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Related Work on Error Exponents for S—W Decoding
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Gallager (1976, unpublished): same technique as in channel decoding.
Csiszar, Korner & Marton (1977,80): universal achievability.

Csiszar and Korner (1981): linear codes; expurgated exponents.
Csiszar (1982) + Oohama & Han (1994). coded side information.

Kelly & Wagner (2011): improvements at high rates.
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In This Work

Generalized decoding for the S-W problem: erasure and list decoding.
Draper & Martinian (2007): List decoding — fixed & deterministic list.
We analyze tradeoffs between exponents similarly as in Forney (1968).
Erasure option: no decoding when the confidence level is low.

List option: tentative candidates — final decision after further processing.
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In This Work (Cont’d)

®» We analyze error exponents using two methods:
#® The Gallager/Forney method.

# Distance enumeration — inspired by the random energy model (REM).

® Second method:
# Always at least as tight.
#® May be better by an arbitrarily large factor.

# Sometimes simpler and easier to calculate.

® Variable—rate coding: improves the exponents.
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Some Definitions

Let (X,Y) ~ [[;2y P(zi, vi).
x — source to be encoded.

y — side info @ decoder.

Encoder: f: X™ — {0,1,...,M — 1}, M = ",

z = f(x).

Random binning: For every x € X", z is selected independently at random

from {0,1,..., M — 1}.
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Some Definitions (Cont’'d)

Erasure/list decoder: Given y € Y™ and z, calculate for all & € f~1(2):

P(z,y) |
2arer-1(x\ & D@ Y)

If > ™!, % is a candidate.

® If there are no candidates — an erasure is declared.
® |[f there is exactly one candidate — ordinary decoding: & =candidate.
® |[f there is more than one candidate — a list is of all candidates is created.

Define £; as the event where the real « i1s not a candidate.
Let £1(R,T) = exponent of Pr{&; }. The other exponent

decoding error exp erasure mode
expected list size exp list mode
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Common Starting Point

nT’ / /
e D AT P’ y)Z|f(z’) = f(z)]
w)yP(w,y)I{ Plz.y) > 1}
el prag P@ ) I[f(2) = f(z ’
p(w,y)[ > (P(wyg);)[f( ) = f( >]]
X,y ’
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The Gallager/Forney Approach

Use

s/p\ P
Prici} < 7Y P (a,y) {Z P(w’,y)f[f(w’)f(w)]} > s

Yy €X' Ax
P
< Y PIT(=,y) ( S PP y)Iif(a)) = f(w)]>
Yy 4 2

and then, for the ensemble average, use Jensen’s inequality with the limitation

p <1

Two potential points of losing exponential tightness:

® Theinequality (3 . a;)" <> .a;,0<r < 1.

7 1!

® Jensen’s inequality.
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The Resulting Error Exponent

Pr{&} < e BT,

where

Ei{(R,T)= sup [Eo(p,s)+ pR— sT],
0<s<p<1

with

o)
Eo(p,s)=—In | Y P(y) > P *(xly) (Z Ps/p(:v'y)) } -

yey TEX
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Extension to Variable—Rate Coding

Instead of fixed rate R, let the rate be R(x), a function that depends on « only

via the type class (header + random binning in each type), e.g.,

R(x) = + 3", r(x;). Then, the above extends to:

—n

~

El (R7 T) — sup Sup [EO(pa S) - 3T]7
0<s<p<1{r: E{r(X)}<R, r(z)>0V ze€X}

where

p
Eo(p,s) =—In | > Py) Y P'°(xly) (Z Ps/p(w'y)er(fc/>> } -

yey reX ' eX

Closed—form optimization of {r(z)} s.t. E{r(X)} < R is easy at least for p = 1

and the improvement in the exponent can be assessed.
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Type Class Enumeration Method

Back to fixed—rate, instead of the above, use;:

o[ rewrier= ol | = 5] £ remiien
/A T(x'|y)
= > PEEN(|z,y)}

T(x'|yY)

where N (z'|z,y) is the type class enumerator:

Nz, y) = \ 21y ()1

E{N*(z'|z,y)} can be assessed using simple large—deviations considerations.
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The Binary Case

Let X and Y be BSS’s connected via a BSC with crossover probability p. Then,

Prii} < e "R,

where
E1(R,T) =supE{(R,T,s)
>0
[ S(R—T) + (s) (s,R) e CUFUG
E\(R,T,s) = s[R—T+ D(h" (R)|p)l ++(s) (s,R)€B
| R—sT+(s) +v(1—s) (s, R) e AUDUE

v(s) = —Infp' " + (1 —p)' ™)
and where the sets A—G are defined in the following figure.

The analysis can be extended to general DMS's.
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Phase Diagram forE7 (R, T, s)

_ P
Ps = psF(1—p)°




Comparison Betweenk'; (R, T) and Ej(R,T)

E{(R,T) > E1(R,T) always.
For some regions in the plane R—T', E1(R,T) may be larger than E;(R,T) by
an arbitrarily large factor!

1. For R> h(p) and T' < In 15

E1(R,T) < R+ |T|<c0;  E1(R,T)=c0.

2. Consider the case of very weakly correlated sources, i.e., p = % — €, €] < 1.

For R € [h(p),In2] and T = —7€? with 7 > 4:

E\(R,T) < (7 +2)¢, E{(RT)> [“Qg 8 _ 1] e
Both examples work thanks to the fact that s take arbitrarily large values, not
justin [0, 1].
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Summary

Trade—offs between random coding exponents for erasure/list decoding.
The type—class enum. method is never worse and sometimes a lot better.
Optimization range of s is unlimited.

Only one parameter to optimize, rather than two.

Variable—rate encoding can be handled also.

Extendable to the case where both X and Y are encoded (separately).
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