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Background

Consider the model
y(t) = z(t,u) +n(t), 0<t<T,

where:
z(t,u) = a waveform parametrized by u;
n(t) = AWGN with spectral density Ng/2.
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Background

Consider the model
y(t) = z(t,u) +n(t), 0<t<T,

where:
z(t,u) = a waveform parametrized by u;

n(t) = AWGN with spectral density Ng/2.

Conveying info in a parameter « by modulating in x(t, u):
Shannon—Kotel'nikov mappings (Floor ‘08, Floor & Ramstad ‘09, Hekland ‘07,

Ramstad ‘02 + references).

Nonlinear modulation = threshold effect:;

Below some critical SNR, anomalous errors dominate the MSE.
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Background (Cont’d) - The Threshold Effect

®» Not an artifact of a particular modulator—estimator pair.

®» |In the wideband regime, the threshold effect is abrupt: Pr{anomaly}

jumps from ~ 0 to ~ 1.

—p. 5/11
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®» Not an artifact of a particular modulator—estimator pair.

®» |In the wideband regime, the threshold effect is abrupt: Pr{anomaly}

jumps from ~ 0 to ~ 1.
In the linear model
y(t) =u-s(t)+n(t), 0<t<T
the ML estimator always achieves

Ny
MSE = CRLB = —
S C 58

where £ = energy of {s(¢)}: < No threshold effect.
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Background (Cont’d) - The Threshold Effect

®» Not an artifact of a particular modulator—estimator pair.

®» |In the wideband regime, the threshold effect is abrupt: Pr{anomaly}

jumps from ~ 0 to ~ 1.

In the linear model
y(t) =u-s(t)+n(t), 0<t<T

the ML estimator always achieves

_ _ Mo
MSE = CRLB = 5
where £ = energy of {s(¢)}: < No threshold effect.

Only way to improve (at high SNR): non—linear modulation x(t, u).
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Background (Cont’d) — Nonlinear Modulation

Let

x(t,u) ~ x(t,ug) + (u — ug) - (¢, ug).

like the linear case with &(t, ug) in the role of s(t).
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where £ = energy of (¢, ug), which depends on more details.
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like the linear case with &(t, ug) in the role of s(¢). Thus, at high SNR,

MSE ~ CRLB ~ 0
26

where £ = energy of (¢, ug), which depends on more details.

For example, if (¢, u) = s(t — u), & = W2E, where

W= \/ % / T df - (2rf)28(f)  Gabor bandwidth
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Background (Cont’d) — Nonlinear Modulation

Let

x(t,u) ~ x(t,ug) + (u — ug) - (¢, ug).

like the linear case with &(t, ug) in the role of s(¢). Thus, at high SNR,

MSE ~ CRLB =~ ﬂ?,
2E
where £ = energy of (¢, ug), which depends on more details.

For example, if (¢, u) = s(t — u), & = W2E, where

W= \/ % / T df - (2rf)28(f)  Gabor bandwidth

Why not increase W without a limit?
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Background (Cont’d) — Geometry of Anomalous Errors

Let Z(u) = (z1(u),...,xx(u)) = representation of z(¢,u) by K orthonormal

basis functions. Consider the locus of {Z(u), a < u < b} in R,
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Background (Cont’d) — Geometry of Anomalous Errors

Let Z(u) = (z1(u),...,xx(u)) = representation of z(¢,u) by K orthonormal

basis functions. Consider the locus of {Z(u), a < u < b} in R,

Assuming that £ is independent of u, the locus lies on the hypersurface of the

K—dimensional sphere of radius v/&.
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Let Z(u) = (z1(u),...,xx(u)) = representation of z(¢,u) by K orthonormal

basis functions. Consider the locus of {Z(u), a < u < b} in R,

Assuming that £ is independent of u, the locus lies on the hypersurface of the

K—dimensional sphere of radius v/&.

The length of the curve

L/bdu\/zjzg(u) — (b— a)VE.
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Background (Cont’d) — Geometry of Anomalous Errors

Let Z(u) = (z1(u),...,xx(u)) = representation of z(¢,u) by K orthonormal

basis functions. Consider the locus of {Z(u), a < u < b} in R,

Assuming that £ is independent of u, the locus lies on the hypersurface of the

K—dimensional sphere of radius v/&.

The length of the curve

L/bdu\/zjzg(u) — (b— a)VE.

High—SNR MSE | with £, we want £ 1, thus L 1.
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Anomalous Errors (Cont’d)

L — limited by the need of safe distances between folds — hot dog packing.
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Anomalous Errors (Cont’d)

L — limited by the need of safe distances between folds — hot dog packing.
Maximum achievable L ~ e“T, ¢ = S/Ny (PPM). For PPM, K ~ 2WT,

N No 2 —&/(2No)
MSE ~ ST2E +Sb—a) -QW'G OJ
N——
small error anomalous error

For fixed W, anomalous error term 7 gracefully as S/Ny |.
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Anomalous Errors (Cont’d)

L — limited by the need of safe distances between folds — hot dog packing.
Maximum achievable L ~ e“T, ¢ = S/Ny (PPM). For PPM, K ~ 2WT,

N No 2 —&/(2No)
MSE ~ ST2E +Sb—a) -QW'G 0/
N——
small error anomalous error

For fixed W, anomalous error term 7 gracefully as S/Ng |.
For a better balance between terms — let W ~ ef*1"

MSE =~ ]2\7_26—2RT +(b—a)*- e TER) R oC

where E(R) = reliability function of AWGN channel:
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Anomalous Errors (Cont’d)

L — limited by the need of safe distances between folds — hot dog packing.
Maximum achievable L ~ e“T, ¢ = S/Ny (PPM). For PPM, K ~ 2WT,

N No 2 —&/(2No)
MSE ~ ST2E +Sb—a) -QW'G 0/
N——
small error anomalous error

For fixed W, anomalous error term 7 gracefully as S/Ng |.
For a better balance between terms — let W ~ ef*1"

MSE =~ ]2\7_26—2RT +(b—a)*- e TER) R oC

where E(R) = reliability function of AWGN channel:

B(R) — £ R 0<R<Y
VC-VvR)? ¢ <R<C
—CT/3
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Lower Bounds on the MSE

® Plenty of lower bounds (CR, BZ, ZZ, CZZ, WW, ChRo, FG, BT, etc.)
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Lower Bounds on the MSE

Plenty of lower bounds (CR, BZ, ZZ, CZZ, WW, ChRo, FG, BT, etc.)
Some fail to capture the threshold effect (exception: WW).
Most are useful for a given modulator (exception: ZZ-CZZ, DPT bounds).

Quest for universal bounds, independent of both modulator and estimator.
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Bounds that depend only on £/Ng = CT, C = S/Ny.

We saw that MSE ~ ¢~ ¢71/3 is achievable for T — oo.
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Lower Bounds on the MSE

Plenty of lower bounds (CR, BZ, ZZ, CZZ, WW, ChRo, FG, BT, etc.)
Some fail to capture the threshold effect (exception: WW).
Most are useful for a given modulator (exception: ZZ-CZZ, DPT bounds).

Quest for universal bounds, independent of both modulator and estimator.

The modulator — limited by a power constraint only (power < S).
Bounds that depend only on £/Ng = CT, C = S/Ny.

We saw that MSE ~ ¢~ ¢71/3 is achievable for T — oo.

|s there a compatible lower bound?
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Some Universal MSE Lower Bounds

Let u be a realization of U ~ Unif[—1/2,+1/2).
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Some Universal MSE Lower Bounds

Let u be a realization of U ~ Unif[—1/2,+1/2). Then,

CT > R(D) > h(U) — %ln(QweD) _ —% In(2reD)

implies D=EU - U)* > -
me

Zakai and Ziv (1975) — generalized DPI's: E(U — U)2 > ¢ 7.
,—2CT/3

AVAR:

Merhav (2011) — other generalized DPI's: E(U — U)?

+ bounds related to signal detection considerations: E(U — U)2 > ¢~ C¢T/2,
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AVAR:

Merhav (2011) — other generalized DPI's: E(U — U)?

+ bounds related to signal detection considerations: E(U — U)2 > ¢~ C¢T/2,

Compare to the upper bound of e~ ¢7/3,
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Some Universal MSE Lower Bounds

Let u be a realization of U ~ Unif[—1/2,+1/2). Then,

CT > R(D) > h(U) — %ln(QweD) _ —% In(2reD)

implies D=EU - U)* >

Zakai and Ziv (1975) — generalized DPI's: E(U — U)2 > ¢ 7.

,—2CT/3

AVAR:

Merhav (2011) — other generalized DPI's: E(U — U)?
+ bounds related to signal detection considerations: E(U — U)2 > ¢~ C¢T/2,
—or/3

Compare to the upper bound of e

Attempts to close the gap have failed thus far...
Conjecture: “Blame” the lower bound.
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The Large Deviations Perspective

Instead of E(U — U)?, consider minimizing

E1{|U - U|> A} =Pr{|U —U| > A}.
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The Large Deviations Perspective

Instead of E(U — U)?, consider minimizing
E1{|U - U|> A} =Pr{|U —U| > A}.
Moreover, we allow A = e~ 1,

Assume v = realization of U ~ Unif[—1/2,+1/2), allow any modulator z(¢, -)

with
1 [t
E —/ 224, 0)dt S < 8
T Jo

and any estimator U = f{y(t), 0 <t < T?}.
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The Large Deviations Perspective

Instead of E(U — U)?, consider minimizing
E1{|U - U|> A} =Pr{|U —U| > A}.
RT

Moreover, we allow A = e~

Assume v = realization of U ~ Unif[—1/2,+1/2), allow any modulator z(¢, -)

with
1 [t
E —/ 224, 0)dt S < 8
T Jo

and any estimator U = f{y(t), 0 <t < T?}.

We are interested in

E™(R) = limsup [—%loginfpr{w] —U| > e_RT}] :

T'— 00
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Motivation

Separates between anomalous and non—anomalous error events:
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® Typically, anomalous U falls at random away from U = weigh all
anomalous errors evenly.
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Motivation

Separates between anomalous and non—anomalous error events:

® |U-U| <e BT —weak—noise (non-anomalous). Error ~ ¢~ 1",

® |U—U|>e BT —gross error (anomalous). Error ~ ¢~ 77 (1)

® Typically, anomalous U falls at random away from U = weigh all
anomalous errors evenly.

MSE does not distinguish between weak—noise errors and anomalous errors.
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Basic Result

Theorem: For all R>0, the lim sup of E*(R) is actually lim and

r
[ —

C —VR)?

<R<§
<RZC
> C

T ~Q <
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Basic Result

Theorem: For all R>0, the lim sup of E*(R) is actually lim and

)
C
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C —VR)?

<R<¢
<R<C
> C

T ~Q <

Achievability
Modulator: Form a grid of M = e’*1 /2 points in [-1/2,+1/2):

(=1/2+1-e B —1/243. 7B 1724578 12— B

Map grid points to orthogonal signals s;(t) with power S: z(t,u) = s;(t), where
i = index of grid point NN to w.
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Basic Result

Theorem: For all R>0, the lim sup of E*(R) is actually lim and

)
C
¢ _ R

C —VR)?

<R<¢
<R<C
> C

T ~Q <

Achievability
Modulator: Form a grid of M = e’*1 /2 points in [-1/2,+1/2):

(=1/2+1-e B —1/243. 7B 1724578 12— B

Map grid points to orthogonal signals s;(t) with power S: z(t,u) = s;(t), where
i = index of grid point NN to w.

Estimator: Decode ¢ and & = —1/2 + (2t — 1)e” 1,

Obviously,

Pr{iT —U|>e 1Y <Pr{i #£i} ~ e TER),
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Converse Part

For a given u, consider the grid

{u,u+26_RT,u+46_RT,...,u—|—2(M— 1)6_RT}, M =
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Converse Part

For a given u, consider the grid

{u,u+26_RT,u+46_RT,...,u—|—2(M— 1)6_RT}, M =
and define the hypothesis testing problem:
H; - y(t):x(t,u+2i6_RT)+n(t) i=0,1,..., M — 1.

Consider a detector that chooses the grid point NN to U. Obviously,

P, > ¢ TIE(R—¢)+o(T)]
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Converse Part

For a given u, consider the grid

{u,u+26_RT,u+46_RT,...,u—|—2(M— 1)6_RT}, M =
and define the hypothesis testing problem:
H; - y(t):x(t,u—l—Qie_RT)—l—n(t) i=0,1,..., M — 1.

Consider a detector that chooses the grid point NN to U. Obviously,

M-1

! Pr{{T —U| > e BT\U = u+2ie 1) >P, > ¢ TIEE-e)Fo(T)],

M -
1=0
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Converse Part

For a given u, consider the grid

{u,u+26_RT,u+46_RT,...,u—|—2(M— 1)6_RT}, M =
and define the hypothesis testing problem:
H; - y(t):x(t,u+2i6_RT)+n(t) i=0,1,..., M — 1.

Consider a detector that chooses the grid point NN to U. Obviously,

M-—-1

1

T Pr{|U —U|> e FTU = u + 2ie 1) > P, > ¢ TIEE=e)+o(T)],

1=0

The result is obtained by integrating both sides over w.
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The CaseR =0

The operational reliability — discontinuous at R = 0. For fixed M, P. is dictated

by dmin = 22 In particular,

g M cT M
Peoc@(\/No'M—l)NeXp( > 'M—1>‘
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The CaseR =0

The operational reliability — discontinuous at R = 0. For fixed M, P. is dictated

by dmin = 22 In particular,

E M CcT M

In estimation, Pr{|U — U| > A} for fixed A, is according to P. but with
M < 1/A.
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The CaseR =0

The operational reliability — discontinuous at R = 0. For fixed M, P. is dictated

by dmin = 2M£ . In particular,

E M CcT M

In estimation, Pr{|U — U| > A} for fixed A, is according to P. but with

M < 1/A.
Small gap between upper bound and the lower bound for every fixed A, but
this gap — 0 as A — 0. In particular,

mPr{lU-U|>A}| C

li li — — = F(0).
Alino:rl_{noo T 2 ( )
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The Caselz = 0 (Cont’d)

Relation to the MSE:

1
E(ﬁ—U)Q:Q/ dA - A-Pr{|U —U| > A}.
0
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The Caselz = 0 (Cont’d)

Relation to the MSE:

A

1
E(U—U)2=2/ dA - A-Pr{|U —U| > A}.
0

MSE can be lower bounded via a lower bound on Pr{|U — U| > A} (CZZ ‘75).
Weakness: integration range of A — restricted to [0,1/(M — 1)].
Large deviations performance metric avoids integration altogether.

Open question: devise a system independent of A, yet minimizes

Pr{|U — U| > A} for every A.
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Discussion
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Strong Converse< Sharp Threshold Effect

Both achievability and converse rely on signal detection considerations.

Strong converse: limp_, ., Pe jumps from 0 to 1 as R crosses C.

Equivalently, E*(R) = 0 for R > C'in the strong sense.

“Inheriting” strong converse — jump in Pr{|U — U| > e~ 1},

For an optimum system, |U — U] “concentrates” around e~ ¢,
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Alternative Achievability Schemes

Achievability — quantization of U + orthogonal signaling.
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Alternative Achievability Schemes

Achievability — quantization of U + orthogonal signaling.

Alternative modulators (+ ML estimation):
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Alternative Achievability Schemes

Achievability — quantization of U + orthogonal signaling.

Alternative modulators (+ ML estimation):

FPM: z(t,u) = V2Scos[(wg + u - Aw)t + ¢] wo, Aw x et

PPM: z(t,u) = s[t — (u+1/2)(T —7)] bandwidth '

In both, the event {|U — U| > e~ %1} = anomaly.
Common feature: correlation between z(¢,u) and z(¢,u’) depends only on
lu — u'| with support ~ e~ %1,
In AM:
Pr{{U —U|>e Y =2Q(e "'V20T) -1 VR>0

—p. 77/11



Relation to Moments of the Estimation Error

By Chebyshev’s inequality

(U -U)
e—2RT

e TIE@+o(D] < pr(|fr — U] > BT} < B
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Relation to Moments of the Estimation Error

By Chebyshev’s inequality

: 2
o TER (D] < pro(r _ ] > ¢ BT} < E(U_2—Rg)
(&
implying that
which is maximized for R = 0, yielding ~ e~ ¢7/2 as above.
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Relation to Moments of the Estimation Error

By Chebyshev’s inequality

: 2
o TER (D] < pro(r _ ] > ¢ BT} < E(U_2—Rg)
(&
implying that
which is maximized for R = 0, yielding ~ e~ ¢7/2 as above.

For a general moment E|U — U|* (a > 0, arbitrary):

.—CT/2 a>1

e—aCT/(l—i—a)

E|U —U|“ >
O<a<l

— p. 80/11



Relation to Joint Source—Channel Coding

Csiszar (1982): JSC problem under

N
min Pr {Z d(U;, (7@) > ND} :

1=1
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Relation to Joint Source—Channel Coding

Csiszar (1982): JSC problem under
N A
min Pr {Z d(U;, U;) > ND} .
1=1

The exponential rate cannot exceed

e(D) = mén[F(D, R) + E(R)]

where

F(D,R) = i D(Q'
(D, R) T (@lQ)

IS the source coding exponent of the source @@ (Marton, 1974).
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Relation to Joint Source—Channel Coding (Cont'd)

For separate source— and channel coding:

esep(D) = Sl;{p min{F' (D, R), E(R)}< e(D)
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Relation to Joint Source—Channel Coding (Cont'd)

For separate source— and channel coding:
esep(D) = supmin{F (D, R), E(R)}< e(D)
R

= NO separation theorem for error exponents.

But our achievability is based on separation:

® Quantize U — source coding

® Then map to s;(t) — channel coding.
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Relation to Joint Source—Channel Coding (Cont'd)

For separate source— and channel coding:

esep(D) = s%p min{F (D, R), E(R)}< e(D)

= NO separation theorem for error exponents.

But our achievability is based on separation:

® Quantize U — source coding

® Then map to s;(t) — channel coding.

Q: How does this settle?
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Relation to Joint Source—Channel Coding (Cont'd)

Answer: Let Q* maximize R(D, Q) (often, uniform).

0 R<R(D,Q)

F(D,R) = min DQIQ™) = { s~ R>R(D,Q

Q: R(D,Q)>R

— p. 87/11
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0 R<R(D,Q)

F(D,R) = min DQIQ™) = { s~ R>R(D,Q

Q: R(D,Q)>R
Here, source—channel separation applies:

esep(D) = e(D) = E[R(D,Q")].
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Relation to Joint Source—Channel Coding (Cont'd)

Answer: Let Q* maximize R(D, Q) (often, uniform).

0 R<R(D,Q)

F(D,R) = min DQIQ™) = { s~ R>R(D,Q

Q: R(D,Q)>R
Here, source—channel separation applies:
esep(D) = e(D) = E[R(D, Q7).

Intuition:

® “Cover” source space by eV E(P-Q") p_gpheres.
Source encoder does not cause 3, d(U;, U;) > ND.

9
® Excess distortion — only due to channel — w. p. e~ VEE(D.Q7)]
9o

This is our case too.

—p. 89/11



Extensions



The Multidimensional Parameter Vector Case

Consider a d—dimensional vector U = (Uy, ..., Uy) ~ Unif[—1/2, +1/2)<.
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The Multidimensional Parameter Vector Case

Consider a d—dimensional vector U = (Uy, ..., Uy) ~ Unif[—1/2, +1/2)<.

Minimize
d
Pr [U {|(7@ — Uz'| > eRiT}] .
i=1

Let E*(Ry,..., Rg) = best achievable exponent.
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The Multidimensional Parameter Vector Case

Consider a d—dimensional vector U = (Uy, ..., Uy) ~ Unif[—1/2, +1/2)<.

Minimize
d
Pr [U {‘ﬁz — Uz" > eRiT}] .
i=1

Let E*(Ry,..., Rg) = best achievable exponent.

Thm above extends to

E*(Rl,...,Rd)ZE(R1+R2—|—...—|—Rd).
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The Multidimensional Parameter Vector Case

Consider a d—dimensional vector U = (Uy, ..., Uy) ~ Unif[—1/2, +1/2)<.

Minimize
d
Pr [U {‘ﬁz — Uz" > eRiT}] .
i=1

Let E*(Ry,..., Rg) = best achievable exponent.

Thm above extends to
E*(Rl,...,Rd) = E(Rl + Ro —|—...—|—Rd).

Think of a grid with e points in the i—th coordinate = total = ¢(f1+--+1a)T,
g
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The Vector Case (Cont’d)

Considerthecase Ri = Ry =...= R

SH
I
2
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The Vector Case (Cont’d)

Considerthecase Ry = Ry =...= R; = R:

E*(R,R,...,R) = E(R-d).

For R > 0, due to the strong converse, 3 dimensionality threshold effect:

A

d
[0 i) {0 4
1=1

T — o0 1 d 2 dc
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Considerthecase Ry = Ry =...= R; = R:
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For R > 0, due to the strong converse, 3 dimensionality threshold effect:

A

d
[0 i) {0 4
1=1

T'—o0 1 d>de

For R =0, E(0) = C/2 independently of d.
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The Vector Case (Cont’d)

Considerthecase Ry = Ry =...= R; = R:

E*(R,R,...,R) = E(R-d).
For R > 0, due to the strong converse, 3 dimensionality threshold effect:

A

d
[0 i) {0 4
1=1

T'—o0 1 d>de

For R =0, E(0) = C/2 independently of d.

Different from the common “curse of dimensionality”, which is usually graceful
In d.
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Other Channels

®» Gaussianity — not used very strongly.
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Other Channels

Gaussianity — not used very strongly.
Main feature = known reliability func. (oo bandwidth).

Reliability func. — known also for the Poisson channel (Wyner 1988) and
others of oo bandwidth (Gallager 1987).

For DMC'’s — known for R > R_.,t.
For R < R.,;t, hot known, but separation still works.
Applicable to bandlimited Gaussian channel with N = 2WT channel uses.

Unknown channels: universal decoding metrics — applicable for universal

estimation.
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Rayleigh Fading

Let

y(t) =a-z(t,u)+n(t), 0<t<T

where a = realization of A, with density

fA(a) — &6—a2/202 CLZO
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Rayleigh Fading

Let

y(t) =a-z(t,u)+n(t), 0<t<T

where a = realization of A, with density
fala) = & gmat/20t > 0.
For R > 0, the probability of excess error — dominated by channel outage

Pr{A?C <R} =1-¢1/?¢ & =s%C.
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Rayleigh Fading

Let

y(t) =a-z(t,u)+n(t), 0<t<T

where a = realization of A, with density
fala) = —26_a2/202 a > 0.

For R > 0, the probability of excess error — dominated by channel outage

Pr{A?C <R} =1-¢1/?¢ & =s%C.

For R = 0 — decays like 1/T'.

—p. 108/1:



°

© o o o o

Summary and Conclusion

Large deviations performance metric — natural for wideband

communication.

Precise characterization of the best achievable exponent.
Intimately related to signal detection — reliability function.

Simple considerations; simple to extend in many directions.
Relation to JSCC.: separate source— and channel coding is optimal.

Open problem: close the gap between upper and lower bounds on the
MMSE.
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Thank You!
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