Erasure/List Random Coding Error Exponents

Are Not Universally Achievable

Wasim Huleihel Nir Weinberger Neri Merhav
Department of Electrical Engineering
Technion - Israel Institute of Technology
Haifa 32000, ISRAEL

E-mail: {wh@tx, nirwein@tx, merhav@éeechnion.ac.il

Abstract

We study the problem of universal decoding for unknown @igcrmemoryless channels in the
presence of erasure/list option at the decoder, in the ranctmding regime. Specifically, we harness a
universal version of Forney’s classical erasure/list decaleveloped in earlier studies, which is based
on the competitive minimax methodology, and guaranteegeusal achievability of a certain fraction of
the optimum random coding error exponents. In this paperdaréze an exact single-letter expression
for the maximum achievable fraction. Examples are given Imctv the maximal achievable fraction is
strictly less than unity, which imply that, in general, thas no universal erasure/list decoder which
achieves the same random coding error exponents as theabpiroder for a known channel. This is in
contrast to the situation in ordinary decoding (without ¢#nasure/list option), where optimum exponents
are universally achievable, as is well known. It is also destiated that previous lower bounds derived

for the maximal achievable fraction are not tight in general

Index Terms

Universal decoding, error exponents, erasure/list decpdnaximum-likelihood decoding, random

coding, generalized likelihood ratio test, channel uraiety, competitive minimax.

. INTRODUCTION

In many practical situations encountered in coded comnatioic systems, the prevalent channel over

which transmission takes place is unknown to the receiwgically, the optimal maximum likelihood
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(ML) decoder depends on the channel statistics, and theréferusage is precluded. In such cases,
universal decoders are sought which do not require knowlexfgthe actual channel present, but still

preform well just as if the channel was known to the decodee dbsign of such universal decoders
was extensively addressed for ordinary decoding (withbat érasure/list option), see, e.g., [1-7], and
references therein. For example, for unknown discrete mgess channels (DMCs), the maximum

mutual information (MMI) decoder [1] is asymptotically apial for ordinary decoding, in the sense that
it achieves the same random coding error exponents as theddhader. However, for decoders with an

erasure/list option, only partial results exist.

In this paper, we focus on universal erasure/list decodenggsed and analyzed by Forney for known
channels [8]. Erasure/list decoding is especially attvactor unknown channels, since communicating
at any fixed rate, however small, is inherently problematites this fixed rate might be larger than the
unknown capacity of the underlying channel. It makes semsgytto adapt the coding rate to the channel
conditions, which can be learned on-line at the transmitieenever a feedback link from the receiver
to the transmitter is available. A possible approach to katite problem described above is ttateless
coding methodology, see, for example [9-14], in which at every tim&ant the decoder either makes a
decision on one of the transmitted messages or decides uesegn additional symbol via the feedback
line. The latter case can be considered as an “erasure” evethd decoder, and so universal erasure
decoders are required (see discussion in [15]).

In [4, Chapter 10, Theorem 10.11], Csdsand Korner proposed a family of universal erasure decoders,
parametrized by some real parameter, for DMCs, and analymedesulting error exponents. While this
family is in the spirit of the MMI decoder, it does not achieve same exponents as Forney’s optimal
erasure/list decoder. More recently, in [16], Moulin hasealized this family of decoders and proposed
a family of decoders parametrized by a weighting functiopok) optimization of the weighting function
within some class of possible functions, a few cases werstifte in which the universal decoder
achieves the same error exponents as if the channel was known

In [15], Merhav and Feder studied the problem in a more sydienmanner. Specifically, they
considered the problem of universal decoding with an eedsstroption for the class of DMCs indexed by
an unknown parametér They invoked the competitive minimax methodology proposefd 7], in order
to derive a universal version of Forney’s classical erdfist@ecoder. Recall that for a given DMC with
parametep, a given coding ratd?, and a given threshold paramefgr(all to be formally defined later),
Forney’s erasurel/list decoder optimally trades off betw® exponenf; (R, T, 6) of the probability of
total error event&;, and the exponenty (R, T,0) = E1(R,T,6) + T, of the probability of undetected
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error event&s, for erasure decoder (or, average list size for list dedodethe random coding regime.
The universal erasure/list decoder of [15] guarantees ahility of an exponentf; (R, T, 6), which

is at least as large a&- E1(R,T,0) for all 6, for some constanf{ € (0,1] that is independent of
(but does depend oR andT), and at the same time, an undetected error exponent fanrerdecoder
(or, average list size for list decodek), (R, T, 0) > ¢ - Ey(R,T,0) + T for all 6. At the very least this
guarantees that whenever the probabilities€pfand £, decay exponentially for a known channel, so
they do even when the channel is unknown, using the propasedraal decoder. It should be remarked,
that the benchmark exponents in [15] were the classicalridwends onE;(R,T,6) and Ex(R,T,0)
derived by Forney [8].

Clearly, to maximize the guaranteed exponents obtainetidoyiniversal decoder of [15], the maximal
0 < ¢ < 1 such that the above holds is of interest. This maximal fract®the central quantity of
this paper and will be denoted henceforth R, T'). If, for example,£*(R,T) is strictly less than
unity, then it means that there is a major difference betwggwversal ordinary decoding and universal
erasure/list decoding: while for the former, it is well knowhat optimum random coding error exponents
are universally achievable (at least for some classes ofieis and certain random coding distributions),
in the latter, when the erasure/list options are availathis, may no longer be the case. In [15], Merhav
and Feder invoked Gallager’'s bounding techniques to anahe@xponential behavior of upper bounds
on the probabilitiest; and &. Accordingly, a single-letter expression for a lower bouods* (R, T)
was obtained, which we denote henceforthépyR, T'). Sinceér (R, T) was merely a lower bound, the
question of achievability of Forney’s erasure/list expaisewvas not fully settled in [15].

As was previously mentioned, even for a known channel, omlyel bounds for the exponents were
obtained by Forney [8]. More recently, inspired by a stai#tmechanical point of view on random
code ensembles, Somekh-Baruch and Merhav [18] have fexautl expressions for the exponents of the
optimal erasure/list decoder, by assessing the momentsrtdilc type class enumerators. In this paper,
we tackle again the problem of erasure/list channel degodging similar methods, and derive exact
expression forg* (R, T) with respect to the exact erasure/list exponents of a kndvemmels found in
[18]. This exact expression leads to the following conclasio

1) In general£*(R,T) is strictly less thanl. Therefore, the known channel exponents in erasure/list

decoding cannot be achieved by any universal decoder. B dbhse, channel knowledge is
crucial for asymptotically optimum erasure/list decodifignis is in sharp contrast to the situation
in ordinary decoding (without the erasure/list option),emy as said, optimum exponents are

universally achievable, e.g., by the MMI decoder.
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2) In general{r (R, T) is strictly less tharg*(R, T). Therefore, the Gallager-style analysis technique
in [15] is not always powerful enough to obtafii(R, T').

The outline of the rest of the paper is as follows. In Sectionvl,establish notation conventions, and
in Section 1ll we detail necessary background on erasurelisoding, both for known and unknown
channels. Then, in Section IV, we present our main result okantexpression fof* (R, 7"), and discuss
the special case of binary symmetric channel (BSC). Finalgy,sived light on the differences between
& (R,T) and{L(R,T), along with some numerical results, which illustrate thémmrasult of this paper.

Finally, in Section V, we provide proofs for all our results.

Il. NOTATION CONVENTIONS

Throughout this paper, scalar random variables (RVs) wildbeoted by capital letters, their sample
values will be denoted by the respective lower case lettrd, their alphabets will be denoted by the
respective calligraphic letters, e d., =, and X, respectively. A similar convention will apply to random
vectors of dimensiom and their sample values, which will be denoted with the saymebsls in the
boldface font. The set of alk-vectors with components taking values in a certain finithalet, will
be denoted as the same alphabet superscripted byg., X™. Generic channels will be usually denoted
by the lettersP, @, or W. We shall mainly consider joint distributions of two R{(,Y’) over the
Cartesian product of two finite alphabets and ). For brevity, we will denote any joint distribution,
e.0.Qxy, simply by Q, the marginals will be denoted by x and(Qy, and the conditional distributions
will be denoted byQ x|y and Qy|x. The joint distribution induced by) x and Qyx will be denoted
by @x x Qy|x, and a similar notation will be used when the rolesXofandY are switched.

The expectation operator will be denoted By -}, and when we wish to make the dependence on the
underlying distribution@) clear, we denote it bfEg {-}. The entropy ofX and the conditional entropy
of X givenY’, will be denotedH x(Q), Hx|y(Q), respectively, where) is the underlying probability
distribution. The mutual information of the joint distrilioih @ will be denoted byl (Q). The divergence
(or, Kullback-Liebler distance) between two probability asares) and P will be denoted byD(Q||P).

For two numbers) < ¢,p < 1, D(q||p) will stand for the divergence between the binary measures
{a,1—q} and{p,1 —p}.

For a given vectoe, let Qgc denote the empirical distribution, that is, the vec{d}w(x), x € X},

where Qm(x) is the relative frequency of the lettar in the vectorz. Let 7p denote the type class

associated withP, that is, the set of all sequencesfor which Q, = P. Similarly, for a pair of vectors
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(x,y), the empirical joint distribution will be denoted b@my, or simply by Q, for short. All the
previously defined notations for regular distributions vailbo be used for empirical distributions.
The cardinality of a finite setd will be denoted by|.A|, its complement will be denoted hy°. The
probability of an even€ will be denoted byPr {£}. The indicator function of an eveétwill be denoted
by Z {£}. For two sequences of positive numbefs, } and{b,}, the notatioru,, = b,, means tha{a,, }
and {b,} are of the same exponential order, ie-!loga, /b, — 0 asn — oo, where in this paper,
logarithms are defined with respect to (w.r.t.) the naturaidahat islog(-) = In(-). Finally, for a real

numberz, we let|z|T £ max {0, z}.

[Il. M ODEL FORMULATION AND SHORT BACKGROUND
A. Known Channel

Consider a DMC with a finite input alphabét, finite output alphabed’, and a matrix of single-
letter transition probabilitie{W (y|z), = € X, y € Y}. A rate-R codebook consists al/ = [e"]
length# codewordse,, € X", m =1,2,..., M, representing théd/ messages. It will be assumed that
all messages are a-priori equiprobable. We assume the bleseimnfixed composition random codes of
blocklengthn, where each codeword is selected at random, uniformly withitype classy (Px) for
some given random coding distributid?y over the alphabef’.

In the following, we give a short description on the openataf the erasure decoder and then the
list decoder. A decoder with an erasure option is a partitibthe observation spacg™ into (M + 1)
regions, denoted b{ﬂzm}fnfzo. An erasure decoder works as followsylfe Y™ falls into themth region,
Rm, form =1,2,..., M, then a decision is made in favor of message numbelf y € R, then no
decision is made and an erasure is declared. Accordinghshaé refer toy € Ry as anerasure event.
Given a codeC = {z1,...,z)} and a decodeR = (Ry,..., Ry ), we define two error events. The
event&; is the event of deciding on erroneous codeword or making asuee, and the evedt which
is the undetected error event, namely, the event of decidimgrroneous codeword. It is evident tlat

is the disjoint union of the erasure event afid The probabilities of all the aforementioned events are

given by:
1 M
Pri&i}=—2 > W(ylem), (1)
m=1yeRs,
1 M
Prigat=--> > D Wylem), (2)

m=1YyeR,, m'#m
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and
Pr{Ro} =Pr{&} —Pr{&}. (3)

A list decoder is a mapping from the space of received ved¥rénto a collection of the subsets of
{1,..., M}. Alternatively, a list decoder is uniquely defined by a sef\6f+- 1 (not necessarily disjoint)
decoding regions{Rm}%:0 such thatR,, C Y" and Ry = Y\ UfleRm. Given a received vector
y, the mth codeword belongs to the output list4f € R,,, and if y does not belong to any of the
regionsR,, theny € Ry, and an erasure is declared. The average error probabilaylisf decoder and
a codeboolC is the probability that the actual transmitted codewordsdoet belong to the output list,
and it is defined similarly to (1). The average list size is thpeeted (w.r.t. the output of the channel)
number of erroneous codewords in the output list, and defimaiasly to (2).

Since the error events for the erasure and list decoders direedién the same way, they can be
treated on the same footing. Nonetheless, for descriptivpgses, we will refer to the erasure decoder,
but we emphasize that all the following analysis and resaits true also for the list decoder. When
knowledge on the specific DMC is available at the decoder, éyotmave shown [8], using Neyman-
Pearson methodology, that the optimal tradeoff betweef; } andPr {&,} is attained by the decision
regionsR* £ (R}, ..., R%,) given by:

M/(yhrm) T
RE = y: >e™ sy, m=1,2,...M, 4)
and
M
Re2 () (Ry)°, (5)
m=1

whereT' is a parameter, henceforth refereed as ttireshold, which controls the balance between the
probabilities of€; and&. WhenT' > 0 the decoder operates in the erasure mode, and when it is in the
list mode thenI" < 0. No other decision rule gives both a lowBr {£;} and a lowerPr {&;} than the

above choice. Finally, we define the error exponditéR, T'), i = 1,2, as the exponents of the average

probabilities of error®r {&;} (associated with the optimal decodgt), where the average is taken w.r.t.

a given ensemble of the randomly selected codes, that is,
1.
E; (R, T) = —liminf ~log Pr{&;}, i=1,2. (6)
n—oo N

An important observation is that Forney’s decision rule kmown DMCs can also be obtained by

formulating the following optimization problem: Find a deles R that minimizesI’ (C, R) where

L'(C,R) 2 Pr{&)Y +e T Pr{&} (7)
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M
=Y S W)+ Y T W () (8)

m=1 | YER, m'#£m YERS,

for a given codebook and a given threshold@. Indeed, noting that (8) can be rewritten as

M
PER) =Y 30 | S Wlen)Z{y € R + ¢ Wyle) Ty e RGY| . (©)
yeyn m=1 [m'#m

it is evident that for each, the bracketed expression is minimized Ry, as defined above. By taking

the ensemble average, we have
E{l(C,R*)} £ Pr{&} + e ™Pr{&}. (10)

In [18], it was stated (without a proof) that, in the expornanscale, there is a balance between the
two terms at the right hand side of (10), namely, the expowériér {€>} equals to the exponent of
e "TPr{&}, for the optimal decodeR*. We rigorously assert this property in the following lemma.

The proof appears in Appendix A.

Lemma 1 For all R andT, the optimal decodeR* satisfies:
Ey (R, T)=T+ E1 (R,T). (11)

The significance of Lemma 1 is attributed to the fact that now wg pnaed to assess the exponential
behavior of eithePr {&;}, or, Pr{&:}, but not both. As was mentioned in the Introduction, in [18],
Somekh-Baruch and Merhav have obtained exact single-Fetteulas for the error exponents, (R, T')
and Ey(R,T) associated withPr {£;} and Pr{&,}, respectively. Specifically, they show, that for the

ensemble of fixed composition codes [18, Theoref?1]
Ey (R7 T) = min {ECL(Rv T)a Eb(Rv T)} ; (12)
where

E.(R,T)2 min |D(Q|Px x W)+ I(Q)—R (13)
Q.Q)€Q

ln [18], each codeword in the codebook was drawn independentiyi oitteer codewords, and its symbols were drawn
from an independent and identically (i.i.d.) distribution (identical for a#f todewords). Nonetheless, the modification to the
ensemble of fixed composition codes is straightforward.

2We note that there is an error at the end of the proof of Theorem 1 in, [Miere it was claimed that

min{FEq.(R,T), Ev(R,T)} = Eo(R,T), which may not be true in general. The correct expression is as in (12)
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and

Ey(R,T) £ min D(Q||Px x W) (14)
QeL

where( is a probability distribution ont’ x Y, and

02 {(Q.Q eP: 1(Q) > R, 9Q.Q) <0}, (15)
D2{(QQ): Qx=Qx="Px, Qv =Qr}. (16)
NQ,Q) £ Eplog W (Y|X) —Eqlog W(Y|X) - T, (17)
(18)
and
L2 {Q EglogW(Y|X) < R+T + _max [EQlogW(Y|X)—I(Q)]}. (19)
QR:(Q,Q)eD: I(Q)<XR

As a special case, we shall consider in the sequel the probfemmiversal erasure/list decoding for
the BSC, and to this end, we will use the exact expressiof;9R, T'). Accordingly, for the BSC with

crossover probability, it was shown that [18, Corollary 2]

E1gsc(R,T) = min {Eqpsc(R,T), Epgsc(R,T)}, (20)
where
E.psc(R,T) £ i [D(He) h<~+ T> + log 2 R] (21)
a ) = min - ) - )
B8C aelosov(R)-1/8) | T3 &
and
Eygsc(R,T) = min D (q|l6), (22)
G€Lpsc

where3(0) = log[(1 — 6)/6], anddev(R) denote the normalized Gilbert-Varshamov (GV) distaneg, i.

the smaller solutiond, to the equation
h(d) =log2 — R, (23)
whereh(§) = —§logé — (1 — &) log(1 — 6) is the binary entropy function, and

Lesc = {d - fO) < R+ T+ | max[=a-B0) + hlg) —log 2]} : (24)
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B. Unknown Channel

We now move on to the case of an unknown channel. Consider idyfaffDMCs
We 2 {Wy (ylz), € X,y € Y,0 € O}, (25)

with a finite input alphabetY, a finite output alphabed’, and a matrix of single-letter transition
probabilities{ W} (y|z)}, whered is a parameter, or the index of the channel in the class, gakitues

in some seB, which may be countable or uncountable. For examplmay be represent the set of all
|X] - (|]Y] — 1) single-letter transition probabilities that define the DM@hathe given input and output
alphabets. In our problem, the channel is unknown to theivecdesigner, and the designer only knows
that the channel belongs to the family of channdls, that is,# itself is unknown.

When the channel is unknown, the competitive minimax metlaxy/, proposed and developed in
[15], proves useful. Specifically, ldt, (C,R) in (7) designate the above defined Lagrangian, where we
now emphasize the dependence on the index of the chafin8imilarly, henceforth we shall denote
the error exponents in (6) b¥: (R, T, 0) and Ex(R, T, 0). Also, let['; = E {ming I'y (C,R)}, which is
the ensemble average of the minimum of the above Lagrang@ef{eed by Forney’s optimum decision
rule) w.r.t. the channeW, (y|x), for a givend. Note that by Lemma 1, the exponential orderItf is

e~ (B (RT.O+T) - A competitive minimax decision rule R is one that achieves

min max M, (26)
R 0O Iy

which is asymptotically equivalent to

. F9(Ca7z)
min max

R 0c6 e—nlE(RTO+T] (27)

However, as discussed in [15], such a minimax criterion, arhpeting with the optimum performance,
may be too optimistic, and the value of the minimization peab in (27) may diverge to infinity for

every R, asn — oo. A possible remedy for this situation is to compete with oal§raction¢ € [0, 1]

of E; (R, T,60), which we would like to choose as large as possible. To wit,ane interested in the

competitive minimax criterion
K,(C) = m%n K,(R,C), (28)

in which

— F9<C772)
0c0 e—n(EE(RTO)+T)"

(29)
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Accordingly, we wish to find the largest value éfsuch that the ensemble averafjg = E {K,(C)}

would not grow exponentially fast, i.e.,

1 _
lim sup — log K, < 0. (30)

n—0o0

In [15], the following universal decoding metric was defined

f@n.y) 2 max {CP AL,y (g, } (31)

and a universal erasure/list decoder was proposed whiclthkallowing decision regions

S f(ahnvy) T
Rm 24y >e™ s m=1,2,... M, (32)
{ Zm/im f(wm/Jy)
and
A~ M A
Ro 2 [ Ri (33)
m=1

The property that make® £ (Ro,R1,...,Ry) interesting is that it was shown in [15], that it is
asymptotically optimal, i.e., for any giveh K,,(R, C) may only be sub-exponentially larger th&mn,(C).
Thus, the largest such thatk,, is sub-exponential is also attained B Hence, in order to find the

largest achievablé, we would like to evaluate exactly the exponential ordeiE{)Kn(ﬁ,C)].

Remark 1 Note that the results in this paper can be generalized to cdinelom coding ensembles which
assign equal probabilities within every type class (for endetails see [15, Section V]). For conceptual

simplicity, we confine attention to fixed-composition randoatiag.

IV. RESULTS

In this section, our results are presented and discussedisPare relegated to Section V.

A. Exact formula for the largest achievable fraction

We start with a few definitions. Let
G(RT.¢, Q) = max {¢By (R, T,0) + T+ Eglog Wy(Y]X) } (34)
0cO
Q(R7T7€7Q7Q~) é G(R7 T7§7Q~> - G<R7T7€7 Q) - T7 (35)
where £} (R, T,0) is given in (12). Finally, let

02{(Q.Q eD: 1(Q) > R QR,T£Q,Q) <0} (36)
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11
and

LE {QZG(R,T7§7Q)§R+T+ _max [G(R,T,ﬁ,Q)—I(Q)]}_ (37)
Q:(Q,Q)ED, I(Q)<R

whereD is defined in (16).

Theorem 1 Consider the ensemble of fixed composition codes of tfp€y). Then,&*(R,T) is equal

to the largest numbef that satisfies simultaneously:

maX{fEl (R,T.6)~ min {D(QIIPx x Wy) +1(Q) - R}} <0, (38)
0€0 (Q.Q)eQ
and
max {§E1 (R, T,0) — min D(Q||Px x Wg)} <0. (39)
0cO QeL

Notice that in order to find*(R,T"), one can perform a simple line search over the inteffdl] using
the conditions in Theorem 1. Also, note that one can readilydisthgle-letter formula fo¢*(R,T). The
resulting formula is, however, complicated and does notigeomuch insight, therefore, it is not provided
here. For the special case of the BSC, one can simplify theeaborimization problems over the joint
distributions (@, Q), and obtain instead a one-dimensional minimization problldeed, consider the
family of BSCs where the unknown crossover probabifithelongs to®© = [0, 1]. Recall that (c.f. end
of Subsection 1lI-A)5(0) = log [(1 — 0)/6]. Define

_ EEy (R, T,0) +log(l — 0) + T — maxg {{Fy (R, T,6") 4+ log(1 —0") — (') - ¢}

0 . (40
o(6) G (40)
and
¥ L 0 41
a 52?72"5( ), (41)
* 2 mj ) 42
4 arg?ﬁ(@) (42)
Finally, define
log 2, if ¢f >1/2, 01, ¢35 <1/2,
9(df,q3) = : (43)

max{h(q}),h(¢3)}, otherwise

and

L2056 — G- <
Lgsc {q.orgggl [EE1(R,T,0) — G- B(0) +1og] <R+ T
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+ olél(% [EE1 (R, T,0) — max {0, dcv(R)} - 5(0) + log + h(max {60, dcv(R)}) — log 2]} .
(44)

We have the following result.

Corollary 1 Consider a family of BSCs, where the unknown crossover piibtya belongs ta® = [0, 1],
and with fixed composition codes of tyge = (1/2,1/2). Then,{*(R, T') equals to the largest number

¢ that satisfies simultaneously:

Jnax {f - E1gsc(R,T,0) — mqin [D(q]|0) + |—g (¢}, ¢5) +log2 — R[] } <0, (45)
and
. E T,0) — min D (g < 4
0?32{1{5 1,85¢(R, T, 0) Jnin (ql\H)} <0, (46)

where £ gsc(R, T, 6) is given in (20).

Note that there is a major difference between ordinary aridewsal decoding in the context of the
BSC: while for the former, the optimal detector depends omywhetherd < 1/2 or 6 > 1/2 (i.e.,
minimum distance versus maximum distance decoders, rixgglgy; for the latter, the dependence is on

the exact value of.

B. Discussion and Comparison with Previous Results

While in this work we have derived the exact maximal achiévad(R,T') for fixed composition
coding of typePy, in [15, Theorem 2], Merhav and Feder have obtained the fatigower bound [15,

Theorem 2]:

. E(6,0",s,p) — pR — sT
“(R,T) > T) £ —— 47
CRT) 2 (RT) = min  max (1— s)E\(R,T,0) + sE1 (R, T, 0") (47)

where

B(0,6,5,p) £ min [F(Qy. 1= 5,0) + pF(Qy./p.8") = H(Qv) 48)

and

F(Qy,1—s5,0)% min I1(Q) — AEg log Wy (Y| X)]. 49
(Qv )2 @R, H(Q) = ABqlog Wo(¥|X)] (49)

Before we continue, we remark that in [15], Forney’s loweuthd onE; (R, T, 0) was used instead of its

exact value as derived in [18], but for the sake of comparaonexponent can be used, and specifically,

DRAFT



13

the exact exponent. Now, note that an alternative (equitptepresentation of; (R,T') in (47) is that

it is given by the larges§ such that for any paif, §”) € ©2

. /! _ _ _ _ /! > .
o in , max  E(0,0,s,p) = pR — 5T §[(1—s)Ei(R,T,0) + sEr(R,T,0")] >0.  (50)

Straightforward algebraic manipulations show that the ilastjuality can be rewritten as

i in U(R,T,0,0,0".Q,Q,p,s)>0 51
O 0 ( Q,Q,p,s) > (51)

where

U(R,T,0,0,0",Q,Q,p,s,&) = D(Q||Px x Wp) + p[I(Q) — R
+5- |Eglog Wy (Y]X) + EE1(R, T, )
— Eqlog Wy (Y|X) — EE1 (R, T, 0") — T} —€E1(R,T,0).  (52)

For any given(6,8”) € ©2, and(s,p), ¥(R,T,0,0',0",Q,Q, p,s,£) is convex in(Q,Q), and for a
given (Q,Q), it is linear (and hence concave) (R, p) . Thus, the minimax theorem implies that (51) is
equivalent to

. . " ~ > 0.
o, (Q%l)réposglgcg‘I’(R,T,Hﬁﬁ ,Q,Q,p,5,8) >0 (53)

On the other hand, the exact valuessf R, T') in Theorem 1 is determined by two conditions (38)-(39).
In what follows, we shall concentrate on the first condition{38), as this condition can be compared to
(53). Thus, assume, for a moment, that the condition in (38 adse lenient than the condition in (38).

Then, according to (38), a fractighis achievable if

min min  D(Q||Px x Wy) + 1(Q) — R—{E1(R,T,6) > 0 (54)
0€0 (Q,Q)eD

where the minimum ovefQ, Q) is such that/ (Q) > R andQ(R,T,¢, Q, Q) < 0. Now, the optimization

problem in (54) is equivalent to

. . A /
min (Q%I)Iépg}%?%{ D(Q||Px x Wp) + (1 —p) [I(Q) — R]

QR T,€,Q,Q) ~EBy(R, T.0)| =0, (55)
or by lettingp =1 — p/ we get
min min maxmax [D(QHPX x Wy) + p[I(Q) — R+ sQ(R, T,¢,Q,Q) — By (R, T, 9)} >0,

0€0 (Q,Q)eD r<1 520
(56)
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which is equivalent to

. . . ! ol ~ > 0.
min (Q%I)Iép max max max min V(R,T,0,0,0",Q,Q,p,5,§) >0 (57)

Moreover, for a given, @, Q), we may write

in U(R,T,0,0',0",Q,Q = mi U(R,T,0,0,0".Q,Q

max max max min (R, T,0,0,0",Q,Q,p,5,§) Inin e e max (R, T,0,0,0",Q,Q,p,5,§),
(58)

because under the constraint> 0, the inner minimization oveé” € © does not depend on the value

of (p,s,0"): it is simply thed” € © which maximizesEg log Wy (Y|X) + ¢E1 (R, T,0") 3. Thus, the

resulting condition is

. . i T !l 2 > 0.
(6%2@2(Q%l)réporggglrgggglgg (R, T,0,0,0",Q,Q,p,5,§) >0 (59)

By comparing the condition in (59) to the condition of the &swbound of [15] in (53), the following
differences are observed:

1) In (53) an additional constraint< p is imposed.

2) In (53) a sub-optimal choice @f = 6 is imposed.
Accordingly, these differences may cause the value of th@maix in (53) to be lower than the value
of the optimization problem in (59), which results in a lowachievable¢ compared tof*(R,T),
as one should expect. Next, we provide two examples whereninad which these differences are
immaterial and in the other one they do. The former happen# wh® optimal solution in (59), denoted
by (6*,6",Q*, Q*, p*,s*), satisfiess* < p*, and the maximizer off ;. log Wy (YX) + £L(R,T) -
E(R,T,0") is given by6*. Accordingly, in this case, the value of (59) equals to (58)d therefore
(R, T) =&L(R,T), due the fact that the condition in (39) is more lenient thaa ¢ondition in (38),
as we have previously assumed. The conclusion that stemstifisrobservation is that, in this case, the

analysis in [15] is tight.

Example 1 In [15], a family of BSCs was considered whete © designates the cross-over probability
of the BSC, an® = {0,1/100,2/100,...,1}. The values of (R, T) were computed for various values
of R andT. It was assumed thal > 0, which means that the decoder operates in the erasure mode.

Numerical calculations of the bound derived in this workddhe exact formula), result in exactly the

3If for a given real functionf(u,v) the minimizerv* w.rt. v does not depend on, then max,cy minyey f(u,v) =
b )
maxyey f(u,v*) > mingey maxyey f(u,v), and the minimax inequality resultsnax,cy minyey f(u,v) =

minyey maxyer f(u,v), assuming thal/ andV are two independent sets (i.e., rectangular).
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same values as given in [15, Table 1], and so in all these c#seanalysis of [15] was sufficient to
provide tight results. For example, foR, T') = (0.05,0.15), and codebook typd#y = (1/2,1/2), we
obtain(r(R,T) = 0.495. Also, the two worst case channels (i.e., the solutions &))(&ref* = 0.18
and 0”* = 0.22 while ™ = 6* and p* = 0.36 > s* = 0.185. So, sinces* < p* and §"* = #*, the
discussion above implies that a tight result is obtainedt i ¢*(R,T) = £, (R, T) = 0.495.

Since¢*(R,T) < 1 for someR andT, we arrive at the following conclusiorn general, in the random
coding regime of erasure/list decoding, there is no universal decoder which achieves the same error
exponent as Forney's decoder for every channel in the class. This fact is in contrast to ordinary decoding,
in which the MMI decoder achieves the exact same error exgoag the ML decoder. In this sense,
channel knowledge is crucial when erasure/list optionsatiosved.

Nonetheless, in general, we might have thatR, T') is strictly less tharg* (R, T"). Again, assume that
the condition in (38) dominates (R, T'). To provide intuition, notice that in (53)iplets (6, 6’,6") € ©3
are optimized, in contrast to (53), where omgirs of channels(d,#"”) € ©2 are optimized. Thus, for
a family of only two channels, namely9| = 2, typically (but not necessarily) the second difference
above, of imposing the constraifitt= 6, is immaterial. Then, the only difference between the caorat
in (53) and (59) is the constrairt< p. Let us assume that this is indeed the case, and let us notite th

s can be thought as a Lagrange multiplier for the constraint
Eg log Wor (Y|X)+EE(R,T,0") —Eglog Wy (YX) — EE1 (R, T,60") — T < 0. (60)

Now, if the constraint, at the optimal solution, is slackenhthe optimal Lagrange multiplier is* = 0.

In this case, the constraint< p is immaterial and so (53) and (59) are exactly the same. Hewes
we shall see in the sequel, it is possible tkat> p* in (59), and then the values of the objective in
(53) and (59) are different. Observing (60), it is appardat tasT decreases, and especially in the list
mode ofT' < 0, the optimals* of (59) increases, perhaps beyond the optiptalThus, if boths* > p*
and the condition in (38) dominaté$(R,T'), we get that;(R,T) < £*(R,T). The following example
provides such a simple case. We remark, that such a phenomesoalready observed in a Slepian-Wolf
erasure/list decoding scenario, for a known source [19]r& &0, in the list regime of” < 0, there is

a gap between the Forney-style bound and the exact randarmdierror exponents.

Example 2 Consider a family of two BSC’s, wher® = {0.1,0.15}, and a typePx = (1/2,1/2) for
the random fixed composition codebook. We take7") = (0.4, —0.25), and sincel’ < 0, the decoder
operates in the list mode. We obtain tl§a{ R, 7") = 0.716 which is strictly less thag*(R,T") = 0.727.
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In the optimization problem (53), the optimal values afe= s* = 0.231, while if the constraints < p

is relaxed, then the optimal values are= 0.231 > p = 0.217. The resulting value of the optimization
problem is exactly0.727, just as¢*(R,T"). Moreover, for this example, the largest achievaplehich
satisfy condition (38) is the same for condition (39). Whhe difference betweefy (R,T) and{* (R, T')

is not very large, it is nevertheless existent and in monéciale scenarios, the differences might be more

significant.

V. PROOFS

In the following, for simplicity of notations, we omit the dendency of the various quantities &
T, and¢, as they remain constants along the proofs.

Proof of Theorem 1: We analyze the total error term, following the steps of [1&t®a V]. As was
mentioned earlier, we want to assess the (exact) expohbetiavior of E [Kn(fz,C)}. In [15, Theorem
2], an upper bound was derived on this quantity, so here wi adeht lower bound. Le®,, denote
the set of values of that achieve{ f(x,y),x € X",y € Y"}. Note that the elements &,, depend on
x andy only through their joint type, and whence, we have i@t < (n+ 1)I¥I1YI=1, i.e. the size of

O, is a polynomial function of.. Now,

S o F@(Cuﬁ)
E[K.(R.0)| = {I&aé( SR } (61)
TG R)
{(;e@ e—n(EE(0)+T) } (62)
@ Fe , R)
96 n
31 Skt [ Sy, S Wol Xo) + e e Wo(y|Xo)|
= 966 o—n(EE: (0)+T)
(64)
1 M
Z 3 e B O,y X ) (65)
mzl yeR,, M #FmIeO,
1 M
7 Z " PO (Y| X ) (66)
m:l 96@
(1 1 M
3 maxc e OFDWy (y| X) (67)
mzly R, M #EM
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M
1
7 max "¢ {OWy(y| X ) (68)
m=1yeRe "

M M
=E {;4 3N f(me,w} +E {]\14 >y e”Tf<Xm,y>} (69)
m=1yeR,, m'#m m=lyeRe,
where in(a) we have used the fact that the size@f is polynomial, and thus can be absorbed in the
e™T factor (see, [18, pp. 5, footnote 2]), and (b) follows fron). (8s was shown in [15, eq. after (A.1)],
the lower bound in (69) is, in fact, also an upper boundEo[ (R C)}. Therefore, in the exponential

scale, nothing was lost due to the above bounding, and watidsehave that

E |Ku(R,C)| = { ZZ 3 s m,y}+E{]\14§:Ze"Tf(Xm,y)}. (70)

m=lyeR,, m'#m m=lyeRe
Contrary to the proof technique used in [15] to assess therexgial behavior of (70), where Chernoff
and Jensen bounds were invoked, here, we will evaluatethae exponential scale of the two terms
on the right hand side of (70). It can be noticed that the firgression is related to undetected errors
(or average number of incorrect codewords on the list), &edsecond one is related to the total error

(erasures and undetected errors). For brevity, we define

M
A1A6”T~E{AIIZ Z f(Xmay)}a (71)

and
1 M
A 2E — 3 F(Xmy) s (72)
and so
E [Kn(fz,cﬂ = A, + As. (73)

As was mentioned before, we would like to analyze the exptislenate of (70), or, equivalently, of (71)
and (72). Now, note that
.1 .1
lim —logE[ W (R, C)] - max{ lim — log A1, lim 1ogA2}. (74)
n—oo N n—oo n

Then, a fractior¢ is achievable if both n~'log A; andn~!log A, converge to a non-positive constant
asn — oo. At this point, we would like to invoke Lemma 1, and concludatth suffices to asses the
exponential behavior ofi; (or, As), and then the other one is immediately obtained. Note thatew

Lemma 1 was derived for the case of a known channel, it stillaiemtrue in the case of an unknown
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channel due to the similar structure of our universal emslecoder (see the equivalence between (8)
and (70)). Thus, while bott; and As can be analyzed, it turns out that the analytical formula for
the exponent of4; is more compact, and thus, in the following, we only preséet analysis ofA;.

Continuing from (71)

Al—e”TIE{ ZZf mY) - T{y € RE, }} (75)

m=1 Yy
@ TR {Z f(Xm,y) - T{y € RS, }|mth message transmltt%d (76)
—e T ZE{ m,Y) - T{y € RE,}mth message transmltt%d (77)
=e ") Px(Xpm Z IE{ m ) - I{y € R} X = @, mth message transmltt}d
T
(78)

e Y Px(Xm=Tm) Y _ f(@my) Pr {y € RE,| Xy = @, mth message transmitt}d
T y

(79)
where (a) follows from the symmetry of the random coding naei$m. Next, let) be the joint empirical

probability distribution defined o’ x ) of x,,» andy. Then,

f@nrvy) = max { O Wy (ya,,) | (80)
_ %ﬁ;( {en(§E1(9)+T)enIE)Q log Wg(Y\X)} (81)
—exp |- ((€51(0) + T) + EqIog Wa(¥ 1)} (82)
= exp[n- G(Q)]. (83)

where we have define@(Q) in (34). Next, we shall focus on the latter probability in Y7Bor a givenz,,
andy, letQ = Pmy, let Ny(Q) denote the number of codewords (excluding) whose joint empirical

probability distribution with a giverny is Q. Accordingly, we have that

Pr{y e Rifon} =Prd 3 f@m.y) = f@my)e " (84)

m’#£m

“Note that in the proof of Lemma 1, we have used the fact #HatR,T,6) and F»(R,T,6) are both continuous
functions ofT". Accordingly, in order to apply Lemma 1 on the universal case, ooaldhnspect thatim,, %log A, and
Llog A, is indeed continuous

n

in T', and similarly to the derivation of2 (R, T, ) in [18], it can be shown thdfm,, %log As is continuous too.

limy, 0o %log A, are also continuous functions @f. As shall be seen in the sequéiin,
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= Pr{ Ny(@Q)exp[n - G(Q)] = exp [n- G(Q)] e"T} (85)
Q

= Pr max Ny (Q) expn- G(Q)] > exp [n- G(Q)] e"T} (86)

Pro (J{Ny(@exp[n- G(Q)] = exp [n- G(Q)] e“T}} (87)

Q
=3 Pr{Ny(@ expln- GQ) = exp [n- GQ)] 7} (88)
Q
= mgx Pr {Ny(Q) exp [n- G(Q)] > exp [n . G(Q)} €_nT} (89)
- Py {Ny(Q) > exp [n (0, Q)] } (90)

where for a givenQy, S(Qy) £ {Q: Qy =Qy, Qx = Qx}. The asymptotic analysis of the
probability in (90) was carried out in [18, Section V] for anwen €2, and it is not different here.
The result relies on the exponential decay of the probabihigt the joint type of a givery with a

randomly choser,,. is @, namely

p2Pr {meuy - Q} . (91)

Under the assumed random coding ensemble, a simple apmiiaatthe method of types reveals that
[4]

p=exp{-nl(Q)}. (92)

Next, standard large deviations arguments (cf. [18, Sedfipnmeveal that forQ) € S (ﬁy)

exp {-n|I(Q)—R["} 9(Q Q) <0
Pr{Ny(Q) > @} = &y 0<QQ,0)<R—-IQ) - (93)
0 2Q,Q) > R—1(Q)

Let

U(Q) = e 01 IQ) <R, AQ.Q) <R-1I1(Q) - (94)

0 otherwise
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Thus, substituting (93) in (90) and then in (79), we obtainngishe method of types,

A=Y P(X = 20) Y f(@my) - UQ) (95)
., Y
= " maxexp [nHy|x(Q)] exp [nG(Q)| U(Q). (96)
Q
Note that the condition:
0Q,Q) < R-1(Q) (97)
in (94) is equivalent to
GQ) <GQ) -I@Q +R+T. (98)

Thus, we obtain that the exponent 4f is given by

Tim % log A; = —T — min {EQ(R, T,€), Ey(R, T, 5)} : (99)
in which
Eo(R,T,€) 2 min |~Hyx(Q) -~ G(Q)+1(Q) - K] (100)
(R.Q)eQ
where Q is defined in (36), and
Ey(R, T,€) 2 min |~ Hyx(Q) - G(Q)] (101)
QeL

where L is defined in (37). Now, we want to find the maxingafor which

=T — Ea(R7 T7 g) S 07 (102)

—T — Ey(R, T,€) <0. (103)
For E,(R,T,¢), substitutingG(Q), given in (36), in (100), we obtain

—E.(R,T,¢) — T = max [Hy|X(Q) +GQ)-1(Q) + R] -T (104)
(Q,Q)eQ

~ max [HYX(Q) + max {€By (6) + Eglog Wo(Y|X) } — 1(Q) + R} (105)
@QQeQ 0

~ max {gEl (6) + max {Hy|X(Q) ~I1(Q) + R+ Eglog Wg(YX)}} (106)
(QQee

—max{ ¢By (0) — min {D(QIIPx x Wy) + 1(Q) — R} ¢ (107)
0 (Q.Q)€Q
which is exactly the condition in (38). In a similar mannemgoobtains

_By(RT,€) — T = max {fEl (6) — min D(Q||Px x W9>} , (108)
0 QeL
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which is exactly the condition in (39). ]
Proof of Corollary 1. In the following, we analyze the objective in (38) for afly Starting with

the left term,E1(#), note that this is just the expression that was consider¢ti8inpp. 6450-6451, egs.

(64)-(73)]. For completeness, we present here the mairs stephe simplification of this term to the

BSC. We start with the analysis @,(R,T") given in (13). First, note that

Eq log Wa(Y|X) —Eqlog Wy(Y|X) = [Q(X #Y) = Q(X #Y)| 8 (109)
wheres = log [(1 — 0) /6]. Thus, recalling (12)F;(0) takes the form
+
min { D(Q||Px x Wg) +| min _ (—Hx)y(Q) +1og2 — R) } (110)
Q QEQBsc(Q)
where
Guscl@ 2 {@: Qv = Qv QX V) QX £7) 4+ 5 ). (a11)
Now, note that
Hxy(Q) = Hzixzvyy (Q) < Hrpx2v) (@), (112)

and thus

m(;n {D(QHPX x Wp)+| min (—Hxy(Q)+log2— R)

}

QEDesc(Q)
+
> min {D(QHPX X Wo) +| min _ (—Hrixzy}(Q) +log2 — R) } (113)
Q QEQBsc(Q)
+
= min {D (gl|0) +| min (—h(q)+log2— R) } (114)
q q<q+T/B

where the last step follows since the minimizi@gs such that) x = Px to obtain minimalD(Q||Px x
Wy), and it is easy to verify using convexity arguments that @i@a(X # Y) = ¢ the divergence
D(Q||Px x Wp) is minimized for a symmetri€)yx, namely,
B q T =y
Qy|x (ylz) = ; (115)
1—q z#y

for which D(Q||Px x Wy) = D (]|0). Finally, it is evident that we have equality in (113) if we dse

Qy|x (ylz) = ; (116)
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and thus it is the minimizer. Next, we observe thdt (¢) is a decreasing function af for g € [0,1/2]

)

and increasing foy € [1/2,1]. Thus,

min  (—h(q) +log2 — R)

min< D (g||0) +
q { (4lle) q<q+T/p

=minq D (q||0) + |—h |minq =, ¢+ = ¢ | +1log2 - R (117)
q 2 B
= min {D (q||6) — h (min {5GV (R),q+ g}) +log2 — R} (118)
q
. . . T
" el en (R)-T/8) [D = (q ! 6)] sz o (9

where the last step can be easily verified using monotoniaibperties of the binary entropy and
divergence [18, p. 6451 after eq. (72)]. Now, we analyzg¢R,T) given in (14). Note that there is

no conceptual difference betweé,(R,T) and E,(R,T), and it can be verified that the latter can be

written as
min D (g]|6) (120)
G<Lpsc
where
ﬁBSCé{q:—Q-B§R+T+ max [—q-ﬁ—l—h(q)—logQ]}. (121)
q: R>log 2—h(q)

Next, for anyf, consider the right term in objective of (38). Note that timdyadifference between the

left and the right terms in (38) is just the inner minimizaticegion. Accordingly, the right term takes

+
} (122)

the form

min (—HX|Y(Q) +log2 — R)

min {D(QHPX x Wo) + )
Q Q€ OQBsc(Q)

where
Ogsc(@) {Q : Qy = Qy, max {€E1(9') ~B0NQ(X #£Y) +1log (1 - 9/)}
— max {€E1(0') - BONQ(X #Y) +1og (1 —-¢)} —T < O} . (123)
Let E; () & F; (A) + log(1 — 0)/¢. Then, using exactly the same steps as before, we get
}
i —-H log2 — R
et o QI on2 1)

min _ (—Hxy (Q) +1log2 — R)

min {D(QHPX x Wo) + .
Q Q€ OQBsc(Q)

> min {D(QHPX x Wp) +
Q

+
} (124)
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+
} , (125)

and equality can be achieved choosiggo be symmetric, as before, and

min (—h(q) +log2 — R)
q€Qssc(q)

= mqin {D (q]10) +

Qesc(d) £ {q max { €21 (6) = B(0') - G — max {SE1(8)) — B(¢) - qf — T < o} (126)
- {q —max {SB (#) — 5(0) - q) < T~ max [€B(#) — 500 q}} e

Next, we simplify the seQgsc(G). The constraint ory in the definition of Ogsc(§), is equivalent to

demanding that there exist sorflec © such that the following holds

B(0)a — €E1(0) < T - max {€Ex(8") - B(0") - (128)
or equivalently

B(0')q < EE1(0') + T — max {¢E1(8") — (") - (129)
Now, note that3(¢’) > 0 if and only if & < 1/2. Accordingly, this means that, in terms aprBSC((j) is

equivalent tog < ¢} or ¢ > ¢35, whereq; andg; are given in (41) and (42), respectively. Consequently,

min (—h(q) +log2 — R)

+
nin }Zmin{D(§||9)+|(—9(QT7q§)+1Og2—R)|+}
q€QBsc(q) q

mqin {D (q||9) +

(130)

whereg (¢7, ¢5) is defined in (43). Finally, we consider the right term in (39kittd the same steps as

above we obtain that
min D(Q||Px x Wp) = min D (q||0) (131)
QeL Ge€Lpsc

in which

Lpsc = {Cjim(;dx[fEl(e) —q-B+logl) <R+T

+ . Rzlllc}g%{—h(q) {meax [EE1(0) —q- B +1logf] + h(q) — log 2}} (132)
= {(j : max [EEVW(R,T,0)—q-5(0) +1log] <R+T
+max [EEL (R, T,0) — max {0, dcv(R)} - 5(0) + log§ + h(max {6, dcv(R)}) — log 2]} (133)

where the last step follows from the fact that the maximizen the optimization problem in (132) is

given bymax {6, dev(R)}. [
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APPENDIX A

PROOF OFLEMMA 1

For the sake of this proof, we will explicitly designate thepdndence off’, and denote the decoder
in (4)-(5), with parametefl’, by R*(T'). Similarly, we will denote the value of (7) ds(C,R,T). As
we have mentioned, the decoder minimizin@’, R,T") can be easily seen to be given & (7"). Now,

assume conversely, that the exponents associatedBMIYC, R*(7"), T")] satisfy
Ey(R,T) < T+ E1(R,T). (A1)

The opposite case, where the inequality in (A.1) is reversad,be handled analogously. Accordingly,

this means that in the exponential scale, we have
E[D(C,R*(T), T)] = e "P=(RT), (A.2)

Now, it is evident thatF; (R, T') is a monotonically decreasing function &f (allowing more erasures
increasePr {&1}), and E»(R, T) is a monotonically increasing function @f (allowing more erasures
decrease®r {&£-2}) [18]. Now, due to the fact thak; (R, T) and E»(R,T) are continuous functions of
T [18, eqgs. (23) and (31)], without loss of essential genratlhere exists > 0 andéd; > 0,5, > 0

such that
Ei(R, T +¢) = E1(R,T) — & (A.3)
and
Ey(R, T +¢€) = Ex(R,T) + 65 (A.4)
yet
Ey(R,T+¢) <T+ E|(R,T +e). (A.5)

Note that since it is not guaranteed that(R,T") or Ex(R,T") are strictly monotonic, it might be the
case that, = 0 too, i.e., regions of plateau. Accordingly, there are sa@veases to consider. First, if
just Eq(R,T) is within a plateau region, then everything go along withany problem sincé; = 0
but 0o > 0. Secondly, if justEy(R,T) is within a plateau region, then we claim that this contredic
the optimality of Forney’s decoder. Indeed, in this casayéf increasel’ by some smalk > 0 (such
that F5(R, T + ¢€) is within the plateau), we obtain a decoder with expondtd&R, T + ¢) = E2(R, T)
andE1 (R, T +¢€) < E1(R,T), and yet, due to continuityZs (R, T) < E1(R,T + ¢€). Thus, we obtained
that the optimal decodéR* (T + ¢) has the same performance7@$(7"), in terms of E[I'(C, R*(T),T)],
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but with worsePr {&;}, which means not the best tradeoff betwden{&;} and Pr{&;}, and thus
contradicting the optimality of Forney’s decoderZatt e. Finally, if both exponents are within a region
of plateau, we can simply vary' until we leave this region, and thus we can assume dhat 0. To

conclude, we obtained that

E[D(C,R(T +¢),T)] = e "F2(RT+e) (A.6)

< e BRT) ~ jgIp(C, R(T), T) (A7)

which contradicts the property th&*(7") is the minimizer ofl'(C, R, T).

REFERENCES

[1] V. D. Goppa, “Nonprobabilistic mutual information without memorfobl. Cont. Information Theory, vol. 4, pp. 97-102,
1975.
[2] J. Ziv, “Universal decoding for finite-state channel$ZEE Trans. on Inf. Theory, vol. IT-31, no. 4, pp. 453-460, July
1985.
[3] I. Csiszr, “Linear codes for sources and source networks: error exgsnuniversal codingfEEE Trans. on Inf. Theory,
vol. IT-28, no. 4, pp. 585-592, July 1982.
[4] I. Csiszar and J. Krner,Information Theory: Coding Theorems for Discrete Memoryless Systems. Cambridge University
Press, 2011.
[5] N. Merhav, “Universal decoding for memoryless Gaussiamalets with a deterministic interferenceéEE Trans. on Inf.
Theory, vol. 39, no. 4, pp. 1261-1269, July 1993.
[6] ——, “Universal decoding for arbitrary channels relative to aegivclass of decoding metricd ZEE Trans. on Inf. Theory,
vol. 59, no. 9, pp. 5566-576, Sep. 2013.
[7] M. Feder and A. Lapidoth, “Universal decoding for channels witamory,” |[EEE Trans. on Inf. Theory, vol. 44, no. 5,
pp. 1726-1745, Sep. 1998.
[8] G. D. Forney, Jr., “Exponential error bounds for erasurd, &sd decision feedback schemedgEE Trans. Inf. Theory,
vol. 14, no. 2, pp. 206-220, 1968.
[9] M. V. Burnashev, “Data transmission over a discrete channel vetdliback,’Problems of Information Transmission, pp.
250-265, 1976.
[10] N. Shulman, Communication over an unknown channel via common broadcasting,” Ph.D. dissertation, Tel-Aviv University,
2003, http://www.eng.tau.ac.il/ shulman/papers/Na&b.pdf.
[11] S. Draper, B. J. Frey, and F. R. Kschischang, “Rateless goftin non-ergodic channels with decoder channel state
information,” |IEEE Trans. Inf. Theory, vol. 55, no. 9, pp. 4119-4133, 2009.
[12] U. Erez, G. W. Wornell, and M. D. Trott, “Rateless space-time ogdim Proc. IST 2005, Sep. 2005, pp. 1937-1941.
[13] J. Jiang and K. R. Narayanan, “Multilevel coding for channels with-uniform inputs and rateless transmission over the
bsc,” in Proc. IST 2006, 2006, pp. 518-522.
[14] A. Tchamkerten and E. |. Telatar, “Variable length codes ové&mnown channels,TJEEE Trans. Inf. Theory, vol. 52, no. 5,
pp. 2126-2145, 2006.

DRAFT



26

[15] N. Merhav and M. Feder, “Minimax universal decoding with aaseire option,1EEE Trans. Inf. Theory, vol. 53, no. 5,
pp. 1664-1675, May. 2007.

[16] P. Moulin, “A Neyman-Pearson approach to universal eesund list decoding,JEEE Trans. Inf. Theory, vol. 55, no. 10,
pp. 4462—4478, 2009.

[17] M. Feder and N. Merhav, “Universal composite hypothesis tgstincompetitive minimax approachHEEE Trans. on Inf.
Theory special issue in memory of Aaron D. Wyner, vol. 48, no. 6, pp. 1504-1517, June 2002.

[18] A. Somekh-Baruch and N. Merhav, “Exact random codingozemts for erasure decodingEEE Trans. Inf. Theory,
vol. 57, no. 10, pp. 6444-6454, 2011.

[19] N. Merhav, “Erasurel/list exponents for Slepian-Wolf decodin§EE Trans. Inf. Theory, vol. 60, no. 8, pp. 4463-4471,
Aug. 2014.

DRAFT



