂y , P0) < λ} is dense in {D̃∆0(PY , P0) ≤ λ}, for every λ > 0, which

holds true from Property 1.
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To prove the theorem, we now show that (I.20) can be simplified as follows:

εFN = min
PZ :D(PZ‖P0)≤λ

(
min

PX|Z :EXZd(X,Z)≤∆0+∆1

D(PX‖P1)

)
, (I.21)

which is equivalent to (24) (see Section III). The equivalence of the expressions in (I.20) and (I.21)

follows from the equivalence of the two feasible sets for the PMF PX . We first show that any feasible

PX in (I.20) is also feasible in (I.21). Let then PX be a feasible PMF in (I.20). By exploiting the

properties of the triangular inequality property of the distance, we have that, regardless of the specific

choice of the distributions PY |Z and PX|Y in (I.20),

EXZd(X,Z) ≤ EXY Z [d(X,Y ) + d(Y,Z)] = EXY d(X,Y ) + EY Zd(Y,Z) ≤ ∆0 + ∆1, (I.22)

and then PX is a feasible PMF in (I.21). To prove the opposite inclusion, we observe that, for any PZ and

PX|Z such that D(PZ‖P0) ≤ λ and EXZd(X,Z) ≤ ∆0 + ∆1, it is possible to define a variable Y , and

then two conditional PMFs PY |Z and PX|Y , such that EXY d(X,Y ) ≤ ∆1 and EY Zd(Y,Z) ≤ ∆0. To

do so, it is sufficient to let PY be the convex combination of PX and PZ , that is PY = αPX +(1−α)PZ

where α = ∆0/(∆0 +∆1). With this choice for the marginal, we can define PX|Y so that PXY satisfies12

PXY (i, j) = (1− α)PXZ(i, j) ∀i,∀j 6= i,

PXY (i, i) = (1− α)PXZ(i, i) + αPX(i) ∀i; (I.23)

similarly, PY |Z can be chosen such that PY Z satisfies

PY Z(i, j) = αPXZ(i, j) ∀i,∀j 6= i,

PY Z(i, i) = αPXZ(i, i) + (1− α)PZ(i) ∀i. (I.24)

It is easy to see that, with the above choices, EXY d(X,Y ) = (1− α)EXZd(X,Z) and EY Zd(Y,Z) =

αEXZd(X,Z). Then, EXY d(X,Y ) ≤ (1 − α)(∆0 + ∆1) ≤ ∆1 and EY Zd(Y,Z) ≤ ∆0. Consequently,

any PX belonging to the set in (I.21) also belongs to the one in (I.20).

APPENDIX II

BAYESIAN DETECTION GAME

This appendix contains the proofs for Section V.

12By adopting the transportation theory perspective introduced towards the end of Section VI, we can look at PX and PY as

two ways of piling up a certain amount of soil; then PXY can be interpreted as a map which moves PX into PY (PXY (i, j)

corresponds to the amount of soil moved from position i to j). The map in (I.23) is the one which leaves in place a percentage

α of the mass and moves the remaining (1− α) percentage to fill the pile (1− α)PZ according to map (1− α)PXZ .
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A. Proof of Theorem 5

Given the probability distributions Q0(y) and Q1(y) induced by A∗∆0
and A∗∆1

respectively, the

optimum decision rule is deterministic and is given by the likelihood ratio test (LRT) [40]:

1

n
ln
Q1(y)

Q0(y)

H1

≷
H0

a, (II.1)

which proves the optimality of the decision rule in (25).

To prove the asymptotic optimality of the decision rule in (26), let us approximate Q0(y) and Q1(y)

using the method of types as follows:

Q0(y) =
∑

x
P0(x)A∗∆0

(y|x)

·
=

∑

x: d(x,y)≤n∆0

e−n[Ĥx(X)+D(P̂x‖P0)] · e−nĤxy(Y |X)

·
= max

x: d(x,y)≤n∆0

enĤxy(X|Y ) ·
(
e−n[Ĥx(X)+D(P̂x‖P0)]

·e−nĤxy(Y |X)
)

= max
x: d(x,y)≤n∆0

e−n[Ĥy(Y )+D(P̂x‖P0)]

(a)
= exp

{
−n
[
Ĥy(Y )+

+ min
{P̂x|y :Exyd(X,Y )≤∆0}

D(P̂x‖P0)

]}

= exp
{
−n[Ĥy(Y ) + D̃n∆0

(P̂y, P0)]
}
, (II.2)

where in (a) we exploited the additivity of the distortion function d. Similarly,

Q1(y)
·

= exp
{
−n[Ĥy(Y ) + D̃n∆1

(P̂y, P1)]
}
. (II.3)

Thus, we have the following asymptotic approximation to the LRT:

D̃n∆0
(P̂y, P0)− D̃n∆1

(P̂y, P1)
H1

≷
H0

a, (II.4)

which proves the second part of the theorem.

B. Proof of Theorem 7

In order to make the expression of u(PFN(Φ†, (A∗∆0
, A∗∆1

))) explicit, let us first evaluate the two error

probabilities at equilibrium. Below, we derive the lower and upper bound on the probability of y under

H1, when the attack channel is A∗∆1
:

(n+ 1)−|A‖A−1|e−n[Ĥy(Y )+D̃n
∆1

(P̂y ,P1)] ≤ Q∗1(y) < (n+ 1)|A|
2

e−n[Ĥy(Y )+D̃n
∆1

(P̂y ,P1)]. (II.5)
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The same bounds hold for Q∗0(y), with D̃∆0
replacing D̃∆0

. For the FN probability, the upper bound is

PFN(Φ†, A∗∆1
) =

∑

y
Q∗1(y) · Φ†(H0|y)

=
∑

y:D̃n
∆0

(P̂y ,P0)−D̃n
∆1

(P̂y ,P1)<a

Q∗1(y)

≤(n+ 1)|A|
2

∑

y:D̃n
∆0

(P̂y ,P0)−D̃n
∆1

(P̂y ,P1)<a

e−n[Ĥy+D̃n
∆1

(P̂y ,P1)]

≤(n+ 1)|A|
2+|A| max

P̂y :D̃n
∆0

(P̂y ,P0)−D̃n
∆1

(P̂y ,P1)<a
e−nD̃

n
∆1

(P̂y ,P1)

=(n+ 1)|A|
2+|A| exp

{
−n
(

min
P̂y :D̃n

∆0
(P̂y ,P0)−D̃n

∆1
(P̂y ,P1)<a

D̃n∆1
(P̂y, P1)

)}
. (II.6)

Then,

− lim sup
n→∞

1

n
ln(PFN(Φ†, A∗∆1

)) ≤ min
PY :D̃∆0

(PY ,P0)−D̃∆1
(PY ,P1)≤a

D̃∆1
(PY , P1). (II.7)

For the lower bound,

PFN(Φ†, A∗∆1
) ≥(n+ 1)−|A‖A−1|

∑

y:D̃n
∆0

(P̂y ,P0)−D̃n
∆1

(P̂y ,P1)<a

e−n[Ĥy+D̃n
∆1

(P̂y ,P1)]

≥(n+ 1)−|A‖A−1| max
P̂y :D̃n

∆0
(P̂y ,P0)−D̃n

∆1
(P̂y ,P1)<a

e−nD̃
n
∆1

(P̂y ,P1)

=(n+ 1)−|A‖A−1| exp

{
−n
(

min
P̂y :D̃n

∆0
(P̂y ,P0)−D̃n

∆1
(P̂y ,P1)<a

D̃n∆1
(P̂y, P1)

)}
. (II.8)

Then

− lim inf
n→∞

1

n
ln(PFN(Φ†, A∗∆1

)) ≥ lim
n→∞

D̃n∆1
(P̂y, P1)

= min
PY :D̃∆0

(PY ,P0)−D̃∆1
(PY ,P1)≤a

D̃∆1
(PY , P1), (II.9)

where P̂y is a properly chosen PMF, belonging to the set {D̃n∆0
(P̂y, P0)− D̃n∆1

(P̂y, P1) < a} for every

n, and such that P̂y → P ∗Y where13

P ∗Y = arg min
PY :D̃∆0

(PY ,P0)−D̃∆1
(PY ,P1)≤a

D̃∆1
(PY , P1). (II.10)

13By Property 1, set {D̃n
∆0

(P̂y , P0)− D̃n
∆1

(P̂y , P1) < a} is dense in {PY : D̃∆0(PY , P0)− D̃∆1(PY , P1) ≤ a} and then

such a sequence of PMFs can always be found.
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By combining (II.7) and (II.9), we get

εFN = − lim
n→∞

1

n
ln(PFN(Φ†, A∗∆1

)) = min
PY :D̃∆0

(PY ,P0)−D̃∆1
(PY ,P1)≤a

D̃∆1
(PY , P1). (II.11)

Therefore, from (II.6) and (II.8) we have

PFN(Φ†, A∗∆1
)
.
= exp

{
−n
(

min
P̂y :D̃n

∆0
(P̂y ,P0)−D̃n

∆1
(P̂y ,P1)<a

D̃n∆1
(P̂y, P1)

)}
, (II.12)

and the limit of 1
n lnPFN exists and is finite.

Similar bounds can be derived for the FP probability, resulting in

PFP(Φ
∗, A∗∆0

)
.
= exp

{
−n
(

min
P̂y :D̃n

∆0
(P̂y ,P0)−D̃n

∆1
(P̂y ,P1)≥a

D̃n∆0
(P̂y, P0)

)}
, (II.13)

and in particular

εFP = − lim
n→∞

1

n
ln(PFP(Φ

∗, A∗∆0
)) = min

PY :D̃∆0 (PY ,P0)−D̃∆1 (PY ,P1)≥a
D̃∆0

(PY , P0). (II.14)

From (II.14), we see that, as argued, the profile (Φ†, (A∗∆0
, A∗∆1

)) leads to a FP exponent always at least

as large as a.

We are now ready to evaluate the asymptotic behavior of the payoff of the Bayesian detection game:

u =PFN(Φ†, A∗∆1
) + eanPFP(Φ

†, A∗∆0
)

.
= max{PFN(Φ†, A∗∆1

), eanPFP(Φ
†, A∗∆0

)}

.
= exp

{
−nmin

(
min

P̂y :D̃n
∆0

(P̂y ,P0)−D̃n
∆1

(P̂y ,P1)<a
D̃n∆1

(P̂y, P1), min
P̂y :D̃n

∆0
(P̂y ,P0)−D̃n

∆1
(P̂y ,P1)≥a

(D̃n∆0
(P̂y, P0)− a)

)}

= exp

{
−nmin

Py

(
max

{
D̃n∆1

(P̂y, P1), (D̃n∆0
(P̂y, P0)− a)

})}

.
= exp

{
−nmin

PY

(
max

{
D̃∆1

(PY , P1), (D̃∆0
(PY , P0)− a)

})}
, (II.15)

where the asymptotic equality in the last line follows from the density of the set of empirical probability

distributions of n-length sequences in the probability simplex and from the continuity of the to-be-

minimized expression in round brackets as a function of PY .

APPENDIX III

SOURCE DISTINGUISHABILITY

This appendix contains the proofs for Section VI.
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A. Proof of Theorem 9

The theorem directly follows from Theorem 7. In fact, by letting

ea(PY ) = max
{
D̃∆1

(PY , P1), D̃∆0
(PY , P0)− a

}
, (III.1)

a ≥ 0, the limit in (29) can be derived as follows:

lim
a→0

min
PY

ea(PY ) = min
PY

lim
a→0

ea(PY )

= min
PY

(
max

{
D̃∆1

(PY , P1), D̃∆0
(PY , P0)

})
, (III.2)

where the order of limit and minimum can be exchanged because of the uniform convergence of ea(PY )

to e0(PY ) as a tends to 0.

B. Proof of Corollary 2

The corollary can be proven by exploiting the fact that, when d is a metric, the EMD is a metric and

then EMDd(P0, P ) satisfies the triangular inequality. In this case, it is easy to argue that the PY achieving

the minimum in (32) is the one for which the triangular relation holds at the equality, which corresponds

to the convex combination of P0 and P (i.e., the PMF lying on the straight line between P0 and P )

with combination coefficient α such that EMDd(P0, PY ) (or equivalently, by symmetry, EMDd(PY , P0))

is exactly equal to ∆0.

Formally, let X ∼ P0 and Z ∼ P . We want to find the PMF PY which solves

min
PY :EMDd(PY ,P0)≤∆0

EMDd(PY , P ). (III.3)

For any Y ∼ PY and any choice of PXY and PY Z (that is, PY |X and PZ|Y ), by exploiting the triangular

inequality property of the distance, we can write

EXZd(X,Z) ≤ EXY d(X,Y ) + EY Zd(Y,Z), (III.4)

where PXZ can be any joint distribution with marginals P0 and P . Then,

EMD(P0, P ) ≤ EXY d(X,Y ) + EY Zd(Y,Z). (III.5)

From the arbitrariness of the choice of PXY and PY Z , if we let P ∗XY and P ∗Y Z be the joint distributions

achieving the EMD between X and Y , and Y and Z, we get

EMD(P0, P ) ≤ EMD(P0, PY ) + EMD(PY , P ). (III.6)
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From the above relation, we can derive the following lower bound for the to-be-minimized quantity in

(III.3):

EMD(PY , P ) ≥EMD(P0, P )− EMD(P0, PY ) (III.7)

≥EMD(P0, P )−∆0. (III.8)

We now show that PY defined as in (33) achieves the above lower bound while satisfying the constraint

EMD(P0, PY ) ≤ ∆0, and then gets the minimum value in (III.3).

Let P ∗XZ be the joint distribution achieving the EMD between X and Z. Then, E∗XZd(X,Z) =

EMD(P0, P ) (where the star on the apex indicates that the expectation is taken under P ∗XZ). Given

the marginal PY = αP0 + (1 − α)P , we can define PXY and PY Z , starting from P ∗XZ , as in the

proof of Theorem 4 ((I.23) and (I.24)). With this choice, EXY d(X,Y ) = (1 − α)EMD(P0, P ) and

EY Zd(Y,Z) = αEMD(P0, P ). Then, for the value of α in (33) we have that EXY d(X,Y ) = ∆0 and

EY Zd(Y,Z) = EMD(P0, P )−∆0. (III.9)

By combining (III.9) and (III.8), we argue that EMD(PY , P ) = EMD(P0, P ) −∆0
14. Therefore, PY in

(33) solves (III.3).

To prove the second part of the corollary, we just need to observe that a PMF P belongs to the

indistinguishability set in (32) if and only if

EMD(PY , P ) = EMD(P0, P )−∆0 ≤ ∆1, (III.10)

that is EMD(P0, P ) ≤ ∆0 + ∆1.

From the above proof, we notice that, for any P in the set in (34), i.e., such that EMDd(P0, P ) ≤
∆0 + ∆1, the PMF PY = αP0 + (1 − α)P with α as in (33) satisfies EMD(PY , P0) = ∆0 and

EMD(PY , P1) = ∆1 for any choice of d. Then, when d is not a metric, the region in (34) is contained

in the indistinguishability region.

14We also argue that the choice made for PY Z minimizes the expected distortion between Y and Z, i.e., it yields

EY Zd(Y,Z) = EMD(PY , P ). Furthermore, being EXY d(X,Y ) = ∆0, it holds EMD(PY , P ) = EMD(P0, P )−EXY d(X,Y )

and then, from the triangular inequality in (III.6), it follows that EMD(P0, PY ) = EXY d(X,Y ) = ∆0.
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C. Proof of Corollary 3

By inspecting the minimization in (32), we see that for any source P that cannot be distinguished

from P0, it is possible to find a source PY such that EMDd(PY , P ) ≤ ∆1 and EMDd(PY , P0) ≤ ∆0. In

order to prove the corollary, we need to show that such P lies inside the set defined in (35).

We give the following definition. Given two random variables X and Y , the Hölder inequality applied

to the expectation function ( [39]) reads:

EXY |XY | ≤
(
EX [|X|r]

)1/r(
EY [|Y |q]

)1/q
, (III.11)

where r ≥ 1 and q = r/(r − 1), namely, the Hölder conjugate of r.

We use the notation E∗XY for the expectation of the pair (X,Y ) when the probability map is the one

achieving the EMD(PX , PY ), namely P ∗XZ . Then, we can write:

EMDLp
p
(P0, P ) = E∗XZ [||X − Z||p]

(a)

≤E∗XY Z [(||X − Y ||+ ||Y − Z||)p]
(b)

≤EXY Z
[
||X − Y ||p + ||Y − Z||p + p · ||X − Y ||p−1 ||Y − Z||+

+p(p− 1)/2 · ||X − Y ||p−2 ||Y − Z||2 + .....+ p · ||X − Y || ||Y − Z||p−1
]

= EXY Z [||X − Y ||p] + EXY Z [||Y − Z||p] + p · EXY Z [||X − Y ||p−1 ||Y − Z||]+

+ p(p− 1)/2 · EXY Z [||X − Y ||p−2 ||Y − Z||2] + .....+ p · EXY Z [||X − Y || ||Y − Z||p−1]

(c)

≤EXY Z [||X − Y ||p] + EXY Z [||Y − Z||p] + p · (EXY Z [||X − Y ||p])
p−1

p (EXY Z [||Y − Z||p])
1

p

+ p(p− 1)/2 · (EXY Z [||X − Y ||p)
p−2

p (EXY Z [||Y − Z||p])
2

p + ...

...+ p · (EXY Z [||X − Y ||p])
1

p (EXY Z [||Y − Z||p])
p−1

p

= EXY [||X − Y ||p] + EY Z [||Y − Z||p] + p · (EXY [||X − Y ||p])
p−1

p (EY Z [||Y − Z||p])
1

p

+ p(p− 1)/2 · (EXY [||X − Y ||p])
p−2

p (EY Z [||Y − Z||p])
2

p + ...

...+ p · (EXY [||X − Y ||p])
1

p (EY Z [||Y − Z||p])
p−1

p

=
(

(EXY Z [||X − Y ||p])1/p + (EXY Z [||Y − Z||p])1/p
)p

≤
(

∆
1/p
0 + ∆

1/p
1

)p
, (III.12)

where in (a) we considered the joint distribution PXY Z such that
∑

Z PXY Z = P ∗XY ,
∑

X PXY Z = P ∗Y Z

(and, consequently,
∑

Y PXY Z = P ∗XZ) and in (b) we developed the p-power of the binomial (binomial
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theorem). Finally, in (c), we applied the Hölder’s inequality to the various terms of Newton’s binomial:

specifically, for each term EXY Z [||X − Y ||p−t ||Y − Z||t], with t = 1, .., p− 1, the Hölder inequality is

applied with r = p/(p− t) (and q = r/(r − 1)).
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