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Abstract

We study the problem of universal decoding for unknown discrete memoryless channels in the

presence of erasure/list option at the decoder, in the random coding regime. Specifically, we harness a

universal version of Forney’s classical erasure/list decoder developed in earlier studies, which is based

on the competitive minimax methodology, and guarantees universal achievability of a certain fraction of

the optimum random coding error exponents. In this paper, wederive an exact single-letter expression

for the maximum achievable fraction. Examples are given in which the maximal achievable fraction is

strictly less than unity, which imply that, in general, there is no universal erasure/list decoder which

achieves the same random coding error exponents as the optimal decoder for a known channel. This is in

contrast to the situation in ordinary decoding (without theerasure/list option), where optimum exponents

are universally achievable, as is well known. It is also demonstrated that previous lower bounds derived

for the maximal achievable fraction are not tight in general.

Index Terms

Universal decoding, error exponents, erasure/list decoding, maximum-likelihood decoding, random

coding, generalized likelihood ratio test, channel uncertainty, competitive minimax.

I. I NTRODUCTION

In many practical situations encountered in coded communication systems, the prevalent channel over

which transmission takes place is unknown to the receiver. Typically, the optimal maximum likelihood
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(ML) decoder depends on the channel statistics, and therefore its usage is precluded. In such cases,

universal decoders are sought which do not require knowledge of the actual channel present, but still

preform well just as if the channel was known to the decoder. The design of such universal decoders

was extensively addressed for ordinary decoding (without the erasure/list option), see, e.g., [1-7], and

references therein. For example, for unknown discrete memoryless channels (DMCs), the maximum

mutual information (MMI) decoder [1] is asymptotically optimal for ordinary decoding, in the sense that

it achieves the same random coding error exponents as the ML decoder. However, for decoders with an

erasure/list option, only partial results exist.

In this paper, we focus on universal erasure/list decoders proposed and analyzed by Forney for known

channels [8]. Erasure/list decoding is especially attractive for unknown channels, since communicating

at any fixed rate, however small, is inherently problematic, since this fixed rate might be larger than the

unknown capacity of the underlying channel. It makes sense to try to adapt the coding rate to the channel

conditions, which can be learned on-line at the transmitterwhenever a feedback link from the receiver

to the transmitter is available. A possible approach to handle the problem described above is therateless

coding methodology, see, for example [9-14], in which at every timeinstant the decoder either makes a

decision on one of the transmitted messages or decides to request an additional symbol via the feedback

line. The latter case can be considered as an “erasure” event for the decoder, and so universal erasure

decoders are required (see discussion in [15]).

In [4, Chapter 10, Theorem 10.11], Csiszár and K̈orner proposed a family of universal erasure decoders,

parametrized by some real parameter, for DMCs, and analyzedthe resulting error exponents. While this

family is in the spirit of the MMI decoder, it does not achievethe same exponents as Forney’s optimal

erasure/list decoder. More recently, in [16], Moulin has generalized this family of decoders and proposed

a family of decoders parametrized by a weighting function. Upon optimization of the weighting function

within some class of possible functions, a few cases were identified in which the universal decoder

achieves the same error exponents as if the channel was known.

In [15], Merhav and Feder studied the problem in a more systematic manner. Specifically, they

considered the problem of universal decoding with an erasure/list option for the class of DMCs indexed by

an unknown parameterθ. They invoked the competitive minimax methodology proposedin [17], in order

to derive a universal version of Forney’s classical erasure/list decoder. Recall that for a given DMC with

parameterθ, a given coding rateR, and a given threshold parameterT (all to be formally defined later),

Forney’s erasure/list decoder optimally trades off between the exponentE1(R, T, θ) of the probability of

total error event,E1, and the exponent,E2(R, T, θ) = E1(R, T, θ) + T , of the probability of undetected
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error event,E2, for erasure decoder (or, average list size for list decoder), in the random coding regime.

The universal erasure/list decoder of [15] guarantees achievability of an exponent,Ê1(R, T, θ), which

is at least as large asξ · E1(R, T, θ) for all θ, for some constantξ ∈ (0, 1] that is independent ofθ

(but does depend onR andT ), and at the same time, an undetected error exponent for erasure decoder

(or, average list size for list decoder)̂E2(R, T, θ) ≥ ξ · Ê1(R, T, θ) + T for all θ. At the very least this

guarantees that whenever the probabilities ofE1 and E2 decay exponentially for a known channel, so

they do even when the channel is unknown, using the proposed universal decoder. It should be remarked,

that the benchmark exponents in [15] were the classical lower bounds onE1(R, T, θ) andE2(R, T, θ)

derived by Forney [8].

Clearly, to maximize the guaranteed exponents obtained by the universal decoder of [15], the maximal

0 ≤ ξ ≤ 1 such that the above holds is of interest. This maximal fraction is the central quantity of

this paper and will be denoted henceforth byξ∗(R, T ). If, for example,ξ∗(R, T ) is strictly less than

unity, then it means that there is a major difference betweenuniversal ordinary decoding and universal

erasure/list decoding: while for the former, it is well known that optimum random coding error exponents

are universally achievable (at least for some classes of channels and certain random coding distributions),

in the latter, when the erasure/list options are available,this may no longer be the case. In [15], Merhav

and Feder invoked Gallager’s bounding techniques to analyzethe exponential behavior of upper bounds

on the probabilitiesE1 and E2. Accordingly, a single-letter expression for a lower boundto ξ∗(R, T )

was obtained, which we denote henceforth byξL(R, T ). SinceξL(R, T ) was merely a lower bound, the

question of achievability of Forney’s erasure/list exponents was not fully settled in [15].

As was previously mentioned, even for a known channel, only lower bounds for the exponents were

obtained by Forney [8]. More recently, inspired by a statistical-mechanical point of view on random

code ensembles, Somekh-Baruch and Merhav [18] have foundexact expressions for the exponents of the

optimal erasure/list decoder, by assessing the moments of certain type class enumerators. In this paper,

we tackle again the problem of erasure/list channel decoding using similar methods, and derive anexact

expression forξ∗(R, T ) with respect to the exact erasure/list exponents of a known channels found in

[18]. This exact expression leads to the following conclusions:

1) In general,ξ∗(R, T ) is strictly less than1. Therefore, the known channel exponents in erasure/list

decoding cannot be achieved by any universal decoder. In this sense, channel knowledge is

crucial for asymptotically optimum erasure/list decoding. This is in sharp contrast to the situation

in ordinary decoding (without the erasure/list option), where, as said, optimum exponents are

universally achievable, e.g., by the MMI decoder.
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2) In general,ξL(R, T ) is strictly less thanξ∗(R, T ). Therefore, the Gallager-style analysis technique

in [15] is not always powerful enough to obtainξ∗(R, T ).

The outline of the rest of the paper is as follows. In Section II,we establish notation conventions, and

in Section III we detail necessary background on erasure/list decoding, both for known and unknown

channels. Then, in Section IV, we present our main result of an exact expression forξ∗(R, T ), and discuss

the special case of binary symmetric channel (BSC). Finally, we shed light on the differences between

ξ∗(R, T ) andξL(R, T ), along with some numerical results, which illustrate the main result of this paper.

Finally, in Section V, we provide proofs for all our results.

II. N OTATION CONVENTIONS

Throughout this paper, scalar random variables (RVs) will bedenoted by capital letters, their sample

values will be denoted by the respective lower case letters,and their alphabets will be denoted by the

respective calligraphic letters, e.g.X, x, andX , respectively. A similar convention will apply to random

vectors of dimensionn and their sample values, which will be denoted with the same symbols in the

boldface font. The set of alln-vectors with components taking values in a certain finite alphabet, will

be denoted as the same alphabet superscripted byn, e.g.,X n. Generic channels will be usually denoted

by the lettersP , Q, or W . We shall mainly consider joint distributions of two RVs(X,Y ) over the

Cartesian product of two finite alphabetsX andY. For brevity, we will denote any joint distribution,

e.g.QXY , simply byQ, the marginals will be denoted byQX andQY , and the conditional distributions

will be denoted byQX|Y andQY |X . The joint distribution induced byQX andQY |X will be denoted

by QX ×QY |X , and a similar notation will be used when the roles ofX andY are switched.

The expectation operator will be denoted byE {·}, and when we wish to make the dependence on the

underlying distributionQ clear, we denote it byEQ {·}. The entropy ofX and the conditional entropy

of X given Y , will be denotedHX(Q), HX|Y (Q), respectively, whereQ is the underlying probability

distribution. The mutual information of the joint distribution Q will be denoted byI(Q). The divergence

(or, Kullback-Liebler distance) between two probability measuresQ andP will be denoted byD(Q||P ).

For two numbers0 ≤ q, p ≤ 1, D(q||p) will stand for the divergence between the binary measures

{q, 1− q} and{p, 1− p}.

For a given vectorx, let Q̂x denote the empirical distribution, that is, the vector{Q̂x(x), x ∈ X},

where Q̂x(x) is the relative frequency of the letterx in the vectorx. Let TP denote the type class

associated withP , that is, the set of all sequencesx for which Q̂x = P . Similarly, for a pair of vectors
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(x,y), the empirical joint distribution will be denoted bŷQxy, or simply by Q̂, for short. All the

previously defined notations for regular distributions willalso be used for empirical distributions.

The cardinality of a finite setA will be denoted by|A|, its complement will be denoted byAc. The

probability of an eventE will be denoted byPr {E}. The indicator function of an eventE will be denoted

by I {E}. For two sequences of positive numbers,{an} and{bn}, the notationan
·
= bn means that{an}

and {bn} are of the same exponential order, i.e.,n−1 log an/bn → 0 as n → ∞, where in this paper,

logarithms are defined with respect to (w.r.t.) the natural basis, that is,log(·) ≡ ln(·). Finally, for a real

numberx, we let |x|+ , max {0, x}.

III. M ODEL FORMULATION AND SHORT BACKGROUND

A. Known Channel

Consider a DMC with a finite input alphabetX , finite output alphabetY, and a matrix of single-

letter transition probabilities{W (y|x) , x ∈ X , y ∈ Y}. A rate-R codebook consists ofM =
⌈

enR
⌉

length-n codewordsxm ∈ X n, m = 1, 2, . . . ,M , representing theM messages. It will be assumed that

all messages are a-priori equiprobable. We assume the ensemble of fixed composition random codes of

blocklengthn, where each codeword is selected at random, uniformly within a type classT (PX) for

some given random coding distributionPX over the alphabetX .

In the following, we give a short description on the operation of the erasure decoder and then the

list decoder. A decoder with an erasure option is a partitionof the observation spaceYn into (M + 1)

regions, denoted by{Rm}Mm=0. An erasure decoder works as follows: Ify ∈ Yn falls into themth region,

Rm, for m = 1, 2, . . . ,M , then a decision is made in favor of message numberm. If y ∈ R0, then no

decision is made and an erasure is declared. Accordingly, weshall refer toy ∈ R0 as anerasure event.

Given a codeC , {x1, . . . ,xM} and a decoderR , (R0, . . . ,RM ), we define two error events. The

eventE1 is the event of deciding on erroneous codeword or making an erasure, and the eventE2 which

is the undetected error event, namely, the event of decidingon erroneous codeword. It is evident thatE1

is the disjoint union of the erasure event andE2. The probabilities of all the aforementioned events are

given by:

Pr {E1} =
1

M

M
∑

m=1

∑

y∈Rc
m

W (y|xm) , (1)

Pr {E2} =
1

M

M
∑

m=1

∑

y∈Rm

∑

m′ 6=m

W (y|xm′) , (2)
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and

Pr {R0} = Pr {E1} − Pr {E2} . (3)

A list decoder is a mapping from the space of received vectorsYn into a collection of the subsets of

{1, . . . ,M}. Alternatively, a list decoder is uniquely defined by a set ofM +1 (not necessarily disjoint)

decoding regions{Rm}Mm=0 such thatRm ⊆ Yn and R0 = Yn\
⋃M

m=1Rm. Given a received vector

y, the mth codeword belongs to the output list ify ∈ Rm, and if y does not belong to any of the

regionsRm theny ∈ R0, and an erasure is declared. The average error probability ofa list decoder and

a codebookC is the probability that the actual transmitted codeword does not belong to the output list,

and it is defined similarly to (1). The average list size is the expected (w.r.t. the output of the channel)

number of erroneous codewords in the output list, and defined similarly to (2).

Since the error events for the erasure and list decoders are defined in the same way, they can be

treated on the same footing. Nonetheless, for descriptive purposes, we will refer to the erasure decoder,

but we emphasize that all the following analysis and resultsare true also for the list decoder. When

knowledge on the specific DMC is available at the decoder, Forney have shown [8], using Neyman-

Pearson methodology, that the optimal tradeoff betweenPr {E1} andPr {E2} is attained by the decision

regionsR∗ , (R∗
0, . . . ,R

∗
M ) given by:

R∗
m ,

{

y :
W (y|xm)

∑

m′ 6=mW (y|xm′)
≥ enT

}

, m = 1, 2, . . .M, (4)

and

R∗
0 ,

M
⋂

m=1

(R∗
m)c , (5)

whereT is a parameter, henceforth refereed as thethreshold, which controls the balance between the

probabilities ofE1 andE2. WhenT ≥ 0 the decoder operates in the erasure mode, and when it is in the

list mode thenT < 0. No other decision rule gives both a lowerPr {E1} and a lowerPr {E2} than the

above choice. Finally, we define the error exponentsEi (R, T ) , i = 1, 2, as the exponents of the average

probabilities of errorsPr {Ei} (associated with the optimal decoderR∗), where the average is taken w.r.t.

a given ensemble of the randomly selected codes, that is,

Ei (R, T ) , − lim inf
n→∞

1

n
log Pr {Ei} , i = 1, 2. (6)

An important observation is that Forney’s decision rule forknown DMCs can also be obtained by

formulating the following optimization problem: Find a decoderR that minimizesΓ (C,R) where

Γ (C,R) , Pr {E2}+ e−nT Pr {E1} (7)
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=
1

M

M
∑

m=1





∑

y∈Rm

∑

m′ 6=m

W (y|xm′) +
∑

y∈Rc
m

e−nTW (y|xm)



 (8)

for a given codebookC and a given thresholdT . Indeed, noting that (8) can be rewritten as

Γ (C,R) =
∑

y∈Yn

1

M

M
∑

m=1





∑

m′ 6=m

W (y|xm′)I {y ∈ Rm}+ e−nTW (y|xm)I {y ∈ Rc
m}



 , (9)

it is evident that for eachm, the bracketed expression is minimized byR∗
m as defined above. By taking

the ensemble average, we have

E {Γ (C,R∗)} , Pr {E2}+ e−nTPr {E1} . (10)

In [18], it was stated (without a proof) that, in the exponential scale, there is a balance between the

two terms at the right hand side of (10), namely, the exponentof Pr {E2} equals to the exponent of

e−nTPr {E1}, for the optimal decoderR∗. We rigorously assert this property in the following lemma.

The proof appears in Appendix A.

Lemma 1 For all R andT , the optimal decoderR∗ satisfies:

E2 (R, T ) = T + E1 (R, T ) . (11)

The significance of Lemma 1 is attributed to the fact that now we only need to assess the exponential

behavior of eitherPr {E1}, or, Pr {E2}, but not both. As was mentioned in the Introduction, in [18],

Somekh-Baruch and Merhav have obtained exact single-letterformulas for the error exponentsE1(R, T )

and E2(R, T ) associated withPr {E1} and Pr {E2}, respectively. Specifically, they show, that for the

ensemble of fixed composition codes [18, Theorem 1]1,2:

E1(R, T ) = min {Ea(R, T ), Eb(R, T )} , (12)

where

Ea(R, T ) , min
(Q,Q̃)∈Q̂

[

D(Q̃||PX ×W ) + I(Q)−R
]

(13)

1In [18], each codeword in the codebook was drawn independently of all other codewords, and its symbols were drawn

from an independent and identically (i.i.d.) distribution (identical for all the codewords). Nonetheless, the modification to the

ensemble of fixed composition codes is straightforward.

2We note that there is an error at the end of the proof of Theorem 1 in [18], where it was claimed that

min {Ea(R, T ), Eb(R, T )} = Ea(R, T ), which may not be true in general. The correct expression is as in (12).
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and

Eb(R, T ) , min
Q̃∈L̂

D(Q̃||PX ×W ) (14)

whereQ̃ is a probability distribution onX × Y, and

Q̂ ,

{

(Q, Q̃) ∈ D : I(Q) ≥ R, Ω̂(Q, Q̃) ≤ 0
}

, (15)

D ,

{

(Q, Q̃) : QX = Q̃X = PX , QY = Q̃Y

}

, (16)

Ω̂(Q, Q̃) , EQ̃ logW (Y |X)− EQ logW (Y |X)− T, (17)

(18)

and

L̂ ,

{

Q̃ : EQ̃ logW (Y |X) ≤ R+ T + max
Q:(Q,Q̃)∈D: I(Q)≤R

[EQ logW (Y |X)− I(Q)]

}

. (19)

As a special case, we shall consider in the sequel the problemof universal erasure/list decoding for

the BSC, and to this end, we will use the exact expression ofE1(R, T ). Accordingly, for the BSC with

crossover probabilityθ, it was shown that [18, Corollary 2]

E1,BSC(R, T ) = min {Ea,BSC(R, T ), Eb,BSC(R, T )} , (20)

where

Ea,BSC(R, T ) , min
q̃∈[θ,δGV (R)−T/β]

[

D (q̃||θ)− h

(

q̃ +
T

β

)

+ log 2−R

]

, (21)

and

Eb,BSC(R, T ) , min
q̃∈L̂BSC

D (q̃||θ) , (22)

whereβ(θ) , log [(1− θ)/θ], andδGV(R) denote the normalized Gilbert-Varshamov (GV) distance, i.e.,

the smaller solution,δ, to the equation

h(δ) = log 2−R, (23)

whereh(δ) , −δ log δ − (1− δ) log(1− δ) is the binary entropy function, and

L̂BSC ,

{

q̃ : −q̃ · β(θ) ≤ R+ T + max
q: R≥log 2−h(q)

[−q · β(θ) + h(q)− log 2]

}

. (24)
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B. Unknown Channel

We now move on to the case of an unknown channel. Consider a family of DMCs

WΘ , {Wθ (y|x) , x ∈ X , y ∈ Y, θ ∈ Θ} , (25)

with a finite input alphabetX , a finite output alphabetY, and a matrix of single-letter transition

probabilities{Wθ (y|x)}, whereθ is a parameter, or the index of the channel in the class, taking values

in some setΘ, which may be countable or uncountable. For example,θ may be represent the set of all

|X | · (|Y| − 1) single-letter transition probabilities that define the DMC with the given input and output

alphabets. In our problem, the channel is unknown to the receiver designer, and the designer only knows

that the channel belongs to the family of channelsWΘ, that is,θ itself is unknown.

When the channel is unknown, the competitive minimax methodology, proposed and developed in

[15], proves useful. Specifically, letΓθ (C,R) in (7) designate the above defined Lagrangian, where we

now emphasize the dependence on the index of the channel,θ. Similarly, henceforth we shall denote

the error exponents in (6) byE1(R, T, θ) andE2(R, T, θ). Also, let Γ̄∗
θ , E {minR Γθ (C,R)}, which is

the ensemble average of the minimum of the above Lagrangian (achieved by Forney’s optimum decision

rule) w.r.t. the channelWθ (y|x), for a givenθ. Note that by Lemma 1, the exponential order ofΓ̄∗
θ is

e−n(E1(R,T,θ)+T ). A competitive minimax decision rule R is one that achieves

min
R

max
θ∈Θ

Γθ (C,R)

Γ̄∗
θ

, (26)

which is asymptotically equivalent to

min
R

max
θ∈Θ

Γθ (C,R)

e−n[E1(R,T,θ)+T ]
. (27)

However, as discussed in [15], such a minimax criterion, of competing with the optimum performance,

may be too optimistic, and the value of the minimization problem in (27) may diverge to infinity for

everyR, asn → ∞. A possible remedy for this situation is to compete with onlya fractionξ ∈ [0, 1]

of E1 (R, T, θ), which we would like to choose as large as possible. To wit, weare interested in the

competitive minimax criterion

Kn(C) = min
R

Kn(R, C), (28)

in which

Kn(R, C) = max
θ∈Θ

Γθ(C,R)

e−n(ξE1(R,T,θ)+T )
. (29)
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Accordingly, we wish to find the largest value ofξ such that the ensemble averageK̄n , E {Kn(C)}

would not grow exponentially fast, i.e.,

lim sup
n→∞

1

n
log K̄n ≤ 0. (30)

In [15], the following universal decoding metric was defined

f(xm,y) , max
θ∈Θ

{

en[ξE1(R,T,θ)+T ]Wθ(y|xm)
}

, (31)

and a universal erasure/list decoder was proposed which hasthe following decision regions

R̂m ,

{

y :
f(xm,y)

∑

m′ 6=m f(xm′ ,y)
≥ enT

}

, m = 1, 2, . . .M, (32)

and

R̂0 ,

M
⋂

m=1

R̂c
m. (33)

The property that makeŝR , (R̂0, R̂1, . . . , R̂M ) interesting is that it was shown in [15], that it is

asymptotically optimal, i.e., for any givenξ, Kn(R̂, C) may only be sub-exponentially larger thanKn(C).

Thus, the largestξ such thatK̄n is sub-exponential is also attained bŷR. Hence, in order to find the

largest achievableξ, we would like to evaluate exactly the exponential order ofE[Kn(R̂, C)].

Remark 1 Note that the results in this paper can be generalized to other random coding ensembles which

assign equal probabilities within every type class (for more details see [15, Section V]). For conceptual

simplicity, we confine attention to fixed-composition random coding.

IV. RESULTS

In this section, our results are presented and discussed. Proofs are relegated to Section V.

A. Exact formula for the largest achievable fraction

We start with a few definitions. Let

G(R, T, ξ, Q̃) , max
θ∈Θ

{

ξE1 (R, T, θ) + T + EQ̃ logWθ(Y |X)
}

, (34)

Ω(R, T, ξ,Q, Q̃) , G(R, T, ξ, Q̃)−G(R, T, ξ,Q)− T, (35)

whereE1 (R, T, θ) is given in (12). Finally, let

Q ,

{

(Q, Q̃) ∈ D : I(Q) ≥ R, Ω(R, T, ξ,Q, Q̃) ≤ 0
}

(36)
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and

L ,

{

Q̃ : G(R, T, ξ, Q̃) ≤ R+ T + max
Q:(Q,Q̃)∈D, I(Q)≤R

[G(R, T, ξ,Q)− I(Q)]

}

. (37)

whereD is defined in (16).

Theorem 1 Consider the ensemble of fixed composition codes of typeT (PX). Then,ξ∗(R, T ) is equal

to the largest numberξ that satisfies simultaneously:

max
θ∈Θ

{

ξE1 (R, T, θ)− min
(Q,Q̃)∈Q

{

D(Q̃||PX ×Wθ) + I(Q)−R
}

}

≤ 0, (38)

and

max
θ∈Θ

{

ξE1 (R, T, θ)−min
Q̃∈L

D(Q̃||PX ×Wθ)

}

≤ 0. (39)

Notice that in order to findξ∗(R, T ), one can perform a simple line search over the interval[0, 1] using

the conditions in Theorem 1. Also, note that one can readily finda single-letter formula forξ∗(R, T ). The

resulting formula is, however, complicated and does not provide much insight, therefore, it is not provided

here. For the special case of the BSC, one can simplify the above minimization problems over the joint

distributions(Q, Q̃), and obtain instead a one-dimensional minimization problem. Indeed, consider the

family of BSCs where the unknown crossover probabilityθ belongs toΘ = [0, 1]. Recall that (c.f. end

of Subsection III-A)β(θ) = log [(1− θ)/θ]. Define

φ(θ) =
ξE1 (R, T, θ) + log(1− θ) + T −maxθ′ {ξE1 (R, T, θ′) + log(1− θ′)− β(θ′) · q̃}

β(θ)
, (40)

and

q∗1 , max
θ≤1/2

φ(θ), (41)

q∗2 , min
θ>1/2

φ(θ). (42)

Finally, define

g (q∗1, q
∗
2) ,















log 2, if q∗1 > 1/2, or, q∗2 < 1/2,

max {h (q∗1) , h (q
∗
2)} , otherwise

, (43)

and

LBSC ,

{

q̃ : max
0≤θ≤1

[ξE1(R, T, θ)− q̃ · β(θ) + log θ] ≤ R+ T
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+ max
0≤θ≤1

[ξE1(R, T, θ)−max {θ, δGV(R)} · β(θ) + log θ + h(max {θ, δGV(R)})− log 2]

}

.

(44)

We have the following result.

Corollary 1 Consider a family of BSCs, where the unknown crossover probability θ belongs toΘ = [0, 1],

and with fixed composition codes of typePX = (1/2, 1/2). Then,ξ∗(R, T ) equals to the largest number

ξ that satisfies simultaneously:

max
0≤θ≤1

{

ξ · E1,BSC(R, T, θ)−min
q̃

[

D (q̃||θ) + |−g (q∗1, q
∗
2) + log 2−R|+

]

}

≤ 0, (45)

and

max
0≤θ≤1

{

ξ · E1,BSC(R, T, θ)− min
q̃∈LBSC

D (q̃||θ)

}

≤ 0, (46)

whereE1,BSC(R, T, θ) is given in (20).

Note that there is a major difference between ordinary and universal decoding in the context of the

BSC: while for the former, the optimal detector depends only on whetherθ ≤ 1/2 or θ > 1/2 (i.e.,

minimum distance versus maximum distance decoders, respectively), for the latter, the dependence is on

the exact value ofθ.

B. Discussion and Comparison with Previous Results

While in this work we have derived the exact maximal achievable ξ∗(R, T ) for fixed composition

coding of typePX , in [15, Theorem 2], Merhav and Feder have obtained the following lower bound [15,

Theorem 2]:

ξ∗(R, T ) ≥ ξL(R, T ) , min
(θ,θ′′)∈Θ2

max
0≤s≤ρ≤1

E(θ, θ′′, s, ρ)− ρR− sT

(1− s)E1(R, T, θ) + sE1(R, T, θ′′)
(47)

where

E(θ, θ̃, s, ρ) , min
QY

[

F (QY , 1− s, θ) + ρF (QY , s/ρ, θ
′′)−H(QY )

]

(48)

and

F (QY , 1− s, θ) , min
QX|Y : (QY ×QX|Y )

X
=PX

[I(Q)− λEQ logWθ(Y |X)] . (49)

Before we continue, we remark that in [15], Forney’s lower bound onE1(R, T, θ) was used instead of its

exact value as derived in [18], but for the sake of comparisonany exponent can be used, and specifically,
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the exact exponent. Now, note that an alternative (equivalent) representation ofξL(R, T ) in (47) is that

it is given by the largestξ such that for any pair(θ, θ′′) ∈ Θ2

min
(θ,θ′′)∈Θ2

max
0≤s≤ρ≤1

E(θ, θ′′, s, ρ)− ρR− sT − ξ
[

(1− s)E1(R, T, θ) + sE1(R, T, θ′′)
]

≥ 0. (50)

Straightforward algebraic manipulations show that the lastinequality can be rewritten as

min
(θ,θ′′)∈Θ2

max
0≤s≤ρ≤1

min
(Q,Q̃)∈D

Ψ(R, T, θ, θ, θ′′, Q, Q̃, ρ, s) ≥ 0 (51)

where

Ψ(R, T, θ, θ′, θ′′, Q, Q̃, ρ, s, ξ) , D(Q̃||PX ×Wθ) + ρ [I(Q)−R]

+ s ·
[

EQ̃ logWθ′(Y |X) + ξE1(R, T, θ′)

− EQ logWθ′′(Y |X)− ξE1(R, T, θ′′)− T
]

− ξE1(R, T, θ). (52)

For any given(θ, θ′′) ∈ Θ2, and (s, ρ), Ψ(R, T, θ, θ′, θ′′, Q, Q̃, ρ, s, ξ) is convex in(Q, Q̃), and for a

given (Q, Q̃), it is linear (and hence concave) in(s, ρ) . Thus, the minimax theorem implies that (51) is

equivalent to

min
(θ,θ′′)∈Θ2

min
(Q,Q̃)∈D

max
0≤s≤ρ≤1

Ψ(R, T, θ, θ, θ′′, Q, Q̃, ρ, s, ξ) ≥ 0. (53)

On the other hand, the exact value ofξ∗(R, T ) in Theorem 1 is determined by two conditions (38)-(39).

In what follows, we shall concentrate on the first condition in(38), as this condition can be compared to

(53). Thus, assume, for a moment, that the condition in (39) ismore lenient than the condition in (38).

Then, according to (38), a fractionξ is achievable if

min
θ∈Θ

min
(Q,Q̃)∈D

D(Q̃||PX ×Wθ) + I(Q)−R− ξE1(R, T, θ) ≥ 0 (54)

where the minimum over(Q, Q̃) is such thatI(Q) ≥ R andΩ(R, T, ξ,Q, Q̃) ≤ 0. Now, the optimization

problem in (54) is equivalent to

min
θ∈Θ

min
(Q,Q̃)∈D

max
ρ′≥0

max
s≥0

[

D(Q̃||PX ×Wθ) + (1− ρ′) [I(Q)−R]

+sΩ(R, T, ξ,Q, Q̃)− ξE1(R, T, θ)
]

≥ 0, (55)

or by lettingρ = 1− ρ′ we get

min
θ∈Θ

min
(Q,Q̃)∈D

max
ρ≤1

max
s≥0

[

D(Q̃||PX ×Wθ) + ρ [I(Q)−R] + sΩ(R, T, ξ,Q, Q̃)− ξE1(R, T, θ)
]

≥ 0,

(56)
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which is equivalent to

min
θ∈Θ

min
(Q,Q̃)∈D

max
ρ≤1

max
s≥0

max
θ′∈Θ

min
θ′′∈Θ

Ψ(R, T, θ, θ′, θ′′, Q, Q̃, ρ, s, ξ) ≥ 0. (57)

Moreover, for a given(θ,Q, Q̃), we may write

max
ρ≤1

max
s≥0

max
θ′∈Θ

min
θ′′∈Θ

Ψ(R, T, θ, θ′, θ′′, Q, Q̃, ρ, s, ξ) = min
θ′′∈Θ

max
θ′∈Θ

max
0≤ρ≤1

max
s≥0

Ψ(R, T, θ, θ′, θ′′, Q, Q̃, ρ, s, ξ),

(58)

because under the constraints ≥ 0, the inner minimization overθ′′ ∈ Θ does not depend on the value

of (ρ, s, θ′): it is simply theθ′′ ∈ Θ which maximizesEQ logWθ′′(Y |X) + ξE1(R, T, θ′′) 3. Thus, the

resulting condition is

min
(θ,θ′′)∈Θ2

min
(Q,Q̃)∈D

max
0≤ρ≤1

max
s≥0

max
θ′∈Θ

Ψ(R, T, θ, θ′, θ′′, Q, Q̃, ρ, s, ξ) ≥ 0. (59)

By comparing the condition in (59) to the condition of the lower bound of [15] in (53), the following

differences are observed:

1) In (53) an additional constraints ≤ ρ is imposed.

2) In (53) a sub-optimal choice ofθ′ = θ is imposed.

Accordingly, these differences may cause the value of the minimax in (53) to be lower than the value

of the optimization problem in (59), which results in a lowerachievableξ compared toξ∗(R, T ),

as one should expect. Next, we provide two examples where in one of which these differences are

immaterial and in the other one they do. The former happens when the optimal solution in (59), denoted

by (θ∗, θ′′∗, Q∗, Q̃∗, ρ∗, s∗), satisfiess∗ ≤ ρ∗, and the maximizer ofEQ̃∗ logWθ′(Y |X) + ξL(R, T ) ·

E1(R, T, θ′) is given byθ∗. Accordingly, in this case, the value of (59) equals to (53),and therefore

ξ∗(R, T ) = ξL(R, T ), due the fact that the condition in (39) is more lenient than the condition in (38),

as we have previously assumed. The conclusion that stems fromthis observation is that, in this case, the

analysis in [15] is tight.

Example 1 In [15], a family of BSCs was considered whereθ ∈ Θ designates the cross-over probability

of the BSC, andΘ = {0, 1/100, 2/100, . . . , 1}. The values ofξL(R, T ) were computed for various values

of R andT . It was assumed thatT ≥ 0, which means that the decoder operates in the erasure mode.

Numerical calculations of the bound derived in this work (and the exact formula), result in exactly the

3If for a given real functionf(u, v) the minimizerv∗ w.r.t. v does not depend onu, thenmaxu∈U minv∈V f(u, v) =

maxu∈U f(u, v∗) ≥ minv∈V maxu∈U f(u, v), and the minimax inequality resultsmaxu∈U minv∈V f(u, v) =

minv∈V maxu∈U f(u, v), assuming thatU andV are two independent sets (i.e., rectangular).
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same values as given in [15, Table 1], and so in all these cases, the analysis of [15] was sufficient to

provide tight results. For example, for(R, T ) = (0.05, 0.15), and codebook typePX = (1/2, 1/2), we

obtain ξL(R, T ) = 0.495. Also, the two worst case channels (i.e., the solutions to (59)) areθ∗ = 0.18

and θ′′∗ = 0.22 while θ′∗ = θ∗ and ρ∗ = 0.36 > s∗ = 0.185. So, sinces∗ < ρ∗ and θ′∗ = θ∗, the

discussion above implies that a tight result is obtained, that is, ξ∗(R, T ) = ξL(R, T ) = 0.495.

Sinceξ∗(R, T ) < 1 for someR andT , we arrive at the following conclusion:In general, in the random

coding regime of erasure/list decoding, there is no universal decoder which achieves the same error

exponent as Forney’s decoder for every channel in the class. This fact is in contrast to ordinary decoding,

in which the MMI decoder achieves the exact same error exponent as the ML decoder. In this sense,

channel knowledge is crucial when erasure/list options areallowed.

Nonetheless, in general, we might have thatξL(R, T ) is strictly less thanξ∗(R, T ). Again, assume that

the condition in (38) dominatesξ∗(R, T ). To provide intuition, notice that in (59)triplets (θ, θ′, θ′′) ∈ Θ3

are optimized, in contrast to (53), where onlypairs of channels(θ, θ′′) ∈ Θ2 are optimized. Thus, for

a family of only two channels, namely,|Θ| = 2, typically (but not necessarily) the second difference

above, of imposing the constraintθ′ = θ, is immaterial. Then, the only difference between the conditions

in (53) and (59) is the constraints ≤ ρ. Let us assume that this is indeed the case, and let us notice that

s can be thought as a Lagrange multiplier for the constraint

EQ̃ logWθ′(Y |X) + ξE1(R, T, θ′)− EQ logWθ′′(Y |X)− ξE1(R, T, θ′′)− T ≤ 0. (60)

Now, if the constraint, at the optimal solution, is slack, then the optimal Lagrange multiplier iss∗ = 0.

In this case, the constraints ≤ ρ is immaterial and so (53) and (59) are exactly the same. However, as

we shall see in the sequel, it is possible thats∗ > ρ∗ in (59), and then the values of the objective in

(53) and (59) are different. Observing (60), it is apparent that asT decreases, and especially in the list

mode ofT < 0, the optimals∗ of (59) increases, perhaps beyond the optimalρ∗. Thus, if boths∗ > ρ∗

and the condition in (38) dominatesξ∗(R, T ), we get thatξL(R, T ) < ξ∗(R, T ). The following example

provides such a simple case. We remark, that such a phenomenon was already observed in a Slepian-Wolf

erasure/list decoding scenario, for a known source [19]. There too, in the list regime ofT < 0, there is

a gap between the Forney-style bound and the exact random binning error exponents.

Example 2 Consider a family of two BSC’s, whereΘ = {0.1, 0.15}, and a typePX = (1/2, 1/2) for

the random fixed composition codebook. We take(R, T ) = (0.4,−0.25), and sinceT < 0, the decoder

operates in the list mode. We obtain thatξL(R, T ) = 0.716 which is strictly less thanξ∗(R, T ) = 0.727.
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In the optimization problem (53), the optimal values areρ∗ = s∗ = 0.231, while if the constraints ≤ ρ

is relaxed, then the optimal values ares = 0.231 > ρ = 0.217. The resulting value of the optimization

problem is exactly0.727, just asξ∗(R, T ). Moreover, for this example, the largest achievableξ which

satisfy condition (38) is the same for condition (39). Whilethe difference betweenξL(R, T ) andξ∗(R, T )

is not very large, it is nevertheless existent and in more intricate scenarios, the differences might be more

significant.

V. PROOFS

In the following, for simplicity of notations, we omit the dependency of the various quantities onR,

T , andξ, as they remain constants along the proofs.

Proof of Theorem 1: We analyze the total error term, following the steps of [18, Section V]. As was

mentioned earlier, we want to assess the (exact) exponential behavior ofE
[

Kn(R̂, C)
]

. In [15, Theorem

2], an upper bound was derived on this quantity, so here we seek a tight lower bound. LetΘn denote

the set of values ofθ that achieve{f(x,y),x ∈ X n,y ∈ Yn}. Note that the elements ofΘn depend on

x andy only through their joint type, and whence, we have that|Θn| ≤ (n+1)|X |·|Y|−1, i.e. the size of

Θn is a polynomial function ofn. Now,

E

[

Kn(R̂, C)
]

= E

{

max
θ∈Θ

Γθ(C, R̂)

e−n(ξE1(θ)+T )

}

(61)

≥ E

{

max
θ∈Θn

Γθ(C, R̂)

e−n(ξE1(θ)+T )

}

(62)

(a).
= E

{

∑

θ∈Θn

Γθ(C, R̂)

e−n(ξE1(θ)+T )

}

(63)

(b).
= E







∑

θ∈Θn

1
M

∑M
m=1

[

∑

y∈R̂m

∑

m′ 6=mWθ(y|Xm′) +
∑

y∈R̂c
m

e−nTWθ(y|Xm)
]

e−n(ξE1(θ)+T )







(64)

= E







1

M

M
∑

m=1

∑

y∈R̂m

∑

m′ 6=m

∑

θ∈Θn

en(ξE1(θ)+T )Wθ(y|Xm′)







(65)

+ E







1

M

M
∑

m=1

∑

y∈R̂c
m

∑

θ∈Θn

enξE1(θ)Wθ(y|Xm)







(66)

(a).
= E







1

M

M
∑

m=1

∑

y∈R̂m

∑

m′ 6=m

max
θ∈Θn

en(ξE1(θ)+T )Wθ(y|Xm′)







(67)
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+ E







1

M

M
∑

m=1

∑

y∈R̂c
m

max
θ∈Θn

enξE1(θ)Wθ(y|Xm)







(68)

= E







1

M

M
∑

m=1

∑

y∈R̂m

∑

m′ 6=m

f(Xm′ ,y)







+ E







1

M

M
∑

m=1

∑

y∈R̂c
m

e−nT f(Xm,y)







(69)

where in(a) we have used the fact that the size ofΘn is polynomial, and thus can be absorbed in the

enT factor (see, [18, pp. 5, footnote 2]), and (b) follows from (8). As was shown in [15, eq. after (A.1)],

the lower bound in (69) is, in fact, also an upper bound onE

[

Kn(R̂, C)
]

. Therefore, in the exponential

scale, nothing was lost due to the above bounding, and we essentially have that

E

[

Kn(R̂, C)
]

·
= E







1

M

M
∑

m=1

∑

y∈R̂m

∑

m′ 6=m

f(Xm′ ,y)







+ E







1

M

M
∑

m=1

∑

y∈R̂c
m

e−nT f(Xm,y)







. (70)

Contrary to the proof technique used in [15] to assess the exponential behavior of (70), where Chernoff

and Jensen bounds were invoked, here, we will evaluate theexact exponential scale of the two terms

on the right hand side of (70). It can be noticed that the first expression is related to undetected errors

(or average number of incorrect codewords on the list), and the second one is related to the total error

(erasures and undetected errors). For brevity, we define

A1 , e−nT · E







1

M

M
∑

m=1

∑

y∈R̂c
m

f(Xm,y)







, (71)

and

A2 , E







1

M

M
∑

m=1

∑

y∈R̂m

∑

m′ 6=m

f(Xm′ ,y)







, (72)

and so

E

[

Kn(R̂, C)
]

.
= A1 +A2. (73)

As was mentioned before, we would like to analyze the exponential rate of (70), or, equivalently, of (71)

and (72). Now, note that

lim
n→∞

1

n
logE

[

Kn(R̂, C)
]

= max

{

lim
n→∞

1

n
logA1, lim

n→∞

1

n
logA2

}

. (74)

Then, a fractionξ is achievable if both n−1 logA1 andn−1 logA2 converge to a non-positive constant

asn → ∞. At this point, we would like to invoke Lemma 1, and conclude that it suffices to asses the

exponential behavior ofA1 (or, A2), and then the other one is immediately obtained. Note that while

Lemma 1 was derived for the case of a known channel, it still remains true in the case of an unknown
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channel due to the similar structure of our universal erasure decoder4 (see the equivalence between (8)

and (70)). Thus, while bothA1 and A2 can be analyzed, it turns out that the analytical formula for

the exponent ofA1 is more compact, and thus, in the following, we only present the analysis ofA1.

Continuing from (71),

A1 = e−nT
E

{

1

M

M
∑

m=1

∑

y

f(Xm,y) · I{y ∈ R̂c
m}

}

(75)

(a)
= e−nT

E

{

∑

y

f(Xm,y) · I{y ∈ R̂c
m}|mth message transmitted

}

(76)

= e−nT
∑

y

E

{

f(Xm,y) · I{y ∈ R̂c
m}|mth message transmitted

}

(77)

= e−nT
∑

xm

PX(Xm = xm)
∑

y

E

{

f(Xm,y) · I{y ∈ R̂c
m}|Xm = xm,mth message transmitted

}

(78)

= e−nT
∑

xm

PX(Xm = xm)
∑

y

f(xm,y) · Pr
{

y ∈ R̂c
m|Xm = xm,mth message transmitted

}

(79)

where (a) follows from the symmetry of the random coding mechanism. Next, letQ be the joint empirical

probability distribution defined onX × Y of xm′ andy. Then,

f(xm′ ,y) = max
θ∈Θ

{

en(ξE1(θ)+T )Wθ(y|xm)
}

(80)

= max
θ∈Θ

{

en(ξE1(θ)+T )enEQ logWθ(Y |X)
}

(81)

= exp

[

n ·max
θ∈Θ

{(ξE1(θ) + T ) + EQ logWθ(Y |X)}

]

(82)

= exp [n ·G(Q)] , (83)

where we have definedG(Q) in (34). Next, we shall focus on the latter probability in (79). For a givenxm

andy, let Q̃ = P̂xy, let Ny(Q) denote the number of codewords (excludingxm) whose joint empirical

probability distribution with a giveny is Q. Accordingly, we have that

Pr
{

y ∈ R̂c
m|xm

}

= Pr







∑

m′ 6=m

f(xm′ ,y) ≥ f(xm,y)e−nT







(84)

4Note that in the proof of Lemma 1, we have used the fact thatE1(R, T, θ) and E2(R, T, θ) are both continuous

functions ofT . Accordingly, in order to apply Lemma 1 on the universal case, one should inspect thatlimn→∞
1

n
logA1 and

limn→∞
1

n
logA2 are also continuous functions ofT . As shall be seen in the sequel,limn→∞

1

n
logA1 is indeed continuous

in T , and similarly to the derivation ofE2(R, T, θ) in [18], it can be shown thatlimn→∞
1

n
logA2 is continuous too.
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= Pr







∑

Q

Ny(Q) exp [n ·G(Q)] ≥ exp
[

n ·G(Q̃)
]

e−nT







(85)

.
= Pr

{

max
Q

Ny(Q) exp [n ·G(Q)] ≥ exp
[

n ·G(Q̃)
]

e−nT

}

(86)

= Pr







⋃

Q

{

Ny(Q) exp [n ·G(Q)] ≥ exp
[

n ·G(Q̃)
]

e−nT
}







(87)

.
=

∑

Q

Pr
{

Ny(Q) exp [n ·G(Q)] ≥ exp
[

n ·G(Q̃)
]

e−nT
}

(88)

.
= max

Q
Pr

{

Ny(Q) exp [n ·G(Q)] ≥ exp
[

n ·G(Q̃)
]

e−nT
}

(89)

= max
Q∈S(P̂y)

Pr
{

Ny(Q) ≥ exp
[

n · Ω(Q, Q̃)
]}

(90)

where for a givenQ̄Y , S(Q̄Y ) ,
{

Q : QY = Q̄Y , QX = Q̄X

}

. The asymptotic analysis of the

probability in (90) was carried out in [18, Section V] for any given Ω, and it is not different here.

The result relies on the exponential decay of the probabilitythat the joint type of a giveny with a

randomly chosenxm′ is Q, namely

p , Pr
{

P̂Xm′ ,y = Q
}

. (91)

Under the assumed random coding ensemble, a simple application of the method of types reveals that

[4]

p
.
= exp {−nI(Q)} . (92)

Next, standard large deviations arguments (cf. [18, SectionV]) reveal that forQ ∈ S(P̂y)

Pr
{

Ny(Q) ≥ enΩ(Q,Q̃)
}

.
=































exp
{

−n |I(Q)−R|+
}

Ω(Q, Q̃) ≤ 0

1 0 < Ω(Q, Q̃) ≤ R− I(Q)

0 Ω(Q, Q̃) > R− I(Q)

. (93)

Let

U(Q̃) , max
Q∈S(Q̃Y )































exp [−n(I(Q)−R)] Ω(Q, Q̃) ≤ 0, I(Q) > R

1 I(Q) ≤ R, Ω(Q, Q̃) ≤ R− I(Q)

0 otherwise

. (94)
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Thus, substituting (93) in (90) and then in (79), we obtain, using the method of types,

A1
.
= e−nT

∑

xm

P (Xm = xm)
∑

y

f(xm,y) · U(Q̃) (95)

.
= e−nT max

Q̃
exp

[

nHY |X(Q̃)
]

exp
[

nG(Q̃)
]

U(Q̃). (96)

Note that the condition:

Ω(Q, Q̃) ≤ R− I(Q) (97)

in (94) is equivalent to

G(Q̃) ≤ G(Q)− I(Q) +R+ T. (98)

Thus, we obtain that the exponent ofA1 is given by

lim
n→∞

1

n
logA1 = −T −min

{

Ẽa(R, T, ξ), Ẽb(R, T, ξ)
}

, (99)

in which

Ẽa(R, T, ξ) , min
(Q,Q̃)∈Q

[

−HY |X(Q̃)−G(Q̃) + I(Q)−R
]

(100)

whereQ is defined in (36), and

Ẽb(R, T, ξ) , min
Q̃∈L

[

−HY |X(Q̃)−G(Q̃)
]

(101)

whereL is defined in (37). Now, we want to find the maximalξ for which

−T − Ẽa(R, T, ξ) ≤ 0, (102)

−T − Ẽb(R, T, ξ) ≤ 0. (103)

For Ẽa(R, T, ξ), substitutingG(Q), given in (36), in (100), we obtain

−Ẽa(R, T, ξ)− T = max
(Q,Q̃)∈Q

[

HY |X(Q̃) +G(Q̃)− I(Q) +R
]

− T (104)

= max
(Q,Q̃)∈Q

[

HY |X(Q̃) + max
θ

{

ξE1 (θ) + EQ̃ logWθ(Y |X)
}

− I(Q) +R

]

(105)

= max
θ

{

ξE1 (θ) + max
(Q,Q̃)∈Q

{

HY |X(Q̃)− I(Q) +R+ EQ̃ logWθ(Y |X)
}

}

(106)

= max
θ

{

ξE1 (θ)− min
(Q,Q̃)∈Q

{

D(Q̃||PX ×Wθ) + I(Q)−R
}

}

, (107)

which is exactly the condition in (38). In a similar manner, one obtains

−Ẽb(R, T, ξ)− T = max
θ

{

ξE1 (θ)−min
Q̃∈L

D(Q̃||PX ×Wθ)

}

, (108)
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which is exactly the condition in (39).

Proof of Corollary 1: In the following, we analyze the objective in (38) for anyθ. Starting with

the left term,E1(θ), note that this is just the expression that was considered in[18, pp. 6450-6451, eqs.

(64)-(73)]. For completeness, we present here the main steps in the simplification of this term to the

BSC. We start with the analysis ofEa(R, T ) given in (13). First, note that

EQ̂ logWθ(Y |X)− EQ logWθ(Y |X) =
[

Q (X 6= Y )− Q̂ (X 6= Y )
]

β (109)

whereβ = log [(1− θ) /θ]. Thus, recalling (12),E1(θ) takes the form

min
Q̃

{

D(Q̃||PX ×Wθ) +

∣

∣

∣

∣

∣

min
Q∈Q̂BSC(Q̃)

(

−HX|Y (Q) + log 2−R
)

∣

∣

∣

∣

∣

+}

(110)

where

Q̂BSC(Q̃) ,

{

Q : QY = Q̃Y , Q (X 6= Y ) ≤ Q̃ (X 6= Y ) +
T

β

}

. (111)

Now, note that

HX|Y (Q) = HI{X 6=Y }|Y (Q) ≤ HI{X 6=Y }(Q), (112)

and thus

min
Q̃

{

D(Q̃||PX ×Wθ) +

∣

∣

∣

∣

∣

min
Q∈Q̂BSC(Q̃)

(

−HX|Y (Q) + log 2−R
)

∣

∣

∣

∣

∣

+}

≥ min
Q̃

{

D(Q̃||PX ×Wθ) +

∣

∣

∣

∣

∣

min
Q∈Q̂BSC(Q̃)

(

−HI{X 6=Y }(Q) + log 2−R
)

∣

∣

∣

∣

∣

+}

(113)

= min
q̃

{

D (q̃||θ) +

∣

∣

∣

∣

min
q≤q̃+T/β

(−h (q) + log 2−R)

∣

∣

∣

∣

+
}

(114)

where the last step follows since the minimizingQ̃ is such thatQ̃X = PX to obtain minimalD(Q̃||PX ×

Wθ), and it is easy to verify using convexity arguments that given Q̃(X 6= Y ) = q̃ the divergence

D(Q̃||PX ×Wθ) is minimized for a symmetric̃QY |X , namely,

Q̃Y |X (y|x) =















q̃ x = y

1− q̃ x 6= y

, (115)

for which D(Q̃||PX ×Wθ) = D (q̃||θ). Finally, it is evident that we have equality in (113) if we choose

QY |X (y|x) =















q x = y

1− q x 6= y

, (116)
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and thus it is the minimizer. Next, we observe that−h (q) is a decreasing function ofq for q ∈ [0, 1/2]

and increasing forq ∈ [1/2, 1]. Thus,

min
q̃

{

D (q̃||θ) +

∣

∣

∣

∣

min
q≤q̃+T/β

(−h (q) + log 2−R)

∣

∣

∣

∣

+
}

= min
q̃

{

D (q̃||θ) +

∣

∣

∣

∣

−h

(

min

{

1

2
, q̃ +

T

β

})

+ log 2−R

∣

∣

∣

∣

+
}

(117)

= min
q̃

{

D (q̃||θ)− h

(

min

{

δGV (R) , q̃ +
T

β

})

+ log 2−R

}

(118)

= min
q̃∈[θ,δGV (R)−T/β]

[

D (q̃||θ)− h

(

q̃ +
T

β

)]

+ log 2−R (119)

where the last step can be easily verified using monotonicity properties of the binary entropy and

divergence [18, p. 6451 after eq. (72)]. Now, we analyzeEb(R, T ) given in (14). Note that there is

no conceptual difference betweenEa(R, T ) andEb(R, T ), and it can be verified that the latter can be

written as

min
q̃∈L̂BSC

D (q̃||θ) (120)

where

L̂BSC ,

{

q̃ : −q̃ · β ≤ R+ T + max
q: R≥log 2−h(q)

[−q · β + h(q)− log 2]

}

. (121)

Next, for anyθ, consider the right term in objective of (38). Note that the only difference between the

left and the right terms in (38) is just the inner minimization region. Accordingly, the right term takes

the form

min
Q̃

{

D(Q̃||PX ×Wθ) +

∣

∣

∣

∣

∣

min
Q∈QBSC(Q̃)

(

−HX|Y (Q) + log 2−R
)

∣

∣

∣

∣

∣

+}

(122)

where

QBSC(Q̃) ,

{

Q : QY = Q̃Y , max
θ′

{

ξE1(θ
′)− β(θ′)Q̃ (X 6= Y ) + log

(

1− θ′
)

}

−max
θ′

{

ξE1(θ
′)− β(θ′)Q (X 6= Y ) + log

(

1− θ′
)}

− T ≤ 0

}

. (123)

Let Ẽ1 (θ) , E1 (θ) + log(1− θ)/ξ. Then, using exactly the same steps as before, we get

min
Q̃

{

D(Q̃||PX ×Wθ) +

∣

∣

∣

∣

∣

min
Q∈QBSC(Q̃)

(

−HX|Y (Q) + log 2−R
)

∣

∣

∣

∣

∣

+}

≥ min
Q̃

{

D(Q̃||PX ×Wθ) +

∣

∣

∣

∣

∣

min
Q∈QBSC(Q̃)

(

−HI{X 6=Y }(Q) + log 2−R
)

∣

∣

∣

∣

∣

+}

(124)
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= min
q̃

{

D (q̃||θ) +

∣

∣

∣

∣

∣

min
q∈Q̃BSC(q̃)

(−h (q) + log 2−R)

∣

∣

∣

∣

∣

+}

, (125)

and equality can be achieved choosingQ to be symmetric, as before, and

Q̃BSC(q̃) ,

{

q : max
θ′

{

ξẼ1(θ
′)− β(θ′) · q̃

}

−max
θ′

{

ξẼ1(θ
′)− β(θ′) · q

}

− T ≤ 0

}

(126)

=

{

q : −max
θ′

{

ξẼ1(θ
′)− β(θ′) · q

}

≤ T −max
θ′

{

ξẼ1(θ
′)− β(θ′) · q̃

}

}

. (127)

Next, we simplify the setQ̃BSC(q̃). The constraint onq in the definition ofQ̃BSC(q̃), is equivalent to

demanding that there exist someθ′ ∈ Θ such that the following holds

β(θ′)q − ξẼ1(θ
′) ≤ T −max

θ′′

{

ξẼ1(θ
′′)− β(θ′′) · q̃

}

, (128)

or equivalently

β(θ′)q ≤ ξẼ1(θ
′) + T −max

θ′′

{

ξẼ1(θ
′′)− β(θ′′) · q̃

}

. (129)

Now, note thatβ(θ′) ≥ 0 if and only if θ′ ≤ 1/2. Accordingly, this means that, in terms ofq, Q̃BSC(q̃) is

equivalent toq ≤ q∗1 or q ≥ q∗2, whereq∗1 andq∗2 are given in (41) and (42), respectively. Consequently,

min
q̃

{

D (q̃||θ) +

∣

∣

∣

∣

∣

min
q∈Q̃BSC(q̃)

(−h (q) + log 2−R)

∣

∣

∣

∣

∣

+}

= min
q̃

{

D (q̃||θ) + |(−g (q∗1, q
∗
2) + log 2−R)|+

}

(130)

whereg (q∗1, q
∗
2) is defined in (43). Finally, we consider the right term in (39). Using the same steps as

above we obtain that

min
Q̃∈L

D(Q̃||PX ×Wθ) = min
q̃∈LBSC

D (q̃||θ) (131)

in which

LBSC ,

{

q̃ : max
θ

[ξE1(θ)− q̃ · β + log θ] ≤ R+ T

+ max
q: R≥log 2−h(q)

{

max
θ

[ξE1(θ)− q · β + log θ] + h(q)− log 2

}}

(132)

=

{

q̃ : max
θ

[ξE1(R, T, θ)− q̃ · β(θ) + log θ] ≤ R+ T

+max
θ

[ξE1(R, T, θ)−max {θ, δGV(R)} · β(θ) + log θ + h(max {θ, δGV(R)})− log 2]

}

(133)

where the last step follows from the fact that the maximizerq in the optimization problem in (132) is

given bymax {θ, δGV(R)}.
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APPENDIX A

PROOF OFLEMMA 1

For the sake of this proof, we will explicitly designate the dependence onT , and denote the decoder

in (4)-(5), with parameterT , by R∗(T ). Similarly, we will denote the value of (7) asΓ(C,R, T ). As

we have mentioned, the decoder minimizingΓ(C,R, T ) can be easily seen to be given byR∗(T ). Now,

assume conversely, that the exponents associated withE[Γ(C,R∗(T ), T )] satisfy

E2(R, T ) < T + E1(R, T ). (A.1)

The opposite case, where the inequality in (A.1) is reversed,can be handled analogously. Accordingly,

this means that in the exponential scale, we have

E[Γ(C,R∗(T ), T )]
.
= e−nE2(R,T ). (A.2)

Now, it is evident thatE1(R, T ) is a monotonically decreasing function ofT (allowing more erasures

increasesPr {E1}), andE2(R, T ) is a monotonically increasing function ofT (allowing more erasures

decreasesPr {E2}) [18]. Now, due to the fact thatE1(R, T ) andE2(R, T ) are continuous functions of

T [18, eqs. (23) and (31)], without loss of essential generality, there existsǫ > 0 and δ1 ≥ 0, δ2 > 0

such that

E1(R, T + ǫ) = E1(R, T )− δ1 (A.3)

and

E2(R, T + ǫ) = E2(R, T ) + δ2 (A.4)

yet

E2(R, T + ǫ) < T + E1(R, T + ǫ). (A.5)

Note that since it is not guaranteed thatE1(R, T ) or E2(R, T ) are strictly monotonic, it might be the

case thatδ2 = 0 too, i.e., regions of plateau. Accordingly, there are several cases to consider. First, if

just E1(R, T ) is within a plateau region, then everything go along withoutany problem sinceδ1 = 0

but δ2 > 0. Secondly, if justE2(R, T ) is within a plateau region, then we claim that this contradicts

the optimality of Forney’s decoder. Indeed, in this case, ifwe increaseT by some smallǫ > 0 (such

thatE2(R, T + ǫ) is within the plateau), we obtain a decoder with exponentsE2(R, T + ǫ) = E2(R, T )

andE1(R, T + ǫ) < E1(R, T ), and yet, due to continuity,E2(R, T ) < E1(R, T + ǫ). Thus, we obtained

that the optimal decoderR∗(T + ǫ) has the same performance asR∗(T ), in terms ofE[Γ(C,R∗(T ), T )],

DRAFT



25

but with worsePr {E1}, which means not the best tradeoff betweenPr {E1} and Pr {E2}, and thus

contradicting the optimality of Forney’s decoder atT + ǫ. Finally, if both exponents are within a region

of plateau, we can simply varyT until we leave this region, and thus we can assume thatδ2 > 0. To

conclude, we obtained that

E[Γ(C,R(T + ǫ), T )]
.
= e−nE2(R,T+ǫ) (A.6)

.
< e−nE2(R,T ) .

= E[Γ(C,R(T ), T )] (A.7)

which contradicts the property thatR∗(T ) is the minimizer ofΓ(C,R, T ).
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