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Key idea for lower bounds in IT and in probability theory: change of measures:

Background and Motivation

® The sphere—packing bound (Csiszar and Kdrner’s book).

® The converse part of the source—coding error exponent (Marton ‘74).

9o

Large deviations theory — tilting.

Common recipe:

9

Pass from P to Q under which the probability is high.

® The ‘cost’ of this passage is D(Q||P).

® Tightest bound — after optimization over Q.

This work extends this idea:

9o

o o b

Probability under Q — not necessarily high.
The ‘cost’ of this passage is the Rényi divergence D, (Q||P).
An extra degree of freedom for optimization — the choice of «.

Both upper bounds and lower bounds.
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The Log—Probability Comparison Bound (LPCB)

Atar, Chowdhary & Dupuis (‘15): For o > 1,

In Q(A)

a—1

i - oty oe ()]

More generally, for a given RV Z > 0:

In P(A)

<

+ Do (Q|| P),

where

InEp{Zz> 1 o
A7 REPZ) | Da(QllP)

a—1

Main tool of the proof: Holder’s inequality.

Objective: to demonstrate the usefulness for upper/lower bounds in IT.
In most of the examples, there are no competing bounds to the BoOK.
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Bounds on Exponents

For a sequence of events {Ay},>1, assume that the limits

Ep = — lim In Pnn(An), Bo =~ lim In Q::J(An),
Da(PIQ) = lim Da(PZHQn)’ Da(@IP) = lim Da(qupw
all exist. Then,
Bp 2 = LEg — (o~ 1)Da(Pl|Q)
Ep < —=Eq+aDa(Q|P)

Useful when easy to evaluate/bound Eg and Dq(-|]-).
Common practice in IT: For the upper bound, find @ with E5 = 0, and then

Bp < inf aDa(Q|[P) = D(QI|P).

Here, by allowing a general @, we also have « as an extra degree of freedom.
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Auxilary Result #1: Small Perturbations

Let P and @ be ‘close’ in the sense that

P(x) =Q(x)[1 +€(x)] VxelX

Let = Q(z)e°(z), emax = maxe(x).

T
x

Then, for every given sequence of events { A4, }:

—\ 2
Ep < (\/%‘i_ \/%) + O(E?nax)°

Applicable to error bounds for very noisy channels.
Comment: For a parametric family {FPy, 6 € ©}:

. Do (Pgl||Pyr)  J(0)
1 —
o0 (0' — 0)2 2

Replace \/€2/2 above by /J(8)/2- 16" — 4.

J(0) = Fisher info.

—p. 5/1



Auxiliary Result #2: Iterated Use of the LPCB

Sometimes it proves convenient to pass from P to @ via a third measure S

*~ 1By — (a—1)Da(P|S)

0}

Bs > Po=Eg-(3-1Dy(SIQ)

Thus,

pp > =002 gy - B2V U5,51Q) - (a - 1Da(PIS)

where o, 3 > 1, Q and S are subject to optimization.
® Straightforward extension to any number of steps.

® Similar idea works for the upper bound on Ep.
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Application to Channel Coding

Setup:
® Real channel: P(y|x) =[], p(y:|zi).
Reference channel: Q(y|z) =[], q¢(y:|x:).
Codebook: Cn, = {xg,...,xp—1} C X", M = ",
A message m — picked uniformly at random among M messages.
m IS mapped to x,, € C,, and transmitted.

ML decoding w.r.t. P.

© o oo 0 0

The error event &, = {m # m}.
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Example # 1. Channel with Interference

Channel P:
Vi=Xe+ X" Y+ W W ~N(0,0%) i.i.d.

Channel Q:
Y = Xt + Wy W same

Theorem: Assume that |g:| < T'; with 3°, T'7 < nI'?. Let Ey (R, Q) be any upper
bound on the error exponent of @ (e.g., SP or SL bound). Then

E(R, P) <\/EU (R, Q) + \/_0>2

Comments:

Similar to the small—perturbation result, but here there is no limitation.
The bound does not vanish above capacity: alleviated by SL at (C, 0).
For R =0, Ey(0,Q) can be taken to be the zero—rate expurgated bound.
For R > Rgit» Eu(R, Q) = Esp(R).

In between, take the SL bound.

e o000
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Example #1 (Cont’d): Very Noisy Channel

Considering the input constraint ) _, X2 < nS, the exact reliability function
E(Q, R) is known for the very noisy channel

( Co/2—R R < Cp/4
E(R,Q) =< (/Cg—+VR)?* Cg/4<R<Cqg
\ R<CQ

where Cg = S/20° < 1. Accodingly,

( 2
C
{\/ = R*ﬁ;} R < Cg/4
E(R,P)<{ (VC-VR)’ Co/4 < R < Cg
I*(C—R
202((0_022) Co<R<C
| 0 R>C

where C = (VS +T1)? /202,

At least in the range [Cq/4,Cq), the bound is tight in the sense that it is
achieved when g; o« x; — coherent sum.

—p. 9/1



Example #1 (Cont’d): A Lower Bound

The following lower bound is achieved by random coding and ML decoding that
ignores the interference (a-fortiori, by ML decoding):

0 elsewhere

where E(R, Q) is the random coding error exponent of Q.
The bound is attained by an anti—coherent interference g; o< —x+.

Implication on robust decoding:
E(R, P,d) — random coding error exponent for decoding metric d.
P — class of all Gaussian channels with |g¢| bounded as above.

sup inf F(R,P,d) < F(R,Q)
d PeP

sup inf E(R,P,d) > (JW,Q)— L>2

4 PeP 20
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Example #1 (Cont’d): Non—Gaussian Noise

Channel P:
Vi=Xi + (X", YY)+ W,  W;iid. non—-Gaussian

Channel Q-
Y: :Xt—|—V~Vt VNVt NN(O,O‘2) 1.1.d.

The Rényi divergence between P and Q may be difficult to handle.
A natural approach is to pass via a third channel “in between”, S

Vi=X: + (X" YY)+ W Wi ~N(0,07) iiLd.
and to iterate the LPCB as before using D (P||.S) and Dg(S||Q).

® D.(P||S)—bounded in terms of Dq (fw || fyi)-
® D;(5)|Q) has already been derived (bounded) before.

More details — in the paper.

—p. 1171



Example # 2. Gaussian Channel with Fading

Channel P:
Vi =(1+0)Xe + Wy Wi ~N(0,0%)iid., 6;-Gaussian with spectrum % (w)

Channel Q-
Y = X + Wy Wi NN(O,O‘2) .1.d.

Theorem: Let | X;| < A for all t and let « be small enough that
c(a) = afa — 1)A? /202 obeys 2¢(a) sup, (w) < 1. Then,

o 1 27T
BPR) € —25B(RQ) - = /0 Infl — 2¢(0)S(w)]dw
BPR) > LE(R, Q)+ ﬁ 0277 In[1 — 2¢(0)3(w)]dw
Comments:

® For certain forms of X(w), the optimization of o can be made explicit.

®» Similar bounds for continuous—time Gaussian channels.
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Example #3: Rate—Distortion Coding

Consider the source P

Ye = Xe + Z, Xt ~ N(O, 02), Z; arbitrary independent process.

The source is compressed at rate R. Find a lower bound on

Pr {Z(Yt —Y;)? > nD} .

t

Under P: (Y, Z) ~ fz(2z)g9(y — 2), 1.e., Y = Xy + Z;.

Under Q: (Y, Z) ~ fz(2)g(y), I.e., Y = X (hence Z; is irrelevant).
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Example #3 (Cont’d)

We know (from Marton ‘74) that

In Q{3 (Vi - ¥3)? > nD}
lim inf

n—oo n

> _(I)[R - RG(D)]a

where

1. o2 e’ —1
) R _u
5 In s (u) u

Rg(D) =

Now, assuming that | Z;| < A for all ¢:

In P {zt(fft Y2 > nD}

lim inf

im in . > <\/<I>[R — Rg(D)] + %)2.
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Wrapping Up

We discussed a framework of change—of—-measure bounds.

An extension of a tool already used in IT and large deviations theory.
We demonstrated the usefulness in various examples.

Many more examples — in the paper.

We are not aware of competing bounds in the literature.

Applicable also to exponential moments in general.
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