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Background and Motivation

A random parameter U is to be conveyed to a given destination via a DMC

p(y|x) =
n

Y

t=1

p(yt|xt).

For large n, how well can the decoder estimate U if we have the freedom to

design the modulator X = f(U) = (f1(U), . . . , fn(U))?

Discrete–time analogue of the “waveform communication” problem.

Can be viewed both from the perspectives of IT and estimation theory.

IT: Joint source–channel coding with source block length = 1.

Estimation theory: Most bounds – derivable for a given modulator.

Exceptions: DPT bounds and Chazan–Ziv–Zakai bounds.
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Background and Motivation (Cont’d)

We use both techniques for upper and lower bounds on E|Û − U |ρ, ρ ≥ 0.

Modulator opt. → E|Û − U |ρ can be made exponentially small in n.

Accordingly, we wish to find the fastest achievable exponential rate:

inf E|Û − U |ρ
·
= enE(ρ).

Bounds on E(ρ) – related to coding error exponents and capacity.

Small ρ – random coding exponent.

Large ρ – expurgated exponent.

Upper and lower bounds asymp. agree both for ρ → 0 and ρ → ∞.

Extension to parameter vectors: bounds coincide for large dimension.
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Problem Formulation

Let U ∼ Unif[−1/2,+1/2] and let p(y|x) =
Qn

t=1 p(yt|xt) be given.

Modulator: X = fn(U).

Estimator: Û = gn(Y ).

Upper limiting exponent:

E(ρ)
△
= lim sup

n→∞

»

−
1

n
ln

„

inf
fn,gn

E|Û − U |ρ
«–

.

Lower limiting exponent:

E(ρ)
△
= lim inf

n→∞

»

−
1

n
ln

„

inf
fn,gn

E|Û − U |ρ
«–

.

We seek upper bounds on E(ρ) and lower bounds on E(ρ).

When do the upper bounds and the lower bounds come close?
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Some Definitions

E0(ρ, q) = − ln
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, ρ ≥ 0.

E0(ρ) = max
q

E0(ρ, q), Ē0(ρ) = UCE{E0(ρ)}.

Ex(̺) = −̺ ln

0
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.

Eex(R) = sup
̺≥1

[Ex(̺) − ̺R].

It is well known that

Eex(0) = sup
̺≥1

Ex(̺) = −
X

x,x′∈X
q(x)q(x′) ln

2

4

X

y∈Y

p

p(y|x)p(y|x′)

3

5 .
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Upper Bound

Theorem 1: For every ρ ≥ 0,

E(ρ) ≤ E(ρ)
△
=

(

E0(ρ) ρ ≤ ρ0

Eex(0) ρ > ρ0

where ρ0 is the (unique) solution to the equation E0(ρ) = Eex(0).

Main idea of the proof: By Chebychev’s inequality

E|Û − U |ρ ≥ e−nρRPr{|Û − U | ≥ e−nR} ≥ e−nρR · e−nE(R),

where the 2nd inequality comes from the sub-optimality of a decoder based on
Û . Now, use upper bounds on E(R) and maximize over R.
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Lower Bound

Let
R− = inf{R : Eex(R) is attained by ρ = 1}

R+ = sup{R : Er(R) is attained by ρ = 1}

ρ+ =
E0(1) − R+

R+
; ρ− =

E0(1) − R−
R−

.

Theorem 2: For every ρ ≥ 0,

E(ρ) ≥ E(ρ)
△
=

8

>

>

<

>

>

:

sup0≤s≤1 ρE0(s)/(s + ρ) ρ ≤ ρ+

ρE0(1)/(1 + ρ) = ρEx(1)/(1 + ρ) ρ+ < ρ ≤ ρ−

sups≥1 ρEx(s)/(s + ρ) ρ > ρ−

The proof is by analyzing a scheme based on uniform quantization of U with
spacing of e−nR and assigning a (random) codeword to each lattice point.
Here, R = E(ρ)/ρ.
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Discussion

Both bounds are given in terms of E0(·) for small ρ, and Ex(·) for large ρ.

Both are subjected to phase transitions.

For small ρ: E(ρ) ∼ E(ρ) ∼ ρC.

For large ρ: E(ρ) ∼ E(ρ) ∼ Eex(0).

Two last points imply: “separation” theorem in these two extremes,

although source block-length= 1!
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Data processing Upper Bound

Another upper bound, based on generalized data processing inequalities:

E(ρ) ≤ EDPT (ρ),

where

EDPT (ρ) = inf
k>1

inf
α1,...,αk

sup
q

E(α1, . . . , αk, q)
Pk

i=1 ζρ(αi)
,

with

E(α1, . . . , αk, q) = − ln

2

4

X

y∈Y

k
Y

i=1

0

@

X

xi∈X
q(xi)p(y|xi)

αi

1

A

3

5

and

ζρ(α) = min



α,
1 − α

ρ

ff

.

This bound is at least as tight as E(ρ), but we have not found (yet) an example
that it is strictly so.
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Example – Very Noisy Channel

The very noisy channel model is characterized by

p(y|x) = p(y)[1 + ǫ(x, y)], |ǫ(x, y)| ≪ 1.

Here, we have:

E(ρ) =

8

<

:

ρ
(1+

√
ρ)2

· C ρ < 1

ρ
1+ρ · C

2 ρ ≥ 1

E(ρ) =

(

ρ
1+ρ · C ρ ≤ 1
C
2 ρ > 1

and

EDPT (ρ) = C · inf
k>1

inf
α1,...,αk

1 −
Pk

i=1 α2
i

Pk
i=1 ζρ(αi)

.
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Figure 1: The upper bound (solid curve) and
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Multidimensional Parameter

Let U = (U1, . . . , Ud) ∼ Unif[−1/2,+1/2]d. We are after bounds on

d
X

i=1

enri
E‖Ûi − Ui|

ρ, ∀i ri ≥ 0, min
i

ri = 0.

The extension of the upper bound is

Ē(ρ, d) =

(

E0
` ρ

d

´

− 1
d

Pd
i=1 ri ρ/d ≤ ρ0

Eex(0) − ρ0

ρ

Pd
i=1 ri ρ/d > ρ0

For r1 = . . . = rd = 0, it is the same bound as before, except that ρ is replaced
by ρ/d.

Thus, for d large, E(ρ/d) ∼ ρC/d coincides with the lower bound, achieved by

forming a code on a lattice of close to enC/d points in each dimension.
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Summary

We derived upper and lower bounds on exponential rates of E|Û − U |ρ,
for every ρ ≥ 0.

The exponent bounds are related to random coding bounds and
expurgated bounds.

Asymptotic optimality of a simple separation–based scheme for both
small and large ρ.

We derived an alternative data processing upper bound.

We extended the upper bound to the multidimensional case.

Challenge: Close (or at least reduce) the gap for intermediate values of ρ.
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