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Some Background

Slepian & Wolf (‘73) – (almost) lossless compression with SI @ decoder.

Gallager (‘76) – random coding error exponents.

Csiszár, Körner & Marton (‘77,‘80) – universal achievability.

Csiszár, Körner (‘81) – same with linear codes + expurgated bounds.

Csiszár (’82) + Oohama & Han (‘94) – coded SI.

Kelly & Wagner (‘11) – improvements for high rates.
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This Work

Exponential error bounds for random binning.

A statistical–mechanical perspective – finite temperature decoding.

Phase diagram in the rate vs. temperature plane.

Similarities and differences relative to channel coding.

Exact random coding error exponent – phase transitions.

Extensions: mismatch, universality, variable rates, joint coding.
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Problem Setup and Preliminaries

{(Xi, Yi)}
N
i=1 – N independent copies of (X, Y ) ∼ P (x, y).

X = (X1, . . . , XN ) – source to be compressed.

Y = (Y1, . . . , YN ) – side info @ decoder.

Random binning – eNR bins.

Encoder: u = f(x), f : XN → {1, . . . , eNR}.

Inverse image (= bin) of x: f−1(u) = {x : f(x) = u}.

Block–level MAP decoder:

x̂ = argmaxx∈f−1(u)P (x|y) = argmaxx∈f−1(u)P (x, y).

Symbol–level MAP decoder:

x̂i = argmaxx∈XP (xi = x, y) = argmaxx∈X

X

x: xi=x

P (x, y), i = 1, 2, . . . , N.
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Finite–Temperature Decoding (Ruján, ‘93)

x̂i = argmaxx∈X

X

x: xi=x

Pβ(x, y), β > 0.

Motivation:

Common framework for both SL and BL MAP (β = 1, β → ∞, resp.).

Mismatch due to uncertainty (e.g., double BSS):

β < 1 – pessimistic decoder

β > 1 – optimistic decoder

Gallager–style bounds include probabilities raised to some power.
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The Finite–Temperature Posterior

Define

Pβ(x|y, u) =

8

<

:

P β(x,y)
P

x′∈f−1(u) P β(x′,y)
x ∈ f−1(u)

0 elsewhere

or, the Boltzmann distribution:

Pβ(x|y, u) =

8

<

:

exp{−βE(x,y)}
P

x′∈f−1(u) exp{−βE(x′,y)}
x ∈ f−1(u)

0 elsewhere

with energy function: E(x, y)
△
= − ln P (x, y) and partition function Z(β|y, u).

We first study the phase diagram of the corresponding “physical system”.

Ordinary random coding ↔ Random Energy Model (REM).

Random binning ↔ Random Dilution Model (RDM).
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Some Quick Background on the REM and RDM

In channel coding, the analogous posterior is

Pβ(x|y) =

8

<

:

P β(y|x)
P

x′∈C P β(y|x′)
x ∈ C

0 elsewhere

which is the Boltzmann distribution with E(x, y)
△
= − ln P (y|x).

In random coding the x’s are drawn independently at random:

E(X , y) are independent given y.

Analogous to the REM, which has random i.i.d. energy levels.

The REM (and hence also Pβ(·|y)) undergoes a φ–transition:

Below a critical temperature (β > βc) – zero–entropy –glassy phase.

Above critical temperature – positive entropy – paramagnetic phase.
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The RDM

Consider Z(β) =
X

x

e−βE(x) β =
1

kT
inverse temperature

The randomly diluted version is

ZD(β) =
X

x

I(x)e−βE(x) =
X

x

e−β[E(x)+Ψ(x)]

where {I(x)} are i.i.d. Bernoulli RV’s with

Pr{I(x) = 1} = Pr{Ψ(x) = 0} = 1−Pr{I(x) = 0} = 1−Pr{Ψ(x) = ∞} = e−NR.

The RDM also has a glassy phase transition, similar to the REM.
Relevance to random binning:

Z(β|y, u) =
X

x

I[x ∈ f−1(u)] · Pβ(x, y).

However, for the correct x, I[x ∈ f−1(u)] ≡ 1.
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Phase Diagram ofZ(β|y, u)

H(X|Y )
R

1

ln |X |

T = 1
β

paramagnetic

glassy

T = Tc(R)

ferromagnetic

T = 1
Γ−1(R)

Γ(β) = βH(X,Y ) +
X

y

P (y) ln

"

X

x

Pβ(x, y)

#

βc(R) = s′[s−1(R)] s(ǫ) = max{HQ(X|Y ) : EQ ln[1/P (X,Y )] ≤ ǫ}.
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Discussion

Phase diagram ∼ mirror image of channel coding (Mézard & Monatanari, ‘09).

Reason: SW coding at rate R ↔ channel coding at rate (H − R).

But there are a few non–trivial differences:

Typical |f−1(u)| (RV) ∼ |X |Ne−NR. Only eN(H−R) are in T (P ).

Different from channel coding – fixed codebook size.

A–typical bin members may affect large deviations behavior.

Prior – not necessarily uniform.

Compositions of “codewords” are random.
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Extensions and Variations

Variable–rate SW coding (type–dependent rate).

Mismatched decoding: decoding according to P̃ (x|y).

Universal decoding: minium empirical conditional entropy decoding.

Full SW problem: separate codings & joint decoding of (X , Y ).
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Universal Decoding

H(X|Y )
R

1

ln |X |

T = 1
β

paramagnetic

glassy

Tc = 1

T =
ln |X|−H(X|Y )

ln |X|−R

ferromagnetic
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Full SW Coding: Encoding and Decoding BothX and Y

Z(β|u, v) =
X

x,y

I[x ∈ f−1(u)] · I[y ∈ g−1(u)] · Pβ(x, y).

4 partial partition functions, corresponding to in/correct decoding of X , Y .

Each partial function has 3 phases ...

For β ≤ 1, reliable decoding occurs if:

RX > βH(X, Y ) + E ln

"

X

x

Pβ(x, Y )

#

RY > βH(X, Y ) + E ln

2

4

X

y

Pβ(X, y)

3

5

RX + RY > βH(X, Y ) + ln

2

4

X

x,y

Pβ(x, y)

3

5
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Exact Random Binning Error Exponent E(R, β)

E(R, β) = E(R, ∞)

E(R, β) = 0

T = 1
Γ−1(R)

T = 1
β

R

ln |X|H(X|Y )

T = 1

E(R, β) < E(R, ∞)

The single–letter expression of E(R, β) is available in the paper.
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