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Background and Motivation

The individual–sequence approach (with FSM’s) to IT has been studied in:

Data compression (Ziv & Lempel ‘78,...).

Source/channel simulation (Martín et al. ‘10, Seroussi ‘06).

Classification (Ziv & Merhav, ‘93).

Prediction (Feder, Merhav & Gutman ‘92, ...).

Denoising (Weissman et al., ‘05,...).

Channel coding (Lomnitz & Feder ‘10, Shayevitz & Feder ‘05).

Information–theoretic security has been studied almost exclusively from the

probabilisitic approach.
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Background and Motivation (Cont’d)

The only exception (a.f.a.i.k.) is an unpublished memorandum by Ziv [1978]:

Plaintext source – individual sequence.

Encrypter – general block encoder.

Prior knowledge: plaintext → FSM → all–zero sequence.

Full security: uncertainty – essentially not reduced by cryptogram.

Main result: minimum needed key rate ∼ LZ compressibility.

Encrypter/decrypter have unlimited resources, whereas eavesdropper is

limited by FSM.

Our approach: the other way around – encryption using FSM’s.
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Finite–State Encrypter Model

y1, y2, . . .

u1, u2, . . .

x1, x2, . . .

zi+1

zi

Finite-State Encrypter

cryptogram

plaintext

key

state

next state

delay

ti = ti−1 + ∆(zi, xi), t0
∆
= 0

ki = (uti−1+1, uti−1+2, . . . , uti
)

yi = f(zi, xi, ki)

zi+1 = g(zi, xi)
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Finite–State Encrypter Model (Cont’d)

Perfect security: Pr{yn|x} – independent of x.

Information losslessness (IL): ∃ large n s.t. (z1, zn+1, kn, yn) determines xn.

Key rate of encrypter E:

σE(xn) =
1

n

n
X

i=1

∆(zi, xi) =
1

n

n
X

i=1

ℓ(ki).

σs(x
n) = min

E∈E(s)
σE(xn),

where E(s) = set of all perfectly secure, IL encrypters with ≤ s states.

σs(x) = lim sup
n→∞

σs(x
n)

Finite–state encryptability: σ(x) = lims→∞ σs(x).
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Main Result

Let ρLZ(xn) denote the LZ compresion ratio, i.e.,

ρLZ(xn) =
c(xn) log c(xn)

n
,

where c(xn) = number of LZ phrases in xn.

Theorem (converse): For every xn

σs(x
n) ≥ ρLZ(xn) − O

 

s ·

s

log(log n)

log n

!

.

Consequently,

σ(x) ≥ ρ(x).
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Discussion

Direct: LZ compression + one–time pad encryption – σ(x) = ρ(x).

Natural individual–sequence counterpart to the known probabilistic result.

Same conclusion as in [Ziv78], although the model is different.

Upperbound – lowerbound = O(
p

log(log n)/ log n).

In compression – O(1/ log n).
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Main Ideas of Proof

Define joint empirical distribution of m–blocks of (xn, kn, yn, ...).

σE(xn) =
ℓ(kn)

n
=

H(Km|L)

m
≥

1

m
[H(Km) − αs log(m + 1)].

Using usual information–theoretic arguments (+ IL + full security):

H(Km) ≥ H(Xm) − H(Z, Z′|Y m, Km) ≥ H(Xm) − 2 log s.

Now, since Shannon code = FS encoder:

H(Xm)

m
≥ ρLZ(xn) − δs(m, n).

So eventually,

σE(xn) ≥ ρLZ(xn) − vanishing terms.
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Extensions
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Availability of Side Information

Assume that everybody has access to SI s1, s2, . . . (individual sequence).
Modifying the model definition:

ti = ti−1 + ∆(zi, xi, si), t0
∆
= 0

ki = (uti−1+1, uti−1+2, . . . , uti
)

yi = f(zi, xi, ki, si)

zi+1 = g(zi, xi, si)

Perfect security: Pr(yn|x, s) – independent of x.

Info losslessness: For large enough n: (z1, zn+1, sn, yn, kn) determine xn.

Main result: Same but with ρLZ(xn) replaced by ρLZ(xn|sn) – conditional LZ
parsing of xn given sn [Ziv ‘85].

Achievable even if encrypter does not see sn: S–W coding + one–time pad.
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Availability of SI (Cont’d) – Conditional Parsing

Apply LZ to ((x1, s1), (x2, s2), . . . , (xn, sn)); c(xn, sn) = number of phrases.

c(sn) = number of distinct phrases of sn.

s(l) = the lth distinct s–phrase, l = 1, 2, ..., c(sn).

cl(x
n|sn) = number of s(l) in parsing of sn.

ρLZ(xn|sn) =
1

n

c(sn)
X

l=1

cl(x
n|sn) log cl(x

n|sn).

For example,

x6 = 0 | 1 | 0 0 | 0 1|

s6 = 0 | 1 | 0 1 | 0 1|

then
c(x6, s6) = 4, c(s6) = 3, s(1) = 0, s(2) = 1, s(3) = 01,

c1(x
6|s6) = c2(x

6|s6) = 1, c3(x
6|s6) = 2.
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Lossy Reconstruction

Modifications in model definition:

Legitimate reconstruction x̂n must satisfy d(xn, x̂n) ≤ nD w.p. 1.

Distortion measure – completely arbitrary (need not be even additive).

IL property can be relaxed to a weaker requirement (details in the paper).

Perfect security: yn is statistically independent of both x and x̂.

Main theorem essentially as before but ρLZ(xn) should be replaced by

rLZ(D; xn) = min
d(xn,x̂n)≤nD

ρLZ(x̂n).

Not obvious that best x̂
n is deterministic (could have depended on key).

Achievability: again, conceptually obvious.

In the full paper: also SI + lossy reconstruction; No longer based on LZ..
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Thank You!
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