

Statistical Physics of Random Binning

Neri Merhav

Department of Electrical Engineering
Technion—Israel Institute of Technology
Haifa 3200004, Israel

ISIT 2015, Hong Kong, June 2015.

Some Background

- Slepian & Wolf ('73) – (almost) lossless compression with SI @ decoder.
- Gallager ('76) – random coding error exponents.
- Csiszár, Körner & Marton ('77,'80) – universal achievability.
- Csiszár, Körner ('81) – same with linear codes + expurgated bounds.
- Csiszár ('82) + Oohama & Han ('94) – coded SI.
- Kelly & Wagner ('11) – improvements for high rates.

This Work

- Exponential error bounds for random binning.
- A statistical-mechanical perspective – [finite temperature decoding](#).
- Phase diagram in the rate vs. temperature plane.
- Similarities and differences relative to channel coding.
- Exact random coding error exponent – phase transitions.
- Extensions: mismatch, universality, variable rates, joint coding.

Problem Setup and Preliminaries

- $\{(X_i, Y_i)\}_{i=1}^N$ – N independent copies of $(X, Y) \sim P(x, y)$.
- $\mathbf{X} = (X_1, \dots, X_N)$ – source to be compressed.
- $\mathbf{Y} = (Y_1, \dots, Y_N)$ – side info @ decoder.
- Random binning – e^{NR} bins.
- Encoder: $u = f(x)$, $f : \mathcal{X}^N \rightarrow \{1, \dots, e^{NR}\}$.
- Inverse image (= bin) of x : $f^{-1}(u) = \{x : f(x) = u\}$.

Block-level MAP decoder:

$$\hat{\mathbf{x}} = \operatorname{argmax}_{\mathbf{x} \in f^{-1}(u)} P(\mathbf{x} | \mathbf{y}) = \operatorname{argmax}_{\mathbf{x} \in f^{-1}(u)} P(\mathbf{x}, \mathbf{y}).$$

Symbol-level MAP decoder:

$$\hat{x}_i = \operatorname{argmax}_{x \in \mathcal{X}} P(x_i = x, \mathbf{y}) = \operatorname{argmax}_{x \in \mathcal{X}} \sum_{\mathbf{x}: x_i = x} P(\mathbf{x}, \mathbf{y}), \quad i = 1, 2, \dots, N.$$

Finite–Temperature Decoding (Ruján, ‘93)

$$\hat{x}_i = \operatorname{argmax}_{x \in \mathcal{X}} \sum_{\mathbf{x}: x_i = x} P^\beta(\mathbf{x}, \mathbf{y}), \quad \beta > 0.$$

Motivation:

- Common framework for both SL and BL MAP ($\beta = 1$, $\beta \rightarrow \infty$, resp.).
- Mismatch due to uncertainty (e.g., double BSS):
 - $\beta < 1$ – **pessimistic decoder**
 - $\beta > 1$ – **optimistic decoder**
- Gallager–style bounds include probabilities raised to some power.

The Finite–Temperature Posterior

Define

$$P_\beta(\mathbf{x}|\mathbf{y}, u) = \begin{cases} \frac{P^\beta(\mathbf{x}, \mathbf{y})}{\sum_{\mathbf{x}' \in f^{-1}(u)} P^\beta(\mathbf{x}', \mathbf{y})} & \mathbf{x} \in f^{-1}(u) \\ 0 & \text{elsewhere} \end{cases}$$

or, the Boltzmann distribution:

$$P_\beta(\mathbf{x}|\mathbf{y}, u) = \begin{cases} \frac{\exp\{-\beta\mathcal{E}(\mathbf{x}, \mathbf{y})\}}{\sum_{\mathbf{x}' \in f^{-1}(u)} \exp\{-\beta\mathcal{E}(\mathbf{x}', \mathbf{y})\}} & \mathbf{x} \in f^{-1}(u) \\ 0 & \text{elsewhere} \end{cases}$$

with energy function: $\mathcal{E}(\mathbf{x}, \mathbf{y}) \triangleq -\ln P(\mathbf{x}, \mathbf{y})$ and partition function $Z(\beta|\mathbf{y}, u)$.

We first study the phase diagram of the corresponding “physical system”.

- Ordinary random coding \leftrightarrow Random Energy Model (REM).
- Random binning \leftrightarrow Random Dilution Model (RDM).

Some Quick Background on the REM and RDM

In channel coding, the analogous posterior is

$$P_\beta(\mathbf{x}|\mathbf{y}) = \begin{cases} \frac{P^\beta(\mathbf{y}|\mathbf{x})}{\sum_{\mathbf{x}' \in \mathcal{C}} P^\beta(\mathbf{y}|\mathbf{x}')} & \mathbf{x} \in \mathcal{C} \\ 0 & \text{elsewhere} \end{cases}$$

which is the Boltzmann distribution with $\mathcal{E}(\mathbf{x}, \mathbf{y}) \triangleq -\ln P(\mathbf{y}|\mathbf{x})$.

In random coding the \mathbf{x} 's are drawn independently at random:

- $\mathcal{E}(\mathbf{X}, \mathbf{y})$ are independent given \mathbf{y} .
- Analogous to the REM, which has random i.i.d. energy levels.
- The REM (and hence also $P_\beta(\cdot|\mathbf{y})$) undergoes a **ϕ-transition**:
 - Below a critical temperature ($\beta > \beta_c$) – zero-entropy – **glassy phase**.
 - Above critical temperature – positive entropy – **paramagnetic phase**.

The RDM

Consider $Z(\beta) = \sum_{\mathbf{x}} e^{-\beta \mathcal{E}(\mathbf{x})}$ $\beta = \frac{1}{kT}$ inverse temperature

The **randomly diluted** version is

$$Z_D(\beta) = \sum_{\mathbf{x}} I(\mathbf{x}) e^{-\beta \mathcal{E}(\mathbf{x})} = \sum_{\mathbf{x}} e^{-\beta [\mathcal{E}(\mathbf{x}) + \Psi(\mathbf{x})]}$$

where $\{I(\mathbf{x})\}$ are i.i.d. Bernoulli RV's with

$$\Pr\{I(\mathbf{x}) = 1\} = \Pr\{\Psi(\mathbf{x}) = 0\} = 1 - \Pr\{I(\mathbf{x}) = 0\} = 1 - \Pr\{\Psi(\mathbf{x}) = \infty\} = e^{-NR}.$$

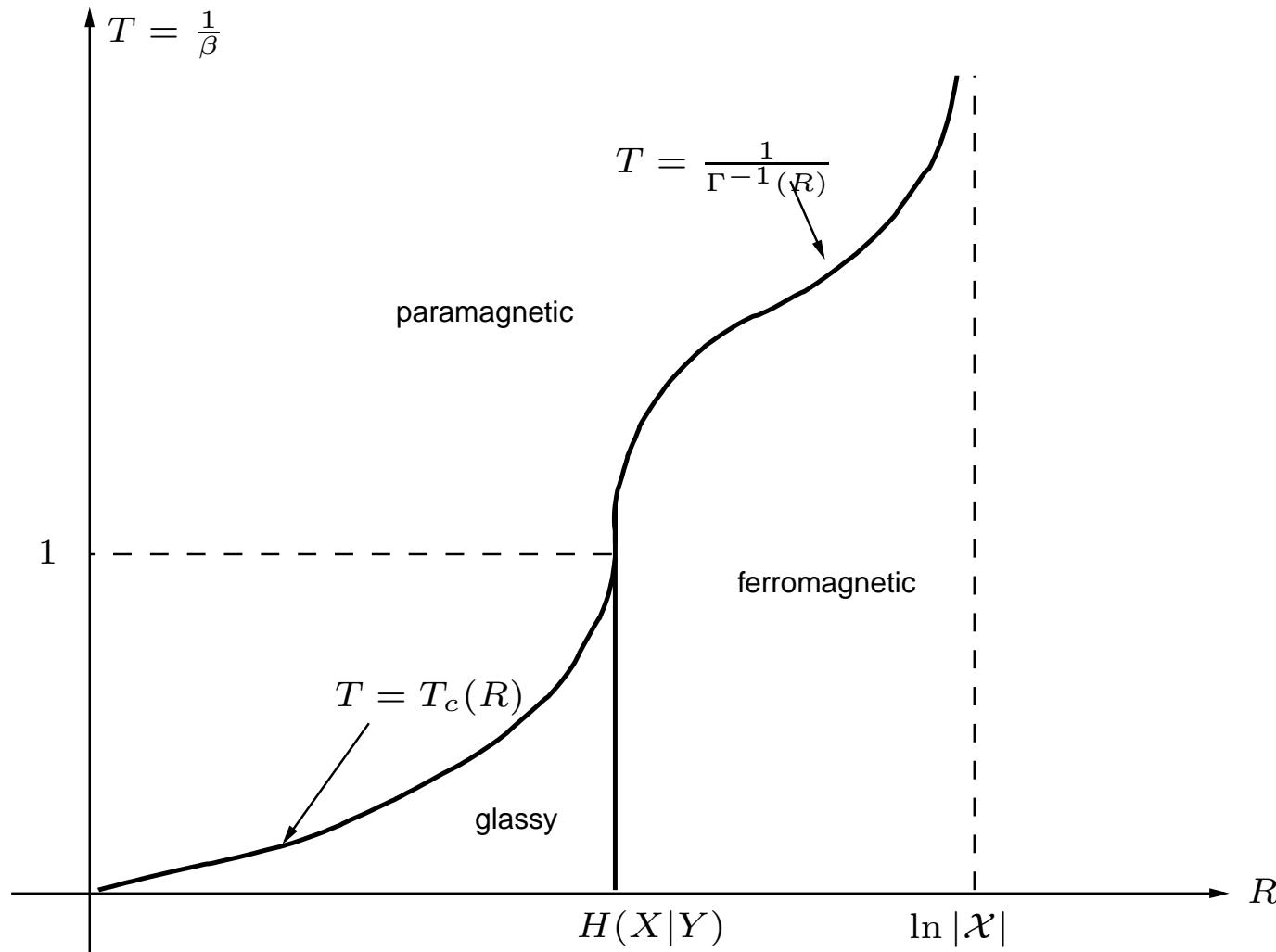
The RDM also has a glassy phase transition, similar to the REM.

Relevance to random binning:

$$Z(\beta|\mathbf{y}, u) = \sum_{\mathbf{x}} I[\mathbf{x} \in f^{-1}(u)] \cdot P^\beta(\mathbf{x}, \mathbf{y}).$$

However, for the **correct** \mathbf{x} , $I[\mathbf{x} \in f^{-1}(u)] \equiv 1$.

Phase Diagram of $Z(\beta|y, u)$



$$\Gamma(\beta) = \beta H(X, Y) + \sum_y P(y) \ln \left[\sum_x P^\beta(x, y) \right]$$

$$\beta_c(R) = s'[s^{-1}(R)] \quad s(\epsilon) = \max \left\{ H_Q(X|Y) : \mathbf{E}_Q \ln[1/P(X, Y)] \leq \epsilon \right\}.$$

Discussion

Phase diagram \sim **mirror image** of channel coding (Mézard & Monatanari, '09).

Reason: SW coding at rate $R \leftrightarrow$ channel coding at rate $(H - R)$.

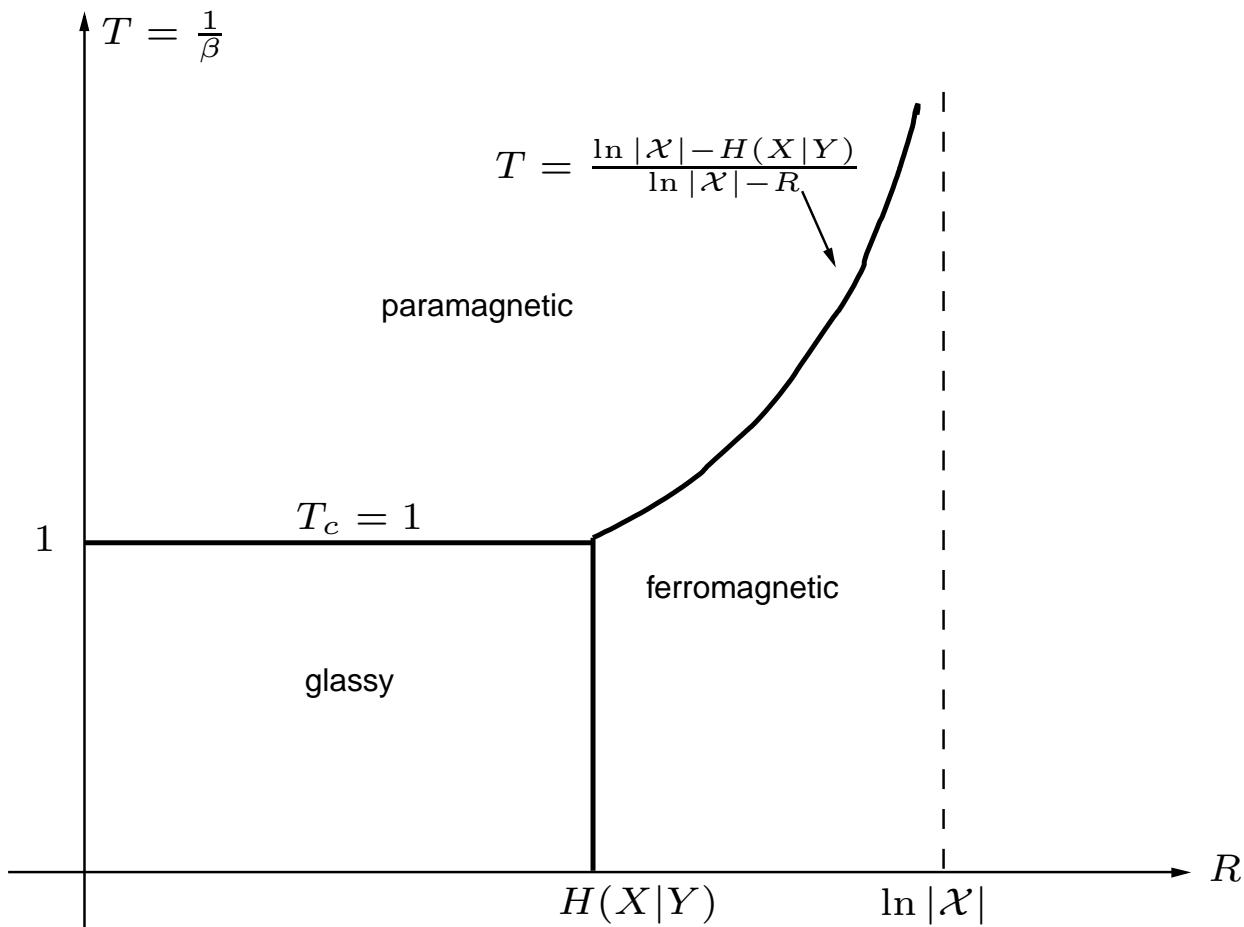
But there are a few non-trivial differences:

- Typical $|f^{-1}(u)|$ (RV) $\sim |\mathcal{X}|^N e^{-NR}$. Only $e^{N(H-R)}$ are in $\mathcal{T}(P)$.
 - Different from channel coding – fixed codebook size.
 - A-typical bin members may affect large deviations behavior.
- Prior – not necessarily uniform.
- Compositions of “codewords” are random.

Extensions and Variations

- Variable-rate SW coding (type-dependent rate).
- Mismatched decoding: decoding according to $\tilde{P}(x|y)$.
- Universal decoding: minimum empirical conditional entropy decoding.
- Full SW problem: separate codings & joint decoding of (X, Y) .

Universal Decoding



Full SW Coding: Encoding and Decoding Both X and Y

$$Z(\beta|u, v) = \sum_{x,y} I[x \in f^{-1}(u)] \cdot I[y \in g^{-1}(v)] \cdot P^\beta(x, y).$$

- 4 partial partition functions, corresponding to in/correct decoding of X, Y .
- Each partial function has 3 phases ...

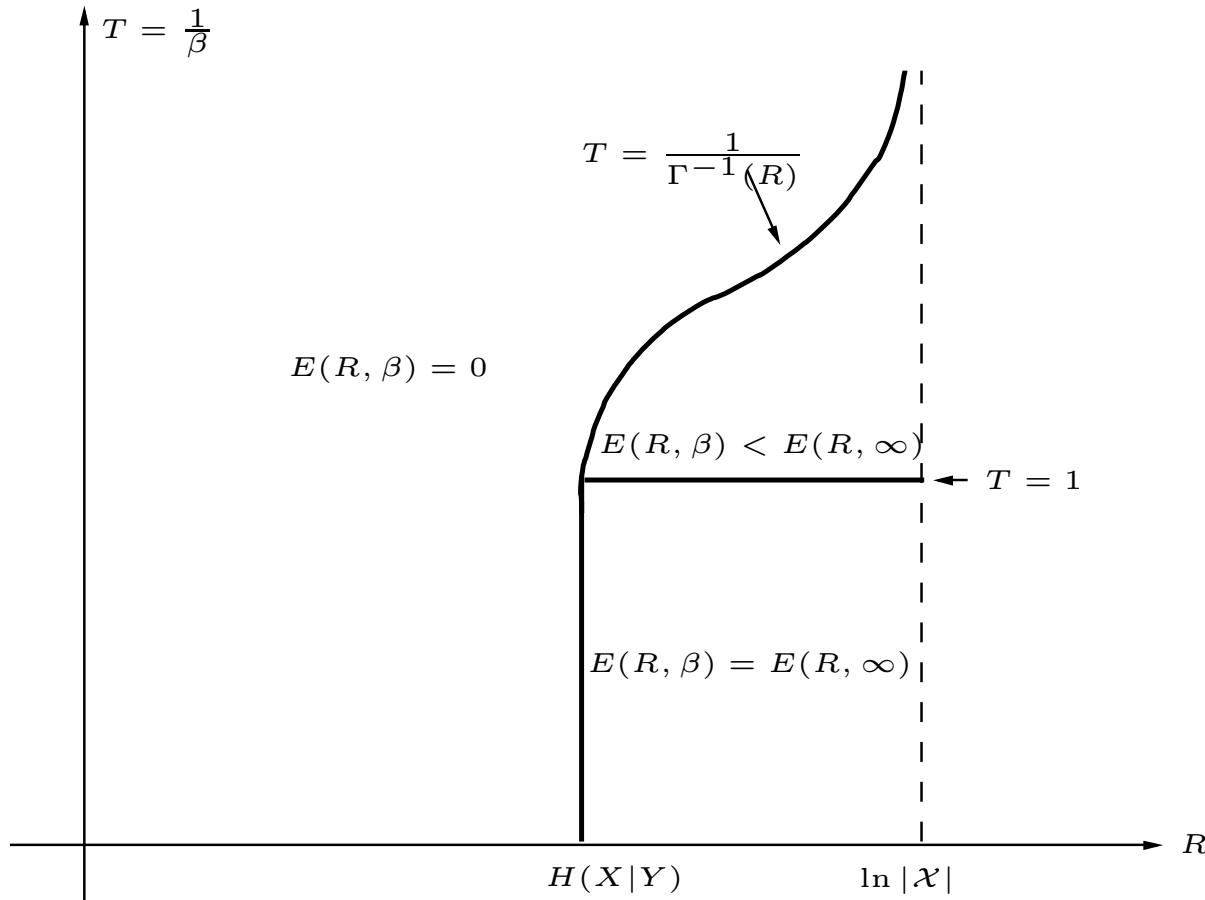
For $\beta \leq 1$, reliable decoding occurs if:

$$R_X > \beta H(X, Y) + \mathbf{E} \ln \left[\sum_x P^\beta(x, Y) \right]$$

$$R_Y > \beta H(X, Y) + \mathbf{E} \ln \left[\sum_y P^\beta(X, y) \right]$$

$$R_X + R_Y > \beta H(X, Y) + \ln \left[\sum_{x,y} P^\beta(x, y) \right]$$

Exact Random Binning Error Exponent $E(R, \beta)$



The single-letter expression of $E(R, \beta)$ is available in the paper.