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Background

During the 70s and 80s, Ziv (partly, with Lempel) has developed the

individual–sequence approach:

1978: Fixed–rate, almost–lossless compression using FSM’s.

1978: The LZ algorithm.

1980: Lossy compression for noiseless/noisy transmission.

1984: Almost lossless comp. with side info @ decoder (Slepian–Wolf).

1986: Lossless compression of 2D data using FSM’s.
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Objectives

Data processing thm of [Ziv80] revisited – the semi–deterministic setting:

1. Correcting a few imprecise points.

2. Strengthening the lower bound:

No limitations on the encoder (not necessarily an FSM).

Allowing a modulo–ℓ counter (periodically time–varying decoder).

Tighter bound under a common reconstruction constraint.

Bounds that depend on the LZ complexity of the input/output sequence.

Analogous results for linear encoders/decoders in the continuous case.
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The Communication System

Encoder Decoder

delay

Channel
ut xt yt vt−d

zt+1

zt

vt−d = f(zt, yt), t = d + 1, d + 2, . . .
zt+1 = g(zt, yt), t = 1, 2, . . .
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The Communication System

Encoder Decoder

delay

Channel
ut xt yt vt−d

zt+1

zt

vt−d = fτ (zt, yt), t = d + 1, d + 2, . . .
zt+1 = gτ (zt, yt), t = 1, 2, . . .

τ = t mod ℓ t = 1, 2, . . .
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Empirical Statistics Defined

Let ℓ divide n and consider the partition of u = (u1, . . . , un) into n/ℓ ℓ–blocks

ui = (uiℓ+1, . . . , uiℓ+ℓ), i = 0, 1, . . . , n/ℓ − 1

and similarly for other vectors (with vn−d+1, . . . , vn taking arbitrary values in V).

We define P̂UℓXℓY ℓV ℓZ as the empirical joint distribution generated by

counting the relative frequency of

{ui = uℓ, xi = xℓ, yi = yℓ, vi = vℓ, ziℓ+1 = z}, i = 0, 1, . . . , n/ℓ − 1

for all uℓ ∈ Uℓ, xℓ ∈ X ℓ, yℓ ∈ Yℓ, vℓ ∈ Vℓ, and z ∈ Z.
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Some Concerns About the DPT in [Ziv80]

Joint distribution defined s.t.

Uℓ ⊥ (Z, Z′) (Z′ = encoder state), but Z′ responds to Uℓ.

Y ℓ is independent of Z′ given Xℓ, but Z responds to Y ℓ.

DPT: Uℓ ⊥ V ℓ given (Z, Xℓ), but ∃ empirical dependencies.

vt−d is renamed as vt, but:

DPT applies to {ut, vt−d}
distortion is defined between {ut, vt}.

Consequence: Lower bound is independent of d.
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Distortion Bound Without Common Reconstruction

Since V ℓ−d is a deterministic function of Y ℓ and Z,

Î(Uℓ; V ℓ−d|Z) ≤ Î(Uℓ, Xℓ; Y ℓ|Z) ≤ Ĥ(Y ℓ) − Ĥ(Y ℓ|Uℓ, Xℓ) + log s

but on the other hand,

Î(Uℓ; V ℓ−d|Z) ≥ Î(Uℓ; V ℓ) − log s − d log M.

Taking expectations and using EĤ(Y ℓ|Uℓ, Xℓ) ∼ H(Y ℓ|Xℓ),

upper bound ≤ ℓC + log s,

whereas
lower bound ≥ ℓ · R̂Uℓ(Eρ(Uℓ, V ℓ)) − log s − d log M.
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Bound Without Common Reconstruction (Cont’d)

Theorem 1:

1

n

n
X

t=1

E{ρ(ut, Vt)} ≥ D̂Uℓ

„

C +
2 log s + d log M

ℓ
+ δ1(ℓ, n)

«

where

δ1(ℓ, n) =
(JK)ℓ log L√

n
+

(JKL)ℓ log e

2n
+ o

„

1√
n

«

and

D̂Uℓ(R) = min

(

Eρ(Uℓ, Ṽ ℓ)

ℓ
: Î(Uℓ; Ṽ ℓ) ≤ ℓR

)

.

Blue term = “effective extra capacity” due to memory and allowed delay.

In the absence of a mod–ℓ counter, maximize the r.h.s. over ℓ.

Dependence on ℓ – complicated.
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Alternative Bound for Difference Distortion Measures

Assume ρ(u, v) = ̺(v − u), and define

Φ(D) = max{H(W ) : Eρ(W ) ≤ D}

Ψ(t) =

(

Φ−1(t) t ≥ 0

0 t < 0

Theorem 2:

1

n

n
X

t=1

E{̺(Vt − ut)} ≥ Ψ

„

c(un) log c(un)

n
− C − 2 log s + d log M

ℓ
− δ2(ℓ, n)

«

,

where c(un) is the number of LZ phrases of un and

δ2(ℓ, n) = δ1(ℓ, n) +
2ℓ(1 + log J)2

(1 − ǫn) log n
+

2ℓJ2ℓ log J

n
+

1

ℓ
,
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Common Reconstruction

For a given ǫn → 0, suppose that ∃ q s.t.

EP̂r{V ℓ 6= V̂ ℓ} ≡ ℓ

n

n/ℓ−1
X

i=0

Pr{V iℓ+ℓ
iℓ+1

6= v̂iℓ+ℓ
iℓ+1

} ≤ ǫn,

where V̂ ℓ = q(Uℓ).

Theorem 3:

1

n

n
X

t=1

E{ρ(ut, Vt)} ≥ D̃Uℓ

„

C +
2 log s + d log M

ℓ
+ δ2(ℓ, n) + 2∆(ǫn)

«

−ρmaxǫn,

where ∆(ǫn) = h2(ǫn) + ǫnℓ log J , h2(·) being the binary entropy function, and

D̃Uℓ(R) = min
q



1

ℓ
Êρ(Uℓ, q(Uℓ)) : Ĥ(q(Uℓ)) ≤ ℓR

ff

.

Ĥ(q(Uℓ)) can be further lower bounded in terms of c(v̂n) log c(v̂n).
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Linear Encoders/Decoders

Analogous results can be obtained in the linear/Gaussian/quadratic case.

Let ρ(u, v) = (u − v)2 and consider a linear encoder

xt =

∞
X

i=1

aixt−i +

∞
X

i=0

biut−i,

a Gaussian memoryless channel

Yt = xt + Nt, Nt ∼ N (0, σ2),

and a linear decoder defined by

vt−d = αzt + βyt

zt+1 = γzt + δyt.
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Linear Encoders/Decoders (Cont’d)

Main idea: Assume (for a moment) a Gaussian input process:

All processes in the system are jointly Gaussian.

All information measures depend solely on auto/cross–correlations.

DPT gives inequality relations between these auto/cross–correlations.

Relations between auto/cross–correlations do not rely on Gaussianity.

The input does not have to be Gaussian.

Use the empirical cov. matrix of Uℓ to derive semi–deterministic bounds.

Due to the linear–Gaussian structure, the test channel is V ℓ = GUℓ + W ℓ.
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Linear/Gaussian Lower Bound

Theorem 4:

1

n

n
X

t=1

E(Vt − ut)
2 ≥ D̂

 

C +
1

ℓ
log

σ2
Z

ǫ2Z
+

d

2ℓ
log

σ2
V

ǫ2V
+ ǫn

!

where

D̂(R) = min
G,ΣW



tr{(G − I)Σ̂U (GT − I) +
1

ℓ
ΣW } :

1

2ℓ
log |I + Σ−1

W GΣ̂UGT | ≤ R

ff

and

Σ̂U =
ℓ

n

n/ℓ−1
X

i=0

uiu
T
i .
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