

Perfectly Secure Encryption of Individual Sequences

Neri Merhav

Department of Electrical Engineering
Technion—Israel Institute of Technology
Haifa 32000, Israel

ISIT 2012, Cambridge, MA, July 2012.

Background and Motivation

The individual–sequence approach (with FSM’s) to IT has been studied in:

- Data compression (Ziv & Lempel ‘78,...).
- Source/channel simulation (Martín *et al.* ‘10, Seroussi ‘06).
- Classification (Ziv & Merhav, ‘93).
- Prediction (Feder, Merhav & Gutman ‘92, ...).
- Denoising (Weissman *et al.*, ‘05,...).
- Channel coding (Lomnitz & Feder ‘10, Shayevitz & Feder ‘05).

Information–theoretic security has been studied **almost** exclusively from the probabilisitic approach.

Background and Motivation (Cont'd)

The only exception (a.f.a.i.k.) is an unpublished memorandum by Ziv [1978]:

- Plaintext source – individual sequence.
- Encrypter – general block encoder.
- Prior knowledge: plaintext \rightarrow FSM \rightarrow all-zero sequence.
- Full security: uncertainty – essentially not reduced by cryptogram.
- Main result: minimum needed key rate \sim LZ compressibility.

Encrypter/decrypter have **unlimited resources**, whereas eavesdropper is **limited by FSM**.

Our approach: the other way around – encryption using FSM's.

Finite-State Encrypter Model

$$t_i = t_{i-1} + \Delta(z_i, x_i), \quad t_0 \triangleq 0$$

$$k_i = (u_{t_{i-1}+1}, u_{t_{i-1}+2}, \dots, u_{t_i})$$

$$y_i = f(z_i, x_i, k_i)$$

$$z_{i+1} = g(z_i, x_i)$$

Finite-State Encrypter Model (Cont'd)

Perfect security: $\Pr\{y^n|x\}$ – independent of x .

Information losslessness (IL): \exists large n s.t. (z_1, z_{n+1}, k^n, y^n) determines x^n .

Key rate of encrypter E :

$$\sigma_E(x^n) = \frac{1}{n} \sum_{i=1}^n \Delta(z_i, x_i) = \frac{1}{n} \sum_{i=1}^n \ell(k_i).$$

$$\sigma_s(x^n) = \min_{E \in \mathcal{E}(s)} \sigma_E(x^n),$$

where $\mathcal{E}(s)$ = set of all perfectly secure, IL encrypters with $\leq s$ states.

$$\sigma_s(x) = \limsup_{n \rightarrow \infty} \sigma_s(x^n)$$

Finite-state encryptability: $\sigma(x) = \lim_{s \rightarrow \infty} \sigma_s(x)$.

Main Result

Let $\rho_{LZ}(x^n)$ denote the LZ compression ratio, i.e.,

$$\rho_{LZ}(x^n) = \frac{c(x^n) \log c(x^n)}{n},$$

where $c(x^n)$ = number of LZ phrases in x^n .

Theorem (converse): For every x^n

$$\sigma_s(x^n) \geq \rho_{LZ}(x^n) - O\left(s \cdot \sqrt{\frac{\log(\log n)}{\log n}}\right).$$

Consequently,

$$\sigma(x) \geq \rho(x).$$

Discussion

- Direct: LZ compression + one-time pad encryption – $\sigma(x) = \rho(x)$.
- Natural individual-sequence counterpart to the known probabilistic result.
- Same conclusion as in [Ziv78], although the model is different.
- Upperbound – lowerbound = $O(\sqrt{\log(\log n)}/\log n)$.
- In compression – $O(1/\log n)$.

Main Ideas of Proof

Define joint empirical distribution of m -blocks of (x^n, k^n, y^n, \dots) .

$$\sigma_E(x^n) = \frac{\ell(k^n)}{n} = \frac{H(K^m|L)}{m} \geq \frac{1}{m}[H(K^m) - \alpha s \log(m+1)].$$

Using usual information-theoretic arguments (+ IL + full security):

$$H(K^m) \geq H(X^m) - H(Z, Z'|Y^m, K^m) \geq H(X^m) - 2 \log s.$$

Now, since Shannon code = FS encoder:

$$\frac{H(X^m)}{m} \geq \rho_{LZ}(x^n) - \delta_s(m, n).$$

So eventually,

$$\sigma_E(x^n) \geq \rho_{LZ}(x^n) - \text{vanishing terms.}$$

Extensions

Availability of Side Information

Assume that everybody has access to SI s_1, s_2, \dots (individual sequence).
Modifying the model definition:

$$\begin{aligned} t_i &= t_{i-1} + \Delta(z_i, x_i, \mathbf{s}_i), & t_0 &\stackrel{\Delta}{=} 0 \\ k_i &= (u_{t_{i-1}+1}, u_{t_{i-1}+2}, \dots, u_{t_i}) \\ y_i &= f(z_i, x_i, k_i, \mathbf{s}_i) \\ z_{i+1} &= g(z_i, x_i, \mathbf{s}_i) \end{aligned}$$

Perfect security: $\Pr(y^n | \mathbf{x}, \mathbf{s})$ – independent of \mathbf{x} .

Info losslessness: For large enough n : $(z_1, z_{n+1}, \mathbf{s}^n, y^n, k^n)$ determine x^n .

Main result: Same but with $\rho_{LZ}(x^n)$ replaced by $\rho_{LZ}(x^n | \mathbf{s}^n)$ – **conditional LZ parsing** of x^n given \mathbf{s}^n [Ziv '85].

Achievable even if encrypter does not see \mathbf{s}^n : S–W coding + one–time pad.

Availability of SI (Cont'd) – Conditional Parsing

- Apply LZ to $((x_1, s_1), (x_2, s_2), \dots, (x_n, s_n))$; $c(x^n, s^n)$ = number of phrases.
- $c(s^n)$ = number of distinct phrases of s^n .
- $s(l)$ = the l th distinct s -phrase, $l = 1, 2, \dots, c(s^n)$.
- $c_l(x^n | s^n)$ = number of $s(l)$ in parsing of s^n .

$$\rho_{LZ}(x^n | s^n) = \frac{1}{n} \sum_{l=1}^{c(s^n)} c_l(x^n | s^n) \log c_l(x^n | s^n).$$

For example,

$$\begin{aligned} x^6 &= 0 \mid 1 \mid 00 \mid 01 \mid \\ s^6 &= 0 \mid 1 \mid 01 \mid 01 \mid \end{aligned}$$

then

$$c(x^6, s^6) = 4, \quad c(s^6) = 3, \quad s(1) = 0, \quad s(2) = 1, \quad s(3) = 01,$$

$$c_1(x^6 | s^6) = c_2(x^6 | s^6) = 1, \quad c_3(x^6 | s^6) = 2.$$

Lossy Reconstruction

Modifications in model definition:

- Legitimate reconstruction \hat{x}^n must satisfy $d(x^n, \hat{x}^n) \leq nD$ w.p. 1.
- Distortion measure – completely arbitrary (need not be even additive).
- IL property can be relaxed to a weaker requirement (details in the paper).
- Perfect security: y^n is statistically independent of both x and \hat{x} .

Main theorem essentially as before but $\rho_{LZ}(x^n)$ should be replaced by

$$r_{LZ}(D; x^n) = \min_{d(x^n, \hat{x}^n) \leq nD} \rho_{LZ}(\hat{x}^n).$$

- Not obvious that best \hat{x}^n is deterministic (could have depended on key).
- Achievability: again, conceptually obvious.
- In the full paper: also SI + lossy reconstruction; No longer based on LZ..

Thank You!