List Decoding – Random Coding Exponents and Expurgated Exponents

Neri Merhav

Department of Electrical Engineering
Technion—Israel Institute of Technology
Haifa 32000, Israel

Background

First introduced by Elias (1957) and Wozencraft (1958).

Decoder outputs a list of L candidate messages (finalists).

Application: inner decoder of a concatenated code.

Error event: correct message not on the list.

Most of the literature: algorithmic issues concerning structured codes.

This talk: error exponents (random coding, sphere–packing, expurgated).
Background (Cont’d)

There are two classes of list decoders, according to the nature of list size L:

- L is a random variable (that depends on the channel output).
- L is deterministic.

The second category is further divided to:

- Fixed list size regime (FLS): $L = \text{const.}$, independent of n.
- Exponential list size regime (ELS): $L = e^{\lambda n}$, with $\lambda > 0$ fixed.

In this talk, we consider the second category under both regimes.
A code $C = \{x_0, x_1, \ldots, x_{M-1}\}$, $M = e^{nR}$, is selected at random.

The marginal of each codeword $x_i \in \mathcal{X}^n$ is $\text{Unif}\{\mathcal{T}(Q)\}$.

The channel $P(y|x)$ is a DMC.

The index I of the transmitted message x_I is $\text{Unif}\{0, 1, \ldots, M - 1\}$.

The decoder outputs the indices of the L most likely messages.

Error event: I is not on the list.

Objective: characterize error exponents.
Some Well–Known Results

The following is given as an exercise, in the books of Gallager and Viterbi & Omura:

\[
\overline{P_e} \leq \min_{0 \leq \rho \leq L} M^\rho \sum_{y \in \mathcal{Y}^n} \left[\sum_{x \in \mathcal{X}^n} P(x) P(y|x)^{1/(1+\rho)} \right]^{1+\rho}.
\]

In the fixed list–size regime, with a product–form random coding distribution \(Q \), this yields

\[
E_r(R, L) = \sup_{0 \leq \rho \leq L} \sup_Q [E_0(\rho, Q) - \rho R],
\]

where

\[
E_0(\rho, Q) = -\ln \left(\sum_{y \in \mathcal{Y}} \left[\sum_{x \in \mathcal{X}} Q(x) P(y|x)^{1/(1+\rho)} \right]^{1+\rho} \right).
\]

Thus, \(E_r(R, 1) \equiv E_r(R) \) is the ordinary random coding exponent.
Some Well–Known Results (Cont’d)

In the exponential list–size regime, \(L = e^{\lambda n} \) [Shannon–Gallager–Berlekamp 1967]:

\[
\overline{P_e} \geq \exp\{-nE_{sp}(R - \lambda)\},
\]

where

\[
E_{sp}(R) = \sup_{\rho \geq 0} \sup_Q \{E_0(\rho, Q) - \rho R\},
\]

or, equivalently,

\[
E_{sp}(R) = \sup_Q \inf_{\{\tilde{P}_Y|X : \tilde{I}(X;Y) \leq R\}} D(\tilde{P}_Y|X \parallel P_Y|X|Q),
\]

In the book by Csiszár and Körner, the reader is asked to prove that \(E_r(R - \lambda) \) is achievable.
A General Non–Asymptotic Upper Bound

Theorem: The average probability of list error, $\overline{P_e}$, associated with the optimal list decoder, is upper bounded by

$$\overline{P_e} \leq \sum_{x,y} P(x)P(y|x) \exp \left\{ -nL \left[\hat{I}_{xy}(X;Y) + \frac{\ln L}{n} - R - O\left(\frac{\log n}{n}\right) \right] \right\},$$

where $P(x)$ is the uniform distribution over $T(Q)$ and $\hat{I}_{xy}(X;Y)$ is the empirical mutual information induced by (x, y).

The proof is by a careful large deviations analysis of the binomial random variable

$$N(x, y) = \sum_{m=1}^{M-1} \mathcal{I}\{P(y|X_m) \geq P(y|x)\}.$$
The Fixed List Size Regime

The dependence on L appears twice:

$$
\overline{P_e} \leq \sum_{x,y} P(x)P(y|x) \exp \left\{ -nL \left[\hat{I}_{xy}(X;Y) + \frac{\ln L}{n} - R - O \left(\frac{\log n}{n} \right) \right] \right\},
$$

In the FLS regime, $\frac{\ln L}{n} \to 0$, and averaging $\exp\{-nL[\hat{I}_{xy}(X;Y) - R]_+\}$ yields

$$
\overline{P_e} \leq e^{-nE(R,L,Q)}, \text{ where }
$$

$$
E(R, L, Q) \triangleq \min_{\tilde{P}_Y|X} \{ D(\tilde{P}_Y|X \| P_Y|X|Q) + L \cdot [\hat{I}(X;Y) - R]_+ \},
$$

The best exponent is obtained by maximizing over Q to yield

$$
E(R, Q) = \max_Q E(R, L, Q).
$$
The Fixed List Size Regime (Cont’d)

This result has been obtained also in [D’yachkov 1980]. In the paper, we also show that:

- This upper bound is exponentially tight.
- It (exponentially) agrees with the expression of Gallager/Viterbi–Omura:

\[
\overline{P_e} \leq \min_{0 \leq \rho \leq L} M^\rho \sum_{y \in Y^n} \left[\sum_{x \in X^n} P(x) P(y | x)^{1/(1+\rho)} \right]^{1+\rho},
\]

with \(P(x) = \text{Unif}\{\mathcal{T}(Q)\} \).

- The MMI list decoder universally achieves \(E(R, L, Q) \).
The Exponential List Size Regime

\[P_e \leq \sum_{x,y} P(x)P(y|x) \exp \left\{ -nL \left[\hat{I}_{xy}(X;Y) + \frac{\ln L}{n} - R - O\left(\frac{\log n}{n}\right) \right] \right\}, \]

In the ELS regime, \(\frac{\ln L}{n} = \lambda \). By defining

\[\mathcal{E} = \left\{ (x,y) : \hat{I}_{xy}(X;Y) + \lambda - R \geq \epsilon \right\}. \]

we see that the contribution of \(\mathcal{E} \) is \(\leq \exp(-n\epsilon e^{\lambda n}) = e^{-n\infty} \), and so,

\[P_e \leq \Pr\{\mathcal{E}^c\} = \exp \left\{ -n \min_{\{\tilde{P}_Y|X : \hat{I}(X;Y) \leq R - \lambda\}} D(\tilde{P}_Y|X \| P_Y|X|Q) \right\} \]

\[\triangleq \exp\{-nE_{sp}(R - \lambda, Q)\} \]

which, for the optimum \(Q \), becomes \(\exp\{-nE_{sp}(R - \lambda)\} \).
The Exponential List Size Regime (Cont’d)

- The SGB lower bound is achieved – the gap with $E_r(R - \lambda)$ is closed.
- The reliability function of the ELS regime is characterized exactly.
- The universal MMI list decoder achieves the optimum exponent.
- For $\lambda = 0$, $E_{sp}(R)$ is achieved for $L \geq \rho^*(R)$, the achiever of $E_{sp}(R)$.
- Moments of $N(X, Y)$ (related to the guessing problem):

$$\lim_{n \to \infty} \inf \frac{\ln \mathbb{E}\{N(X_0, Y)\rho\}}{n} \geq \begin{cases} -E_{sp}(R) & \rho \leq \rho^*(R) \\ \rho R - E_0(\rho) & \rho > \rho^*(R) \end{cases}$$

and the bound is tight at least for large enough ρ.
Define the multi–variate “Bhattacharyya distance”:

\[
d(x_0, x_1, \ldots, x_L) = -\ln \left[\sum_{y \in Y} \prod_{i=0}^{L} P(y|x_i)^{1/(L+1)} \right]
\]

and the multi–information:

\[
I(X_0; X_1; \ldots; X_L) = \sum_{i=0}^{L} H(X_i) - H(X_0, X_1, \ldots, X_L)
\]

\[
= D(P_{X_0 X_1 \ldots X_L} \parallel P_{X_0} \times P_{X_1} \times \ldots P_{X_L}).
\]

Next, define

\[
\mathcal{A}(R, Q) \triangleq \{ P_{X_0 X_1 \ldots X_L} : I(X_0; X_1; \ldots; X_L) \leq LR, P_{X_0} = P_{X_1} = \ldots = P_{X_L} = Q \}.
\]
Expurgated Exponents (Cont’d)

Theorem: There exists a sequence of rate–R codes for which

\[
\lim_{n \to \infty} \left[-\frac{\ln \max m \, P_e|m}{n} \right] \geq E_{ex}(R, L), \quad \text{where}
\]

\[
E_{ex}(R, L) \overset{\triangle}{=} \sup_Q \inf \{P_{X_0 X_1 \ldots X_L} \in A(R, Q)\}
\]

\[
[Ed(X_0, X_1, \ldots, X_L) + I(X_0; X_1; \ldots; X_L)] - LR,
\]
This is an extension of the Csiszár–Körner–Marton expurgated exponent of ordinary decoding ($L = 1$).

Similarly as in the case $L = 1$, $E_{\text{ex}}(R, L)$ is given by the “distortion–rate” function:

$$D(R) = \min_{P_{X_0X_1\ldots X_L} \in A(R,Q)} \mathbb{E}\{d(X_0, X_1, \ldots, X_L)\}$$

for $R \leq I^*(X_0; X_1; \ldots; X_L)/L$ and by the tangential straight–line of slope $-L$ for $R > I^*(X_0; X_1; \ldots; X_L)/L$, where $I^*(X_0; X_1; \ldots; X_L)$ is induced by $P_{X_0X_1\ldots X_L}^*$, the achiever of $E_{\text{ex}}(\infty, L)$.

Modification to the Gaussian case: the optimum $P_{X_0X_1\ldots X_L}$ is always a multivariate Gaussian with zero–mean, unit–variance components whose correlation coefficients are all the same (by symmetry).
Summary of Results

- A general, non–asymptotic upper bound on the probability of list error.
- Particularizing this bound to the FLS and ELS regimes.
 - FLS: exponentially tight bound, in agreement with Gallager/Viterbi–Omura and D’yachkov.
 - ELS: established $E_{sp}(R - \lambda)$ as the reliability function.
- Both regimes: MMI list decoding achieves these exponents.
- We characterized moments of $N(X, Y)$ with relation to guessing.
- We derived an expurgated bound.