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Background

During the 70s and 80s, Ziv (partly, with Lempel) has developed the

iIndividual-sequence approach:

9o
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1978: Fixed—rate, almost—lossless compression using FSM’s.

1978: The LZ algorithm.

1980: Lossy compression for noiseless/noisy transmission.

1984: Almost lossless comp. with side info @ decoder (Slepian—Wolf).

1986: Lossless compression of 2D data using FSM’s.
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Objectives

Data processing thm of [Ziv80] revisited — the semi—deterministic setting:

1. Correcting a few imprecise points.

2. Strengthening the lower bound:
# No limitations on the encoder (not necessarily an FSM).

# Allowing a modulo—¢ counter (periodically time—varying decoder).
Tighter bound under a common reconstruction constraint.
Bounds that depend on the LZ complexity of the input/output sequence.

Analogous results for linear encoders/decoders in the continuous case.
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The Communication System
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The Communication System
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Empirical Statistics Defined

Let Z divide n and consider the partition of uw = (uy,...,un) into n/¢ /—blocks
’ll,q;:(uig_|_1,...,uig+g), i:O,l,...,n/ﬁ—l
and similarly for other vectors (with v,, 4.1, ..., v, taking arbitrary values in V).

We define Py yeyey¢, as the empirical joint distribution generated by

counting the relative frequency of

14 14 14 ¢ '
{fui=uw, zi=2, y; =y, vi=v, zyy1 =2}, 1=0,1,....,n/l—-1

for all u® e U*, ¢ € X%, y* e V', v* e V¥ and z € Z.
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Some Concerns About the DPT in [ZIv80]

® Joint distribution defined s.t.
e U1 (2,7 (Z' = encoder state), but Z’ responds to U*.

o Y'isindependent of Z’ given X*, but Z responds to Y.
® DPT: U’ L v* given (Z, X"), but 3 empirical dependencies.

® v,_,Isrenamed as v, but:
o DPT applies to {us, vi_4}
o distortion is defined between {u, vy }.
# Consequence: Lower bound is independent of d.
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Distortion Bound Without Common Reconstruction

Since V*~? is a deterministic function of Y* and Z,
s v Y2y < [0 x5 YY2) < Ay — BHY U, XY + log s
but on the other hand,
IA(Ue; Ve_d|Z) > IA(Ue; Ve) — log s — dlog M.
Taking expectations and using EH (Y¢|U*, X% ~ H(Y*|X"),
upper bound < £C + log s,

whereas
lower bound > ¢ - Ry (Ep(Ug, Vé)) — log s — dlog M.
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Bound Without Common Reconstruction (Cont’d)

Theorem 1:
] — R 21 dlog M
LY Bl W)} = Dy (04 ZELIEN L6
t=1
where
~ (JK)YlogL  (JKL)‘loge 1
nln) = —r——+ T\ &
and
L Yl
Dire(R) = min { Ep(UK V) ; I(Ue; Ve) < €R} :

® Blue term = “effective extra capacity” due to memory and allowed delay.
® Inthe absence of a mod—/ counter, maximize the r.h.s. over /.

® Dependence on ¢ — complicated.
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Alternative Bound for Difference Distortion Measures

Assume p(u,v) = o(v — u), and define

®(D) =max{H(W): Ep(W) < D}

11t t>0
U(t) = ) t=
0 t <0
Theorem 2:
%ZE{Q(W—W)} - (c(u )l(r')zgc(u ) o ZIOgS—;dlogM _52(&“))7

t=1

where ¢(u™) is the number of LZ phrases of " and

20(1 +log J)2  20J%1ogJ 1
-+ + -,
(1 —€pn)logn n 14

52(6,77,) =01 (ﬁ,n) +
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Common Reconstruction

For a given ¢, — 0, suppose that 3 ¢ s.t.
n/€ 1
Ser1 A s (Al (0, ~il+1
EPr{V’ # V'} = Z Pr{Viesy # jes1} < en,
where V¢ = ¢(U").

Theorem 3:

21 log M
<C+ ogs—i—ed og

1 < -
LS B{o(u. 11)} = By +0a(6,m) + 2A(en) )~ pmasen,

t=1

where A(en) = ha(en) + enflog J, ha(-) being the binary entropy function, and

Dye(R) = min { JBp(U", aU") s fila(U") < R}

H(q(U")) can be further lower bounded in terms of ¢(6™) log c(d™).
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Linear Encoders/Decoders

Analogous results can be obtained in the linear/Gaussian/quadratic case.

Let p(u,v) = (u — v)? and consider a linear encoder

©.@) ©.@)
Tt = Z a;Ti—; + Z biug i,
i=1 i=0
a Gaussian memoryless channel
Y;t:xt‘i‘Nt; N NN(0702)7
and a linear decoder defined by

Vi—qd = ozt + Pyt

Zt41 = Yzt + 0yt
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Linear Encoders/Decoders (Cont'd)

Main idea: Assume (for a moment) a Gaussian input process:

9o

© o o0

All processes in the system are jointly Gaussian.

All information measures depend solely on auto/cross—correlations.
DPT gives inequality relations between these auto/cross—correlations.
Relations between auto/cross—correlations do not rely on Gaussianity.

The input does not have to be Gaussian.

Use the empirical cov. matrix of U* to derive semi—deterministic bounds.

Due to the linear—Gaussian structure, the test channel is V¢ = GU* + W*.
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Linear/Gaussian Lower Bound

Theorem 4:

t=1 €z v
where
D(R) = min {tr{(G—I)EU(GT—I)—i—lzw} ;
G, Sw 14
2% log | + 2 GEp Gl < R}
and
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