Exponential Error Bounds on Parameter
Modulation—Estimation for DMC'’s

Neri Merhav

Department of Electrical Engineering
Technion—Israel Institute of Technology
Haifa 32000, Israel

ISIT 2013, Istanbul, Turkey, July 2013.

—p. 1/1



Background and Motivation

A random parameter U is to be conveyed to a given destination via a DMC

n

p(yle) = H p(yt|zt).

t=1

For large n, how well can the decoder estimate U if we have the freedom to
design the modulator X = f(U) = (f1(U), ..., fn(U))?

® Discrete—time analogue of the “waveform communication” problem.

® Can be viewed both from the perspectives of IT and estimation theory.
# |T: Joint source—channel coding with source block length = 1.
# Estimation theory: Most bounds — derivable for a given modulator.

# Exceptions: DPT bounds and Chazan—Ziv—Zakai bounds.
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Background and Motivation (Cont’d)

We use both techniques for upper and lower bounds on E|U — U|?, p > 0.

Modulator opt. — E|U — U|” can be made exponentially small in n.

Accordingly, we wish to find the fastest achievable exponential rate:
inf E|U — U|P = "¢,

Bounds on £(p) — related to coding error exponents and capacity.
# Small p — random coding exponent.
# Large p — expurgated exponent.

# Upper and lower bounds asymp. agree both for p — 0 and p — oc.

# Extension to parameter vectors: bounds coincide for large dimension.

—p. 3/1



e o 0o @

Problem Formulation

Let U ~ Unif[—1/2, +1/2] and let p(y|x) = [, p(y¢|z¢) be given,

Modulator: X = f,(U).
Estimator: U = g,(Y).

Upper limiting exponent:

E(p) 2 lim sup [—%ln( inf E|U — U|p>] :

n— 00 nssdn

Lower limiting exponent:

E(p) 2 fim inf [—lln< inf E|U — U]p>} :

n—00 n frn,gn

We seek upper bounds on £(p) and lower bounds on &(p).

When do the upper bounds and the lower bounds come close?
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Some Definitions

yey |zeX

1+p
Eo(p,q) = —1In (i {iq@)p(w)”(“m} ) p>0.

Eo(p) = max Eo(p, ), Eoy(p) = UCE{Eo(p)}-

Ex an( Z q

r,x'eX

1/0
z') Z\/p(yw)p(yaﬁ’)} )

yey

Eexz(R) = Sup [Ez(0) — oR].
o=

It is well known that

Eex(0) =sup Ez(0) = — Y q(x)q(z')In {Z \/p(yx)p(yfv’)} -

e=1 rx,x'eX yey
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Upper Bound

Theorem 1: For every p > 0,

o <Ep 2 0

where pg is the (unigue) solution to the equation Eg(p) = Eex(0).

Main idea of the proof: By Chebychev’s inequality
E|U — UP > e "PEPr{|U — U| > e "8 > 7Pl BB

where the 2nd inequality comes from the sub-optimality of a decoder based on

A

U. Now, use upper bounds on E(R) and maximize over R.
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Lower Bound

Let
R_ =inf{R: Fe;(R)Is attained by p = 1}

Ry =sup{R: Er(R)is attained by p =1}

. Eo(1) — Ry = Eo(1) — R_
Ry ’ T R_ '
Theorem 2: For every p > 0,
(
o | stposs< pEo(s)/(s+ p) p < p+
E(p) > E(p) = 4 pEo(1)/(1+ p) = pEx(1)/(1+p) pt <p < p-
| sups>1 pEz(s)/(s + p) p> p-

The proof is by analyzing a scheme based on uniform gquantization of U with
spacing of e~"!* and assigning a (random) codeword to each lattice point.
Here, R = E(p)/p.
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Discussion

Both bounds are given in terms of Ey(-) for small p, and E,(-) for large p.
Both are subjected to phase transitions.

For small p: E(p) ~ E(p) ~ pC.

For large p: E(p) ~ E(p) ~ Eez(0).

Two last points imply: “separation” theorem in these two extremes,

although source block-length= 1!
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Data processing Upper Bound

Another upper bound, based on generalized data processing inequalities:

E(p) < Eppr(p),

where
E .
Eppr(p) = inf inf su (alk’ ’ak’q),
oo S (o)
with
k
E(o1,...,a,q) = —1In 1T D a@pyle:)™
yeyi=1 \z;eX
and

This bound is at least as tight as E(p), but we have not found (yet) an example
that it is strictly so.
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Example — Very Noisy Channel

The very noisy channel model is characterized by

p(ylz) = p(y)[1 + e(z, y)], le(z,y)| < 1.

Here, we have:

B v R
E(p) > Ve
45 2 p=>1

and

EDPT(,O) = (C - inf inf
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Multidimensional Parameter

Let U = (Uy,...,Uy) ~ Unif[—1/2, +1/2]%. We are after bounds on
d
Zen”EHUi —U;|?,  Vir; >0, minr; = 0.
(2
i=1

The extension of the upper bound is

d
E(p,d) = Eo(§) —gXimiri p/d<po
Eex(0) - Liri p/d> po
Forri = ... =rqy =0, itis the same bound as before, except that p is replaced

by p/d.

Thus, for d large, E(p/d) ~ pC/d coincides with the lower bound, achieved by
forming a code on a lattice of close to ¢”“/¢ points in each dimension.

—p. 12/



°

Summary

We derived upper and lower bounds on exponential rates of E|U — U|”,
for every p > 0.

The exponent bounds are related to random coding bounds and
expurgated bounds.

Asymptotic optimality of a simple separation—based scheme for both
small and large p.

We derived an alternative data processing upper bound.
We extended the upper bound to the multidimensional case.

Challenge: Close (or at least reduce) the gap for intermediate values of p.
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