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Background and Motivation

Key idea for lower bounds in IT and in probability theory: change of measures:

The sphere–packing bound (Csiszár and Körner’s book).

The converse part of the source–coding error exponent (Marton ‘74).

Large deviations theory – tilting.

Common recipe:

Pass from P to Q under which the probability is high.

The ‘cost’ of this passage is D(Q‖P ).

Tightest bound – after optimization over Q.

This work extends this idea:

Probability under Q – not necessarily high.

The ‘cost’ of this passage is the Rényi divergence Dα(Q‖P ).

An extra degree of freedom for optimization – the choice of α.

Both upper bounds and lower bounds.
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The Log–Probability Comparison Bound (LPCB)

Atar, Chowdhary & Dupuis (‘15): For α > 1,

ln Q(A)

α − 1
≤ ln P (A)

α
+ Dα(Q‖P ),

where

Dα(Q‖P ) =
1

α(α − 1)
ln

»

EP

„

dQ

dP

«αff–

.

More generally, for a given RV Z ≥ 0:

lnEQ

n

Zα−1
o

α − 1
≤ lnEP {Zα}

α
+ Dα(Q‖P ),

Main tool of the proof: Hölder’s inequality.

Objective: to demonstrate the usefulness for upper/lower bounds in IT.
In most of the examples, there are no competing bounds to the BoOK.
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Bounds on Exponents

For a sequence of events {An}n≥1, assume that the limits

EP = − lim
n→∞

ln Pn(An)

n
, EQ = − lim

n→∞
ln Qn(An)

n
,

D̄α(P‖Q) = lim
n→∞

Dα(Pn‖Qn)

n
, D̄α(Q‖P ) = lim

n→∞
Dα(Qn‖Pn)

n

all exist. Then,

EP ≥ α − 1

α
EQ − (α − 1)D̄α(P‖Q)

EP ≤ α

α − 1
EQ + αD̄α(Q‖P )

Useful when easy to evaluate/bound EQ and D̄α(·‖·).
Common practice in IT: For the upper bound, find Q with EQ = 0, and then

EP ≤ inf
α≥1

αD̄α(Q‖P ) = D(Q‖P ).

Here, by allowing a general Q, we also have α as an extra degree of freedom.
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Auxilary Result #1: Small Perturbations

Let P and Q be ‘close’ in the sense that

P (x) = Q(x)[1 + ǫ(x)] ∀x ∈ X

Let ǫ2 =
X

x

Q(x)ǫ2(x), ǫmax = max
x

ǫ(x).

Then, for every given sequence of events {An}:

EP ≤

0

@

q

EQ +

s

ǫ2

2

1

A

2

+ o(ǫ2max).

Applicable to error bounds for very noisy channels.
Comment: For a parametric family {Pθ, θ ∈ Θ}:

lim
θ′→θ

Dα(Pθ‖Pθ′)

(θ′ − θ)2
=

J(θ)

2
J(θ) = Fisher info.

Replace
q

ǫ2/2 above by
p

J(θ)/2 · |θ′ − θ|.
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Auxiliary Result #2: Iterated Use of the LPCB

Sometimes it proves convenient to pass from P to Q via a third measure S:

EP ≥ α − 1

α
ES − (α − 1)D̄α(P‖S)

ES ≥ β − 1

β
EQ − (β − 1)D̄β(S‖Q)

Thus,

EP ≥ (α − 1)(β − 1)

αβ
EQ − (α − 1)(β − 1)

α
D̄β(S‖Q) − (α − 1)D̄α(P‖S).

where α, β > 1, Q and S are subject to optimization.

Straightforward extension to any number of steps.

Similar idea works for the upper bound on EP .
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Application to Channel Coding

Setup:

Real channel: P (y|x) =
Q

i p(yi|xi).

Reference channel: Q(y|x) =
Q

i q(yi|xi).

Codebook: Cn = {x0, . . . , xM−1} ⊆ Xn, M = enR.

A message m – picked uniformly at random among M messages.

m is mapped to xm ∈ Cn and transmitted.

ML decoding w.r.t. P .

The error event En = {m̂ 6= m}.
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Example # 1: Channel with Interference

Channel P :

Yt = Xt + gt(X
n, Y t−1) + Wt Wt ∼ N (0, σ2) i.i.d.

Channel Q:
Yt = Xt + Wt Wt same

Theorem: Assume that |gt| ≤ Γt with
P

t Γ2
t ≤ nΓ2. Let EU (R,Q) be any upper

bound on the error exponent of Q (e.g., SP or SL bound). Then

E(R, P ) ≤
„

p

EU (R,Q) +
Γ√
2σ

«2

.

Comments:

Similar to the small–perturbation result, but here there is no limitation.

The bound does not vanish above capacity: alleviated by SL at (C, 0).

For R = 0, EU (0, Q) can be taken to be the zero–rate expurgated bound.

For R > Rcrit, EU (R, Q) = Esp(R).

In between, take the SL bound.
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Example #1 (Cont’d): Very Noisy Channel

Considering the input constraint
P

t X2
t ≤ nS, the exact reliability function

E(Q,R) is known for the very noisy channel

E(R,Q) =

8

>

>

<

>

>

:

CQ/2 − R R < CQ/4

(
p

CQ −
√

R)2 CQ/4 ≤ R < CQ

0 R < CQ

where CQ = S/2σ2 ≪ 1. Accodingly,

E(R,P ) ≤

8

>

>

>

>

>

>

<

>

>

>

>

>

>

:

»

q

CQ

2 − R + Γ√
2σ

–2

R < CQ/4

(
√

C −
√

R)2 CQ/4 ≤ R < CQ

Γ2(C−R)
2σ2(C−CQ)

CQ < R < C

0 R > C

where C = (
√

S + Γ)2/2σ2.
At least in the range [CQ/4, CQ), the bound is tight in the sense that it is
achieved when gt ∝ xt – coherent sum.
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Example #1 (Cont’d): A Lower Bound

The following lower bound is achieved by random coding and ML decoding that
ignores the interference (a-fortiori, by ML decoding):

E(R,P ) ≥

8

<

:

“

p

E(R,Q) − Γ√
2σ

”2
E(R, Q) ≥ Γ2

2σ2

0 elsewhere

where E(R,Q) is the random coding error exponent of Q.

The bound is attained by an anti–coherent interference gt ∝ −xt.

Implication on robust decoding:
E(R,P, d) – random coding error exponent for decoding metric d.
P – class of all Gaussian channels with |gt| bounded as above.

sup
d

inf
P∈P

E(R, P, d) ≤ E(R, Q)

sup
d

inf
P∈P

E(R, P, d) ≥
„

p

E(R,Q) − Γ√
2σ

«2
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Example #1 (Cont’d): Non–Gaussian Noise

Channel P :

Yt = Xt + gt(X
n, Y t−1) + Wt Wt i.i.d. non–Gaussian

Channel Q:

Yt = Xt + W̃t W̃t ∼ N (0, σ2) i.i.d.

The Rényi divergence between P and Q may be difficult to handle.
A natural approach is to pass via a third channel “in between”, S:

Yt = Xt + gt(X
n, Y t−1) + W̃t W̃t ∼ N (0, σ2) i.i.d.

and to iterate the LPCB as before using Dα(P‖S) and Dβ(S‖Q).

Dα(P‖S) – bounded in terms of Dα(fW ‖f
W̃

).

Dβ(S‖Q) has already been derived (bounded) before.

More details – in the paper.
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Example # 2: Gaussian Channel with Fading

Channel P :

Yt = (1 + θt)Xt + Wt Wt ∼ N (0, σ2) i.i.d., θt - Gaussian with spectrum Σ(ω)

Channel Q:

Yt = Xt + Wt Wt ∼ N (0, σ2) i.i.d.

Theorem: Let |Xt| ≤ A for all t and let α be small enough that
c(α) = α(α − 1)A2/2σ2 obeys 2c(α) supω Σ(ω) < 1. Then,

E(P, R) ≤ α

α − 1
E(R,Q) − 1

4π(α − 1)

Z 2π

0
ln[1 − 2c(α)Σ(ω)]dω

E(P, R) ≥ α − 1

α
E(R,Q) +

1

4πα

Z 2π

0
ln[1 − 2c(α)Σ(ω)]dω

Comments:

For certain forms of Σ(ω), the optimization of α can be made explicit.

Similar bounds for continuous–time Gaussian channels.
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Example #3: Rate–Distortion Coding

Consider the source P

Yt = Xt + Zt, Xt ∼ N (0, σ2), Zt arbitrary independent process.

The source is compressed at rate R. Find a lower bound on

Pr

(

X

t

(Ŷt − Yt)
2 ≥ nD

)

.

Under P : (Y , Z) ∼ fZ(z)g(y − z), i.e., Yt = Xt + Zt.

Under Q: (Y , Z) ∼ fZ(z)g(y), i.e., Yt = Xt (hence Zt is irrelevant).
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Example #3 (Cont’d)

We know (from Marton ‘74) that

lim inf
n→∞

ln Q
n

P

t(Ŷt − Yt)
2 ≥ nD

o

n
≥ −Φ[R − RG(D)],

where

RG(D) =
1

2
ln

σ2

D
; Φ(u) =

eu − 1

2
− u.

Now, assuming that |Zt| ≤ A for all t:

lim inf
n→∞

ln P
n

P

t(Ŷt − Yt)
2 ≥ nD

o

n
≥ −

„

q

Φ[R − RG(D)] +
A√
2σ

«2

.
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Wrapping Up

We discussed a framework of change–of–measure bounds.

An extension of a tool already used in IT and large deviations theory.

We demonstrated the usefulness in various examples.

Many more examples – in the paper.

We are not aware of competing bounds in the literature.

Applicable also to exponential moments in general.
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