

Erasures/List Exponents for Slepian–Wolf Decoding

Neri Merhav

Department of Electrical Engineering
Technion—Israel Institute of Technology
Haifa 32000, Israel

ITW 2013, Sevilla, Spain, September 2013.

Related Work on Error Exponents for S–W Decoding

- Gallager (1976, unpublished): same technique as in channel decoding.
- Csiszár, Körner & Marton (1977,80): universal achievability.
- Csiszár and Körner (1981): linear codes; expurgated exponents.
- Csiszár (1982) + Oohama & Han (1994): coded side information.
- Kelly & Wagner (2011): improvements at high rates.

In This Work

- Generalized decoding for the S-W problem: erasure and list decoding.
- Draper & Martinian (2007): List decoding – fixed & deterministic list.
- We analyze tradeoffs between exponents similarly as in Forney (1968).
- Erasure option: no decoding when the confidence level is low.
- List option: tentative candidates – final decision after further processing.

In This Work (Cont'd)

- We analyze error exponents using two methods:
 - The Gallager/Forney method.
 - Distance enumeration – inspired by the random energy model (REM).
- Second method:
 - Always at least as tight.
 - May be better by an arbitrarily large factor.
 - Sometimes simpler and easier to calculate.
- Variable-rate coding: improves the exponents.

Some Definitions

Let $(\mathbf{X}, \mathbf{Y}) \sim \prod_{i=1}^n P(x_i, y_i)$.

x – source to be encoded.

y – side info @ decoder.

Encoder: $f : \mathcal{X}^n \rightarrow \{0, 1, \dots, M - 1\}$, $M = e^{nR}$.

$$z = f(\mathbf{x}).$$

Random binning: For every $\mathbf{x} \in \mathcal{X}^n$, z is selected independently at random from $\{0, 1, \dots, M - 1\}$.

Some Definitions (Cont'd)

Erasure/list decoder: Given $\mathbf{y} \in \mathcal{Y}^n$ and z , calculate for all $\hat{\mathbf{x}} \in f^{-1}(z)$:

$$\frac{P(\hat{\mathbf{x}}, \mathbf{y})}{\sum_{\mathbf{x}' \in f^{-1}(z) \setminus \{\hat{\mathbf{x}}\}} P(\mathbf{x}', \mathbf{y})}.$$

If $\geq e^{nT}$, $\hat{\mathbf{x}}$ is a **candidate**.

- If there are no candidates – an **erasure** is declared.
- If there is exactly one candidate – ordinary decoding: $\hat{\mathbf{x}} = \text{candidate}$.
- If there is more than one candidate – a **list** of all candidates is created.

Define \mathcal{E}_1 as the event where the real \mathbf{x} is **not a candidate**.

Let $E_1(R, T) = \text{exponent of } \Pr\{\mathcal{E}_1\}$. The other exponent

$$E_2(R, T) = \begin{cases} \text{decoding error exp} & \text{erasure mode} \\ \text{expected list size exp} & \text{list mode} \end{cases} = E_1(R, T) + T.$$

Common Starting Point

$$\begin{aligned}\Pr\{\mathcal{E}_1\} &= \sum_{\mathbf{x}, \mathbf{y}} P(\mathbf{x}, \mathbf{y}) \mathcal{I} \left\{ \frac{e^{nT} \sum_{\mathbf{x}' \neq \mathbf{x}} P(\mathbf{x}', \mathbf{y}) \mathcal{I}[f(\mathbf{x}') = f(\mathbf{x})]}{P(\mathbf{x}, \mathbf{y})} > 1 \right\} \\ &\leq \sum_{\mathbf{x}, \mathbf{y}} P(\mathbf{x}, \mathbf{y}) \left[\frac{e^{nT} \sum_{\mathbf{x}' \neq \mathbf{x}} P(\mathbf{x}', \mathbf{y}) \mathcal{I}[f(\mathbf{x}') = f(\mathbf{x})]}{P(\mathbf{x}, \mathbf{y})} \right]^s \\ &= e^{nsT} \sum_{\mathbf{x}, \mathbf{y}} P^{1-s}(\mathbf{x}, \mathbf{y}) \left[\sum_{\mathbf{x}' \neq \mathbf{x}} P(\mathbf{x}', \mathbf{y}) \mathcal{I}[f(\mathbf{x}') = f(\mathbf{x})] \right]^s.\end{aligned}$$

The Gallager/Forney Approach

Use

$$\begin{aligned}\Pr\{\mathcal{E}_1\} &\leq e^{nsT} \sum_{\mathbf{x}, \mathbf{y}} P^{1-s}(\mathbf{x}, \mathbf{y}) \left(\left[\sum_{\mathbf{x}' \neq \mathbf{x}} P(\mathbf{x}', \mathbf{y}) \mathcal{I}[f(\mathbf{x}') = f(\mathbf{x})] \right]^{\frac{s}{\rho}} \right)^\rho \quad \rho \geq s \\ &\leq e^{nsT} \sum_{\mathbf{x}, \mathbf{y}} P^{1-s}(\mathbf{x}, \mathbf{y}) \left(\sum_{\mathbf{x}' \neq \mathbf{x}} P^{\frac{s}{\rho}}(\mathbf{x}', \mathbf{y}) \mathcal{I}[f(\mathbf{x}') = f(\mathbf{x})] \right)^\rho.\end{aligned}$$

and then, for the ensemble average, use **Jensen's inequality** with the limitation $\rho \leq 1$.

Two potential points of losing exponential tightness:

- The inequality $(\sum_i a_i)^r \leq \sum_i a_i^r$, $0 \leq r \leq 1$.
- Jensen's inequality.

The Resulting Error Exponent

$$\overline{\Pr\{\mathcal{E}_1\}} \leq e^{-nE_1(R,T)},$$

where

$$E_1(R, T) = \sup_{0 \leq s \leq \rho \leq 1} [E_0(\rho, s) + \rho R - sT],$$

with

$$E_0(\rho, s) = -\ln \left[\sum_{y \in \mathcal{Y}} P(y) \sum_{x \in \mathcal{X}} P^{1-s}(x|y) \left(\sum_{x' \in \mathcal{X}} P^{s/\rho}(x'|y) \right)^\rho \right].$$

Extension to Variable–Rate Coding

Instead of fixed rate R , let the rate be $R(x)$, a function that depends on x only via the type class (header + random binning in each type), e.g.,

$R(x) = \frac{1}{n} \sum_{i=1}^n r(x_i)$. Then, the above extends to:

$$\tilde{E}_1(R, T) = \sup_{0 \leq s \leq \rho \leq 1} \sup_{\{\mathbf{r}: \mathbf{E}\{r(X)\} \leq R, r(x) > 0 \forall x \in \mathcal{X}\}} [\tilde{E}_0(\rho, s) - sT],$$

where

$$\tilde{E}_0(\rho, s) = -\ln \left[\sum_{y \in \mathcal{Y}} P(y) \sum_{x \in \mathcal{X}} P^{1-s}(x|y) \left(\sum_{x' \in \mathcal{X}} P^{s/\rho}(x'|y) e^{-r(x')} \right)^\rho \right].$$

Closed–form optimization of $\{r(x)\}$ s.t. $\mathbf{E}\{r(X)\} \leq R$ is easy at least for $\rho = 1$ and the improvement in the exponent can be assessed.

Type Class Enumeration Method

Back to fixed-rate, instead of the above, use:

$$\begin{aligned} \mathbf{E} \left\{ \left[\sum_{x' \neq x} P(x'|\mathbf{y}) \mathcal{I}[f(x') = f(x)] \right]^s \right\} &= \mathbf{E} \left[\sum_{\mathcal{T}(x'|\mathbf{y})} P(x'|\mathbf{y}) N(x'|\mathbf{x}, \mathbf{y}) \right]^s \\ &\doteq \sum_{\mathcal{T}(x'|\mathbf{y})} P^{\textcolor{blue}{s}}(x'|\mathbf{y}) \mathbf{E}\{N^{\textcolor{blue}{s}}(x'|\mathbf{x}, \mathbf{y})\} \end{aligned}$$

where $N(x'|\mathbf{x}, \mathbf{y})$ is the type class enumerator:

$$N(x'|\mathbf{x}, \mathbf{y}) = \left| \mathcal{T}(x'|\mathbf{y}) \bigcap f^{-1}[f(x)] \right|.$$

$\mathbf{E}\{N^s(x'|\mathbf{x}, \mathbf{y})\}$ can be assessed using simple large-deviations considerations.

The Binary Case

Let X and Y be BSS's connected via a BSC with crossover probability p . Then,

$$\overline{\Pr\{\mathcal{E}_1\}} \leq e^{-nE'_1(R, T)},$$

where

$$E'_1(R, T) = \sup_{s \geq 0} E'_1(R, T, s)$$

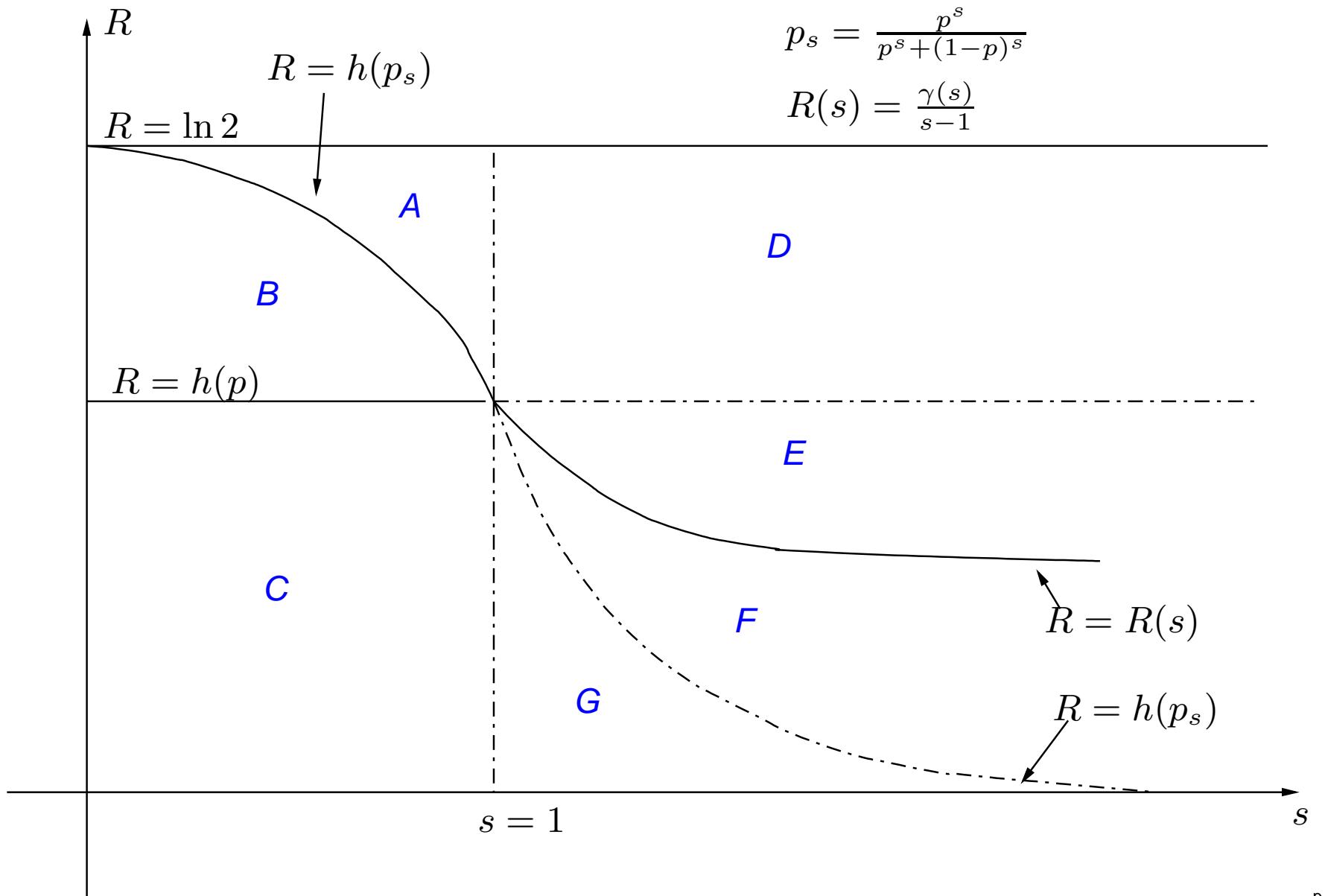
$$E'_1(R, T, s) = \begin{cases} s(R - T) + \gamma(s) & (s, R) \in C \cup F \cup G \\ s[R - T + D(h^{-1}(R) \| p)] + \gamma(s) & (s, R) \in B \\ R - sT + \gamma(s) + \gamma(1 - s) & (s, R) \in A \cup D \cup E \end{cases}$$

$$\gamma(s) = -\ln[p^{1-s} + (1-p)^{1-s}]$$

and where the sets A–G are defined in the following figure.

The analysis can be extended to general DMS's.

Phase Diagram for $E'_1(R, T, s)$



Comparison Between $E_1(R, T)$ and $E'_1(R, T)$

$E'_1(R, T) \geq E_1(R, T)$ always.

For some regions in the plane $R—T$, $E'_1(R, T)$ may be larger than $E_1(R, T)$ by an arbitrarily large factor!

1. For $R > h(p)$ and $T < \ln \frac{p}{1-p}$:

$$E_1(R, T) \leq R + |T| < \infty; \quad E'_1(R, T) = \infty.$$

2. Consider the case of very weakly correlated sources, i.e., $p = \frac{1}{2} - \epsilon$, $|\epsilon| \ll 1$.

For $R \in [h(p), \ln 2]$ and $T = -\tau\epsilon^2$ with $\tau > 4$:

$$E_1(R, T) \leq (\tau + 2)\epsilon^2, \quad E'_1(R, T) \geq \left[\frac{\tau(\tau + 8)}{16} - 1 \right] \epsilon^2.$$

Both examples work thanks to the fact that s take arbitrarily large values, not just in $[0, 1]$.

Summary

- Trade-offs between random coding exponents for erasure/list decoding.
- The type-class enum. method is never worse and sometimes a **lot** better.
- Optimization range of s is unlimited.
- Only **one** parameter to optimize, rather than **two**.
- Variable-rate encoding can be handled also.
- Extendable to the case where both X and Y are encoded (separately).