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Abstract

A universal decoding procedure is proposed for the intersymbol interference (ISI) Gaussian channels.

The universality of the proposed decoder is in the sense of being independent of the various channel

parameters, and at the same time, attaining the same random coding error exponent as the optimal

maximum-likelihood (ML) decoder, which utilizes full knowledge of these unknown parameters. The

proposed decoding rule can be regarded as a frequency domainversion of the universal maximum mutual

information (MMI) decoder. Contrary to previously suggested universal decoders for ISI channels, our

proposed decoding metric can easily be evaluated.

Index Terms

Universal decoding, interference intersymbol (ISI), error exponents, maximum-likelihood (ML),

random coding, maximum mutual information, Gaussian channels, deterministic interference.

I. I NTRODUCTION

In many practical situations encountered in coded communication systems, the specific channel over

which transmission is to be carried out is unknown to the receiver. The receiver only knows that the

channel belongs to a given family of channels. In such a case,the implementation of the optimum

maximum likelihood (ML) decoder is precluded, and thus, universal decoders, independent of the
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unknown channel, are sought. In designing such a decoder, there are two desirable properties that should

be taken into account: The first is that the universal decoder performs asymptotically as well as the ML

decoder had the channel law been known, and secondly, that the constructed decoding metric will be

reasonably easy to calculate. This paper addresses the problem of universal decoding for intersymbol

interference (ISI) Gaussian channels.

The topic of universal coding and decoding under channel uncertainty has received very much attention

in the last four decades, see, for example, [1-15]. In the realm of memoryless channels, Goppa [2]

explored the maximum mutual information (MMI) decoder, which chooses the codeword having the

maximum empirical mutual information (MMI) with the channel output sequence. It was shown that this

decoder achieves the capacity in the case of discrete memoryless channels (DMC). In [3], the problem

of universal decoding for DMC’s with finite input and output alphabets was studied. It was shown that

the MMI decoder universally achieves the optimal random coding error exponent under the uniform

random coding distribution over a certain type class. In [1], an analogous result was derived for a certain

parametric class of memoryless Gaussian channels with an unknown deterministic interference signal. In

the same paper, a conjecture was proposed concerning a universal decoder for ISI channels.

For channels with memory, there are several quite general results, each proposing a different universal

decoder. In [5], the case of unknown finite-state channels with finite input and output alphabets for

which the next channel state is a deterministic unknown function of the channel current state and current

inputs and outputs, was considered. For uniform random codes over a given set, a universal decoder (that

achieves the optimal random coding error exponent) which isbased on the Lempel-Ziv algorithm was

proposed. Later, in [6], it was shown that this decoder continues to be universally asymptotically optimum

also for the class of finite-state channels with stochastic, rather than deterministic, next-state functions.

In [7], sufficient conditions and a universal decoder (calledthe merging decoder) were proposed, for

families of channels with memory. The idea was to employ many decoding lists in parallel, each one

corresponding to one point in a dense grid (whose size grows with the input block length) in the index

set. Accordingly, with regard to our work, it was shown that the proposed decoder universally achieves

the optimal error exponent under the ISI channel. Unfortunately, as was mentioned before, this deocder

is very hard to implement in practice due to its implicit structure and the fact that it requires to form

a dense grid in the parameter space. In [8], a competitive minimax criterion was proposed. According

to this approach, an optimum decoder is sought in the quest for minimizing (over all decision rules) the

maximum (over all channels in the family) ratio between the error probability associated with a given

channel and a given decision rule, and the error probabilityof the ML decoder for that channel, possibly
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raised some power less than unity. This decoder is, again, very hard to implement for the ISI channel

due its complicated decoding metric.

In this paper, we propose a universal decoder that asymptotically achieves the optimal error exponent,

and contrary to previous proposed decoders, our proposed decoding metric can easily be calculated. The

technique used in this paper is in line with the techniques which were established in [1, 16]. Specifically,

similarly to [1], the main idea is to define an auxiliary “backward channel”, which is a mathematical tool

for assessing log-volumes of conditional typical sets of sequences with continuous-valued components.

These log-volume terms play a pivotal role in the universal decoding metric. The backward channel is

defined in a way that guarantees two properties: first, a measureconcentration property, that is, assignment

of high probability to a given conditional type by an appropriate choice of certain parameters, and

secondly, the conditional density of the input given the output, associated with this backward channel

should depend on the input and the output only via the sufficient statistics that define the conditional type

class. Contrary to the problem considered in [1], the difficulty, in the ISI channel, stems from the fact

that the choice of the backward channel is a non-trivial issue. It turns out that in this case, the passage to

the frequency domain resolves this difficulty. The proposed decoding rule can be regarded as a frequency

domain version of the universal maximum mutual information(MMI) decoder.

The remaining part of this paper is organized as follows. In Section II, we first present the model and

formulate the problem. Then, the main results are provided and discussed. In Section III, we provide a

proof outline where we discuss the techniques and methodologies that are utilized in order to prove the

main result. Finally, in Section IV, the main results are proved.

II. M ODEL FORMULATION AND MAIN RESULT

Consider a discrete time, Gaussian channel characterized by

yt =

k
∑

i=0

hixt−i + wt, t = 0, 1, 2, . . . , n (1)

where{xt} are the channel inputs,{hi}ki=0 is the unknown channel impulse response,{wt} is zero-mean

Gaussian white noise with an unknown varianceσ2 > 0, and {yt} are the channel outputs. It will be

assumed that the noise{wt} is statistically independent of the input{xt}. We allowk to grow withn in

the order ofk = o
(

n1/2
)

. In such a case, we further assume that the impulse response sequence{hi}∞i=0

is absolutely summable1.

1This assumption can be relaxed to square summability of{hi}.
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The input is a codeword that is randomly and uniformly drawn over a codebookC =
{

x1, . . . ,xM
}

of M = 2nR messagesxi =
(

xi1, . . . , x
i
n

)

∈ Rn, i = 1, 2, . . . ,M , whereR is the coding rate in bits

per channel use. In the following, the probability of error associated with the ML decoder, that knows

the unknown parameters
(

σ2, h0, . . . , hk
)

, will be denoted byPe,o (C, R, n). We shall adopt the random

coding approach, where each codeword is randomly chosen with respect to a probability measure denoted

by µ (x). For a given power constraint, a reasonable choice ofµ (·) is the truncated Gaussian density

restricted to the shell of ann-dimensional hypersphere whose radius is aboutnσ2x. To wit,

µ (x) = ν−1ψ∆ (x)

n−1
∏

t=0

exp

{

− x2t
2σ2x

}

(2)

whereψ∆ (x) is the indicator function of the set

D∆
△
=

{

x :

∣

∣

∣

∣

∣

1

n

n−1
∑

t=0

x2t − σ2x

∣

∣

∣

∣

∣

≤ ∆σ2x

}

(3)

where∆ ≪ 1, andν normalizes the above measure such that it would integrate tounity. Note thatµ (x)

is invariant to unitary transformations ofx. It is well-known [17, Chap. 7] thatµ (·) attains a higher

error exponent than that of the respective Gaussian densitywith the same variance, at least for small

rates, where the non-typical events (or, the large deviations events) are the dominant2. The analysis in

this paper can also be carried for the case where the codewords are drawn independently and uniformly

over a setIn ⊆ Rn that is endowed with aσ-algebra (e.g., ann-dimensional hypercube), and satisfy

an average power constraint, as was considered in [7, Theorem4]. Let P̄e,o (R,n)
△
= E {Pe,0 (C, R, n)},

where the expectation is taken over the ensemble of randomlyselected codebooks underµ (·). Finally,

we define the random coding error exponent asE (R)
△
= − lim supn→∞ n−1 log P̄e,o (R,n).

As was mentioned previously, we wish to find a decoding procedure which is universal in the sense

of being independent of the unknown parameters, and at the same time attainingE (R). Specifically, let

Pe,u (C, R, n) designate the error probability associated with the universal rule for a given codebookC,

and let P̄e,u (R,n)
△
= E {Pe,u (C, R, n)}. Then, we would likeP̄e,u (R,n) to decay exponentially with

rateE (R).

We now turn to present the proposed decoding rule. To this end, let x̃ andỹ denote the discrete Fourier

transforms (DFT) of the sequences{xt} and{yt}, respectively, i.e., them-th component of̃x is given

by

x̃m =
1√
n

n−1
∑

t=0

xte
−j2πmt/n (4)

2Intuitively speaking, this is true because of the fact that it does not allow low energy codewords
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wherej =
√
−1 and similarly for ỹ. Then, define an auxiliary “backward channel” by the conditional

measure

V (x̃|ỹ,θ, k) =
n−1
∏

m=0

(

2πσ20
)−1/2

exp







− 1

2σ20

∣

∣

∣

∣

∣

x̃m − ỹm

k
∑

l=0

αle
2πjlm

n

∣

∣

∣

∣

∣

2






(5)

whereθ
△
=
(

σ20, α0, . . . , αk

)

is the parameters vector of the backward channel, in which{αl}kl=0 are

complex-valued. It should be emphasized that the above definition of the auxiliary backward channel is

completely unrelated to the underlying probabilistic model. In particular, it is not argued thatV (x̃|ỹ,θ, k)
is obtained fromµ (x) and the forward channel (1) by the Bayes rule, or any other relationship. For

example, our backward channel allows vectorsx that are outside the regionD∆. Our decoding rule will

select a messagẽxi that maximizes the metric

u
(

x̃i, ỹ
)

=
maxθ V

(

x̃i|ỹ,θ, k
)

µ
(

x̃i
) (6)

among allM codewords. The backward channel is a mathematical tool for assessing log-volumes of

typical sets [1, 16, 18], and it should be defined in a way that guarantees two general properties: first,

a measure concentration property, that is, assignment of high probability to a given conditional type by

an appropriate choice of the parameters of this backward channel, and secondly, the conditional density

of x̃ given ỹ, associated with the backward channel should depend onx̃ and ỹ only via the sufficient

statistics that define the conditional type class. Contrary to the problem considered in [1], the difficulty

in the ISI channel stems from the fact that the choice of the backward channel is a non-trivial issue.

Specifically, as will be seen in the sequel, an “appropriate” candidate backward channel must depend on

a sufficient statistics vector (associated withx) with dimension that equals to the number of degrees of

freedom, which in turn adjust their conditional expectations. It turns out that in this case, the passage to

the frequency domain is more “natural” and mathematically convenient due to the well-known asymptotic

spectral properties of Toeplitz matrices (see, for example, [19]). To wit, it can be seen that the model

in (1) can be written in a vector formy = Ax +w whereA = {ai,j} = {hi−j} is a Toeplitz matrix.

Now, by the spectral decomposition theorem [20], we know that there exists an orthonormal basis that

diagonalizes the matrixA. Projecting the observations onto this basis will simply decompose the original

channel into a set of independent channels, which are simpler to analyze. While this is true for any matrix

A, for Toeplitz matrices we can asymptotically characterizetheir eigenvalues and eigenvectors in terms

of the generating sequence{hi}ki=0, which is a fundamental part in our analysis. We next give themain

result of this paper.
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Theorem 1 Let the codewords ofC be chosen randomly and independently with respect to the density µ (·)
given in (2). Assume that the channel impulse response coefficients are absolutely summable{hl}∞l=1 ∈ ℓ1,

and thatk = o
(

n1/2
)

. Then,

lim sup
n→∞

1

n

[

log P̄e,u (R,n)− P̄e,0 (R,n)
]

≤ ξ (∆) (7)

where ξ (∆) → 0 as ∆ → 0, and P̄e,u (R,n) is the average probability of error associated with the

universal decoder given in (6).

The intuitive interpretation of (6) is thatn−1 log u (x̃, ỹ) = n−1 logmaxθ V (x̃|ỹ,θ, k) /µ (x̃) is an

empirical version of the per-letter mutual information betweenx andy in the frequency domain. Thus, we

select the input̃x that seems empirically “most dependent” upon the given output vectorỹ in the frequency

domain, which corresponds to the MMI principle. The passage to the frequency domain asymptotically

eliminates the strong interactions between the various components of the input vector, and transforms the

original model into a set ofn separable channels which are controlled by(k + 2) degrees of freedom.

Note that on the support ofµ (·), the termn−1 log µ
(

x̃i
)

is nearly a constant independent ofi. Thus,

the proposed decoding rule is essentially equivalent to onethat maximizesmaxθ V (x̃|ỹ,θ, k), namely,

maximum a posteriori (MAP) decoding.

Remark 1 In [1], a universal decoding procedure for memoryless Gaussian channels with a deterministic

interference was proposed. Accordingly, we remark that Theorem 1 can be fairly easily extended to the

channel model

yt =

k
∑

i=0

hixt−i + zt + wt (8)

where{zt} is an unknown deterministic interference that can be decomposed as a series expansion of

orthonormal bounded functions with an absolutely summablecoefficient sequence, namely,

zt =

∞
∑

i=1

biφi,t, t = 1, 2, . . . (9)

where{bi} ∈ ℓ1 and |φi,t| ≤ L <∞ for all i andt. The coefficients{bi} are assumed deterministic and

unknown. In this case, an appropriate definition of the auxiliary backward channel is

Ṽ (x̃|ỹ,θ, k, q) =
n
∏

m=1

(

2πσ20
)−1/2

exp







− 1

2σ20

∣

∣

∣

∣

∣

x̃m − ỹm

k
∑

l=0

αle
2πjlm

n −
q
∑

i=1

βiφ̃i,m

∣

∣

∣

∣

∣

2






(10)

where nowθ
△
=
(

σ20, α0, . . . , αk, β1, . . . , βq
)

is the parameter vector of the backward channel,
{

φ̃i,m

}

is the frequency transformed representation of{φi,t}, and q = qn is assumed to be a monotonically
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non-decreasing integer-valued sequence such thatqn → ∞ andqn = o
(

n1/3
)

. Accordingly, the decoding

rule will select a messagexi that maximizes the metric (6) (whereV in (6) is replaced withṼ ), among

all M codewords. For simplicity of the exposition and to facilitate the reading of the proof of Theorem

1, we will assume the original model (1).

III. PROOFOUTLINE

In this section, before getting deep into the proof of Theorem1, we discuss the techniques and the

main steps which will be used in Section IV. In order to facilitate the explanations, we will need the

following definitions: Letx andy be arbitrary vectors inRn and define

So (x,y)
△
=
{

x′ :W
(

y|x′
)

> W (y|x)
}

, (11)

Su (x,y)
△
=
{

x′ : u
(

x′,y
)

> u (x,y)
}

, (12)

and

Sδ
0 (x,y)

△
=

{

x′ :
1

n
logW

(

y|x′
)

>
1

n
logW (y|x)− δ

}

, (13)

whereW (y|x) is the conditional pdf associated with the channel. In words, So (x,y) andSu (x,y) are

simply the sets of prospective incorrect codewords corresponding to the ML decoder, and the proposed

universal decoder, respectively, assuming thatx is the transmitted codewords and thaty is the received

vector. The setSδ
0 (x,y) is just aδ-perturbed version ofS0 (x,y) which will be used for technical reasons.

Finally, we letP̄e,o (R,n), P̄e,u (R,n), andP̄ δ
e,o (R,n) be the average error probabilities associated with

the ML decoder, the proposed decoder, and theδ-perturbed decoder (see, (18)-(21)).

Generally speaking, the root of our analysis is Lemma 1, whichwas asserted and proved in [1, Lemma

1], and can be thought as a continuous extension of [5, Corollary 1]. This result relates between̄P δ
e,o (R,n)

and P̄e,u (R,n) as follows

P̄e,u (R,n) ≤ 2P̄ δ
e,o (R,n)

[

3

2
+ sup

(x,y)∈Hn

∫

Su(x,y)
µ (x′) dx′

∫

Sδ
o (x,y)

µ (x′) dx′

]

. (14)

where{Hn}n≥1 is a sequence of sets of pairs(x,y) such that

lim sup
n→∞

1

n
logP {Hc

n} < −E (R) . (15)

Whence, we see that in order to show thatP̄e,u (R,n) and P̄e,o (R,n) are exponentially the same, we

just need to define a sequence{Hn}n≥1 such that the ratio in (14)
∫

Su(x,y)
µ (x′) dx′

∫

Sδ
o (x,y)

µ (x′) dx′
(16)
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is uniformly overbounded by a subexponential function ofn, i.e., enǫn where ǫn → 0 as n → ∞
uniformly for all (x,y) ∈ Hn. Once this accomplished, the proof of the theorem will be complete. The

main question is now how to define the sequence{Hn}n≥1 properly? To answer this question, let us

interpret its role. The setHn simply divides the space of pairs(x,y) into two parts, where in the first

part, the supremum in (14) is uniformly bounded by a subexponential function ofn, and the second part

possesses a probability smaller than the desired exponential functione−nE(R) and hence negligible (see,

(15)). Obviously, given these requirements one can proposeseveral candidates forHn, namely, the choice

is not unique. However, another important property that{Hn}n≥1 should account for is that the function

n−1 log V (x̃|ỹ,θ, k) will be uniformly continuous w.r.t. small perturbations ofthe sufficient statistics

(this idea will be emphasized in the analysis). To summarize, the first part in the forthcoming analysis

is to define the sequence{Hn}n≥1 such that (15) holds true, and that hopefully (14) will hold too. The

proposed{Hn}n≥1 is given in Lemma 2, and the main tool that is used in the proof islarge deviations

theory.

Following the first part, in the second part, we will eventually show that the chosenHn fulfills the

desired subexponential behavior of (16). Accordingly, we will overbound (16) withinHn as follows:

we will derive an upper bound on the numerator of (16) and a lower bound on its denominator, and

show that these are exponentially equivalent. To this end, we will need to define a conditional typical

set of our continuous-valued input-output sequences, establish some of its properties, and particularly

to calculate its volume (Lebesgue measure). This typical set of some sequencẽx given ỹ will contain

all the vectors which, withinǫ > 0, have the same sufficient statistics asx̃ induced by our backward

channel (see (61) for a precise definition of this set). Then, wewill provide upper and lower bounds

(which are exponentially of the same order) on the volume of this typical set. To accomplish this, we

will use methods that were previously used in [1, 16, 18], which are based on large deviations theory

and methods that are customary to statistical physics. After that, we will show that for any two vectors

u and v that belong to this typical set, the conditional pdf’sW (y|u) andW (y|v) are exponentially

equivalent, that is, for sufficiently largen,
∣

∣

∣

∣

1

n
logW (y|u)− 1

n
logW (y|v)

∣

∣

∣

∣

< ζ (17)

for anyζ > 0. Thus, given this property, we can easily provide a lower bound on the denominator of (16).

Indeed, sincex ∈ Sδ
o (x,y), then in view of the last result, there exists a sufficiently small ǫ > 0 such

that the predefined typical set is essentially a subset ofSδ
o (x, y). Therefore, the integral overSδ

o (x, y),

in the denominator, can be underestimated as an integral over the typical set, and since we know its
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volume (or, more precisely, a lower bound on it which is exponentially tight), it is not difficult to provide

a lower bound on this integral (see (105) for more details). Providing an upper bound on the numerator is

a little more involved. The underlying idea is to partition the setSu (x, y) into a subexponential number

of conditional types, where for each conditional type, the integral over the respective conditional type is

overestimated using the upper bound on the volume. Finally, it will be shown that these two bounds are

exponentially equivalent, which implies that (16) is subexponential function ofn, as required.

IV. PROOF OFTHEOREM 1

For completeness, in this section, we will provide again some definitions that were already presented

in short in the previous section. Letx andy be arbitrary vectors inRn and defineSo (x,y) andSu (x,y)

as in eqs. (11) and (12), respectively. The average error probabilities associated with the ML decoder

and the proposed decoder are given by (see, for example, [1])

P̄e,o (R,n) = 1− E







[

1−
∫

So(X,Y )
µ
(

x′
)

dx′

]2nR−1






(18)

and

P̄e,u (R,n) = 1− E







[

1−
∫

Su(X,Y )
µ
(

x′
)

dx′

]2nR−1






, (19)

respectively, where the expectations are taken with respect to (w.r.t.) the joint distributionµ (x)W (y|x),
and we use the usual conventions where random vectors are denoted by capital letters in bold face font,

and their sample values are denoted by the respective lower case letters. Similar convention will apply

to scalar random variables (RVs), which will be denoted withsame symbols without the bold face font.

Finally, for δ > 0 we define the set

Sδ
0 (x,y)

△
=

{

x′ :
1

n
logW

(

y|x′
)

>
1

n
logW (y|x)− δ

}

, (20)

and accordingly

P̄ δ
e,o (R,n) = 1− E







[

1−
∫

Sδ
0 (X,Y )

µ
(

x′
)

dx′

]2nR−1






. (21)

Finally, with a slight abuse of notation, we also use the notation So (x̃, ỹ) which is defined as

follows: Let x̃ and ỹ be the Fourier transforms ofx and y, respectively. Then,So (x̃, ỹ)
△
=

{

x̃′ = FHx′ : x′ ∈ S0

(

x,FH ỹ
)}

whereF is the DFT matrix, namely,F =
{

ej2πml/n/
√
n
}n−1

m,l=0
.
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As was discussed earlier, our goal is to compare the exponential behavior ofP̄e,u (R,n) to that of

P̄e,o (R,n). To this end, we will instead compare the exponential behavior of P̄e,u (R,n) to that of

P̄ δ
e,o (R,n) for small δ > 0. In the final step of the proof, this will be justified by showing that

lim sup
n→∞

1

n

[

log P̄ δ
e,o (R,n)− log P̄e,o (R,n)

]

≤ δ′ (22)

whereδ′ → 0 asδ → 0 and∆ → 0. In the analysis, we will use the following lemma [1, Lemma 1 pp.

1263].

Lemma 1 Let {Hn}n≥1 be a sequence of sets of pairs(x̃, ỹ) of n-dimensional vectors such that

lim sup
n→∞

1

n
logP {Hc

n} < −E (R) (23)

Then, for all largen,

P̄e,u (R,n) ≤ 2P̄ δ
e,o (R,n)

[

3

2
+ sup

(x̃,ỹ)∈Hn

∫

Su(x̃,ỹ)
µ (x′) dx′

∫

Sδ
o (x̃,ỹ)

µ (x′) dx′

]

. (24)

Thus, by using Lemma 1, we see that in order to show thatP̄e,u (R,n) andP̄e,o (R,n) are exponentially

the same, we just need to find a sequence{Hn}n≥1 such that the ratio
∫

Su(x̃,ỹ)
µ (x′) dx′

∫

Sδ
o (x̃,ỹ)

µ (x′) dx′
(25)

is uniformly overbounded by a subexponential function ofn, i.e.,enǫn whereǫn → 0 asn→ ∞ uniformly

for all (x̃, x̃) ∈ Hn. For a given pair(x̃, ỹ), let us definêθ =
(

σ̂20, α̂0, . . . , α̂k

)

to be

θ̂
△
= argmax

θ
V (x̃|ỹ,θ, k) . (26)

The setHn will be parametrized by a parameterB > 0 and defined as follows

Hn (B)
△
=

{

(x̃, ỹ) :

∣

∣

∣

∣

∣

1

n

n−1
∑

m=0

|x̃m|2 − σ2x

∣

∣

∣

∣

∣

≤ ∆σ2x,
1

n

n−1
∑

m=0

|ỹm|2 ≤ B, σ̂20 ≥ 1

B

}

. (27)

We have the following result.

Lemma 2 There exists a sufficiently largeB such that{Hn (B)}n≥1 satisfies (23).

Proof of Lemma 2: By the union bound we have that

P {Hc
n (B)} ≤ P

{

1

n

n−1
∑

t=0

Y 2
t > B

}

+ P
{

σ̂20 < B−1
}

. (28)
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Thus, it should be shown that ifB is sufficiently large, both probabilities on the right-hand side of (28)

decays faster thane−nE(R). Regarding the first term, note that

1

n

n−1
∑

t=0

y2t ≤





√

1

n
‖Hx‖2 +

√

√

√

√

1

n

n−1
∑

t=0

w2
t





2

(29)

≤





√

1

n
‖x‖2

√

∥

∥HTH
∥

∥

s
+

√

√

√

√

1

n

n−1
∑

t=0

w2
t





2

(30)

≤





√

σ2x (1 + ∆) ‖H‖s +

√

√

√

√

1

n

n−1
∑

t=0

w2
t





2

(31)

where‖·‖s denotes the spectral norm, and in the second inequality we have used the fact that|trAB| ≤
‖B‖s tr (A) for anyB and nonnegative definite matrixA. Due to the fact that{hm} ∈ ℓ1 (essentially,

{hm} ∈ ℓ2 is suffice here) it can be shown that [19] the spectral norm‖H‖s is uniformly bounded, that

is for all matrix dimensionn we have that‖H‖s ≤M whereM > 0. Therefore, we obtain that

P

{

1

n

n−1
∑

t=0

Y 2
t > B

}

≤ P

{

1

n

n−1
∑

t=0

W 2
t >

(√
B −M

√

σ2x (1 + ∆)
)2
}

(32)

which can be made less thane−nE(R) by selecting a sufficiently largeB, as can be shown by a simple

application of the Chernoff bound. As for the remaining terms: by taking the gradient ofV (x̃|ỹ,θ, k)
w.r.t. θ, we obtain that the components ofθ̂ are given by the solutions of the following set of equations

n−1
∑

m=0

x̃mỹ
∗
me

− 2πjmq

n =

n−1
∑

m=0

|ỹm|2 e− 2πjmq

n

k
∑

l=0

α̂le
2πjml

n , for q = 0, . . . , k, (33)

and

σ̂20 =
1

n

n−1
∑

m=0

∣

∣

∣

∣

∣

x̃m − ỹm

k
∑

l=1

α̂le
2πjml

n

∣

∣

∣

∣

∣

2

. (34)

Note that

P
{

σ̂20 < B−1
}

≤ P

{

σ̂20 < B−1,
1

n

n−1
∑

t=0

∣

∣

∣
Ỹm

∣

∣

∣

2
≤

√
B, min

0≤m≤n−1

∣

∣

∣
Ỹm

∣

∣

∣

2
≥ τ

}

+ P

{

1

n

n−1
∑

t=0

∣

∣

∣
Ỹm

∣

∣

∣

2
>

√
B

}

+ P

{

max
0≤m≤n−1

∣

∣

∣
Ỹm

∣

∣

∣

2
≤ τ

}

≤ P

{

σ̂20 < B−1,
1

n

n−1
∑

t=0

∣

∣

∣
Ỹm

∣

∣

∣

2
≤

√
B, min

0≤m≤n−1

∣

∣

∣
Ỹm

∣

∣

∣

2
≥ τ

}

+ P

{

1

n

n−1
∑

t=0

∣

∣

∣
Ỹm

∣

∣

∣

2
>

√
B

}

+ P

{

1

n

n−1
∑

t=0

∣

∣

∣
Ỹm

∣

∣

∣

2
≤ τ

}

(35)
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whereτ > 0. As before, the exponential decay rate of the last two terms on the right-hand side of (35)

can be made arbitrarily large by selecting a sufficiently largeB and sufficiently smallτ . As for the first

term, we first note that by using (33), we have

Re







n−1
∑

m=0

k
∑

q=0

x̃mỹ
∗
mα

∗
qe

− 2πjmq

n







= Re







n−1
∑

m=0

k
∑

q=0

α∗
q |ỹm|2 e− 2πjmq

n

k
∑

l=0

α̂le
2πjml

n







(36)

=

n−1
∑

m=0

|ỹm|2
∣

∣

∣

∣

∣

k
∑

l=0

α̂le
2πjml

n

∣

∣

∣

∣

∣

2

. (37)

Thus, using the last result we obtain

σ̂20 =
1

n

n−1
∑

m=0

∣

∣

∣

∣

∣

x̃m − ỹm

k
∑

l=0

α̂le
2πjml

n

∣

∣

∣

∣

∣

2

(38)

=
1

n

n−1
∑

m=0

|x̃m|2 − 2Re

{

n−1
∑

m=0

k
∑

l=0

x̃mỹ
∗
mα

∗
l e

− 2πjml

n

}

+
1

n

n−1
∑

m=0

|ỹm|2
∣

∣

∣

∣

∣

k
∑

l=0

α̂le
2πjml

n

∣

∣

∣

∣

∣

2

(39)

=
1

n

n−1
∑

m=0

|x̃m|2 − 1

n

n−1
∑

m=0

|ỹm|2
∣

∣

∣

∣

∣

k
∑

l=0

α̂le
2πjml

n

∣

∣

∣

∣

∣

2

, (40)

which in turn must be nonnegative, and hence

1

n

n−1
∑

m=0

|ỹm|2
∣

∣

∣

∣

∣

k
∑

l=0

α̂le
2πjml

n

∣

∣

∣

∣

∣

2

≤ 1

n

n−1
∑

m=0

|x̃m|2 ≤ σ2x (1 + ∆) . (41)

Thus, given that min
0≤m≤n−1

|ỹm|2 ≥ τ , by using (40) we obtain that

1

n

n−1
∑

m=0

|ỹm|2
∣

∣

∣

∣

∣

k
∑

l=0

α̂le
2πjml

n

∣

∣

∣

∣

∣

2

≥ τ
1

n

n−1
∑

m=0

∣

∣

∣

∣

∣

k
∑

l=0

α̂le
2πjml

n

∣

∣

∣

∣

∣

2

(42)

= τ

k
∑

l=0

k
∑

r=0

α̂lα̂
∗
r

1

n

n−1
∑

m=0

e
2πjm(l−r)

n (43)

= τ

k
∑

l=0

|α̂l|2 . (44)

Therefore, invoking (41), we finally obtain that

k
∑

l=0

|α̂l|2 ≤
σ2x (1 + ∆)

τ

△
= C (τ,∆) . (45)

Now, recall that{α̂l} minimizes the quadratic norm

1

n

n−1
∑

m=0

∣

∣

∣

∣

∣

x̃m − ỹm

k
∑

l=0

αle
2πjml

n

∣

∣

∣

∣

∣

2
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over all vectorsα = (α0, . . . , αk) in Ck+1. Also, due to (45), the minimizing vector must lie

in the (k + 1)-dimensional hypersphereαHα ≤ C (τ,∆). Now, fix δ > 0 and define the grid

G △
= {δ · i : i = −⌈C (τ,∆) /δ⌉ , . . . ,−1, 0, 1, . . . , ⌈C (τ,∆) /δ⌉}, and letGk+1 designate the(k + 1)th

Cartesian power ofG. From the uniform continuity of the above quadratic form within the set of all

energy limited vectorsy, one can find a sufficiently small value ofδ (depending onC) such that there

exists a vectorα = αR + jαI whereαR,αI ∈ Gk+1, i.e., the nearest neighbor of the minimizer,

satisfying (given of course the event thatσ̂20 < B−1)

1

n

n−1
∑

m=0

∣

∣

∣

∣

∣

x̃m − ỹm

k
∑

l=0

αle
2πjml

n

∣

∣

∣

∣

∣

2

≤ 2

B
+ δ′ (46)

whereδ′ is a sufficiently small value (depending onδ). For brevity, in the following, we will omit this

negligible additive term. Whence

P

{

σ̂20 < B−1,
1

n

n−1
∑

t=0

∣

∣

∣
Ỹm

∣

∣

∣

2
≤

√
B, min

0≤m≤n−1

∣

∣

∣
Ỹm

∣

∣

∣

2
≥ τ

}

= P







1

n

n−1
∑

m=0

∣

∣

∣

∣

∣

X̃m − Ỹm

k
∑

l=0

α̂le
2πjml

n

∣

∣

∣

∣

∣

2

<
1

B
,
1

n

n−1
∑

t=0

∣

∣

∣
Ỹm

∣

∣

∣

2
≤

√
B, min

0≤m≤n−1

∣

∣

∣
Ỹm

∣

∣

∣

2
≥ τ







(47)

≤ P







⋃

αR,αI∈Gk+1







1

n

n−1
∑

m=0

∣

∣

∣

∣

∣

X̃m − Ỹm

k
∑

l=0

αle
2πjml

n

∣

∣

∣

∣

∣

2

<
2

B
,
1

n

n−1
∑

t=0

∣

∣

∣
Ỹm

∣

∣

∣

2
≤

√
B













(48)

≤
∑

αR,αI∈Gk+1

P







1

n

n−1
∑

m=0

∣

∣

∣

∣

∣

X̃m − Ỹm

k
∑

l=0

αle
2πjml

n

∣

∣

∣

∣

∣

2

<
2

B
,
1

n

n−1
∑

t=0

∣

∣

∣
Ỹm

∣

∣

∣

2
≤

√
B







(49)

≤
(⌈

C (τ,∆)

δ

⌉)2k+2

· max
αR,αI∈Gk+1

P







1

n

n−1
∑

m=0

∣

∣

∣

∣

∣

X̃m − Ỹm

k
∑

l=0

αle
2πjml

n

∣

∣

∣

∣

∣

2

<
2

B
,
1

n

n−1
∑

t=0

∣

∣

∣
Ỹm

∣

∣

∣

2
≤

√
B







.

(50)

Let us show that the term on the right-most side of can be made exponentially less thane−nE(R). Define

the set

Fα
△
=







(x̃, ỹ) :
1

n

n−1
∑

m=0

∣

∣

∣

∣

∣

x̃m − ỹm

k
∑

l=0

αle
2πjml

n

∣

∣

∣

∣

∣

2

<
2

B
,
1

n

n−1
∑

m=0

|ỹm|2 ≤
√
B







. (51)

Accordingly, define an auxiliary joint density

g (x̃, ỹ) =
1

(

2π2/
√
B
)n

n−1
∏

m=0

exp







−B
2

∣

∣

∣

∣

∣

x̃m − ỹm

k
∑

l=0

αle
2πjml

n

∣

∣

∣

∣

∣

2






exp

{

− 1√
B

|ỹm|2
}

. (52)
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Thus,

1 ≥
∫

Fα

g (dx, dy) (53)

≥ Vol {Fα}
(

2π2/
√
B
)n inf

(x,y)∈Fα







n−1
∏

m=0

exp







−B
2

∣

∣

∣

∣

∣

x̃m − ỹm

k
∑

l=0

αle
2πjml

n

∣

∣

∣

∣

∣

2






exp

{

− 1√
B

|ỹm|2
}







(54)

≥ Vol {Fα}
(

2π2/
√
B
)n exp {−2n} (55)

= Vol {Fα}
(

2π2e2√
B

)−n

, (56)

and therefore Vol{Fα} ≤
(

2π2e2/
√
B
)n

. Thus, we now obtain that

P {Fα} =

∫

(x,y)∈Fα

µ (x)W (y|x) dxdy (57)

≤ Vol {Fξ}
(

2πσ2
)−n/2

ν−1 (58)

≤
(

2πσ2
)−n/2

ν−1 exp

{

−n
2
log

(

B

2π2e2

)}

(59)

= ν−1 exp

{

−n
2
log

(

Bσ2

πe2

)}

(60)

which, again, can be made less thane−nE(R) by selectingB sufficiently large.

To overbound (25) withinHn (B), we derive an upper bound on its numerator and a lower bound

on its denominator, and show that these are exponentially equivalent. To this end, we first need to

define a conditional typical set of our continuous-valued input-output sequences and establish some of

its properties. For a given pair of vectors(x̃, ỹ) and ǫ > 0, define thekth order conditionalǫ-type of x̃

given ỹ as

T k
ǫ (x̃|ỹ) △

=

{

x̃′ ∈ C
n :

∣

∣

∣

∣

∣

1

n

n−1
∑

m=0

|x̃m|2 − 1

n

n−1
∑

m=0

∣

∣x̃′m
∣

∣

2

∣

∣

∣

∣

∣

≤ ǫ

∣

∣

∣

∣

∣

1

n

n−1
∑

m=0

Re
{

x̃mỹ
∗
me

− 2πjlm

n

}

− 1

n

n−1
∑

m=0

Re
{

x̃′mỹ
∗
me

− 2πjlm

n

}

∣

∣

∣

∣

∣

≤ ǫ, l = 0, . . . , k,

∣

∣

∣

∣

∣

1

n

n−1
∑

m=0

Im
{

x̃mỹ
∗
me

− 2πjlm

n

}

− 1

n

n−1
∑

m=0

Im
{

x̃′mỹ
∗
me

− 2πjlm

n

}

∣

∣

∣

∣

∣

≤ ǫ, l = 0, . . . , k

}

. (61)

This set is regarded as a conditional type ofx̃ given ỹ as it contains all vectors which, withinǫ, have

the same sufficient statistics asx̃ induced by our backward channel. In the following, we will show that

for every conditional typeT k
ǫ (x̃|ỹ), and for any two vectorsu andv in T k

ǫ (x̃|ỹ), the conditional pdf’s
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W (y|u) andW (y|v) are exponentially equivalent. This property will be used later on. To show that

this is indeed the case, we will need the following lemma.

Lemma 3 Let L and nb be natural numbers such that3 L = n/nb. Define the setsG1,ǫ
△
=

{ǫ · i : i = 0, 1, . . . , ⌈LPx/ǫ⌉}. Also, let

T̂ k
ǫ (x̃|ỹ) △

=

{

⋃

P
ǫ

Lą

l=1

B
ǫ
l (Pl)

}

⋂

T̃ǫ (x̃|ỹ) (62)

where
Ś

designates a Cartesian product, and

T̃ k
ǫ (x̃|ỹ) △

=

{

x̃′ ∈ C
n :

∣

∣

∣

∣

∣

1

n

n−1
∑

m=0

Re
{

x̃mỹ
∗
me

− 2πjlm

n

}

− 1

n

n−1
∑

m=0

Re
{

x̃′mỹ
∗
me

− 2πjlm

n

}

∣

∣

∣

∣

∣

≤ ǫ, l = 0, . . . , k,

∣

∣

∣

∣

∣

1

n

n−1
∑

m=0

Im
{

x̃mỹ
∗
me

− 2πjlm

n

}

− 1

n

n−1
∑

m=0

Im
{

x̃′mỹ
∗
me

− 2πjlm

n

}

∣

∣

∣

∣

∣

≤ ǫ, l = 0, . . . , k

}

, (63)

and

B
ǫ
l (Pl)

△
=
{

x̃′ ∈ C
nb :

∣

∣

∣

∥

∥x̃′
∥

∥

2 − nbPl

∣

∣

∣
≤ ǫ,

}

where

P
ǫ △
=

{

P ∈ GL
1,ǫ :

∣

∣

∣

∣

∣

1

L

L
∑

i=1

Pi −
1

n

n−1
∑

m=0

|x̃m|2
∣

∣

∣

∣

∣

≤ ǫ

}

(64)

whereGL
1,ǫ is theLth Cartesian power ofG1,ǫ. Then,

T k
ǫ (x̃|ỹ) ⊆ T̂ k

ǫ (x̃|ỹ) . (65)

Proof: See Appendix A.

Intuitively speaking, the difference between̂T k
ǫ (x̃|ỹ) andT k

ǫ (x̃|ỹ) is that in the former we split each

sequencẽx into L bins, where in each bin we fix the energy. Indeed, letũ, ṽ ∈ T k
ǫ (x̃|ỹ). Due to Lemma

3, we also have that̃u, ṽ ∈ T̂ k
ǫ (x̃|ỹ). Then,

∣

∣

∣

∣

1

n
logW (y|u)− 1

n
logW (y|v)

∣

∣

∣

∣

=
1

2σ2

∣

∣

∣

∣

∣

∣

1

n

n−1
∑

t=0

(

yt −
k
∑

l=0

hlut−l

)2

− 1

n

n−1
∑

t=0

(

yt −
k
∑

l=0

hlvt−l

)2
∣

∣

∣

∣

∣

∣

.

(66)

Recall that the model in (1) can be represented in the following vector formy = Ax + w whereA

is a Toeplitz matrix formed by the generating sequence{hl}, that isA = {ai,j}i,j = {hi−j}i,j . Now,

by using the spectral decomposition theorem [20], we know that there exists a unitary matrixR that

3Without loss of generality, it is assumed thatnb (bin size) is a divisor ofn, and that allL bins have the same size.

DRAFT



16

diagonalizesA. Accordingly, let{λl}nl=1 denote the singular values associated with this transformation.

Thus, we obtain that
∣

∣

∣

∣

1

n
logW (y|u)− 1

n
logW (y|v)

∣

∣

∣

∣

=
1

2σ2

∣

∣

∣

∣

∣

1

n

n−1
∑

m=0

|ŷm − λmûm|2 − 1

n

n−1
∑

t=0

|ŷm − λmv̂m|2
∣

∣

∣

∣

∣

(67)

whereŷ = Ry and similarly for{ûm} and{v̂m}. Continuing, we see that
∣

∣

∣

∣

1

n
logW (y|u)− 1

n
logW (y|v)

∣

∣

∣

∣

≤ 1

σ2

∣

∣

∣

∣

∣

1

n

n−1
∑

m=0

Re {ŷ∗mλmûm} − 1

n

n−1
∑

m=0

Re {ŷ∗mλmv̂m}
∣

∣

∣

∣

∣

+
1

2σ2

∣

∣

∣

∣

∣

1

n

n−1
∑

m=0

|λm|2
(

|ûm|2 − |v̂m|2
)

∣

∣

∣

∣

∣

. (68)

Now, we note that by Szegö’s theorem [19-22], the Fourier basis asymptotically diagonalizes Toeplitz

matrices. Accordingly, the asymptotic eigenvalues are given by the DFT of the generating sequence{hl},

that is, for sufficiently large enoughn and anyε > 0, we have that [20]
∣

∣

∣

∣

∣

λm −
k
∑

l=0

hle
−2πjml/n

∣

∣

∣

∣

∣

≤ ε, m = 0, . . . , n− 1, (69)

and by the same token4, since the Fourier basis asymptotically diagonalizesA, the eigenvectors matrix

R asymptotically equal to the Fourier basisF . Thus, using (61) and (69), we see that
∣

∣

∣

∣

∣

1

n

n−1
∑

m=0

Re {ŷ∗mλmûm} − 1

n

n−1
∑

m=0

Re {ŷ∗mλmv̂m}
∣

∣

∣

∣

∣

≤
k
∑

l=0

|hl|
∣

∣

∣

∣

∣

ε+
1

n

n−1
∑

m=0

Re
{

ỹ∗mũme
−2πjml/n

}

− 1

n

n−1
∑

m=0

Re
{

ỹ∗mṽme
−2πjml/n

}

∣

∣

∣

∣

∣

(70)

≤ (ǫ+ ε)

k
∑

l=0

|hl| ≤ (ǫ+ ε) · C1 (71)

where in the last inequality we have used the fact that{hk} is absolutely summable. Now, regarding

the second term on the right hand side (r.h.s.) of (68), we usethe following approximation argument

(which is asymptotically tight), that was used in [16, Sec. VI]. Recall that due to Szegö’s theorem, we

know that the Fourier basis asymptotically diagonalizesA, and that there exists a frequency response

H (ω) that corresponds to the linear system induced byA, and is given by the Fourier transform of the

sequence{hi}. Then, we use the fact that every continuous function can be approximated arbitrarily well

by a sequence of staircase functions with sufficiently small spacing between jumps. In other words, we

4Another approach is to first assume thatA is a circulant matrix, and then the Fourier basis exactly diagonalizesA for any

n, that is, the eigenvectors are given by the DFT matrix, and the eigenvalues are given by the DFT of{hl}. Then, when taking

the limit n → ∞, using Szeg̈o’s theorem, this assumption can be dropped.
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approximate the continuous frequency responseH (ω) by a staircase function and then we take the width

of each stair to zero. This approximation in turn correspondsto assuming that the eigenvalues,{λm},

are piecewise constant over the variousL bins (see Lemma 3). At the final stage of the analysis (after

taking the limitn→ ∞), we will take the limitL→ ∞ so that this approximation becomes superfluous.

Thus, under this approximation, we obtain that
∣

∣

∣

∣

∣

1

n

n−1
∑

m=0

|λm|2
(

|ũm|2 − |ṽm|2
)

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

1

L

L
∑

l=1

1

nb

∑

m∈Il

|λm|2
(

|ũm|2 − |ṽm|2
)

∣

∣

∣

∣

∣

(72)

=

∣

∣

∣

∣

∣

1

L

L
∑

l=1

|λl|2
1

nb

∑

m∈Il

(

|ũm|2 − |ṽm|2
)

∣

∣

∣

∣

∣

(73)

≤ 1

L

L
∑

l=1

|λl|2
∣

∣

∣

∣

∣

1

nb

∑

m∈Il

(

|ũm|2 − |ṽm|2
)

∣

∣

∣

∣

∣

(74)

≤ ǫ

L

L
∑

l=1

|λl|2 ≤
ǫ

L

L
∑

l=1

[

k
∑

v=0

|hv|
]2

≤ ǫ · C2
1 . (75)

Thus, we have shown that
∣

∣

∣

∣

1

n
logW (y|u)− 1

n
logW (y|v)

∣

∣

∣

∣

≤ (ǫ+ ε)

σ2
· C1 (1 + C1) . (76)

Clearly, the right-most side of (76) can be made arbitrarilysmall by choosingǫ sufficiently small and

n,L sufficiently large. Similarly,µ (u) andµ (v) are also exponentially equivalent, provided that they

both belong to the support ofµ (·), namely,
∣

∣

∣

∣

1

n
log µ (u)− 1

n
log µ (v)

∣

∣

∣

∣

≤ ǫ · C2 (77)

for some constantC2. Next, we provide upper and lower bounds on the volume ofT k
ǫ (x̃|ỹ), where the

volume of a setA ⊂ Rn is defined as Vol{A} △
=
∫

A dx.

Lemma 4 Let (x,y) ∈ Hn (B) for someB > 0. Then, for every sufficiently smallǫ > 0, the volume of

T k
ǫ (x̃|ỹ) is bounded as follows

exp {−nǫf (B,∆, k)}
maxθ V (x̃|ỹ,θ, k)

[

1− (2k + 12)
B2

nǫ2

]

≤ Vol
{

T k
ǫ (x̃|ỹ)

}

≤ exp {nǫf (B,∆, k)}
maxθ V (x̃|ỹ,θ, k) , (78)

in which f (B,∆, k)
△
= B

[

1 +
√
k + 1 · C

(

B−1,∆
)]

whereC (·, ·) is defined in (45).

Proof of Lemma 4: Fix a pair (x̃, ỹ) ∈ Hn (B) and let

ρxx
△
= n−1

n−1
∑

m=0

|x̃m|2 , (79)
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ρlR
△
= n−1

n−1
∑

m=0

Re
{

x̃mỹ
∗
me

− 2πjlm

n

}

, l = 0, . . . , k, (80)

and

ρlI
△
= n−1

n−1
∑

m=0

Im
{

x̃mỹ
∗
me

− 2πjlm

n

}

, l = 0, . . . , k. (81)

Also, let θ̂ designate the vector of parameters
(

σ20, α0, . . . , αk

)

that corresponds to the solution of the

following set of equations

EV

{

n−1
∑

m=0

∣

∣

∣
X̃m

∣

∣

∣

2
}

= nρx,x, (82)

and

EV

{

n−1
∑

m=0

Re
{

X̃mỹ
∗
me

− 2πjlm

n

}

}

= nρlR, l = 0, . . . , k, (83)

and

EV

{

n−1
∑

m=0

Im
{

X̃mỹ
∗
me

− 2πjlm

n

}

}

= nρlI , l = 0, . . . , k (84)

where the expectationEV is taken w.r.t. the backward channelV (·|ỹ,θ, k). This parameter vector can

be found by solving the set of equations (33)-(34), namely, it attains the maximum ofV (x̃|ỹ,θ, k) as

can be easily seen. Then,

1 ≥ V
({

T k
ǫ (x̃|ỹ)

}

|ỹ, θ̂, k
)

(85)

=

∫

T k
ǫ (x̃|ỹ)

V (x̄|ỹ, θ̂, k)dx̄ (86)

≥ Vol
{

T k
ǫ (x̃|ỹ)

}

inf
x̄∈T k

ǫ (x̃|ỹ)
V (x̄|ỹ, θ̂, k) (87)

≥ Vol
{

T k
ǫ (x̃|ỹ)

}

exp

{

−n
[

1

2σ̂2

(

1 + 2

k
∑

l=0

|α̂l|
)

ǫ

]}

V (x̃|ỹ, θ̂, k) (88)

≥ Vol
{

T k
ǫ (x̃|ỹ)

}

exp
{

−nǫB
[

1 +
√
k + 1 · C

(

B−1,∆
)

]}

V (x̃|ỹ, θ̂, k) (89)

where the second last inequality readily follows from a derivation similar to (76) and the fact that

(x̃, ỹ) ∈ Hn (B), and the last inequality follows from (45) along with the fact that for any sequence

z = (z1, . . . , zn), we have‖z‖1 ≤
√
n ‖z‖ℓ2 . Thus, we obtain

Vol
{

T k
ǫ (x̃|ỹ)

}

≤ exp {nǫf (B,∆, k)}
maxθ V (x̃|ỹ,θ, k) = exp {nǫf (B,∆, k)} exp

{

n log
(

πeσ̂20
)}

(90)

For a lower bound on the volume, we first note that

1 = V
({

T k
ǫ (x̃|ỹ) ∪

{

T k
ǫ (x̃|ỹ)

}c}

|ỹ, θ̂, k
)

(91)
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≤ Vol
{

T k
ǫ (x̃|ỹ)

}

exp {nǫf (B,∆, k)}max
θ

V (x̃|ỹ,θ, k) + V
({

T k
ǫ (x̃|ỹ)

}c
|ỹ, θ̂, k

)

(92)

where the last inequality follows by the same considerations in (89). Using Boole’s inequality

V
({

T k
ǫ (x̃|ỹ)

}c
|ỹ, θ̂, k

)

≤ V

(
∣

∣

∣

∣

∣

1

n

n−1
∑

m=0

∣

∣

∣
X̃m

∣

∣

∣

2
− ρxx

∣

∣

∣

∣

∣

> ǫ

∣

∣

∣

∣

∣

ỹ, θ̂, k

)

+

k
∑

l=0

V

(
∣

∣

∣

∣

∣

1

n

n−1
∑

m=0

Re
{

X̃mỹ
∗
me

− 2πjlm

n

}

− ρlR

∣

∣

∣

∣

∣

> ǫ

∣

∣

∣

∣

∣

ỹ, θ̂, k

)

+

k
∑

l=0

V

(∣

∣

∣

∣

∣

1

n

n−1
∑

m=0

Im
{

X̃mỹ
∗
me

− 2πjlm

n

}

− ρlI

∣

∣

∣

∣

∣

> ǫ

∣

∣

∣

∣

∣

ỹ, θ̂, k

)

(93)

Now, due to (82)-(84), the events in (93) are large deviations events. For example, for the second term

on the right hand side of (93), let us define the following Gaussian density

δG (z) =
1

(

πσ̂20
)n exp

{

− 1

σ̂20

n−1
∑

m=0

|zm|2
}

. (94)

Whence, by Chebychev’s inequality we obtain, for any0 ≤ l ≤ k,

V

(
∣

∣

∣

∣

∣

1

n

n−1
∑

m=0

Re
{

X̃mỹ
∗
me

− 2πjlm

n

}

− ρlxy

∣

∣

∣

∣

∣

> ǫ

∣

∣

∣

∣

∣

ỹ, θ̂, k

)

= δG

{

Z :

∣

∣

∣

∣

∣

1

n

n−1
∑

m=0

Re
{

Zmỹ
∗
me

− 2πjlm

n

}

∣

∣

∣

∣

∣

> ǫ

}

≤ 1

ǫ2
Eδ

(

1

n

n−1
∑

m=0

Re
{

Zmỹ
∗
me

− 2πjlm

n

}

)2

(95)

≤ 1

nǫ2

[

n−1
∑

m=0

|ỹm|2
]

Eδ

{

1

n

n−1
∑

m=0

|Zm|2
}

(96)

≤ Bσ̂20
nǫ2

≤ B2

nǫ2
. (97)

For the third term on the right hand side of (93), we again havethat

V

(
∣

∣

∣

∣

∣

1

n

n−1
∑

m=0

Im
{

X̃mỹ
∗
me

− 2πjlm

n

}

− ρlxy

∣

∣

∣

∣

∣

> ǫ

∣

∣

∣

∣

∣

ỹ, θ̂, k

)

≤ 1

ǫ2
Eδ

(

1

n

n−1
∑

m=0

Im
{

Zmỹ
∗
me

− 2πjlm

n

}

)2

(98)

≤ B2

nǫ2
. (99)

Finally, exactly in the same way, one obtains that

V

(∣

∣

∣

∣

∣

1

n

n−1
∑

m=0

Re

{

∣

∣

∣
X̃m

∣

∣

∣

2
e

2πjlm

n

}

− ρlxx

∣

∣

∣

∣

∣

> ǫ

∣

∣

∣

∣

∣

ỹ, θ̂, k

)

≤ 12B2

nǫ2
(100)

Therefore, using (92), (97), (99), and (100), we finally conclude that

Vol
{

T k
ǫ (x̃|ỹ)

}

≥ exp {−nǫf (B,∆, k)}
maxθ V (x̃|ỹ,θ, k)

[

1− 12B2

nǫ2
− 2k

B2

nǫ2

]

(101)
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≥ exp {−nǫf (B,∆, k)}
maxθ V (x̃|ỹ,θ, k)

[

1− (2k + 12)
B2

nǫ2

]

. (102)

We are now ready to derive a lower bound on the denominator of (25). Sincex̃ ∈ Sδ
o (x̃, ỹ), then, in

view of (76), there exist a sufficiently smallǫ > 0 and a sufficiently largen (both depending onδ) such

that T k
ǫ (x̃|ỹ) ⊂ Sδ

o (x̃, ỹ). Thus, using Lemma 4, we get
∫

Sδ
o (x̃,ỹ)

µ
(

x′
)

dx′ ≥
∫

T k
ǫ (x̃|ỹ)

µ
(

x′
)

dx′ (103)

≥ Vol
{

T k
ǫ (x̃|ỹ)

}

· inf
x′∈T k

ǫ (x̃|ỹ)
µ
(

x′
)

(104)

≥ exp {−nǫf (B,∆, k)}
maxθ V (x̃|ỹ,θ, k)

[

1− (2k + 12)
B2

nǫ2

]

e−nC2ǫµ (x̃) . (105)

We next overbound the numerator of (25). The basic idea here isto decomposeSu (x̃, ỹ) into

subexponential number of conditional types, where for eachconditional type,
∫

T k
ǫ (x̃|ỹ) µ (x

′) dx′ is

overestimated using Lemma 4. Yet, this cannot be done directly, simply because not everỹx′ ∈ Su (x̃, ỹ)

is such that(x̃′, ỹ) ∈ Hn (B) and hence we cannot apply Lemma 4 toT k
ǫ (x̃′|ỹ). Thus, in order to alleviate

this difficulty, let us divideSu (x̃, ỹ) into two subsets,Su (x̃, ỹ)∩Hn (B0|ỹ) andSu (x̃, ỹ)∩Hc
n (B0|ỹ),

whereHn (B0|ỹ)
△
= {x′ : (x′, ỹ) ∈ Hn (B0)}, B0 ≥ B, being a constant to be chosen later. Now, in

the first set we can apply Lemma 4 while the second has a very low probability provided thatB0 is

sufficiently large. LetB be large enough so that (23) holds and fix(x̃, ỹ) ∈ Hn (B). Similarly to Lemma

2, one can chooseB0 so large such that for everyy′ ∈ Hn (B|x̃), we have
∫

Hc
n(B0|ỹ)

µ
(

x′
)

dx′ ≤ e−nQ(B0), (106)

for all largen, whereQ (B0) > 0 can be made arbitrarily large. Thus, we have
∫

Su(x,y)
µ
(

x′
)

dx′ ≤
∫

Su(x,y)∩Hn(B0|y)
µ
(

x′
)

dx′ + e−nQ(B0). (107)

Let us now subdivide the domain of the first term on the r.h.s. of the above inequality into conditional

ǫ-types, whose volumes can be overestimated by Lemma 4. To thisend, we will need the number

of such sets required to cover the whole domain of integration, that is Su (x,y) ∩ Hn (B0|y) ⊂
Hn (B0|y). We note that within this set,n−1

∑n−1
m=0 |x̃′m|2 ≤ B0, n−1

∑n−1
m=0 |ỹm|2 ≤ B0, and hence

also n−1
∣

∣

∣

∑n−1
m=0Re

{

x̃′mỹ
∗
me

2πjlm/n
}

∣

∣

∣
≤ B0 and n−1

∣

∣

∣

∑n−1
m=0 Im

{

x̃′mỹ
∗
me

2πjlm/n
}

∣

∣

∣
≤ B0 for all

l = 0, . . . , k. Thus, the number of conditional types
{

T k
ǫ (x′|y)

}

needed to coverHn (B0|y) is not

larger than(2B0/ǫ)
2k+3. Therefore,

∫

Su(x̃,ỹ)∩Hn(B0|ỹ)
µ
(

x′
)

dx′ ≤
∑

T k
ǫ (x̃′|ỹ)⊂Su(x̃,ỹ)∩Hn(B0|ỹ)

∫

T k
ǫ (x̃′|ỹ)

µ
(

x′′
)

dx′′ (108)
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≤
(

2B0

ǫ

)2k+3

sup
x̃′∈Su(x̃,ỹ)

{

Vol
{

T k
ǫ

(

x̃′|ỹ
)

}

· sup
x′′∈T k

ǫ (x̃′|ỹ)
µ
(

x′′
)

}

≤
(

2B0

ǫ

)2k+3

exp {nǫf (B,∆, k)} enC2ǫ sup
x̃′∈Su(x̃,ỹ)

µ (x̃′)

maxθ V (x̃′|ỹ,θ, k)

≤
(

2B0

ǫ

)2k+3

exp {nǫf (B,∆, k)} enC2ǫ µ (x̃)

maxθ V (x̃|ỹ,θ, k) . (109)

Therefore, combining (105), (107), and (109), we get for all sufficiently largen,

sup
(x̃,ỹ)∈Hn(B)

∫

Su(x̃,ỹ)
µ (x′) dx′

∫

Sδ
0 (x̃,ỹ)

µ (x′) dx′
≤
[

1− (2k + 12)
B2

nǫ2

]−1(
2B0

ǫ

)2k+3

e2nǫ[C2+f(B,∆,k)]

·
[

1 + e−nQ(B0) sup
(x̃,ỹ)∈Hn(B)

maxθ V (x̃|ỹ,θ, k)
µ (x̃)

]

. (110)

We next provide the conditions under which the last bound is indeed a subexponential function ofn.

To this end, let us first handle the squared brackets in (110), and show it tends to unity asn → ∞ by

choosingQ (B0) to be sufficiently large. Note that the supremum can be boundedby

sup
(x̃,ỹ)∈Hn(B)

maxθ V (x̃|ỹ,θ, k)
µ (x̃)

= sup
(x̃,ỹ)∈Hn(B)

(

πeσ̂20
)−n/2

µ (x̃)
(111)

≤
(

πeB−1
)−n/2

ν−1e(1+∆)n/2
, (112)

and that the normalization constantν can also be upper bounded as follows

ν =

∫

x∈Ψ∆

dx exp

{

− 1

2σ2x

n−1
∑

t=0

x2t

}

≤ e−1(1−∆)n/2
[

2πeσ2x (1 + ∆)
]n/2

. (113)

Whence, using the last results and (110), we see that by choosing B0 so large so that

Q (B0) >
1

2

[

logB + log σ2x + log (1 + ∆) + 2∆
]

, (114)

the last term in the squared brackets in (110) tends to unity as n→ ∞, as required. Thus, in order that

(110) will be a subexponential function ofn, we let ǫ = ǫn tend to zero andk = kn, such that

lim
n→∞

1

n
log

{

[

1− (2kn + 12)
B2

nǫ2n

]−1(
2B0

ǫn

)2kn+3

e2nǫn[C2+f(B,∆,kn)]

}

= 0, (115)

or, equivalently, that the following hold simultaneously

kn log
1

ǫn
= o (n) , (116)

lim
n→∞

√

knǫn = 0, (117)
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and

lim
n→∞

nǫ2n
kn

= C2, (118)

whereC2 is some sufficiently large constant, and (116), (117), and (118) follow from the midterm, right,

and left terms on the left hand side of (115). This happens ifǫn = o
(

n−1/4
)

and hencekn = o
(

n1/2
)

.

Whence, we obtain that (110) is subexponential function ofn, and thus

lim
n→∞

1

n
log P̄e,u (R,n) ≤

1

n
log P̄ δ

e,0 (R,n) , (119)

as required. Finally, to complete the proof of the theorem, itremains to show (22). Note that bothS0 (x,y)

andSδ
0 (x,y) correspond to a known channel. This is, actually, a similar (and simpler) problem to that

we considered above, and is very related to the problem considered in [1, Eqs. (33)-(39)], where (22)

has been proven. In the sequel, we briefly describe how to obtain (22). Similarly to the above analysis,

using Lemma 1, we would like to show that the ratio
∫

Sδ
o (x̃,ỹ)

µ (x′) dx′

∫

So(x̃,ỹ)
µ (x′) dx′

(120)

is uniformly overbounded by a subexponential function ofn, over (x̃, ỹ) ∈ Hn whereHn is defined

exactly as in (27). For a given pair of vectors(x̃, ỹ) and ǫ > 0, define thekth order conditionalǫ-type

T k
ǫ (x̃|ỹ) exactly as in (61). Accordingly, we know that for anỹu, ṽ ∈ T k

ǫ (x̃|ỹ) the conditional pdf’s

W (y|u) andW (y|v) are exponentially equivalent, that is, (76) holds. Then, in view of the last fact, there

exists a sufficiently smallǫ1 > 0 and a sufficiently largen such thatT k
ǫ (x̃|ỹ) ⊂ So (x̃, ỹ), and another

ǫ2 > 0 and a sufficiently largen (both depending onδ) such thatSδ
o (x̃, ỹ) ⊂ T k

ǫ (x̃|ỹ). Then, using the

same techniques as previously described, it is possible to overbound the numerator and underbound the

denominator of the r.h.s. of (120) in terms of the volumes of the conditional typesT k
ǫ (x̃|ỹ), and show

that (120) is overbounded by a subexponential function ofn.

APPENDIX A

PROOF OFLEMMA 3

We need to show the inclusion

T k
ǫ (x̃|ỹ) ⊆ T̂ k

ǫ (x̃|ỹ) , (A.1)

namely, for anȳx ∈ T k
ǫ (x̃|ỹ) alsox̄ ∈ T̂ k

ǫ (x̃|ỹ). Using the definitions of these sets we see that in order

to show the above inclusion we only need to show that for everyx̄ ∈ T k
ǫ (x̃|ỹ), there exist a sequence
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{Pm}Lm=1 ∈ P
ǫ such that for any1 ≤ l ≤ L,

∣

∣

∣

∣

∥

∥

∥
x̄lnb

(l−1)nb+1

∥

∥

∥

2
− nbPl

∣

∣

∣

∣

≤ ǫ (A.2)

wherexm
l

△
= (xl, xl+1, . . . , xm) for m ≥ l. To this end, for each1 ≤ l ≤ L, Pl is chosen to be the

nearest point to
∥

∥

∥
x̄lnb

(l−1)nb+1

∥

∥

∥

2
in the setGL

1,ǫ, namelyPl =

⌊

∥

∥

∥
x̄lnb

(l−1)nb+1

∥

∥

∥

2
/ (nbǫ)

⌋

·ǫ. Under this choice,

obviously, (A.2) holds, and{Pl}Ll=1 ∈ P
ǫ, since

∣

∣

∣

∣

∣

1

L

k
∑

l=1

Pl − Px

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∣

∣

1

L

L
∑

l=1











∥

∥

∥
x̄lnb

(l−1)nb+1

∥

∥

∥

2

nbǫ










ǫ− Px

∣

∣

∣

∣

∣

∣

∣

(A.3)

≤
∣

∣

∣

∣

∣

1

n

L
∑

l=1

∥

∥

∥
x̄lnb

(l−1)nb+1

∥

∥

∥

2
δ − Px

∣

∣

∣

∣

∣

≤ δ (A.4)

where the last equality follows from the fact thatx̄ ∈ T k
ǫ (x̃|ỹ) and thatn = nbL.
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