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Background

First introduced by Elias (1957) and Wozencraft (1958).

Decoder outputs a list of L candidate messages (finalists).
Application: inner decoder of a concatenated code.

Error event: correct message not on the list.

Most of the literature: algorithmic issues concerning structured codes.

This talk: error exponents (random coding, sphere—packing, expurgated).
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Background (Cont’d)

There are two classes of list decoders, according to the nature of list size L:
® [ isarandom variable (that depends on the channel output).
® [ is deterministic.

The second category is further divided to:

® Fixed list size regime (FLS): L = const., independent of n.

® Exponential list size regime (ELS): L = ¢, with A > 0 fixed.

In this talk, we consider the second category under both regimes.
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System Model and Problem Definition

Acode C ={xg,x1,..-.,xpr_1}, M = e is selected at random.
The marginal of each codeword x; € X™ is Unif{7 (Q)}.

The channel P(y|x) is a DMC.

The index I of the transmitted message x; is Unif{0,1,..., M — 1}.
The decoder outputs the indices of the L most likely messages.
Error event: I is not on the list.

Objective: characterize error exponents.
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Some Well-Known Results

The following is given as an exercise, in the books of Gallager and Viterbi &

Omura:
1+p
5 : p )1/ (1)
P. SoénplgLM Z |: Z P(x)P(y|x) :| .
yeyn weXn

In the fixed list—size regime, with a product—form random coding distribution @,

this yields

Er(R,L) = sup sup[Eo(p, Q) — pR],
0<p<L Q

where

145
Eo(p,Q)=—-In| ) {Y Q(z)P(y|z) 1/(1“)}

yey |zxeX

Thus, Ex(R,1) = Er(R) is the ordinary random coding exponent.
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Some Well-Known Results (Cont’d)

In the exponential list—size regime, L = ¢ [Shannon—Gallager—Berlekamp

1967].
P, > exp{—nEsp(R — M)},
where
Esp(R) = sup Sgp[Eo(p, Q) — pR],
or, equivalently,
Esp(R) = sup inf D(Py | x||Pyx|Q),

Q {Py|x: [(X;Y)<R}

In the book by Csiszar and Kdrner, the reader is asked to prove that Eyr(R — \)

IS achievable.
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A General Non—Asymptotic Upper Bound

Theorem: The average probability of list error, P., associated with the optimal

)

list decoder, is upper bounded by

n n

P. < ZP P(y|z) exp{—nL {pr(x i+ 2l _r_o (1°g">

where P(x) is the uniform distribution over 7(@Q) and fa;y(X; Y) is the

empirical mutual information induced by (x, y).

The proof is by a careful large deviations analysis of the binomial random

variable

N(z,y)= > I{P(y|Xm) > P(y|z)}.

m=1
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The Fixed List Size Regime

The dependence on L appears twice:

( i ELS T )
In L 1
n ogn
—nlL |1 XY — —
; P(y|x) exp < n wy( ) + - R — O( - > >
FLS
\ i 44 )

In the FLS regime, 2£ — 0, and averaging exp{—nL[Izy(X;Y) — R]1} yields

P < e MEELQ) - \where

E(R,L,Q) = min {D(Py|x|Pyx|Q) + L [I(X;Y)— R]+},

Py |x

The best exponent is obtained by maximizing over @ to yield

B(R, Q) = max (R, L, Q).
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The Fixed List Size Regime (Cont'd)

This result has been obtained also in [D’yachkov 1980]. In the paper, we also

show that:
® This upper bound is exponentially tight.

® |t (exponentially) agrees with the expression of Gallager/Viterbi—Omura:

1+4p

D MP P(x 1/(1+P)
2 Og})lgL > D> P(y|x) :
yeyn weXn

with P(z) = Unif{7(Q)}.

® The MMI list decoder universally achieves E(R, L, Q).
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The Exponential List Size Regime

n n

<3 P( ywemp{nL[hm@X}q+]”LR ()(bg”> },
.y +
In the ELS regime, === = \. By defining

E = {(w,y): f;cy(X;Y)—l—)\—RZG}.

we see that the conribution of £ is < exp(—nee*™) = ¢~ ">, and so,

P. <Pr{e} = eXP{n _ _min D(PYX|PYXQ)}
{Pyx: [(X;Y)<R-A}

1>

exp{—nksp(R— A, Q)}
which, for the optimum @, becomes exp{—nEsp(R — \)}.
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The Exponential List Size Regime (Cont’'d)

The SGB lower bound is achieved — the gap with Er(R — X) is closed.
The reliability function of the ELS regime is characterized exactly.
The universal MMI list decoder achieves the optimum exponent.

For A =0, Esp(R) is achieved for L > p™(R), the achiever of Esp(R).

Moments of N(X,Y) (related to the guessing problem):

p _Eep(R < »*(R
o BN (X0, Y) ) 2{ sp(R) ,O_P*( )
n—ee n pR— Eo(p) p>p (R)

and the bound is tight at least for large enough p.
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Expurgated Exponents (FLS Regime)

Define the multi—variate “Bhattacharyya distance”:

L
d(xo,xl, ca ,.CI]L) = —In |:Z HP(yxz)l/(L+1):|

yeY i=0

and the multi—-information:

[(Xo; X1;...;X1) = Y H(X;)—H(Xo,X1,...,XL)

Next, define

A
A(R,Q) ={Px,x,..x, : 1(Xo0;X1;...;X) <LR, Px,=Px, =...= Px, = Q}.
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Expurgated Exponents (Cont’d)

Theorem: There exists a sequence of rate—R codes for which

In maxm, P,
lim |— = e|m] > Eex(R,L), where
n—0o0 n
A .
FEex(R,L) = sup inf

Q {1Pxox;..x;€AR,Q)}
[Ed(Xo, X1,...,X) + I(Xo; X15...;X)] — LR,
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Expurgated Exponents (Comments)

This is an extension of the Csiszar—Kdrner—Marton expurgated exponent
of ordinary decoding (L = 1).

Similarly as in the case L = 1, Eex(R, L) Is given by the “distortion—rate”
function:

D(R) = min E{d(Xo, X1,..., X
(8) Px,x,..x; €A(R,Q) (X, X1 2

for R < I"(Xo; X1;...; X1)/L and by the tangential straight-line of slope
—L for R > I'*(Xo; X1;...;X1)/L, where I'*(Xo; X1;...; X) is induced
by P, x,..x, the achiever of Eex(oco, L).

Modification to the Gaussian case: the optimum Px, x,. x, IS always a
multivariate Gaussian with zero—mean, unit—variance components whose
correlation coefficients are all the same (by symmetry).
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Summary of Results

A general, non—asymptotic upper bound on the probability of list error.

Particularizing this bound to the FLS and ELS regimes.

o FLS: exponentially tight bound, in agreement with

Gallager/Viterbi-Omura and D’yachkov.
® ELS: established Esp(R — X) as the reliability function.

o Both regimes: MMI list decoding achieves these exponents.
We characterized moments of N(X,Y) with relation to guessing.

We derived an expurgated bound.
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