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Background

Consider the model

y(t) = x(t, u) + n(t), 0 ≤ t < T,

where:

x(t, u) = a waveform parametrized by u;

n(t) = AWGN with spectral density N0/2.
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Consider the model

y(t) = x(t, u) + n(t), 0 ≤ t < T,

where:

x(t, u) = a waveform parametrized by u;

n(t) = AWGN with spectral density N0/2.

Conveying info in a parameter u by modulating in x(t, u):

Shannon–Kotel’nikov mappings (Floor ‘08, Floor & Ramstad ‘09, Hekland ‘07,

Ramstad ‘02 + references).

Nonlinear modulation =⇒ threshold effect:

Below some critical SNR, anomalous errors dominate the MSE.
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Background (Cont’d) - The Threshold Effect

Not an artifact of a particular modulator–estimator pair.

In the wideband regime, the threshold effect is abrupt: Pr{anomaly}
jumps from ∼ 0 to ∼ 1.
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Background (Cont’d) - The Threshold Effect

Not an artifact of a particular modulator–estimator pair.

In the wideband regime, the threshold effect is abrupt: Pr{anomaly}
jumps from ∼ 0 to ∼ 1.

In the linear model

y(t) = u · s(t) + n(t), 0 ≤ t < T

the ML estimator always achieves

MSE = CRLB =
N0

2E ,

where E = energy of {s(t)}: ⇔ No threshold effect.

Only way to improve (at high SNR): non–linear modulation x(t, u).

– p. 7/110



Background (Cont’d) – Nonlinear Modulation

Let

x(t, u) ≈ x(t, u0) + (u − u0) · ẋ(t, u0).

like the linear case with ẋ(t, u0) in the role of s(t).
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like the linear case with ẋ(t, u0) in the role of s(t). Thus, at high SNR,

MSE ≈ CRLB ≈ N0

2Ė
,

where Ė = energy of ẋ(t, u0), which depends on more details.

For example, if x(t, u) = s(t − u), Ė = W 2E , where

W =

s

1

E

Z ∞

−∞

df · (2πf)2S(f) Gabor bandwidth
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Background (Cont’d) – Nonlinear Modulation

Let

x(t, u) ≈ x(t, u0) + (u − u0) · ẋ(t, u0).

like the linear case with ẋ(t, u0) in the role of s(t). Thus, at high SNR,

MSE ≈ CRLB ≈ N0

2Ė
,

where Ė = energy of ẋ(t, u0), which depends on more details.

For example, if x(t, u) = s(t − u), Ė = W 2E , where

W =

s

1

E

Z ∞

−∞

df · (2πf)2S(f) Gabor bandwidth

Why not increase W without a limit?
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Background (Cont’d) – Geometry of Anomalous Errors

Let x̄(u) = (x1(u), . . . , xK(u)) = representation of x(t, u) by K orthonormal

basis functions. Consider the locus of {x̄(u), a ≤ u ≤ b} in IRK .
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Let x̄(u) = (x1(u), . . . , xK(u)) = representation of x(t, u) by K orthonormal

basis functions. Consider the locus of {x̄(u), a ≤ u ≤ b} in IRK .

Assuming that E is independent of u, the locus lies on the hypersurface of the

K–dimensional sphere of radius
√
E .

The length of the curve

L =

Z b

a
du

s

X

i

ẋ2
i (u) = (b − a)

p

Ė.
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Background (Cont’d) – Geometry of Anomalous Errors

Let x̄(u) = (x1(u), . . . , xK(u)) = representation of x(t, u) by K orthonormal

basis functions. Consider the locus of {x̄(u), a ≤ u ≤ b} in IRK .

Assuming that E is independent of u, the locus lies on the hypersurface of the

K–dimensional sphere of radius
√
E .

The length of the curve

L =

Z b

a
du

s

X

i

ẋ2
i (u) = (b − a)

p

Ė.

High–SNR MSE ↓ with Ė, we want Ė ↑, thus L ↑.
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u = a

u = b
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Anomalous Errors (Cont’d)

L – limited by the need of safe distances between folds – hot dog packing.
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MSE ≈ N0

2W 2E
| {z }

small error

+ (b − a)2 · 2WT · e−E/(2N0)

| {z }

anomalous error

For fixed W , anomalous error term ↑ gracefully as S/N0 ↓.
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Maximum achievable L ∼ eCT , C = S/N0 (PPM). For PPM, K ∼ 2WT ,

MSE ≈ N0

2W 2E
| {z }

small error

+ (b − a)2 · 2WT · e−E/(2N0)

| {z }

anomalous error

For fixed W , anomalous error term ↑ gracefully as S/N0 ↓.
For a better balance between terms – let W ∼ eRT .

MSE ≈ N0

2E e−2RT + (b − a)2 · e−TE(R) R < C

where E(R) = reliability function of AWGN channel:

E(R) =

(

C
2 − R 0 ≤ R ≤ C

4

(
√

C −
√

R)2 C
4 ≤ R ≤ C
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Anomalous Errors (Cont’d)

L – limited by the need of safe distances between folds – hot dog packing.
Maximum achievable L ∼ eCT , C = S/N0 (PPM). For PPM, K ∼ 2WT ,

MSE ≈ N0

2W 2E
| {z }

small error

+ (b − a)2 · 2WT · e−E/(2N0)

| {z }

anomalous error

For fixed W , anomalous error term ↑ gracefully as S/N0 ↓.
For a better balance between terms – let W ∼ eRT .

MSE ≈ N0

2E e−2RT + (b − a)2 · e−TE(R) R < C

where E(R) = reliability function of AWGN channel:

E(R) =

(

C
2 − R 0 ≤ R ≤ C

4

(
√

C −
√

R)2 C
4 ≤ R ≤ C

Optimum compromise: R = C/6 =⇒ MSE ∼ e−CT/3.
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Plenty of lower bounds (CR, BZ, ZZ, CZZ, WW, ChRo, FG, BT, etc.)

– p. 23/110



Lower Bounds on the MSE

Plenty of lower bounds (CR, BZ, ZZ, CZZ, WW, ChRo, FG, BT, etc.)

Some fail to capture the threshold effect (exception: WW).

– p. 24/110



Lower Bounds on the MSE

Plenty of lower bounds (CR, BZ, ZZ, CZZ, WW, ChRo, FG, BT, etc.)

Some fail to capture the threshold effect (exception: WW).

Most are useful for a given modulator (exception: ZZ-CZZ, DPT bounds).

– p. 25/110



Lower Bounds on the MSE

Plenty of lower bounds (CR, BZ, ZZ, CZZ, WW, ChRo, FG, BT, etc.)

Some fail to capture the threshold effect (exception: WW).

Most are useful for a given modulator (exception: ZZ-CZZ, DPT bounds).

Quest for universal bounds, independent of both modulator and estimator.

– p. 26/110



Lower Bounds on the MSE

Plenty of lower bounds (CR, BZ, ZZ, CZZ, WW, ChRo, FG, BT, etc.)

Some fail to capture the threshold effect (exception: WW).

Most are useful for a given modulator (exception: ZZ-CZZ, DPT bounds).

Quest for universal bounds, independent of both modulator and estimator.

The modulator – limited by a power constraint only (power ≤ S).

– p. 27/110



Lower Bounds on the MSE

Plenty of lower bounds (CR, BZ, ZZ, CZZ, WW, ChRo, FG, BT, etc.)

Some fail to capture the threshold effect (exception: WW).

Most are useful for a given modulator (exception: ZZ-CZZ, DPT bounds).

Quest for universal bounds, independent of both modulator and estimator.

The modulator – limited by a power constraint only (power ≤ S).

Bounds that depend only on E/N0 = CT , C = S/N0.

– p. 28/110



Lower Bounds on the MSE

Plenty of lower bounds (CR, BZ, ZZ, CZZ, WW, ChRo, FG, BT, etc.)

Some fail to capture the threshold effect (exception: WW).

Most are useful for a given modulator (exception: ZZ-CZZ, DPT bounds).

Quest for universal bounds, independent of both modulator and estimator.

The modulator – limited by a power constraint only (power ≤ S).

Bounds that depend only on E/N0 = CT , C = S/N0.

We saw that MSE ∼ e−CT/3 is achievable for T → ∞.

– p. 29/110



Lower Bounds on the MSE

Plenty of lower bounds (CR, BZ, ZZ, CZZ, WW, ChRo, FG, BT, etc.)

Some fail to capture the threshold effect (exception: WW).

Most are useful for a given modulator (exception: ZZ-CZZ, DPT bounds).

Quest for universal bounds, independent of both modulator and estimator.

The modulator – limited by a power constraint only (power ≤ S).

Bounds that depend only on E/N0 = CT , C = S/N0.

We saw that MSE ∼ e−CT/3 is achievable for T → ∞.

Is there a compatible lower bound?
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Some Universal MSE Lower Bounds

Let u be a realization of U ∼ Unif[−1/2,+1/2).
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Some Universal MSE Lower Bounds

Let u be a realization of U ∼ Unif[−1/2,+1/2). Then,

CT ≥ R(D) ≥ h(U) − 1

2
ln(2πeD) = −1

2
ln(2πeD)

implies D = E(Û − U)2 ≥ 1

2πe
· e−2CT .

Zakai and Ziv (1975) – generalized DPI’s: E(Û − U)2
∼
≥ e−CT .

Merhav (2011) – other generalized DPI’s: E(Û − U)2
∼
≥ e−2CT/3

+ bounds related to signal detection considerations: E(Û − U)2
∼
≥ e−CT/2.

Compare to the upper bound of e−CT/3.

Attempts to close the gap have failed thus far...
Conjecture: “Blame” the lower bound.
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The Large Deviations Perspective

Instead of E(Û − U)2, consider minimizing

E1{|Û − U | ≥ ∆} = Pr{|Û − U | > ∆}.
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The Large Deviations Perspective

Instead of E(Û − U)2, consider minimizing

E1{|Û − U | ≥ ∆} = Pr{|Û − U | > ∆}.

Moreover, we allow ∆ = e−RT .

Assume u = realization of U ∼ Unif[−1/2,+1/2), allow any modulator x(t, ·)
with

E

(

1

T

Z T

0
x2(t, U)dt

)

≤ S

and any estimator Û = f{y(t), 0 ≤ t < T}.
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The Large Deviations Perspective

Instead of E(Û − U)2, consider minimizing

E1{|Û − U | ≥ ∆} = Pr{|Û − U | > ∆}.

Moreover, we allow ∆ = e−RT .

Assume u = realization of U ∼ Unif[−1/2,+1/2), allow any modulator x(t, ·)
with

E

(

1

T

Z T

0
x2(t, U)dt

)

≤ S

and any estimator Û = f{y(t), 0 ≤ t < T}.

We are interested in

E∗(R) = lim sup
T→∞

»

− 1

T
log infPr

n

|Û − U | > e−RT
o

–

.

– p. 45/110



Motivation

Separates between anomalous and non–anomalous error events:

– p. 46/110



Motivation

Separates between anomalous and non–anomalous error events:
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Motivation

Separates between anomalous and non–anomalous error events:

|Û − U | ≤ e−RT – weak–noise (non–anomalous). Error ∼ e−RT .

|Û − U | > e−RT – gross error (anomalous). Error ∼ e−TE∗(R).

Typically, anomalous Û falls at random away from U ⇒ weigh all
anomalous errors evenly.

MSE does not distinguish between weak–noise errors and anomalous errors.
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Basic Result

Theorem: For all R>0, the lim sup of E∗(R) is actually lim and

E∗(R) = E(R) =

8

>

>

<

>

>

:

C
2 − R 0 ≤ R ≤ C

4

(
√

C −
√

R)2 C
4 ≤ R ≤ C

0 R ≥ C
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i = index of grid point NN to u.
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0 R ≥ C
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Modulator: Form a grid of M = eRT /2 points in [−1/2,+1/2):

{−1/2 + 1 · e−RT ,−1/2 + 3 · e−RT ,−1/2 + 5 · e−RT , . . . , 1/2 − e−RT }.

Map grid points to orthogonal signals si(t) with power S: x(t, u) = si(t), where
i = index of grid point NN to u.
Estimator: Decode î and û = −1/2 + (2̂i − 1)e−RT .
Obviously,

Pr{|Û − U | > e−RT } ≤ Pr{̂i 6= i} ∼ e−TE(R).
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Converse Part

For a given u, consider the grid

{u, u + 2e−RT , u + 4e−RT , . . . , u + 2(M − 1)e−RT }, M =
e(R−ǫ)T

2
+ 1
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e(R−ǫ)T

2
+ 1

and define the hypothesis testing problem:

Hi : y(t) = x
“

t, u + 2ie−RT
”

+ n(t) i = 0, 1, . . . , M − 1.
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Pr{|Û − U | > e−RT |U = u + 2ie−RT ) ≥Pe ≥ e−T [E(R−ǫ)+o(T )].

– p. 60/110



Converse Part

For a given u, consider the grid

{u, u + 2e−RT , u + 4e−RT , . . . , u + 2(M − 1)e−RT }, M =
e(R−ǫ)T

2
+ 1

and define the hypothesis testing problem:

Hi : y(t) = x
“

t, u + 2ie−RT
”

+ n(t) i = 0, 1, . . . , M − 1.

Consider a detector that chooses the grid point NN to Û . Obviously,

1

M

M−1
X

i=0

Pr{|Û − U | > e−RT |U = u + 2ie−RT ) ≥ Pe ≥ e−T [E(R−ǫ)+o(T )].

The result is obtained by integrating both sides over u.
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The CaseR = 0

The operational reliability – discontinuous at R = 0. For fixed M , Pe is dictated

by dmin = 2ME
M−1 . In particular,

Pe ∝ Q

 

r

E
N0

· M

M − 1

!

∼ exp

„

−CT

2
· M

M − 1

«

.
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· M
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!
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„
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2
· M

M − 1

«
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In estimation, Pr{|Û − U | > ∆} for fixed ∆, is according to Pe but with

M ∝ 1/∆.
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The CaseR = 0

The operational reliability – discontinuous at R = 0. For fixed M , Pe is dictated

by dmin = 2ME
M−1 . In particular,

Pe ∝ Q

 

r

E
N0

· M

M − 1

!

∼ exp

„

−CT

2
· M

M − 1

«

.

In estimation, Pr{|Û − U | > ∆} for fixed ∆, is according to Pe but with

M ∝ 1/∆.

Small gap between upper bound and the lower bound for every fixed ∆, but

this gap → 0 as ∆ → 0. In particular,

lim
∆→0

lim
T→∞

"

− ln Pr{|Û − U | > ∆}
T

#

=
C

2
= E(0).
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The CaseR = 0 (Cont’d)

Relation to the MSE:

E(Û − U)2 = 2

Z 1

0
d∆ · ∆ · Pr{|Û − U | ≥ ∆}.
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d∆ · ∆ · Pr{|Û − U | ≥ ∆}.

MSE can be lower bounded via a lower bound on Pr{|Û − U | ≥ ∆} (CZZ ‘75).
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The CaseR = 0 (Cont’d)

Relation to the MSE:

E(Û − U)2 = 2

Z 1

0
d∆ · ∆ · Pr{|Û − U | ≥ ∆}.

MSE can be lower bounded via a lower bound on Pr{|Û − U | ≥ ∆} (CZZ ‘75).

Weakness: integration range of ∆ – restricted to [0, 1/(M − 1)].

Large deviations performance metric avoids integration altogether.

Open question: devise a system independent of ∆, yet minimizes

Pr{|Û − U | ≥ ∆} for every ∆.

– p. 69/110



Discussion
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Strong Converse⇔ Sharp Threshold Effect

Both achievability and converse rely on signal detection considerations.

Strong converse: limT→∞ Pe jumps from 0 to 1 as R crosses C.

Equivalently, E∗(R) = 0 for R > C in the strong sense.

“Inheriting” strong converse — jump in Pr{|Û − U | > e−RT }.

For an optimum system, |Û − U | “concentrates” around e−CT .
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Alternative Achievability Schemes

Achievability – quantization of U + orthogonal signaling.
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Alternative Achievability Schemes

Achievability – quantization of U + orthogonal signaling.

Alternative modulators (+ ML estimation):

FPM: x(t, u) =
√

2S cos[(ω0 + u · ∆ω)t + φ] ω0, ∆ω ∝ eRT .
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Alternative Achievability Schemes

Achievability – quantization of U + orthogonal signaling.

Alternative modulators (+ ML estimation):

FPM: x(t, u) =
√

2S cos[(ω0 + u · ∆ω)t + φ] ω0, ∆ω ∝ eRT .

PPM: x(t, u) = s[t − (u + 1/2)(T − τ)] bandwidth ∝ eRT .

In both, the event {|Û − U | > e−RT } = anomaly.

Common feature: correlation between x(t, u) and x(t, u′) depends only on

|u − u′| with support ∼ e−RT .

In AM:

Pr{|Û − U | > e−RT } = 2Q(e−RT
√

2CT ) → 1 ∀ R > 0
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Relation to Moments of the Estimation Error

By Chebyshev’s inequality

e−T [E(R)+o(T )] ≤ Pr{|Û − U | > e−RT } ≤ E(Û − U)2

e−2RT
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Relation to Moments of the Estimation Error

By Chebyshev’s inequality

e−T [E(R)+o(T )] ≤ Pr{|Û − U | > e−RT } ≤ E(Û − U)2

e−2RT

implying that

E(Û − U)2 ≥ e−T [E(R)+2R+o(T )],

which is maximized for R = 0, yielding ∼ e−CT/2 as above.
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Relation to Moments of the Estimation Error

By Chebyshev’s inequality

e−T [E(R)+o(T )] ≤ Pr{|Û − U | > e−RT } ≤ E(Û − U)2

e−2RT

implying that

E(Û − U)2 ≥ e−T [E(R)+2R+o(T )],

which is maximized for R = 0, yielding ∼ e−CT/2 as above.

For a general moment E|Û − U |α (α > 0, arbitrary):

E|Û − U |α ≥
(

e−CT/2 α ≥ 1

e−αCT/(1+α) 0 < α < 1
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Relation to Joint Source–Channel Coding

Csiszár (1982): JSC problem under

min Pr

(

N
X

i=1

d(Ui, Ûi) > ND

)

.
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Relation to Joint Source–Channel Coding

Csiszár (1982): JSC problem under

min Pr

(

N
X

i=1

d(Ui, Ûi) > ND

)

.

The exponential rate cannot exceed

e(D) = min
R

[F (D, R) + E(R)]

where

F (D, R) = min
Q′: R(D,Q′)≥R

D(Q′‖Q)

is the source coding exponent of the source Q (Marton, 1974).
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Relation to Joint Source–Channel Coding (Cont’d)

For separate source– and channel coding:

esep(D) = sup
R

min{F (D, R), E(R)}≤ e(D)
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esep(D) = sup
R

min{F (D, R), E(R)}≤ e(D)

⇒ no separation theorem for error exponents.

But our achievability is based on separation:

Quantize U – source coding

Then map to si(t) – channel coding.
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Relation to Joint Source–Channel Coding (Cont’d)

For separate source– and channel coding:

esep(D) = sup
R

min{F (D, R), E(R)}≤ e(D)

⇒ no separation theorem for error exponents.

But our achievability is based on separation:

Quantize U – source coding

Then map to si(t) – channel coding.

Q: How does this settle?
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Relation to Joint Source–Channel Coding (Cont’d)

Answer: Let Q∗ maximize R(D, Q) (often, uniform).

F (D, R) = min
Q: R(D,Q)≥R

D(Q‖Q∗) =

(

0 R ≤ R(D, Q∗)

∞ R > R(D, Q∗)
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Relation to Joint Source–Channel Coding (Cont’d)

Answer: Let Q∗ maximize R(D, Q) (often, uniform).

F (D, R) = min
Q: R(D,Q)≥R

D(Q‖Q∗) =

(

0 R ≤ R(D, Q∗)

∞ R > R(D, Q∗)

Here, source–channel separation applies:

esep(D) = e(D) = E[R(D, Q∗)].

Intuition:

“Cover” source space by eNR(D,Q∗) D–spheres.

Source encoder does not cause
P

i d(Ui, Ûi) > ND.

Excess distortion – only due to channel – w. p. e−NE[R(D,Q∗)].

This is our case too.
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Extensions
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The Multidimensional Parameter Vector Case

Consider a d–dimensional vector U = (U1, . . . , Ud) ∼ Unif[−1/2,+1/2)d.
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The Multidimensional Parameter Vector Case

Consider a d–dimensional vector U = (U1, . . . , Ud) ∼ Unif[−1/2,+1/2)d.

Minimize

Pr

"

d
[

i=1

n

|Ûi − Ui| > e−RiT
o

#

.

Let E∗(R1, . . . , Rd) = best achievable exponent.
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The Multidimensional Parameter Vector Case

Consider a d–dimensional vector U = (U1, . . . , Ud) ∼ Unif[−1/2,+1/2)d.

Minimize

Pr

"

d
[

i=1

n

|Ûi − Ui| > e−RiT
o

#

.

Let E∗(R1, . . . , Rd) = best achievable exponent.

Thm above extends to

E∗(R1, . . . , Rd) = E(R1 + R2 + . . . + Rd).
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The Multidimensional Parameter Vector Case

Consider a d–dimensional vector U = (U1, . . . , Ud) ∼ Unif[−1/2,+1/2)d.

Minimize

Pr

"

d
[

i=1

n

|Ûi − Ui| > e−RiT
o

#

.

Let E∗(R1, . . . , Rd) = best achievable exponent.

Thm above extends to

E∗(R1, . . . , Rd) = E(R1 + R2 + . . . + Rd).

Think of a grid with eRiT points in the i–th coordinate ⇒ total = e(R1+...+Rd)T .
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The Vector Case (Cont’d)

Consider the case R1 = R2 = . . . = Rd ≡ R:

E∗(R, R, . . . , R) = E(R · d).
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The Vector Case (Cont’d)

Consider the case R1 = R2 = . . . = Rd ≡ R:

E∗(R, R, . . . , R) = E(R · d).

For R > 0, due to the strong converse, ∃ dimensionality threshold effect:

lim
T→∞

Pr

"

d
[

i=1

n

|Ûi − Ui| > e−RT
o

#

=

(

0 d < dc
∆
= ⌊C/R⌋

1 d ≥ dc
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lim
T→∞

Pr

"

d
[

i=1

n

|Ûi − Ui| > e−RT
o

#

=

(

0 d < dc
∆
= ⌊C/R⌋

1 d ≥ dc

For R = 0, E(0) = C/2 independently of d.
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The Vector Case (Cont’d)

Consider the case R1 = R2 = . . . = Rd ≡ R:

E∗(R, R, . . . , R) = E(R · d).

For R > 0, due to the strong converse, ∃ dimensionality threshold effect:

lim
T→∞

Pr

"

d
[

i=1

n

|Ûi − Ui| > e−RT
o

#

=

(

0 d < dc
∆
= ⌊C/R⌋

1 d ≥ dc

For R = 0, E(0) = C/2 independently of d.

Different from the common “curse of dimensionality”, which is usually graceful

in d.
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Other Channels

Gaussianity – not used very strongly.
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Other Channels

Gaussianity – not used very strongly.

Main feature = known reliability func. (∞ bandwidth).

Reliability func. – known also for the Poisson channel (Wyner 1988) and

others of ∞ bandwidth (Gallager 1987).

For DMC’s – known for R ≥ Rcrit.

For R < Rcrit, not known, but separation still works.

Applicable to bandlimited Gaussian channel with N = 2WT channel uses.

Unknown channels: universal decoding metrics – applicable for universal

estimation.
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Rayleigh Fading

Let

y(t) = a · x(t, u) + n(t), 0 ≤ t < T

where a = realization of A, with density

fA(a) =
a

σ2
e−a2/2σ2

a ≥ 0.
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Rayleigh Fading

Let

y(t) = a · x(t, u) + n(t), 0 ≤ t < T

where a = realization of A, with density

fA(a) =
a

σ2
e−a2/2σ2

a ≥ 0.

For R > 0, the probability of excess error – dominated by channel outage

Pr{A2C ≤ R} = 1 − e−R/2C̄ C̄ = σ2C.
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Rayleigh Fading

Let

y(t) = a · x(t, u) + n(t), 0 ≤ t < T

where a = realization of A, with density

fA(a) =
a

σ2
e−a2/2σ2

a ≥ 0.

For R > 0, the probability of excess error – dominated by channel outage

Pr{A2C ≤ R} = 1 − e−R/2C̄ C̄ = σ2C.

For R = 0 – decays like 1/T .
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Summary and Conclusion

Large deviations performance metric – natural for wideband

communication.

Precise characterization of the best achievable exponent.

Intimately related to signal detection – reliability function.

Simple considerations; simple to extend in many directions.

Relation to JSCC: separate source– and channel coding is optimal.

Open problem: close the gap between upper and lower bounds on the

MMSE.
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Thank You!
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