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Abstract

We take an information theoretic perspective on a classigatse-sampling noisy linear model and
present an analytical expression for the mutual infornmatiwhich plays central role in a variety of
communications/processing problems. Such an expressisnaddressed previously either by bounds,
by simulations and by the (non-rigorous) replica methode Etxpression of the mutual information
is based on techniques used in [1], addressing the minimunnsguare error (MMSE) analysis.
Using these expressions, we study specifically a varietypafse linear communications models which
include coding in different settings, accounting also fasltiple access channels and different wiretap
problems. For those, we provide single-letter expressemmd derive achievable rates, capturing the

communications/processing features of these timely nsodel

Index Terms

Channel coding, state dependent channels channel, withtamel, multiple access channel (MAC),

replica method, random matrix theory.

. INTRODUCTION
Compressed sensing [2, 3] is a collection of signal proogstichniques that compress sparse analog

vectors by means of linear transformations. Using some fiowledge on the signaparsity and by
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Fig. 1: Noisy compressed sensing setup.

designing efficient encoders and decoders, the goal is t@waeh@ffective compression in the sense of
taking a much smaller number of measurements than the diomeokthe original signal. Recently, a vast
amount of research was conducted concerning sparse randoissian signals which are very relevant
to wireless communications, see, for example, [1, 4-6] aatyreferences therein.

A general setup of compressed sensing is shown in Fig. 1. Théanen is as follows: A real
vector X € R” is mapped intoV € R* by an encoder (or compressaf): R® — RF. The decoder
(decompresson) : R¥ — R receivesY’, which is a noisy version of, and outputsX as the estimation

of X. The sampling rate, or the compression ratio, is defined as

(1)

1>
3.\F

In this paper, the encoder is constrained to bi@ear mapping, denoted by a matrid € R**", usually
called thesensing matrior measurement matrixvhere H is assumed to be a random matrix with i.i.d.
entries of zero mean and variantgn. On the decoder side, most of the compressed sensing Uiterat
focuses on low-complexity decoding algorithms which areust to noise, for example, decoders based
on convex optimization, greedy algorithms, etc. (see, f@ngple [5, 7-9]). Although the decoding is,
of course, an important issue, it is not in the focus of thigkwdhe input vectorX is assumed to
be random, distributed according some probability dertsit models the sparsity. Finally, the noise is
assumed to additive white and Gaussian.

In the literature, there is a great interest in finding asytiptiormulas of some information and
estimation measures, e.g., the minimum mean squared 8MSE), mutual information rates, and other
information measures. Finding these formulas is, in genexélemely complicated, and most of the works
(e.g., [4, 6, 10]) that deal with this problem resort to ugingreplica method which is borrowed from the
field of statistical physics. Although the replica method @sverful, it is non-rigorous. Recently, in [1] a
rigorous derivation of the asymptotic MMSE was carried out] & was shown that the results obtained

support the previously known replica predictions. The kesaidh our analysis is the fact that by using
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some direct relationship between optimum estimation amigicepartition functions [11], the MMSE can
be represented in some mathematically convenient formtw(gige to the previously mentioned input and
noise Gaussian statistics assumptions) consists of urad of theStieltiesandShannortransforms. This
observation allows us to use some powerful results fromaanihatrix theory, concerning the asymptotic
behavior (a.k.a. deterministic equivalents) of the Sesliggnd Shannon transforms (see e.g., [12, 13] and
many references therein). Here, however, we are conceritedsame input-output mutual information
rates, rather than the asymptotic MMSE. Nonetheless, we shathese information rates are readily
obtained from the results of [1]. It is worthwhile to emplzsthat these kind of mutual information rates
formulas are useful and important. For example, with refatd this paper, recently, in [14], the capacity
was derived for single-user discrete-time channels subpeboth frequency-selective and time-selective
fading, where the channel output is observed in additivesGian noise. This result is indeed important
due to the fact that various mobile wireless systems areestibp both frequency-selective fading and
to time-selective fading.

The works cited above focus on uncoded continuous signalie Wwhthis paper, we concentrate on
coded communication, similarly to [15]. In other words, weecoded sparse signals, and the objective is
to achieve reliable reconstruction of the signal and itgpsup In [15], sparse sampling of coded signals
at sub-Landau sampling rates was considered. It was showmitilacoded and with discrete signals,
the Landau condition may be relaxed, and the sampling ratpsreel for signal reconstruction and for
support detection can be lower than the effective bandwiltfjuivalently, the number of measurements
in the corresponding sparse sensing problem can be smh#erthe support size. Tight bounds on
information rates and on signal and support detection pedace are derived for the Gaussian sparsely
sampled channel and for the frequency-sparse channel tisingontext of state dependent channels.
It should be emphasized that part of the coding principled problems that we will consider in this
paper have already appeared in [15], but relying on boundse,Hhe new results facilitate a rigorous
discussion.

The main goal of this paper is to use the previously mentionatuah information rates in order to
give some new closed-form achievable rates in various aasoding problems, in the wiretap channel
model, and in the multiple access channel (MAC). Partitiylain the first part of these channel coding
problems, we will consider three different cases that diffe the assumptions about the knowledge
available at the transmitter and the receivers. For exampl&ubsection IV-B, we will consider the
case in which the sparsity pattern cannot be controlled kytthnsmitter, but it is given beforehand.

This falls within the well-known framework of state depentlehannels [16] (e.g., the Shannon settings
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[17] and the Gel'fand-Pinsker channel [18]). Another ingtireg result is that when the sparsity pattern is
controlled by the transmitter, a memoryless source madgmie mutual information rate. It is important
to comment that this result is attributed to the fact that mutual information rate formula is valid for
sources with memory, which is not the case in previously megoresults that were based on the replica
method. In the second and third parts of the applicationsctwHeal with the wiretap and the MAC
models, respectively, we will consider several cases irséime spirit. For each of these cases, we provide
practical motivations and present numerical examples demto gain some quantitative feeling of what
is possible.

The remaining part of this paper is organized as follows. IntiSedl, the model is presented and
the problem is formulated. In Section 1V, the main resultscewning channel coding problems are
presented and discussed along with a numerical exampleddrabnstrates the theoretical results. In
Section V, achievable rates for the wiretap channel modepasented. Then, in Section VI, we present

an implication for the MAC, and finally, our conclusions appeaSection VII.

Il. MODEL AND PROBLEM FORMULATION

Consider the following stochastic model: Each componéit,1 < i < n, of X = (Xy,...,X,),
is given by X; = S,U; where{U;} are i.i.d. Gaussian random variables with zero mean andneei
o2, and {S;} are binary random variables, taking values{in 1}, independently ofU;}. Concerning
the random vectoS = (S4,...,.S,) (or, pattern sequence), similarly as in [1], we postulate that the

probability P (S) depends only on thenfagnetizatiott

Al Zn
s = — 7. 2
" i i @)
In particular, we assume that
P(S) = Cn - exp{nf (ms)} ®3)

'The term “magnetization” is borrowed from the field of statistical mechawficspin array systems, in which; is taking

values in{—1, 1}. Nevertheless, for the sake of convince, we will use this term also in rainigm.
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where f (-) is a certain function that is independentafandC,, is a normalization constant. Note that

for the customary i.i.d. assumptiopi,is a linear function. By using the method of types [19], weaiist
-1

C, = Z exp {nf (ms)}
se{0,1}"
-1

= [ 3 Qm)ep {nf (m)

me[0,1]
= exp { —n - max {#s (m) + f (m)} } (4)
= exp{—n[Ha (ma) + [ (ma)]}, (5)

where(2 (m) designates the number of binasyvectors with magnetizatiom, Hs (-) denotes the binary
entropy function, andn, is the maximizer ofty (m) + f (m) over [0, 1]. In other words,m, is the
a-priori magnetization thatlominatesP (S). Finally, note that in the i.i.d. case, eadf) is distributed

according to following mixture distribution (a.k.a. Beuil-Gaussian measure)
P(x)=(1-p)-0(x)+p- Fg(x) (6)

whered (z) is the Dirac function,P; () is a Gaussian density function afd< p < 1. Then, by the
law of large numbers (LLN)L || X||, RN p, Where|| X ||, designates the number of non-zero elements
of a vector X. Thus, it is clear that the weight parametrizes the signal sparsity aRg is the prior
distribution of the non-zero entries.

Finally, we consider the following observation model
Y=AHX +W, (7)

whereY is the observed channel output vector of dimensigmA is n x n diagonal matrix with i.i.d.
diagonal elements with { A, ; = 1} = ¢ = 1-P{A;; = 0} whereA,;; denotes théth diagonal element,
H is n x n random matrix, with i.i.d. entries of zero mean and variaih¢e. The components of the
noiseW are i.i.d. Gaussian random variables with zero mean andvariiince. The matriA H is also
known as thesensing matrixWe will assume thaid and H are available at the receiver, and thtis
fixed, namely, given some realization, which determines timaber of ones on the diagonal, which will

be denoted by:. We denote by 2 k/n the sampling rate, or the compression ratio.

2Throughout this paper, for two positive sequen¢es} and {b,,}, the notationss,, = b,, anda, ~ b, mean equivalence
in the exponential order, i.elim,_ * log (an/b,) = 0, andlim, . (an/b,) = 1, respectively. For two sequencés,, }

n

and{b, }, the notationa,, < b, means thatim, .« (an — b,) = 0.
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In this paper, we are concerned with the followimitual information rates

I1(Y;X|AH
Ilélimsupw, (8)
n—00 n
and
I(Y;U|A,H,S
Igélimsup (Y;U|A, H, ), 9)

n—00 n

which are central in a variety of communications and prdogssiodels, see [14, 6, 15], and references
therein. Usually,Z; is evaluated using theeplica method(see, e.g., [6, 10]), while fof,; a classical
closed-form expression exists [6]. Based on the resultsljnwe provide an analytic expression for
7:, which is derived rigorously, and is numerically consistefith the replica predictions. The analytic
expressions of; andZ, will lead us to the main objective of this paper, which is tplexe the various

applications of these quantities in some channel codinglenas.

[11. M UTUAL INFORMATION RATES

In this subsection, we provide the analytic expressiongfandZ,. In the following, we first provide
a simple formula forZ; which is based on the replica heuristics, and is proved inH6t i.i.d. sources,

where f (+) is linear, we have the following result [6, Claim 1].

Claim 1 (Z; via the replica methodlet By, Xo,Z be independent random variables, wilBy ~
Bernoullip, Xy ~ N (0,02), and Z ~ N (0,1), and definelj = ByXy. Then, the limit supremum

in (8) is, in fact, an ordinary limit, and

I, =1 (Vo; Vo + 7771/22) +q [logg + (Z — 1) loge] (10)
wheren is the non-negative solution of
1 1
Sz (1 + mmse(voyvo + 77’1/22)> : 11)
n 4q

If the solution of (11) is not unique, then we select the soluthat minimizeszZ; given in (10).

The replica method is not rigorous. Nevertheless, based @tent paper [1], where methods from
statistical physics and random matrix theory are used, [tossible to derivel; rigorously. Before we

state the result, we define some auxiliary functions of a gemariablez € [0, 1]:

N —[1+02(q—x)]+\/[1+U2(q—a:)]2+402x

202z

b (x) , (12)
g () 21+ 02b(x), (13)
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o2qb (x)

— A q
I(x)=—=Ing(x) —Inb — , 14
(2) = S g (2) ~Inb () - = 28 (14)
412 2
A ob? () x
2 15
V@)= (15)
A o?b(z)
L(x)= 1
) = 37y (16)
and
A x - 9
t(x)=f(x)— 5[ () +V (x) [maqa + q] . a7
The mutual information rat&; is given in the following theorem.
Theorem 11, via the results of [1])Let (Q be a random variable, distributed according to
1—m, w? Mg w?
P = — —=— |+ —_——— 18
@ (w) 2P, P < 2Py) /270 (P, + ¢20?) xp ( 2(P, + ngz)) (18)
wherem, is defined as in (5) and, 2 mqo?q + q. Let us define
2 _
K (Q,a1,a9) = % [1 + tanh (W)] (19)

wherea; € [0,1] andasy € R. Let L' (m) andt’ (m) designate the derivatives @f(m) andt (m) w.r.t.

m, respectively, and leth, and~, be solutions of the system of equations

Yo é —-E {K (Q? Mo, 70) QQL/ (mo)} - t/ (mo) ’ (203)
mo 2 E{K (Q,mo,70)} - (20b)

In case of more than one solutiofin., v,) is the pair with the largest value of

t (mo) + <m - ;) Yo+ E {;L (mo) @* +1In [2 cosh (L(””QQL'YH } . (1)

Finally, define

h (Yo, Mo) = Yo <mo - ;) +E {;L (mo) @ +1In [2 cosh (L(m)QQQ_”ﬂ } )

Then, the limit supremum in (8) is, in fact, an ordinary linand

1 = %U2maq + Ha (ma) + f (ma) =t (mo) = h (70,m0) . (23)

The proof of Theorem 1 is a special case of the one in [1], wheraslymptotic MMSE was considered.
Nonetheless, we provide in Appendix A a proof outline. CormmgaClaim 1 and Theorem 1, it is seen
that the results appear to be analytically quite differ&l@vertheless, numerical calculations indicate that

they are, in fact, equivalent. A representative comparegopears in Fig. 2.
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Fig. 2: Mutual information rat&; as a function of the sampling rate for SNR = 10dB, 15dB, 20dB
andp =0.2.

Contrary toZ;, the mutual information rat&,; can be fairly easily calculated using, again, random

matrix theory. Let

F(a:,y)é<\/a:(1+\/§)2+1—\/a;(l—\/@)2+1>2. (24)

The information rateZ, is given in the following theorem.

Theorem 2([6, Theorem 2]) The information raté, is given by

1 1 1
I, =plog |1 +qo? — = F q02,]2 +qlog |1 +po? —=F q02,2 - —F qaz,g loge.
4 q 4 q 402 q
(25)
Equipped with closed-from expressions@fandZ,, we are now in a position to propose and explore

several applications of these information rates.

IV. CHANNEL CODING

In this section, we consider three different cases thatelegded to channel coding problems. Generally

speaking, the main differences among these cases is in #filalde knowledge of the transmitter and the
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receiver about the source. In the following applicatiomss iassumed that botd and H are available
at the receiver, but are unavailable to the transmitter.ofdiogly, the matrix A H can be considered
as part of the channel output, and the mutual informatiomtsrest is/ (Y, A, H; X). Thus, by using
the chain rule of the mutual information and the fact tiatand H are statistically independent of the

sourceX, we readily obtain that
I(Y,AH;X)=1(Y;X|A H), (26)
and
I(Y, A H;U|S)=1(Y;U|A H,S), (27)

which are simply identified as (8) and (9), respectively. Kegghese observations in mind, our goal
is to provide achievable rates in various channel codindplpros, which will only require us to know
the mutual information rate$; andZ,. Finally, note that part of the following coding principleave
already appeared in [15], but relying on bounds.

The input X in the previous section was considered as continuous udcsideal. However, in the
following applications, we will deal with coding problem8ccordingly, we use codes and allow the
use of the channel (7) for times as required by the code length. The whole codebook iszef2&"

codewords. The transmitter chooses a codew®rdnd transmits it over the channel.

A. Controlled sparsity pattern

Here, the sparsity patterf, as well as the Gaussian sigril, are assumed to be controlled and
given at the transmitter. The constraints are on the avenageost powerg?, and the sparsity rate, that
is the probabilityp 2 P(S; = 1). One motivation for this setting is, for example, in case mehthe
transmit antennas (conveyin¥) are remote, and “green" communications constraints eafshutting
off a fraction (1 — p) of the antennas, corresponding to the sparsity of the paierHere, since the
shut-off pattern can be controlled, it can be used to conméyrination as well. We have the following

immediate result.

Theorem 3 (reliable coding rateAssume the source-channel statistics assumptions thagieea in
Section Il, and assume th& and U can be controlled by the transmitter. Thef, in (23) (or in

(10)) is an achievable information rate for reliable comimation.

Proof: Since bothS andU are controlled, thenX is also controlled. Note, however, th&tis not

provided to the receiver beforehand. Thus, this is just amélanith inputs(S, U) and outputY’, where
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the matricesH and A are provided to the receiver only (the transmitter is awdréhe statistics of

course). Therefore, an achievable coding rate is given lmalr€26))

lim sup I(S5,U;Y|A H) = lim sup —I (X; YA, H), (28)

n—00 n n—00 n

which is exactlyZ; . ]
Recall that the information rat&, given in Theorem 1, is valid also for sources that are notsszudy
memoryless, as we allowed the model given in (3) with a gerfarection f. It is then interesting to

check whether optimization over this class of sources cém toeincreaseZ;. Let

1>

F ={f:[0,1] = (—00,0], f e Al0,1]} (29)

where A0, 1] is the class of analytic functions on the intery@J1]. Then, according to (3), our class
of sources is uniquely determined by the set of functighsAlso, let f;, designate the affine function
fr (m) = am+b, wherea, b € R, and recall that substitution ¢f, in the pattern measure (3) corresponds
to a memoryless assumption of the sparsity pattern. We lvéotlowing result. Finally, let”; be the

set of probability distributions of the form of (3).

Theorem 4 (memaoryless pattern is optimal o¢ér) Under the asymptotic average sparsenessn-

straint, defined as
lim lIEE {Zn: SZ} =D, (30)
nmeen s Ui
the following holds
nﬁx 1 = max 1 = Il|f=fL . (32)
In words, memoryless patterns give the maximum achievadite aver ;.

Proof: See Appendix B ]
Intuitively speaking, Theorem 4 is essentially expectedtdube natural symmetry in our model induced
by the assumptions oA and H, that are given only at the receiver side (had these mathees known
to the transmitter, this result may no longer be true). Alsate that whenS = (1,1,...,1), namely,
the source is not sparse, we obtain a MIMO setting, in whidl iwvell-known that the Gaussian i.i.d.
process achieves capacity [20]. In the following, we shoat tithie optimal distribution of the pattern

seqguence must be invariant to permutations.
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Theorem 5 (permutation invariant distributioret . be the set of all probability distributions &,

and let.#1; denote the set of all probability distributions that areaiiant to permutations. Then,

I = 1. 32
H}gxl %Xl (32)

Proof: The maximization ofl (Y; X|A, H) over . boils down to the maximization of the

conditional entropyH (Y| A, H), namely,

arg max I(Y;X|AH) = arg max H(Y|A H) (33)
1
Recall that
P(Y|A, H) :/ daP () P(Y|A, H,x) . (35)

Since the columns ofAH are i.i.d. and(A, H) are known solely to the receiver, it is evident that
the conditional entropyd (Y'|A, H) is invariant to permutations of in P (S). To see this, leP; (S)
denote some permuted version BfS), namely,P, (S) = P (ILS) whereIl is a permutation matrix
corresponding to some permutation. AccordinglyRet X ) be the probability distribution oX induced
by the permuted distributiof®, (S). Finally, let H, (Y| A, H) designate the conditional entropy ®f
given (A, H) where X is distributed according t&®, (X). Then,

H.(Y|AH)=—-E {10g /Rn daP, ()P (Y |A, H, :c)} (36)
= —E {log/n dzP, (Hac)IP’(Y|A,H,1’Iac)} (37)
_ R {log/n dzP (a:)IP’(Y|A,H,1'Ia:)} (38)

where in the second equality we changed the variable TIx which permutes the vectat according

to the permutation used A, (S). Now,

H. (Y|A H) = —E {log /R (27T1)k/2dmIP> () exp <—; ly — AHHac||2> } (39)
1 1
=— /d]P’ (y|A,H)dP (A, H) [log /R Wdaﬂ? (x) exp <—2 ly — AHH:UH2>] (40)
1 1 2
— —/d]P’ (y|A, HI") dP (A, HII") [log/n Wdaﬂ}” () exp <—2 |y — A(HTI" )Tz || )]

(41)
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) (27T1)k/2de (x) exp (-; ly — AH:BH2>] (42)

:—/dP(y|A,H)dP(A,H) [log/
R
=H(Y|A,H) (43)

where in the third equality we changed the variaBle— HTII?, and the forth equality follows from

the facts thatHII" IIz = Hz and that(A, H) are i.i.d. and thu® (A, HII") = P (A, H).
Continuing, letP, € . denote the probability distribution that maximiZe€Y'; X |A, H). Let IL,

denote the set of probability distributions obtained frimby all possible permutations &, and thus

each is achieving the maximal(Y; X |A, H). Also, let

PinV(S)é ! ZIP’(S). (44)

[IL| Pell.
Note thatPin, (S) € 11, namely,Pi,, (S) is invariant to permutations. Finally, 1éf (Y| A, H) |p,, and
H (Y |A, H) |p, designate the conditional entropies¥fgiven (A, H) whereS is distributed according
to Py, andP,., respectively. Thus, from the concavity &f (Y |A, H) w.r.t. P(-|A, H), we have that

H(Y|A,H)p, = -E{log > Pr(S)P(Y|A H,S) (45)
se{0,1}"
z—& Y Eqlog Y P(S)P(Y|AH,S) (46)
| *|IP’€H* sef{0,1}"
=H(Y|A H)lp, (47)

where (47) follows from the fact that the conditional engrap the same for all members of, as was
mentioned previously. ]

It is tempting to tie Theorems 4 and 5 to infer that the optimstrdbution of S over.# is memoryless.
However, there is still a little gap. Indeed, despite thd that permutation invariant distributions must
depend on the pattern only through the magnetization, netyesuch distribution can be expressed as
the one in (3), due to the smoothness requirement.dfor example, in case of uniform distributions
over types, the functiorf is not continuous. Nonetheless, roughly speaking, it islevi that one can
approximate arbitrarily closely such non-smooth behavioy a respectively smooth functigh So, we
conjecture that the maximum mutual information is indeeki@®d by a memoryless source.

Finally, we present in Fig. 3 the mutual information r&teas a function of the sampling rateand
the SNR forp = 0.2. It can be seen that increase of the rate or/and the SNR reésudis increase of

77, as one should expect.
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Fig. 4. Gel'fand-Pinsker channel.

B. Unknown sparsity pattern

In this subsection, we consider the case where the spagditgrp is unknown to all parties. The vector

U is treated as the information to be transmitted over the mélamn this setting, we have the following

result.

Theorem 6 (unknown sparsity patteriijpe channeP (-| X, A, H), defined in Section I, has an achiev-

able rate given by

March 20, 2014

Rle—Hg(ma).

(48)
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Proof: This is a channel with inpul/ and outputY’, where the matricedd and H are known only

to the receiver. Therefore,

I(U;Y|A,H,S)>1(U;Y|A H) (49)
=I1(U,S;Y|AH)—I(S;Y|U,A, H) (50)

>I1(X;Y|A H)— H(S), (51)

and the result follow, after normalizing by and taking the limitn — co. ]

Yet another interesting setting is the case in which thestrdtter cannot control the sparsity pattern
that is given beforehand. This patte$), is considered to behannel stat@vailable non-causally/causally
to the transmitter solely. The vectdr is treated as the information to be transmitted over the rblan
This framework falls within the well-known Gel'fand-Pinskehannel [18] and the Shannon settings
[17], for non-causal and causal knowledge $f respectively. This is illustrated in Fig. 4. A possible
motivation for this setting is when the transmitter, thabguces the inpul/, knows the pattern of
switched antennas/shut-off pattern (“green” wirelesg},dannot control it. In the following, customary
to the Gel'fand-Pinsker and the Shannon settings, the chatettel is assumed an i.i.d. process such that
pEP(S; = 1).

For the case where the side information is available at thesmitter only causally, the capacity

expression has been found by Shannon in [17], and is given by

max [(V;Y|A H) (52)

P(v),u(v,s)
whereU (V, S) is a deterministic function oV and S. Note that the auxiliaryy” should be chosen
independently of the state [21], while the transmitted aigran depend on the state. Now, since the
sparsity pattern is given, we can adapt the power of the mrétesd signal accordingly, that is, we do
not transmit at times whef; = 0. Accordingly, let us choos® = U’, whereU’ is a Gaussian random
vector with independent elements, each with zero mean andneap~'02. The transmitted signal is
U = S ©® V (which maintains the average power constraint), wherdenotes the Hadamard product,

and thusX = So© U = S ® V, where we have used the fact thgt> S = S. Therefore, (52) reads
I(V;Y|AH)=1 (U’;Y]A, H) . (53)

Unfortunately, we were unable to derive a closed-from esgiom for the information rate corresponding

to I (U';Y|A, H). Nonetheless, we note that

I(U;Y|A,H)=1(U,S;Y|A,H) - I(S;Y|U', A, H) (54)
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Fig. 5: Achievable rate in the uncontrolled sparsity pattease, as a function of and the SNR, for
p=0.2.

—I(X;Y|AH)—I(S;Y|A, H) (55)

> I(X;Y|AH)— H(S). (56)

Accordingly, the achievable rate is given By s — H2 (p), whereZ, s is given in (10) witho? replaced
by p~'o2, that is the overall SNR is scaled fropa? to o2. Thus, the improvement due to the knowledge
of S at the transmitter side compared to Theorem 6 is evident. ®@mbn-causal case, namely, the
Gel'fand-Pinsker channel, we could not find a good choice fer dhxiliary variableV'. In [22], the

related case of fading (which may be binary) given as siderinition known to the transmitter only
was considered.

Theorems 3 and 6 demonstrate how important it is to be ablerttvalahe sparsity patters§. Indeed,
it can be seen that the gap between these two achievableisagasactly Hs (p) which quantifies our
uncertainty at the receiver regarding the source suppois iShllustrated in Fig. 5, which shows the
achievable rate as a function gfand the SNR, fop = 0.2. It can be seen that there is a significant
region of rates and SNR’s for which the achievable rate is ge&ithin this region, the subtractive term
in (48) dominates). This is attributed to the fact that thersipa pattern is uncontrolled, and can be

interpreted as the overhead required to the transmittedaptato the channel state.
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C. The sparsity pattern is carrying the information

In this subsection, we consider the case where the infoomasi conveyed viaS, while U plays the

role of a fading process, known to nobody. In this case, we lthg following result.

Theorem 7 (informative sparsity patter@onsider the case in whicH is carrying the information and

U is unknown both to the receiver and the transmitter. Thenatigevable rate is given bf = 7; — Z,.

Proof: Evidently, under the theorem settings, what matters is thesahinformation/ (S;Y'|A, H)

which readily can be expressed as

I(S;Y|A,H)=1(Y;U,S|A,H)—I(Y;U|A H,S) (57)
=I(Y;U,S|A,H)—1(Y;U|A H,S) (58)

=I(Y;X|A,H)-I(Y;U|A H,S), (59)

and thus Theorem 7 follows, after normalizing hyand taking the limitn — oo. ]

Note that similarly to Subsection IV-A, an optimization ovtbe input distribution can be considered.
Nonetheless, by using the same arguments it can be showth#ratis no gain by using sources with
memory. In the following, we consider the high SNR regimesinhot difficult to show that for large?,

the behavior ofZ; is as follows [6, Eq. (34)]
T = min {q, p} log (1 + 4min {q,p} 0*) + O (1) (60)

Note that the prelog constant (a.k.a. the degree of freedtothe above term of; is just the asymptotic
almost-sure rank of the matriA H S, as one should expect. Similarly, the prelogZgfis alsomin {q, p}.
Thus, if we let

Ié lim W7 (61)

n—o0 n
then following the last observations regarding the prelafgs, andZ,, it can be seen that the information
rateZ converges in the high SNR regime to a finite value that is indé@einofo2. This is not surprising
due to the obvious fact that < H, (p). Fig. 6 shows the achievable rate for= 0.2. It is evident that

due to the fading induced b¥/, there is a significant decrease in the achievable rate.

V. THE WIRETAP CHANNEL

In the wiretap channel [23], symbols that are transmittedugh a main channel to a legitimate receiver

are observed by an eavesdropper across a wiretap channajo@hef coding for wiretap channels is to
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Fig. 6: Achievable rate when the sparsity pattern is carryirginformation, as a function af and the
SNR, forp =0.2.

facilitate error-free decoding across the main channellendnsuring that the information transfer rate
across the wiretap channel would be as small as possible.sikabée property here iseak secregy
which means that the normalized mutual information betwtbensource and the wiretap channel output

will tend to zero.

In our problem, we consider the case in which the legitimater ueceives
Y I =AH X +W,, (62)
while the eavesdropper receives
Y, = AyH>X + Wo. (63)

We assume that the statistics Hf; and H, are the same, namely, both are random matrices with i.i.d.
elements having variance/n. So is the case for the Gaussian noi3®s and W,. The difference is,
however, between the matricds and As, where forA; we defineg; = P (AS} = 1), for A, we define

G2 2p (Aﬁ) = 1), and it is assumed that > ¢». The motivation could be processing limitations, that

is the legitimate receiver has stronger processors, andehean process more outputs/measurements,
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going via different jamming patterns, as well as cloud pssagy (that is the legitimate receiver gets
controlled access to more outputs, than the non-legitimagewhich has to collect these by chance).
In a fashion similar to the previous section, we considerehvo different cases: Controlled or
uncontrolled sparsity pattern (by the transmitter), andvanable a-priori to both the legitimate and
the eavesdropper users. Another configuration that can b&idssad is when the sparsity patteshis

available to both the legitimate user and the eavesdropgech was already studied in [24].

A. Controlled sparsity pattern

In this subsection, we consider the case whgris controlled by the transmitter, but, is unavailable a-
priori to both the legitimate user and the eavesdropper.sBoescy capacitis the highest achievable rate
that allows perfect weak secrecy, or, in other words, makagaivocation for the wiretapper. Accordingly,
as we deal with degraded channels, our setting is just aapmge of [25], and the secrecy rate is given
by

1
lim — [I (Yl;X|A1,H1) -1 (YQ;X|A2,H2)] (64)

n—oo N

which involves onlyZ; terms. Thus, we have the following result.

Theorem 8 (controlled sparsity patterdssume thaiS is controlled by the transmitter, but is available
a-priori to neither the legitimate user nor the eavesdroppeen, the achievable secrecy rate is given
by R = 7,1 — I,,g, WwhereZ, ; andZ; g are the information rates of the legitimate user and the

eavesdropper, given in (10), withreplaced byy; and ¢,, respectively.

Note that similarly to the discussion in Subsection IV-A, @a®& consider an optimization of the above
achievable rate over the class of sources defined in (3), yamadloiting the fact thaS does not have
to be Bernoulli. However, by repeating the same steps as inré€he4, it can be shown that there is no

gain by using any other source pattern other than the Bdrrané.

Theorem 9 (memaoryless pattern is optimal o¥éy) Let .# be defined as in (29), and le¥, be the
set of probability measures in the form of (3). Then, underdabhgmptotic average sparsity constraint,

namely,

N B R
nh_{r;o EE {Z; Sz} =p, (65)
the following holds

max {ZTv, —Th g} = max {Tie —Tipt = {Tve — Tipdl ey, - (66)
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Fig. 7: Secrecy rate when the sparsity pattern is controlled, function ofg; and the SNR, fop = 0.2
andg, = 0.3.

In words, memoryless patterns give the maximum achievatite aver ;.

Proof: See Appendix C. ]

Again, this result is expected due to the symmetry of the mssumodel, and the fact that and H

are available only at the receivers side. Had these mathieea known also to the transmitter, then by
controlling the sparsity pattern better secrecy is exgedimally, similarly to the discussion in Subsection

IV-C, in the high SNR regime, it is evident that for > ¢ > p the achievable secrecy rate is converges
in the high SNR regime to aiAnite value that is independent of the SNR. Howeveig;if> p > ¢o,

then the secrecy rate grows without bound withwith prelog constant given bgp — ¢2).

Fig. 7 shows the secrecy rate as a functiom0dnd the SNR fop = 0.2 andgs = 0.3. It can be seen
that wheng; = ¢ the secrecy rate vanishes, as one should expect. Also, jo;ar 0.3, increasing
the SNR resulting in an increasing of the secrecy rate, andasiynstronger legitimate receivers can

achieve higher secrecy rate.
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B. Unavailable sparsity pattern

In this subsection, we consider the case where the spaisitgrp is known to nobody, and the vector
U is treated as the information to be transmitted over the mélarks before, since we deal with degraded

channels, our setting is just a special case of [25], and é¢beesy rate is how given by

) 1
hm — [I (Yl; U|A1,H1) — I(Yz; U|A2,H2)] (67)

n—oo N

Thus, we have the following result.

Theorem 10 (unavailable sparsity patterAssume thatS is known to nobody. Then, an achievable

secrecy rate is given by
Ty —Io,p — Ha (p) (68)

Proof: Using (67), we note that

[(Y1;U|ALHY) — 1(Y9;UlAs, Hy) Y 1(X;Y 1AL HY) — 1(S; YU, Ay, Hy)

—I(X;Y3|Ag, Hy) + 1(S;Y2|U, Ay, Hy) (69)
(Zb) I(X;Y 1A, Hy) — H(S)

—I(X;Y|As, Hy) + 1 (S;Y 2| Az, H>) (70)

S 1(X1Y AL HY) — H (S)— 1 (U3 Yol Ay, Ho S) (71)

where (a) follows from the chain rule of the mutual informatiorip) follows from the fact that

I(S;Y U, Az, Hy) > 1(S;Y 2| A2, Hy), Which in turn is due to

I(S;Y3]As,Ho) <I(S;Y2,U|A2, Hs) (72)
=1(S;U|Ay, Hy)+1(S;Y2|UA2, H») (73)
= I(S, Y2|U,A2,H2) (74)

where the first passage is due to the data processing ingqéadially, (b) follows from (59). Therefore,
(68) readily follows from (71). ]
Fig. 8 shows the secrecy rate as a functiomofor p = 0.2, various values of the SNR, and = 0.1

and ¢, = 0.2. The results illustrate, again, the importance of contigllihe sparsity pattern.
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C. Uncontrolled sparsity pattern

Finally, we consider the case in which is non-causally available to the transmitter, but cannot be
controlled, that is,S plays the role of a state as in Subsection IV-B. The problem ofesy capacity
here, is not fully solved, but an insightful achievable cegivas found in [26]. This achievable rate is

given by

lim 1 [I(V;Y1]A1, H1) —max{I(V;S),1(V;Y2|As, H2)}] (75)

n—00 M

whereV — (U, S) —(Y1,Y2). Note that, as befor& s can be represented as a degraded versidriof
Evidently, this achievable rate is again composed oferms, as well ag (V;S). TakingV = SU, we

obtain the following result.

Theorem 11 (uncontrolled sparsity patterAssume thatS is a non-causal state information, that is
unavailable a-priori to both the legitimate user and theesdxopper. Then, the achievable secrecy rate

is given by
R = Il,L — max {Hg (p) aILE} . (76)
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Theorems 8 and 11 demonstrate some gain that results fronbilitg o control the sparsity pattern
control the sparsity patter§. Indeed, it can be seen that for high SNR there is no differdreteeen
the two achievable secrecy rates. However, below some SNR Mhen the sparsity pattern cannot be
controlled, the binary entrop§{, (p) dominatesZ; g, and the resulting secrecy rate is smaller than the
secrecy rate in case of controlled sparsity pattern.

Fig. 9 shows the achievable rate as a functiorg;0énd the SNR, fop = 0.2 andg¢, = 0.3. It can be

seen that the result is similar to Fig. 6, that is
Il,L — max {Hg (p) >I1,E} = ILL — Hg (p) . (77)

Accordingly, this means that under the above specific chofce and ¢-, the loss in the secrecy rate
is attributed more to the fact that the sparsity pattern cabe controlled, than due to the presence of
a wiretapper. In order to illustrate the loss due to the &jpper, we consider the following example.
Figures 10a and 10b show, respectively, the achievable nalt&;g, — H (p), as a function of;; and the
SNR, forp = 0.2 and ¢, = 0.5. In this case the eavesdropper has a strong processor, 80 firocess

more measurements compared to the previous example. Aaglydit is evident that in this case the
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wiretapper plays a role, and the loss in the secrecy ratevismore significant.

lu
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Fig. 10: (a) Secrecy rate and (B) ;, — H2 (p) in case of an uncontrolled sparsity pattern as a function
of ¢; and the SNR, fop = 0.2 andg, = 0.5.

VI. THE MULTIPLE ACCESSCHANNEL

In this section, we consider the symmetriMAC settings [27], in which several senders send
information to a common receiver. In our case, we have thleviimhg setting: The sequencd/;} are
now the signals corresponding to different non-coopegatemote users, and the constraint is that on
the average, one cannot employ more thantransmit antennas. The pattern sequence is assumed to
be i.i.d. Here, theth user can control the signal;, as well asS; (adhering, of course, to the rule that

P(S; = 1) = p). We have the following result.

Theorem 12 (MAC)Consider the MAC under the aforementioned assumptions,lan@R;,..., R,)

denote the rates of the users. Then,
Ra<(1—0a) ' 'T1, (78)

whereR,, is the sum-rates of (1 — «)) users (no matter which ones, due to symmetry), whefea < 1,
andZ; , equals toZ; but with p replaced by(1 — «) p. Particularity, the sum-rates (corresponding to

a = 0) is given byZ;.

3The symmetry is in the sense that all the users transmit at equal poveds. lev
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Proof: The case oty = 0 follows directly from the MAC capacity region [27]. For thecond part,
we wish to find the achievable rate of( 1 — «) users, namely, in the MAC capacity region we condition

on the signals produced by the othex users, and the achievable is given by
I(X(1a)Y|Xo A H) (79)
where X, (and similarly for X (;_,)) correspond to the. users. This can be thought as

Y = AHX + W (80)

= AHX( o)+ AHX,+W, (81)

and thus (79) is equivalent as to examifiebut with p — (1 — «) p. Finally, due to the fact thaf; is

normalized byn, we need to re-normalize the result by multiplying it fly— o). ]

VIlI. CONCLUSIONS

In this paper, we examine the problem of sparse sampling @édaignals under several basic channel
coding problems. In the first part, we present closed-fornglsitetter expressions for the input-output
mutual information rates, assuming a compressed Gaussgar channel model. These results are based
on rigorous analytical derivations which agree with pregiy derived results of the replica method. In
the second part, we present achievable rates in severahehemding problems, in the wiretap channel
model, and in the multiple access channel (MAC). Specificilychannel coding problem, we consider
three cases that differ in the available knowledge of thestrdtter and the receiver about the source,
and particularity, regarding the sparsity pattern. The Iteqquantify, for example, how important is it
to be able to control the sparsity pattern. Also, we show thla¢n this pattern can be controlled by
the transmitted, then, a memoryless source maximizes thieaiuformation rate, given some sparsity
average constraint. Then, we consider the wiretap channdéhfor which several cases were studied.
The problems considered are timely and motivated by praogdisnitations, where the legitimate receiver
has stronger processors, and hence can process more gugaggarements, going via different jamming
patterns, as well as cloud processing. Here, the resultomsnate, for example, our inherent limits
in achieving some degree of secrecy as a function of the sagnptes of the legitimate user and the
eavesdropper. Finally, in a fashion similar to the previoissuksion, in case that the sparsity pattern
can be controlled by the transmitter, we show that the sgaae cannot be increased by using sparsity

patterns that are not memoryless.
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APPENDIX A

PROOFOQUTLINE OF THEOREM 1

In this appendix, we give a proof outline of Theorem 1. It skok emphasized that Theorem 1 is
a special case of the problem considered in [1], and here wihasize the required modifications. The
analysis consists of three main steps, which will be preskirt the sequel, along with specific pointers
to the proof in [1].

The first step in the analysis is to find a generic expression ofmieial information for fixedk, n.
This is done by using a relationship between the mutual in&bion and some partition function [28].

To this end, we define the following function,

A
2y HA)2 [ plde)exp [~ |y - AHa| /2], (A1)
According to our source model assumptions, the input Oistion is given by
1 1.2
pEy= Y, Ps) J] 6 [] e z2 %, (A.2)
se{0,1}" it 5;,=0 i s;=1 Y 270
Now,
exp (— Y — AHX|? /2)
I1(Y;X|A H)=EX{ log 7 H.A) (A.3)
1 2
= —5E{IY - AHX|*} —E{log Z (y, H. A)} (A4)
- fg _E{logZ(Y,H,A)}. (A.5)
Next, as shown ih[1, Egs. (57)-(64)]
1
se{0,1}"
where
exp {JyTAH HHT AT
G(y, A )L Py AHHH, Ay} (A7)
\/det (s2HJ AT AH; + I,)
where H; denotes the restriction of on the supportS = {ieN:S;#0}, and H® 2

(HTATAH, + L 1,)"". Thus,

I(Y:X|A H 11 1
I(Y; X|AH) _ _|_2[ma02q—|—1]nE{log 3 IP’(S)Q(Y,A,HS)}

n 2
se{0,1}"

“In the notation of [1],H and Hs correspond tcAH and AH s in our notations.
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1
502maq — —E log Y P(s)G(Y,A Hs)p, (A.8)
se{0,1}"

and therefore, in view of (A.8), we wish to calculate the timi

" AL 1
Jim —E{log Z, (Y, A, H)} = lim —E logs {Zo:m G(y, A, Hy) p. (A.9)
S

This concludes the first step. Now, it can be seen from (A.7)(#&) contains terms that are recognized
as an extended version of the Stielties and Shannon transf@@hsf the matrix HL AT AH 5. In the
field of random matrix theory, there is a great interest in esipfy the asymptotic behavior, and in
particular finding thedeterministic equivalenof such transforms (see, for example, [12, 13]). Evidently,
under some conditions, it is well-known that these tramsfoasymptotically converge for a fairly wide
family of matrices.

Following the last observation, in the second step, we shuat these functions converge, with
probability tending to one, a8 — oo, to some random functions that are much easier to work with.
Accordingly, the following lemma is essentially the coreoaf analysis; it provides approximations (which
are asymptotically exact in the almost sure (a.s.) sensg) arid (A.9). For simplicity of notations, we
let m 2t >, si, and recall the auxiliary variables defined in (12)-(17). Theofving lemma is

proved in [1, Appendix B, C].

Lemma 1 (asymptotic equivalenc&)nder the assumptions and definition presented earlierptiteving

relations hold in the almost sure (a.s.) sense:

1 _
lim —Indet (0?HLATAH ¢+ I5) = miI (my), (A.10)
n—oo N
and
1
lim — [y’ AHHSHLATy — f,] =0, (A.11)
n—oo n
where
HTAT
Fa 22V (my) ”?ﬂ +2.L(m HnyH (A.12)

Finally, for largen andk, and for(y, A, H)-typical sequences, the functiao#, (y, A, H) is lower and

upper bounded as follows

g—(yaAvH)S%L(yaAvH)Sg-F(y?AaH)v (A13)
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where

% (y, A, H) 2 C, - > exp{n (t(ms )+ L (my) Z}y h;| 52:|:90>} (A.14)

se{0,1}"

in which C,, is the normalization constant ifi(s) (see (3)), and

2
£(m) 2 f (m) = 51 (m) +V (m) vl (A.15)

n

and the fluctuation ternp is typically lower and upper bounded by a vanishing term thatniform in

s, namely, || < O (1/n)°.

The proof of Lemma 1 is obtained by invoking recent powerfullmds from random matrix theory,
such as, the Bai-Silverstein method [30]. Equipped with Lemmaut next and last step is to assess the
exponential order of?; (y, A, H) using large deviations theory. The following analysis carfdend
in detail in [1, Appendix C]. For completeness, we provide thain ideas here as well.

First, note that?} (y, A, H) can be equivalently rewritten as
% (y, A H)=C, Zexp {n (ms i(p)} Qp (y, A, H,my) (A.16)

where the summation is ovens € [0/n, 1/n, ...,n/nl], and

7 (y, A Hm)= Y exp<L(ms>Z\yThiﬁsi) (A.17)
i=1

s:m(s)=m

where with slight abuse of notations, the summation is peréal over sequenceswith magnetization,
m (s) 2t o s, fixed tom. For the sake of brevity, we will omit th& sign. In the following, we
will find the asymptotic behavior o’ (y, A, H,m,), and then the asymptotic behavior&t. (y, A, H).
For & (y, A, H,m), we will need to count the number of sequen¢e$, having a given magnetization

ms, and also admit some linear constraint. Accordingly, adeisihe following set

n n
E Vi —nm E ViU — Np
i=1 =1

where{u;};" , is a given sequence of real numbers. Thus, the above setm®ti@iary sequences that

<,

Fs(pym) 2 {v e {0,1}"

< 5} (A.18)

admit two linear constraints. We will upper and lower bouhé tardinality ofFs (p, m) for a given
0 > 0, m, andp. Then, we will use the result in order to approxim&?’e(y, A, H,mg). Using methods
that are customary to statistical mechanics, we have th@nfiolg result which is proved in [1, Appendix
C, egs. (C.15)-(C.32)].

SPhysically, over the typical set, this fluctuation will not affect the asymptogicavior of anyintensivequantity, namely,

a quantity that does not depend an(e.g., the dominant magnetization).
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Lemma 2For largen and anyr > 0 the cardinality ofF;s (p, m) is upper and lower bounded as follows

(1=7)V_s < [Fs(p,m)| < Vs (A.19)
where
N S o WS B o Y au; =7
logvﬂ—z(a ;uz n’y> [a® (npF o) —~ (nm:Fé)]—i-;log [2c0sh< 5 >},
(A.20)
in which o°,~° are given by the solution of the following equations
0 1 — 1 — a’u; —°
p= n—i—znizluz—i-%izltanh <2> u;, (A.21)
and
o 1 1 — a’u; —°

For the purpose of assessing the exponential behavigf 6f, A, H,m,), let us definey; = {yThi\z.

The main observation here is that (y, A, H m,) can be represented as

A~

Z (y, A, H,mg) =2" /DCR exp (nL (ms) p) €r (dp) (A.23)

where D is the codomaitof p, and {%,} is a sequence of probability measures that are proportional
to the number of sequenceswith " | s;u; = np, and)_ " | s; = nmg. These probability measures
satisfy the large deviations principle [31, 32], with thdldwing respective lower semi-continuous rate
function

log2 —n~tlogV,, ifpeD
I(p) = (A.24)

0, else

where V), 2 lims_o Vs given in (A.20). Indeed, by definition, the probability mees®,, is the ratio
between|Fs (p, ms)| and 2™ (the number of possible sequences). Thus, for any BoreBsetD, we
have thatlim,, .., n~!log %, (B) = —I (p). Accordingly, due to it large deviations properties, ajudy
Varadhan's theorem [31, 32] on (A.23), one obtains

Z (y, A, H,ms) — exp[n(log2 + L (ms) p° — I (p°))] (A.25)

®Note that we do not need to explicitly defifiz simply due to the fact that the exponential term in (A.23) is concave (see

(A.26)), and thus the dominating are the same oveP or overR.
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wherep° is given by (using the fact that the exponential term is cghve

p° = argmax {log2 + L (ms) p — I (p)}
P

_ —1
= arg Izlgéc {L(ms)p+n~"logW}. (A.26)
The maximizerp®, is the solution of the following equation
10
L(mg)+ ——=—1logVy = 0. (A.27)
n dp
Now, it can be readily shown that (see, [1, Appendix C, eqA@(C.42)])
1
0 logVy = —a’. (A.28)
ndp

Thus, using (A.28) and (A.27), we may conclude thét= L (ms). Now,

=gy — Z -1 Zlog[2cosh(()2“"_7o>]

L (mg) p° + n~1log Vol,

= k(3" ms). (A.29)
Therefore,
% (y, A, H,mg) — exp (nfz (’yo,ms)) (A.30)
where~° solves the following equation (see (A.22))
1 < L (my) [yThi|* —+°
me = - ; 1 + tanh ( 5 . (A.31)

Thus far, we approximated? (y, A, H,m,). Recalling (A.16), the next step is to approximate
%, (y, A, H). Using (A.30), and applying once again Varadhan’s theom@msi(mply, the Laplace method
[33, 34]) on (A.16), one obtains that

% (y,A,H)=C, Zexp t(mg) + (p)] ,f'f(y,A,H,ms) (A.32)
= Cyexp {n (h (7°,m) +E(m3) £ ) } (A.33)
where the dominatingr is the saddle point, i.e., one of the solutions to the eqgoatio
B 1. m 9 9 lyl* = 85 o
am (m)—il(m)—E%I( m) + %V(m)7+%h(7 ,m) =0 (A.34)

where we have used the fact thiatm) = f (m) — mI (m) /2 +n~'V (m) |y||>. Simple calculations

reveal that the derivative df (v°, m) w.r.t. m is given by

- 1 & L(m) [yThi|* —7° aL
o h(v°,m) =~° +5- Z; 1+tanh< 5 ] Th| (A.35)
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Thus, substituting the last result in (A.34), we have that

n

o( o 1 L(m2) ly"hi|” = 4°\ | OL (mg 2 0 o 1o
7o (mg) = — o 1+ tanh ( ‘ 5 ’ (97(710 ) ‘yThi‘ — 8m°f(m3) + il(ms)
=1 S s
mg a T o 6 o ||yH2
T amgI (ms) amgv(ms>7 : (A.36)

So, hitherto, we obtained that the asymptotic behaviagtofy, H, s) is given by (A.33), and the various

dominating terms are given by

o 1 & L(md)|yThi|* =+ \] 0L (m2) | 7, 2 O oo 1o
~v° (m7) = —%2:1 1—i—tanh< 5 a3 ‘y hz‘ — 8mgf(m3)+§j<m5)
mg 8 T o 8 o Hy||2
+ 9 amgl(ms) - amgv (ms) n ) (A37a)
n L o Thi 2 __ AO©
my = S 1 + tanh ( (m3) y" hil” = )] ) (A.37b)
2n — 2
Therefore, using (A.16) we obtain
. 1 . 1 . 7 o o g o
nh_>mca>Q ﬁlogﬁf(y,A,H) = nh_}rgoglog Cn + nh_)rgo [h (v, mg) +t(mg)| . (A.38)

The last thing that is left is to show a concentration propaftthe saddle point equations given in
(A.37), and obtain instead the saddle point equations giv€R0), which will be also used to assess the

limit in (A.38). Accordingly, we finally obtain that
1 1
lim —logE{Z (y, A, H)} = lim —logCy, +h(7°,m3) +1t(mg). (A.39)
n—oo N n—oo N

This is done by using the theory of convergence of backwardsingale processes, and can be found

in [1, Appendix C, egs. (C.73)-(C.97)]. So, eventually, gsthe relation in (A.8), we finally obtain that

1 1 1
lim —I(Y;X|A, H) = —0*maq — lim —logC,, — h(y°,m2) —t (m°) (A.40)
n—oco N 2 n—o0 n
1
= 50" Maq + Haz (ma) + f (Ma) = h (77, mg) =t (m?), (A.41)

where in the last equality we have used (5) in order to caleulae limitlim,,_.., n ! log C,,.

APPENDIX B

PROOF OFTHEOREM4

The first equality is obvious. First, by definition (see, (5)), is the solution of the following equation

o= 4 [t (220Y]. -

March 20, 2014 DRAFT



31

Note that according to (30)n, = p. Consider first a polynomial function

k

M X
f(z)= Zak? (B.2)
k=1

for z € [0,1], where M > 0 is natural, and{a;} are parameters. Substitutingin (23), we see that
maximizingZ; amounts to maximizing the following function

At mE L omk
K(aq,...,an) = Zak?‘l - Zak—o —t(mo) — h (Yo, mo)
k=1 k=1

p (B.3)
where
~ A
t(mo) =1t (mo) — f(mo). (B.4)
Now, we take the partial derivative af(«,...,ay) W.r.t. o for 1 <[ < M, and readily obtain that
0 é ko1 0me  Omo Ot (ms)  Oh (Yo, mo)
8—%&(041,...,041\/1) Zalm oo~ Doy omn Ba (B.5)
! !
mg My 8mo ot (mo)  Oh (Yo, mo) (B.6)
l l Oay  Ome oqy

where (B.6) follows from (B.4). Using (22) we obtain

Oh ('70, mo) . 670 . 1 amo 1 3L( ) 8mo 2
tole) N Jdoy o 2 % +E Do @

ooy 2 Omo Oy
+E{ tanh <L( _%) [ (mo) am" Q? a%n (B.7)
l Oay
Omo oL (m )
=Y day { (Q,mo,70) e } (B.8)
where the last equality follows from (20b) and the definitior(19). Thus, on substituting (B.8) in (B.6)
one obtains
0 mk mk ome Ot (mo) Oome OL (mo) Omso o
— ——a__°_ — Yo —E{ K (Q, Mo, Yo —
(%QH (o, ) l l Oay  Ome 7 ooy { (@m0, %) Om, Oy @ }
ml mb  Om, ot (mo) OL (mo) 9
_T_T_ aal o 8 S +]E{K(Qam07’yo) 8 Q }:|
ml ml

(B.9)
where the last equality follows from (20a). Setting the abdeevatives (forl < I < M) to zero, we

see that the stationary sequence of parameters$ is determined by the solution of the equation
Mg = M. (B.10)
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To wit, this equation means that the optimal sequence is whbeen such that the prior and the posterior
magnetizations, hamelyyp, andm,, respectively, be the same. Accordingly, using (B.3) and QB we

obtain that

Kty M) |, = —t(mq) — h (Yo, ma) , (B.11)

which according to the definitions ofi,, h (7., m,), and (m,) given in (20), (22), and (B.4),
respectively, is a function of (-) (or, equivalently of{a;}) only through f’ (m,). However, by (B.1),

we see that the average sparseness constraint fixes the ¥afterg,) to
f'(mg) = 2 - arctan (2mg — 1). (B.12)

Therefore, x (a1, ..., anr)l,, _,,,. given in (B.11) is essentially independent of the specificicaf

{a;} that admitm, = m,. Now, in terms of{«;}, the solution to (B.10) may not be unique. More
importantly, there must be a solution corresponding to teenoryless source assumptions, as one can
simply fix a; = 0 for 2 < ¢ < M, and then tunex; such that (B.10) holds true. Thus, due to the fact
that Z; is a concave functional w.r.tf (-), we may conclude that this specific choice cannot decrease
the maximal value of: (), and hence also that @ . Finally, using standard approximation arguments,
since the above derivation is valid for any polynomial, oae epproximate any functiofi(-) by using

its Taylor series expansion, and obtain the same conclusion

APPENDIXC

PROOF OFTHEOREM9

The first equality is obvious. The second equality is proved gkt the same way as in the proof
of Theorem 4. Let us start with polynomidl given by

k
a2 (C.1)

fa) =Y o

WE

k=1
for x € [0, 1], whereM > 0 is natural, and ¢;} are parameters. Then, substitutifign (23), we see that
maximizingZ; ;, — Z; g amounts to maximizing the following function (recall that, is fixed under the

average sparseness constraint)

PR
/i(Ozl,...,aM):—ZOzk ]::’ —tL(qu)—hL(%,L,mo,L)
k=1
M mk:E
% _E fe) h o 9 o C2
+) a 5 E (Mmo,p) + he (Yo,5,m0,E) (C.2)

March 20, 2014 DRAFT



33

where the subscriptsL" and “E" are referring to the legitimate user and the eavesdroppspectively.
For examplem, ;, andm, g designate the posterior magnetizations of the legitimatktibe eavesdropper

users, respectively. Also, similarly to the notations usethe proof of Theorem 4, we define

i (mos) 2 tr (mo,) — f (Mo.r), (C.3)

and similarly fort g (mo,r). Now, we take the partial derivative 8f(aq, ..., ap) W.rt.a;forl <1 < M,

and similarly to (B.6), we obtain that
0 m L m}

oy

Ko, ...,apn) =— +
Setting the above derivatives (for< [ < M) to zero, we see that the stationary sequence of parameters

)

E

z : (C.4)

{ay} is determined by the solution of the equation
Mo [, = Mo E- (C.5)

To wit, this equation means that the optimal sequence is thbsen such that the posterior magnetizations
(of the legitimate user and the eavesdropper) be the sanwardiogly, using the last result and (B.3),

we obtain that

(ar, o) mme p = —tL (Mo,r) = hr (Yo,1,Mo1) + 5 (Mo 1) + hE (Vom0 ),  (C.6)

which according to the definitions of the various quantitieéG.6) depends offi (or, equivalently of a;})
only through its derivativg” (m. 1) (or, equivalentlyf’ (m. r)). However, equation (C.5) essentially fixes

the value off’ (m, ), and thusk| is independent of the specific choice of source parameters

Mo, L,=Mo  E

{a;} that admitm, ;, = m. r. Whence, using exactly the same arguments as in the proof @brém
4, we conclude that the memoryless choice cannot decreasmakimal value of (-), and hence also

that OfILL — Il,E-
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