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Related Work on Error Exponents for S–W Decoding

Gallager (1976, unpublished): same technique as in channel decoding.

Csiszár, Körner & Marton (1977,80): universal achievability.

Csiszár and Körner (1981): linear codes; expurgated exponents.

Csiszár (1982) + Oohama & Han (1994): coded side information.

Kelly & Wagner (2011): improvements at high rates.
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In This Work

Generalized decoding for the S-W problem: erasure and list decoding.

Draper & Martinian (2007): List decoding – fixed & deterministic list.

We analyze tradeoffs between exponents similarly as in Forney (1968).

Erasure option: no decoding when the confidence level is low.

List option: tentative candidates – final decision after further processing.
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In This Work (Cont’d)

We analyze error exponents using two methods:

The Gallager/Forney method.

Distance enumeration – inspired by the random energy model (REM).

Second method:

Always at least as tight.

May be better by an arbitrarily large factor.

Sometimes simpler and easier to calculate.

Variable–rate coding: improves the exponents.
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Some Definitions

Let (X , Y ) ∼
Qn

i=1 P (xi, yi).

x – source to be encoded.

y – side info @ decoder.

Encoder: f : Xn → {0, 1, . . . , M − 1}, M = enR.

z = f(x).

Random binning: For every x ∈ Xn, z is selected independently at random

from {0, 1, . . . ,M − 1}.
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Some Definitions (Cont’d)

Erasure/list decoder: Given y ∈ Yn and z, calculate for all x̂ ∈ f−1(z):

P (x̂, y)
P

x′∈f−1(z)\{x̂} P (x′, y)
.

If ≥ enT , x̂ is a candidate.

If there are no candidates – an erasure is declared.

If there is exactly one candidate – ordinary decoding: x̂ =candidate.

If there is more than one candidate – a list is of all candidates is created.

Define E1 as the event where the real x is not a candidate.
Let E1(R,T ) = exponent of Pr{E1}. The other exponent

E2(R,T ) =

(

decoding error exp erasure mode

expected list size exp list mode
= E1(R,T ) + T.
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Common Starting Point

Pr{E1} =
X
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P (x, y)I
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enT P

x′ 6=x P (x′, y)I[f(x′) = f(x)]
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)
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The Gallager/Forney Approach

Use

Pr{E1} ≤ e
nsT
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.

and then, for the ensemble average, use Jensen’s inequality with the limitation

ρ ≤ 1.

Two potential points of losing exponential tightness:

The inequality (
P

i ai)
r ≤

P

i ar
i , 0 ≤ r ≤ 1.

Jensen’s inequality.
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The Resulting Error Exponent

Pr{E1} ≤ e
−nE1(R,T )

,

where

E1(R,T ) = sup
0≤s≤ρ≤1

[E0(ρ, s) + ρR − sT ],

with

E0(ρ, s) = − ln

2
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Extension to Variable–Rate Coding

Instead of fixed rate R, let the rate be R(x), a function that depends on x only

via the type class (header + random binning in each type), e.g.,

R(x) = 1
n

Pn
i=1 r(xi). Then, the above extends to:

Ẽ1(R,T ) = sup
0≤s≤ρ≤1

sup
{r: E{r(X)}≤R, r(x)>0 ∀ x∈X}

[Ẽ0(ρ, s) − sT ],

where

Ẽ0(ρ, s) = − ln

2

4

X
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P (y)
X

x∈X

P
1−s(x|y)

0

@

X

x′∈X

P
s/ρ(x′|y)e−r(x′)

1

A

ρ3

5 .

Closed–form optimization of {r(x)} s.t. E{r(X)} ≤ R is easy at least for ρ = 1

and the improvement in the exponent can be assessed.
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Type Class Enumeration Method

Back to fixed–rate, instead of the above, use:

E

8

<

:
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X
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P (x′|y)I[f(x′) = f(x)]

3

5
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3

5

s

·
=

X

T (x′|y)

P
s(x′|y)E{Ns(x′|x, y)}

where N(x′|x, y) is the type class enumerator:

N(x′|x, y) =

˛

˛

˛

˛

T (x′|y)
\

f
−1[f(x)]

˛

˛

˛

˛

.

E{Ns(x′|x, y)} can be assessed using simple large–deviations considerations.
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The Binary Case

Let X and Y be BSS’s connected via a BSC with crossover probability p. Then,

Pr{E1} ≤ e
−nE′

1
(R,T )

,

where

E
′
1(R,T ) = sup

s≥0
E

′
1(R,T, s)

E
′
1(R,T, s) =

8

>

>

<

>

>

:

s(R − T ) + γ(s) (s, R) ∈ C ∪ F ∪ G

s[R − T + D(h−1(R)‖p)] + γ(s) (s, R) ∈ B

R − sT + γ(s) + γ(1 − s) (s, R) ∈ A ∪ D ∪ E

γ(s) = − ln[p1−s + (1 − p)1−s]

and where the sets A–G are defined in the following figure.

The analysis can be extended to general DMS’s.
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Phase Diagram forE ′

1
(R, T, s)

s

R = h(ps)

R

s = 1

R = R(s)
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R = ln 2

R = h(p)

R = h(ps)
ps = p

s

ps+(1−p)s

R(s) = γ(s)
s−1
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Comparison BetweenE1(R, T ) and E ′

1
(R, T )

E′
1(R,T ) ≥ E1(R,T ) always.

For some regions in the plane R—T , E′
1(R,T ) may be larger than E1(R, T ) by

an arbitrarily large factor!

1. For R > h(p) and T < ln p
1−p :

E1(R,T ) ≤ R + |T |<∞; E
′
1(R,T )=∞.

2. Consider the case of very weakly correlated sources, i.e., p = 1
2 − ǫ, |ǫ| ≪ 1.

For R ∈ [h(p), ln 2] and T = −τǫ2 with τ > 4:

E1(R,T ) ≤ (τ + 2)ǫ2, E
′
1(R,T ) ≥

»

τ(τ + 8)

16
− 1

–

ǫ
2
.

Both examples work thanks to the fact that s take arbitrarily large values, not

just in [0, 1].
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Summary

Trade–offs between random coding exponents for erasure/list decoding.

The type–class enum. method is never worse and sometimes a lot better.

Optimization range of s is unlimited.

Only one parameter to optimize, rather than two.

Variable–rate encoding can be handled also.

Extendable to the case where both X and Y are encoded (separately).
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