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Background

Redundancy rates of lossless codes have received the attention of many

researchers:

A very partial list includes:

Krichevsky (1968), Gallager (1978), Rissanen (1986), Capocelli and De Santis

(1992), Savari and Gallager (1997), Savari (1998), Szpankowski (2000),

Jacquet and Szpankowski (2001, 2012), Abrahams (2001), Drmota and

Szpankowski (2004), Merhav (2012).
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This work is a further development on Szpankowski (2000) and Merhav (2012).
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Background (Cont’d)

Theorem 1 (Szpankowski 2000) Consider the Huffman block code of length
n over a binary memoryless source with p < 1

2 and define

α = log2

„

1 − p

p

«

and

β = log2

„

1

p

«

.

Then for large n,
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>

<
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>
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ln 2 + o(1) ≈ 0.057304 α irrational
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´
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2−〈βMn〉/M + o(1) α = N
M

where N and M are relatively prime integers, and 〈x〉 = x − ⌊x⌋.
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Figure 1: Irrational case p = 1/π (Szpankowski 2000).
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Figure 2: Rational case p = 1/9 (Szpankowski 2000).
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Comments

Similar behavior for the Shannon code (Rn → 1/2 in the irrational case.)

Easy extension to memoryless sources of a general finite alphabet:

Rationality condition: αj = log2 pj/p1 should all be rational.

Fundamental frequency of oscillations: β = − log p1.

Merhav (2012): relation to wave diffraction in disordered media (Bragg
peaks).
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This Work – Extension to the Markov Case

Here too: two–mode behavior, depending on some rationality conditions.

Non–trivial extension in the following respects:

Analysis tools.

Rationality conditions.

Oscillatory mode redundancy expressions.

Strong dependence of the “dynamics”: ir/reducibility, a/periodicity.

Applicability of analysis method to other codes (Huffman included).

Applicability to other problem areas:

Uniform quantization.

Bragg peaks in disordered media.

Statistics of round–off errors of decoding metrics with finite–precision
arithmetics.
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Markov Sources

Source sequence X1, X2, . . . over alphabet X = {1, 2, . . . , r} is generated by a
first–order Markov chain with a given matrix

P = {p(j|k)}r
j,k=1.

with initial state probabilities pk, k = 1, 2, . . . , r;
stationary state probabilities πk, k = 1, 2, . . . , r.

For xn = (x1, . . . , xn) ∈ Xn under the given Markov source, is

P (xn) = px1

n
Y

t=2

pxt|xt−1
.

The average redundancy is

Rn = E{⌈− log P (Xn)⌉ + log P (Xn)} = E{̺[− log P (Xn)]}.

where ̺(u) = ⌈u⌉ − u.
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Main Result for Positive Transition Matrices

Theorem 2 Consider the Shannon code of length n for a Markov source with
a positive matrix P . Define

αjk = log

»

p(j|1)p(j|j)

p(k|1)p(j|k)

–

, j, k ∈ {1, 2, . . . , r}.

(a) If not all {αjk} are rational, then Rn = 1
2 + o(1).

(b) If all {αjk} are rational, then let

ζjk(n) = M [−(n − 1) log p(1|1) + log p(j|1) − log p(k|1) − log pj ].

Then,

Rn ∼
1

2

„

1 −
1

M

«

+
1

M

r
X

j=1

r
X

k=1

pjπk̺[ζjk(n)] + o(1),

where M is the smallest common multiple of the denominators of {αjk}.
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Basic Idea of the Proof

Consider the Fourier (Fejer) series expansion of the periodic function
̺(u) = ⌈u⌉ − u:

̺(u) =
1

2
+
X

m6=0

am exp{2πimu},

so that

Rn = E̺[− log P (Xn)] =
1

2
+
X

m6=0

amE exp{−2πim log P (Xm)}.

By the Markov property, E exp{−2πim log P (Xn)} is given in terms of An
m

where Am is a matrix defined as

Am = {p(k|j) exp{−2πim log p(k|j)}r
j,k=1.
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Basic Idea of the Proof (Cont’d)

In particular,

E exp{−2πim log P (Xn)} =

r
X

ℓ=1

coeffℓ · λ
n
m,ℓ.

The eigenvalue λm,ℓ of Am with the largest modulus (spectral radius)
dominates the m–th term for n large.

Spectral radius < 1 → all terms decay and Rn → 1/2.

Spectral radius = 1 for some m = m0 → also ∀ multiples of m0, forming
the oscillatory terms of Rn.

Nec. and suff. conditions for spectral radius = 1: matrix theory.
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Irreducible Aperiodic Case

Theorem 3 Let m0 be the smallest positive m such that ρ(Am) = |λ1,m| = 1.
(a) If m0 = ∞, Rn = 1

2 + o(1).
(b) If m0 < ∞, let

s =
arg{λ1,m0

}

2π
, wj =

arg{xj}

2π
,

xj being the j–th coordinate of the right–eigenvector of Am0
pertaining to

λ1,m0
. Then,

Rn ∼
1

2

„

1 −
1

M

«

+
1

M

r
X

j=1

r
X

k=1

pjπk̺[ζjk(n)] + o(1),

with
ζjk(n) = M [(n − 1)s + wj − wk − log pj ].

– p. 14/17



Irreducible Periodic Case

Let d be the period of the chain.

Theorem – essentially the same except that P has d dominant
eigenvalues – the d–th order roots of 1.

Each such eigenvalue contributes a double–sum of oscillatory terms with
a different fundamental frequency:

ζjkt(n) = M [(n − 1)(s + t/d) + wj − wk − log pj ].
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Reducible Case

We don’t have a general theory here, but here is a simple example showing
that the behavior may be entirely different:

P =

 

1 − α α

0 1

!

.

Assume p1 = 1 and p2 = 0. Direct computation shows that

Rn =
∞
X

k=0

α(1 − α)k̺[− log α − k log(1 − α)] + o(1).

No oscillatory mode, as Rn always tends to a constant that depends on the
source.
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Thank You!
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