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Abstract

In analogy to the well-known notion of finite-state compressibility of individual sequences,
due to Lempel and Ziv, we define a similar notion of “finite—state encryptability” of an indi-
vidual plain-text sequence, as the minimum asymptotic key rate that must be consumed by
finite—state encrypters so as to guarantee perfect secrecy in a well-defined sense. Our main
basic result is that the finite—state encryptability is equal to the finite—state compressibility for
every individual sequence. This is in parallelism to Shannon’s classical probabilistic counterpart
result, asserting that the minimum required key rate is equal to the entropy rate of the source.
However, the redundancy, defined as the gap between the upper bound (direct part) and the
lower bound (converse part) in the encryption problem, turns out to decay at a different rate
(in fact, much slower) than the analogous redundancy associated with the compression problem.
We also extend our main theorem in several directions, allowing: (i) availability of side informa-
tion (SI) at the encrypter/decrypter/eavesdropper, (ii) lossy reconstruction at the decrypter, and
(iii) the combination of both lossy reconstruction and SI, in the spirit of the Wyner—Ziv problem.

Index Terms: Information—theoretic security, Shannon’s cipher system, secret key, perfect se-
crecy, individual sequences, finite—state machine, compressibility, incremental parsing, Lempel—
Ziv algorithm, side information.

1 Introduction

The paradigm of individual sequences and finite-state machines (FSMs), as an alternative to the
traditional probabilistic modeling of sources and channels, has been studied and explored quite
extensively in several information—theoretic problem areas, including data compression [5], [13],

[14], [18], [21], [24], [26], [27], [30], source/channel simulation [9], [15], classification [29], [31],
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prediction [2], [3], [12] [20], [22], [32], denoising [19], and even channel coding [8], [17], just to name
very few representative references out of many more. On the other hand, it is fairly safe to say that
the entire literature on information—theoretic security, starting from Shannon’s classical work [16]
and ending with some of the most recent work in this problem area (see, e.g., [4], [6], [7], [10], [23]

for surveys as well as references therein), is based exclusively on the probabilistic setting.

To the best of our knowledge, the only exception to this rule is an unpublished memorandum
by Ziv [25]. In that work, the plain-text source to be encrypted, using a secret key, is an individual
sequence, the encrypter is a general block encoder, and the eavesdropper employs an FSM as a
message discriminator. Specifically, it is postulated in [25] that the eavesdropper may have some
prior knowledge about the plain-text that can be expressed in terms of the existence of some set of
“acceptable messages” that constitutes the a-priori level of uncertainty (or equivocation) that the
eavesdropper has concerning the plain-text message: The larger the acceptance set, the larger is the
uncertainty. Next, it is assumed that there exists an FSM that can test whether a given candidate
plain-text message is acceptable or not: If and only if the FSM produces the all-zero sequence in
response to that message, then this message is acceptable. Perfect security is then defined as a
situation where the size of the acceptance set is not reduced (and hence neither is the uncertainty)
in the presence of the cryptogram. The main result in [25] is that the asymptotic key rate needed
for perfectly secure encryption in that sense, cannot be smaller (up to asymptotically vanishing
terms) than the Lempel-Ziv (LZ) complexity of the plain-text source [30]. This lower bound is
obviously asymptotically achieved by one-time pad encryption of the bit-stream obtained by LZ
data compression of the plain-text source. This is in parallelism to Shannon’s classical probabilistic
counterpart result, asserting that the minimum required key rate is equal to the entropy rate of

the source.

In this paper, we also consider encryption of individual sequences, but our modeling approach
and the definition of perfect secrecy are substantially different. Rather than assuming that the
encrypter and decrypter have unlimited resources, and that it is the eavesdropper which has limited
resources, modeled in terms of FSMs, in our setting, the converse is true. We adopt a model of
a finite—state encrypter, which receives as inputs the plain-text stream and the secret key bit-
stream, and it produces a cipher-text, while the internal state variable of the FSM, that designates

limited memory of the past plain-text, is evolving in response to the plain-text input. Based on



this model, we define a notion of finite—state encryptability (in analogy to the notions of finite—
state compressibility [30] and the finite—state predictability [2]), as the minimum achievable rate
at which key bits must be consumed by any finite—state encrypter in order to guarantee perfect
security against an unauthorized party, while keeping the cryptogram decipherable at the legitimate
receiver, which has access to the key. Our main result is that the finite—state encryptability is equal
to the finite-state compressibility, similarly as in [25].

More precisely, denoting by c(z™) the number of LZ phrases associated with the plain-text

" = (x1,...,2p), we show that number of key bits required by any encrypter with s states,

x
normalized by n (i.e., the key rate), cannot be smaller than [c(z")logc(z™)]/n — ds(n), where
ds(n) = O(slog(logn)/+/logn). On the other hand, this bound is obviously essentially achievable
by applying the LZ ‘78 algorithm [30], followed by one-time pad encryption (i.e., bit-by—bit XORing
between compressed bits and key bits), since the compression ratio of the LZ ‘78 algorithm is also

[e(x™)log c(x™)]/n, up to vanishingly small terms. It follows then that the finite-state encryptability

of every (infinite) individual sequence is equal to its finite-state compressibility.

While the idea of LZ data compression, followed by one—time padding is rather straightforward,
our main result, that no finite-state encrypter can do better than that for any given individual
sequence, may not be quite obvious since the operations of compression and encryption are basically
different — secret key encryption need not necessarily be based on compression followed by one—time

padding, definitely not if both operations are formalized in the framework of finite—state machines.

For finite sequences of length n, the difference between the upper bound (of the direct part) and
the lower bound (of the converse part), which can be thought of as some notion of redundancy, is
again O(slog(logn)/+/logn), which decays much more slowly than the corresponding redundancy
in data compression [30, Theorems 1, 2], which is roughly O((logs)/logn).

Finally, we extend our main basic theorem in two directions, first, one at a time, and then
simultaneously. The first extension is in allowing availability of side information (SI) at all three
parties (encrypter, legitimate decrypter and eavesdropper) or at the decrypter and the eavesdropper
only. We assume that the SI sequence is an individual sequence as well. We also assume that it
is the same SI that is available to all three parties in the first case or to both the legitimate

decrypter and the eavesdropper, in the second case. Extensions to situations of different versions



of the SI at different users is deferred to the last step, which will possess the most general scenario
we study in this work. Our main result is essentially unaltered, except that the LZ complexity,
prz(x™) 2 [e(z™) log c(xz™)]/n, is replaced by the conditional LZ complexity given the SI, to be
defined later (see also [11], [28]). Our second extension is to the case where lossy reconstruction is
allowed at the legitimate receiver (first, without SI). Here the LZ complexity is replaced by a notion
of “LZ rate—distortion function,” rz(D;z™), which means the smallest LZ complexity among all
sequences that are within the allowed distortion relative to the input plain-text sequence. While our
framework allows randomized reconstruction sequences (that may depend on the random key), we
find that at least asymptotically, there is nothing to gain from this degree of freedom, as optimum
performance can be achieved by a scheme that generates deterministic reproductions. Finally, we
allow both SI and lossy reconstruction at the same time. Moreover, every party might have access to
a different version of the SI. The SI available to the legitimate receiver is assumed to be generated
by the plain-text source via a known memoryless channel. Here we no longer characterize the
performance in terms LZ complexities of sequences, but rather in the same spirit of the Wyner—Ziv

rate—distortion function for individual sequences using finite-state encoders and decoders [13].

It should be pointed out that throughout the entire paper, most of our emphasis is on converse
theorems (lower bounds). The compatible direct parts (upper bounds) will always be attainable
by a straightforward application of the suitable data compression scheme, followed by one—time

padding.

The outline of the remaining part of this paper is as follows. In Section 2, we establish some
notation conventions and we formally define the model and the problem. In Section 3, we assert
and prove the main result. Finally, in Section 4, we extend our results in the above—mentioned
directions, and we point out how exactly the proof of the basic theorem should be modified in each

case in order to support our assertions.

2 Notation Conventions and Problem Formulation

We begin by establishing some notation conventions. Throughout this paper, scalar random vari-
ables (RV’s) will be denoted by capital letters, their sample values will be denoted by the respective

lower case letters, and their alphabets will be denoted by the respective calligraphic letters. A sim-



ilar convention will apply to random vectors and their sample values, which will be denoted with
same symbols superscripted by the dimension. Thus, for example, A™ (m — positive integer) will
denote a random m-vector (Ay, ..., Ap,), and a™ = (aq, ..., an,) is a specific vector value in A™, the

J

5, where ¢ and j are integers and i < j, will

m~—th Cartesian power of A. The notations ag and A
designate segments (a;, ..., a;) and (A;, ..., A;), respectively, where for ¢ = 1, the subscript will be
J

omitted (as above). For i > j, a;

(or Af) will be understood as the null string.

Sources and channels will be denoted generically by the letter P or @, subscripted by the
name of the RV and its conditioning, if applicable, exactly like in ordinary textbook notation
standards, e.g., Pxm(2™) is the probability function of X" at the point X™ = 2™, Py gm(w|s™)

™ and so on. Whenever clear from the

is the conditional probability of W = w given S™ = s
context, these subscripts will be omitted. Information theoretic quantities, like entropies and
mutual informations, will be denoted following the usual conventions of the information theory

literature, e.g., H(K™), I(W; X™|S™), and so on.

A finite-state encrypter is defined by a sixtuplet £ = (X,), Z, f,g,A), where X is a finite
input alphabet of size |X| = «a, ) is a finite set of binary words, Z is a finite set of states,
f:Z2xX x{0,1} — Y is the output function, g : Z x X — Z is the next-state function,
A:ZxX —{0,1,2,...}, and {0,1}* is the set of all binary strings of finite length. The set ) is
allowed to contain binary strings of various lengths, including the null word A (whose length is zero).
When two infinite sequences, € = x1, 9, ..., ©; € X, henceforth the plain-text sequence (or, the
source sequence), and u = uy, u,..., u; € {0,1}, i = 1,2,..., henceforth the key sequence, are fed
into an encrypter E, it produces an infinite output sequence y = y1, 4o, ..., ¥; € )V, henceforth the
cryptogram, while passing through an infinite sequence of states z = 21, 29,..., 2; € Z, according

to the following recursive equations, implemented for i = 1,2, ...

ti = ti1+ Az, T), tg 20 (1)
ki = (Wt 415Uty 4255 Ut;) (2)
yi = [z, i ki) (3)
zist = g(%, 1) (4)

where it is understood that if A(z;,x;) = 0, then k; = A, the null word of length zero,! namely, no

!Note that the evolution of the state z; depends only on the source inputs {z;}, not on the key bits. The rationale



key bits are used in the i—th step. By the same token, if y; = A, no output is produced at this step,
i.e., the system is idling and only the state evolves in response to the input. An encrypter with s
states, or an s—state encrypter, E, is one with |Z] = s. It is assumed that the plain-text sequence
x is deterministic (i.e., an individual sequence), whereas the key sequence w is purely random, i.e.,

for every positive integer n, Pyn(u™) = 27".

A few additional notation conventions will be convenient: By f(z1,z", k™), we refer to the
vector " produced by F in response to the inputs ™ and k™ when the initial state is z1. Similarly,
the notation g(z1,z") will mean the state z,4+1 and A(z1,z™) will designate > 1" ; A(z;, z;) under
the same circumstances. An encrypter E is said to be perfectly secure if for every two positive
integers n, m (m > n) and for every x € X and y™ € Y™ "*1 the probability Pr{Y,® = y™|z}

is independent of x.

An encrypter is referred to as information lossless (IL) if for every z; € Z, every sufficiently
large? n and all 2" € X™ and k" € K", the quadruple (z1, k", f(z1, 2™, k™), g(z1,2")) uniquely
determines z. It will henceforth be assumed, without loss of generality, that z; is a certain fixed
member of Z. Given an encrypter E and an input string z", the encryption key rate of 2" w.r.t.

FE is defined as

ALY 1T
") = = - 14 kl ;
rpe) 2T = T3 u(ky (5)
where £(k;) = A(z;,x;) is the length of the binary string k; and ¢(k™) = >, ¢(k;) is the total

length of k™.
The set of all perfectly secure, IL encrypters {E'} with no more than s states will be denoted

by £(s). The minimum of og(z™) over all encrypters in £(s) will be denoted by o4(z"), i.e.,

os(x ):Erégl(qs)aE(x ) (6)

is that the role of z; is to store past memory of the information sequence ", in order to take advantage of empirical
correlations and repetitive patterns in that sequence, whereas memory of past key bits, which are i.i.d., is irrelevant.
Nonetheless, it is possible to extend the encrypter model to have two separate state variables, one evolving with
dependence on {z;} only (as above) and one with dependence on both {z;} and {k;}, where the former state variable
plays a role in the update of ¢; and the latter plays a role in the output function.

2It should be pointed out that this definition of information losslessness is more relaxed (and hence more general)
than the definition in [30]. While in [30], the requirement is imposed for every positive integer n, here it is required
only for all sufficiently large n. Note that lack of information losslessness in the more restrictive sense of [30] is not in
contradiction with the ability to reconstruct the source at the legitimate decoder. All it means is that reconstruction
of ™ may require more information than just (z1,y", k", zn+1), for example, some additional data from times later
than n 4+ 1 may be needed.



Finally, let

os(x) = hran—i%p os(z"), (7)

and define the finite—state encryptability of x as

o(x) = lim os(x). (8)

§—00

Our purpose it to characterize these quantities and to point out how they can be achieved in

principle.
3 Main Result

Incremental parsing [30] of a string 2™ is a sequential procedure of parsing ™ into distinct phrases,
where each new parsed phrase is the shortest string that has not been encountered before as a
phrase of z", with the possible exception of the last phrase that might be incomplete. Let c(z™)
denote the number of phrases in LZ incremental parsing of ™. The LZ complexity of ™ is defined

as
A c(z™)logc(x™)
—

9)

prz(z")

The finite—state compressibility, p(x), of the infinite sequence = (z1,x2,...) is defined, in [30],
as the best compression ratio achieved by IL finite—state encoders, analogously to the above def-

inition of finite-state encryptability. From Theorems 1, 2 and 3 of [30], it follows that prz(x) a
limsup,,_, . prz(z") is equal to p(x).

The following theorem establishes a lower bound on os(z™) in terms of prz(x™) and hence a

lower bound of o(x) in terms of p(x).

Theorem 1 (Converse to a coding theorem): For every x",
os(@") = prz(a") — ds(n), (10)

where d5(n) is independent of ™ and behaves according to

slog(log n)) '

N oo (11)

5y(n) = o(

Consequently, o(x) > p(x).



Discussion. A few comments on Theorem 1 are in order.

1. It is readily observed that a compatible direct theorem holds, simply by applying the LZ ‘78
algorithm followed by one-time pad encryption of the compressed bits. The resulting key—
rate needed is then upper bounded by 1[c(2™) + 1] log[2a(c(z™) + 1)], following [30, Theorem
2], which is, within negligible terms, equal to prz(z™). Thus, o(x) = p(x).

2. Consider the difference between the upper bound pertaining to the direct part (as mentioned
in item no. 1 above) and the lower bound of the converse part. The behavior of this difference
is O(aslog(logn)/y/logn). This behavior is different from the behavior of the correspond-
ing gap in compression (Theorems 1 and 2 in [30]), which is O([log(2a)]log(8as?)/logn).
The guaranteed convergence to optimality is therefore considerably slower in the encryption

problem.

3. As will be seen in the proof of Theorem 1, o4(z") is first lower bounded in terms of the m-th
order empirical entropy associated with ™ (namely, the entropy associated with the relative
frequency of non—overlapping m—blocks of z™), where m is a large positive integer, and then
this empirical entropy in turn is further lower bounded in terms of prz(z™). The reason for
the latter passage is to get rid of the dependence of the main term of the lower bound on the
parameter m, which is arbitrary. This also helps to select the optimum growth rate of m as

a function of n.

4. We already mentioned that the definition of the IL property here is somewhat more relaxed
than in [30] (see footnote no. 2). Moreover, it is possible to relax this requirement even
further by allowing a relatively small uncertainty in ™ given (z1, k", f(z1, 2", k™), g(21,2"))

(see Subsection 4.2), at the possible cost of further slowing down the convergence of d5(n).

Proof. Let m divide n and consider the partition of ™ into n/m non-overlapping m-—vectors

im

X1, L2, ..., Ty/m, Where x; = Tl ymg1

Recall that for a given z(;_1)n,41 and @;, the length I; of

k; = k%ﬁl)m 41 is uniquely determined as l; = A(z;, x?ﬁl)m +1)' Let us now define a joint empirical

distribution of several variables. For every a™ € X™, 2,2’ € Z, and every positive integer [, let

n/m
m .
PXmZZ/L(am,z,z/,l) = Z l{xzﬁl)mH = am,Z(i_l)mH = 2, Zim+1 = z/,A(zjam) =1}. (12)
=1



Now, define
Prmxmymzgzip (K™, a™ 0™, 2,2 1) = 2_lPXmZZ/L(am,z,z’,l) O™ = f(z,a™ k™) } (13)

Throughout this proof, all information measures are defined w.r.t. Pgmxmymzz/. Consider the

following chain of equalities for the given 2™ and an arbitrary encrypter E € £(s):

0(E™
o) = )

1 n/m

= E T Z E z—l)m—i—l
1 n/m

= EizHK(z 1m+1)

_ HE™L) (14)

m

Note that the length of the key for the i-th m-block, I; = ((k;) = A(z(i,l)mﬂ,xé’ﬁl)mﬂ) =

A(z,x¢), is a variable that may take on no more than (m + 1)1 different values,?
t (z 1)m+1

and hence the same is true concerning the random variable L, and so, H(L) < (as — 1) log(m +1).

Thus,
op(a") = H(K™|L)
= H(K™) — I(K™ L)
> [H(K™) - H(L)]
> %[H(Km)—(as—l)log(m—i—l)]. (15)
Now, for all large m,
H(K™) > H(K™Y™)
> I(K™ X™Y™)

= H(X™Y™) — H(X™Y™ K™)

= H(X™) - HX™Y™ K™)

3To see why this is true, observe that the sum that defines I; depends on x; = xéﬁ1)m+1 and z; = Zé'?ll)m+1 only
via the joint type class of pairs (z,z) € X x Z, associated with (x;, z;). Thus, the number of different values that I;
may take cannot exceed the total number of such type classes, which in turn is upper bounded by (m + 1)~



> H(X™) — H(X™Y™ K™, 2,7') — 1(Z, Z'; XY™, K™)

— H(X™)—0—I(Z,Z; XY™ K™)

> H(X™)— H(Z,Z'[Y™, K™)

> H(X™)-—2logs, (16)

where the second equality is due to the perfect security assumption and the third equality is due
to the IL property, assuming that m is sufficiently large. Thus, combining egs. (15) and (16), we

obtain

H(Xm)_210g5_(a8_1)'10g(m+1). (17)

op(z"™) >
m m m

Now, the main term, H(X")/m, is nothing but the normalized m-th order empirical entropy
associated with z™. Next, as discussed earlier, we further lower bound H(X™)/m in terms of
prz(x™) at the (small) price of reducing the bound further by additional terms that will be shown

later to be negligible. In particular, in the sequel, we prove the following inequality:

H(X™) S c(z™)loge(z™)  2m(loga+1)2  2ma?mloga 1 (18)
m n (1 —¢€p)logn n m’
where €, — 0 as n — oo. Combining this with eq. (17), we get
n 1 n
op(z") > c(z")loge(z") 5s(n, m) (19)
n
where
21 1 1) 2m(l 1?2 2ma?™1 1
5o(n,m) = ogs+(as_1)‘ ogm+1) 2m(loga+1) mo*"loga 1 (20)
m m (1 —¢€,)logn n m
We now have the freedom to let m = m, grow slowly enough as a function of n such that

ds(n) = d5(n,my) will vanish for every fixed s. By letting m,, be proportional to \/logn, ds(n)
becomes O(slog(logn)/v/logn). Note that the first two terms of ds(n,m) come from considera-
tions pertaining to encryption, whereas the other terms appear also in compression. The second
term turns out to be the dominant one, which means that in the encryption problem we end
up with slower decay of the redundancy. If we compare the difference between the upper bound
and the lower bound in compression (coding them and converse in [30]), this difference is dom-
inated by a term that is O(([log(2a)]log(8as?)/logn), whereas in encryption the difference is
O(aslog(logn)//logn), namely, a significantly slower decay rate.

10



It remains then to establish eq. (18). To this end, let us first recall the analogous setup of
lossless compression of individual sequences using finite-state machines [30]. A g-state encoder C
is defined by a quintuplet (X, B, X, f, g), where X is the state set of size ¢, B is a finite set of binary
words (possibly of different lengths, including the null word for idling), X" is the finite alphabet of
the source to be compressed, f : ¥ x) — B is the encoder output function, and g : ¥ x) — ¥ is the
next—state function. When an input sequence (z1, 2, ...) is fed sequentially into C = (X, X, B, f, g),
the encoder outputs a sequence of binary words (b1, be, ...), b; € B, while going through a sequence

of states (01,09, ...), according to
bl' = f(O‘i,l'i), Oi+1 = g(ai,xi), 1= 1,2, (21)

where o; is the state of C' at time instant i. A finite—state encoder C' is said to be information

lossless (IL) if for all o; € ¥ and all x;’:+j “lexn j>1, the triple (o, Oi+j,b) uniquely determines

:Eﬁﬂ;l, where o;1; and b = (b;, ..., bi1j—1) are obtained by iterating eq. (21) with initial state o;

itj—1

and x; as input. The length function associated with C' is defined as ¢c(2™) = > iy 4(bi),

where £(b;) is the length of the binary string b; € B.

Consider the incremental parsing of z™ and let ¢(z™) be defined as above. According to [30,

Theorem 1], for any g-state IL encoder and for every z € X", n > 1,

fole") 2 [e(a") + ] 1og 1. (22)

Consider next the Shannon code, operating on x™ by successively encoding its m—blocks, x1, xo,. . .,
T, /m, using an arbitrary probability distribution ). According to this code, @; is encoded using
[—log Q(x;)]| bits, and so, its length function is given by

n/m

(e = 3~ log Q)
= i;mmm)(—mg@(amﬂ
< = > Pxm(a™)[= log Q(a™) + 1]
_ —Ti;PXm(am)logQ(am)—f—;. (23)

It is easy to see that this code can be implemented by a finite—state encoder in the following

manner: At the beginning of each block (¢ mod m = 1), the encoder is always at some fixed initial

11



(i—1)m+j—1

state 9. At time instant t = (i — 1)m + j, 1 < j < m, the state oy is defined as R

The encoder outputs the null string whenever ¢ mod m # 1; when ¢ mod m = 1, the encoder
emits the Shannon codeword of the block just terminated. The total number of states is therefore
q= 01 = (a™—1)/(a—1). It is also easy to see that the Shannon code is IL. For given positive
integers i and j, suppose we are given o;, 04, and (b;, bit1,...,bi+j—1). Then (x;, xit1, ..., Titj—1)
can be reconstructed as follows. If time instants ¢ and ¢ + j fall in the same m-block then o1
conveys full information on (x;, Zit1, ..., Zitj—1). Otherwise, we use the following procedure: The
segment from time ¢ until the end of the current block is reconstructed by decoding the codeword
emitted at the end of this block. Similarly, if there are any additional blocks that are fully contained

in the segment from 7 to 7 4+ j, they can also be reconstructed by decoding. Finally, the portion of

the last block until position ¢ 4+ 7 — 1 can be recovered again from the final state.

It now follows that the length function of the Shannon code must satisfy the lower bound (22)
with ¢ = gm, 2 (@™ —1)/(a—1) < a™, and so,

S Pl g Q") + 1 > ") + ] o (24)

Since this holds for every @ while the right—hand side is independent of ), we may minimize the
left—hand side w.r.t. @ and obtain

c(z")

2mn(1 + log a)?
(1 —¢€,)logn

WX+ 2 fela) + g log Ty
> c(a")loge(z") — C( ") log(4gm,) — di log(4q3,)
> c(x")logc(x™) — c(z™) log(4a®™) — a®™ log(4a>™)
> (™) ") — 2me(z™) (1 + log @) — 2ma®™(1 + log )
(z") ) —

— 2ma®™(1 + log a), (25)

v
o
8

where the last inequality follows from [30, eq. (6)]. Eq. (18) is now obtained by normalizing both
sides by n. This completes the proof of Theorem 1.

4 Extensions

In this section, we extend Theorem 1 in two directions, availability of SI and lossy reconstruction.

As described in the Introduction, we first consider each one of these directions separately, and then

12



jointly.
4.1 Availability of Side Information

Consider the case where SI is available at the encrypter/decrypter/eavesdropper. Suppose that,
in addition to the source sequence , there is an (individual) SI sequence s = (s1, s2,...), s; € S,
i=1,2,..., where § is a finite alphabet. Let us assume first that all three parties (encoder, decoder,

and eavesdropper) have access to s. In the formal model definition, a few modifications are needed:

1. In egs. (1), (3), and (4), the functions A, f and g should be allowed to depend on the

additional argument s;,

2. The definition of perfect security should allow conditioning on s, in addition to the present
conditioning on x. Le., Pr{Y]* = y™|x, s} is independent of @ for all positive integers n, m

(but it is allowed to depend on s).

3. In the definition of an IL encrypter, the quadruple (z, k", f(z,z™, k™), g(z,2™)) should be
extended to be the quintuple (z, k™, s", f(z, 2", k™), g(z,x™)).

In Theorem 1, the LZ complexity of x", should be replaced by the conditional LZ complex-
ity of ™ given s", denoted prz(z™|s™), which is an empirical measure of conditional entropy
(or conditional compressibility), that is defined as follows (see also [11], [28]): Given z" and
s, let us apply the incremental parsing procedure of the LZ algorithm to the sequence of pairs
((x1,51), (x2,82), ..., (Tn,Sn)). According to this procedure, all phrases are distinct with a possi-
ble exception of the last phrase, which might be incomplete. Let ¢(z",s™) denote the number of

distinct phrases. For example,?* if

5 0/1]00]01]

s = 0[1]01]01]

then c(25,5%) = 4. Let ¢(s™) denote the resulting number of distinct phrases of s”, and let s(I)
denote the [th distinct s—phrase, [ = 1,2,...,c(s"). In the above example, ¢(s%) = 3. Denote by

¢i(x™]s™) the number of occurrences of s(l) in the parsing of s”, or equivalently, the number of

4The same example appears in [28].
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distinct @-phrases that jointly appear with s(l). Clearly, Zlcisln ) c(x™s™) = c(z™, s™). In the above
example, s(1) = 0, 8(2) = 1, 8(3) = 01, ¢1(2°%s®) = co(25|s%) = 1, and ¢3(2%)s%) = 2. Now, the
conditional LZ complexity of " given s” is defined as

c(s™)
1
prz(z"|s") = - Z c(x"|s") log cp(z™]s™). (26)
=1

The proof of Theorem 1 extends quite straightforwardly: The definition of Pgm xmym 7z, should be
extended to Pgmgmxmymyzz/, in account of the empirical distribution that includes the m—blocks
of s”. In (16), all the conditionings should include S™ in addition to all existing conditionings,

resulting in the inequality

H(K™)>H(X™|S™)—2logs. (27)

Finally, H(X"|S™) is further lower bounded in terms of prz(z™|s") since the latter is essentially
a lower bound on the the compression ratio of z™ given s" using finite—state encoders (see [11,
eq. (13)]). The direct is obtained by first, compressing =" to about n - prz(z"|s™) bits using the

conditional parsing scheme [28, Lemma 2, eq. (A.11)] and then applying one-time pad encryption.

The same performance can be achieved even if the encrypter does not have access to s, by using
a scheme in the spirit of Slepian—Wolf coding: Randomly assign to each member of X™ a bin, selected
independently at random across the set {1,2,...,2"%}. The encrypter applies one-time pad to the
(nR)-bit binary representation of the bin index of z™. The decrypter, first decrypts the bin index
using the key and then seeks a sequence & within the given bin, which satisfies prz(2"|s") < R—e.
If there is one and only one such sequence, then it becomes the decoded message, otherwise an error
is declared. This scheme works, just like the ordinary SW coding scheme, because the number of
{&"} for which ppz(#"|s") < R — € does not exceed 2"f—et+O(og(logn)/logn)l 98 T,emma 2]. The
weakness of this is that prior knowledge of (a tight upper bound on) prz(z"|s") is required. If, for
example, it is known that x” is a noisy version of s”, generated, say, by a known additive channel,

then R should be essentially the entropy rate of the noise.

The case where the legitimate receiver and the eavesdropper have access to different SI's will

be discussed in Subsection 4.3, where we also extend the scope to lossy reconstruction.
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4.2 Lossy Reconstruction

Suppose that we are content with a lossy reconstruction, ", at the legitimate receiver. In general,
this reconstruction may be a random vector due to possible dependence on the random key bits.
It is required, however, that d(z"™,2") < nD with probability one, for some distortion measure d.
Then, in Theorem 1, prz(2™) should be replaced by the “LZ rate—distortion function” of z™, which

is defined as

1>

rrz(D;x") prz(2"). (28)

{n: d(an ") <nD}
In the proof of Theorem 1, the joint distribution Pper xom gmym 577, should be defined as the expec-
tation (w.r.t. the randomness of the key) of the m—th order empirical distribution extracted from
the sequences (K™, 2™, 2", y") and the resulting states {z(i,l)mﬂ}?:/?ln and key lengths {ll}?z/gn The
definition of the IL property can be slightly relaxed to a notion of “nearly IL” (NIL) property,
which allows recovery with small uncertainty for all large enough n. In particular, we shall assume

i+n

i

i—1 i—1 i—1
L D), gz, 2

that given w = (zi, K7™, f (24, 2] : ), ﬁ:?H_l must lie, with probability one,

in a subset A, (w) C X", where’

1
2 lim — logmax | A, (w)| = 0. (29)

n—o0 7N, w

Tin

Perfect security should be defined as statistical independence between the cryptogram and both
the source and reconstruction, i.e., the probability of any segment of {y;} should not depend on

either x or .

In the proof of the converse part, in eq. (16), X" should be replaced by X™ in all places, and

we get
H(K™) > H(X™) - 2log s — mim, (30)
as H(X™[Yy™ K™ Z Z')/m would be upper bounded by 7,,. Then, H(X™)/m is further lower
bounded in terms of Eprz(Z™), essentially in the same way as before, where here we have also

used the fact that, due to the concavity of the entropy functional, H (X ™) is lower bounded by the

expected m—th order conditional empirical entropy pertaining to the realizations of Z". Finally,

This might be the case if unambiguous reconstruction of i“;”'i_l requires additional information from times later
than ¢t = n+4— 1. For example, if the encrypter works in blocks of fixed size m, " is deterministic, and n > m, then
by viewing the block code as finite—state machine as before, there might be uncertainty in not more than the m last
symbols of 2" in case the last block is incomplete (e.g., when m does not divide n or the n—block considered is not

synchronized to the m-blocks). In this case, | A, (w)| < |X|™, which is fixed, independent of n, and so 1, = O(1/n).
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since we require d(z",2") < nD with probability one, then Eprz(z™) is trivially further lower

bounded by rrz(D;x™).

Again, the direct is obvious, and it implies that at least asymptotically, there is nothing to
gain from randomizing the reconstruction: The best choice of ™ is the one with minimum LZ
complexity within the sphere of radius nD around x™. This conclusion is not obvious a—priori as
one might speculate that a randomized reconstruction, depending on the key, may potentially be

more secure than a deterministic one.

Note that we have not assumed anything on the distortion measure d, not even additivity.
Another difference between Theorem 1 of the lossless case and its present extension to the lossy
case, is that we are know longer able to characterize the rate of convergence of d5(n), as it depends
on the rate of decay of n,,. In fact, we could have replaced the IL property we assumed in the
lossless case by the NIL property there too, but again, the cost would be the loss the ability to
specify the behavior of §,,.

4.3 Lossy Reconstruction With Side Information

The simultaneous extension of Theorem 1, allowing both distortion D and SI s™ leads, with the
obvious modifications, to min{prz(2"|s") : d(z",2") < nD}, whose achievability is conceptu-
ally straightforward when all parties have access to s”, including the encrypter. But what if the

encrypter does not have access to s™?

In this case, there is no longer an apparent way to characterize the minimum key rate that must
be consumed in terms of LZ complexities. This should not be surprising in view of the fact that
even in the less involved problem of pure lossy compression of individual sequences with SI available
at the decoder, performance is no longer characterized in terms of the LZ complexity (see, e.g., [13]
and references therein). Similarly as in [13], here we are able to give a certain characterization for
the case where the decrypter is also modeled as an FSM. While our performance characterization
may not seem very explicit, the main message behind it (like in [13]) is that the performance of the
best s—state encrypter—decrypter can be achieved by block codes of length m within a redundancy

term that decays as m — oo for every fixed s.

Referring to our definition of the finite—state encrypter in Section 2, we also model the decrypter
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as a device that implements the following recursive equations:

Z£+1 = 9’(21/-,%,81‘) 1=1,2,... (31)

Ti—r = f/(ZZ{,yi,Si,ki) =74+ 1,7+2,... (32)

where 7 (non—negative integer) is the encoding-decoding delay and z; € Z is the state of the
decrypter at time t. We also model the channel from z™ to s" as a memoryless channel
n
Pgnixn(s"]a") = HIPS\X(SA%) (33)
=
We argue that the minimum key rate consumed by any finite-state encrypter—decrypter with s
states and delay 7 is lower bounded by 74(D + Tdmax/m), where dmax = max, ; d(z, ) is assumed
finite and where ry(D) is defined as the minimum of H(K™|L)/m = L3751 Pr(l) over all
random variables (Y, W, L) such that: (i) the support of Py, is of size (m + 1)*~1, (i) X —
5™ — Y is a Markov chain (perfect security), (iii) miny, E{d(X™, h(W, L,U%, S™,Y,)) < mD, (iv)
(W,L) — X™ — §™ is a Markov chain and Y = g(W, L, X™, U%) for some deterministic function
g, (v) the alphabet size of W is s2, and (vi) the alphabet size of ¥ is the minimum needed (by the

Carathéodory theorem) in order to maintain (i)-(v).

Consider again the partition of a block of length n into n/m non-overlapping blocks, each
of length m, along with the induced joint empirical distribution Pgmxmym 7/, defined as before
except that now Z’ is the random variable that designates the relative frequency of the state of the

decrypter z; at times t =im + 1,4 =1,2,...,n/m. Next, define

First, observe that y%i{n depends (deterministically) only on Zip41, Tt ', and kfﬂi{” Similarly
~im—T4+m im+m  im+m im+m
Ty 711 depends only on k; 1", sy, 2,04 and [ Let us denote then
im—T+m __ . im+m pim—+m
Yim—ri1 = 9(Zim+1, L o1 ki 1)
and
~im—T1+m __ / im+m _im+m im+m
im—r1 = P(Zima 1 LR 1 St Yimat )
Assuming that m > 7, let 2/ THm 2 p/( , kimm gimrm L immy Che defined simply b
& 7 im+1 = im+1> 5 Rim41 5 Sim41 > Yim41 ) ply by

truncating the first 7 components of h(z},, .1, k%ﬂ”, s%ﬂ”, y%ﬂn) Next, extend the definition
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of Pgmgmxmymyzz, to Prmy xmgm-dymgmy by defining PXm,T‘KmLSMXmYmZ,L as a degenerate
PMF that puts all its mass on X™ 7 = B/(Z',L,K™,8™ Y™) = W (Z',L,U* ™ Y™). Now
observe that eq. (34) implies that (Y™, 7, Z' L) — X™ — S™ is a Markov chain. For the purpose
of obtaining a lower bound on the performance of finite—state encryption—decryption systems on the
consumed key rate, it is legitimate to let g include dependence on Z’ and to let h include dependence
on Z in addition to their dependencies on the other variables involved. By doing so, the random
variables Z and Z’ appear together in all relevant places of the characterization and thus, we can
define W = (Z, Z') which is a random variable whose alphabet size is s2. The (variable-length)
string Y can be replaced by a single random variable Y with the suitable alphabet size as defined

above.

As for the distortion, we have

1 .

D > —E{d@",X")}
mn
1

> EE{d(me‘r’meT)}
> %[E{d(Xm, Xm)} -7 dmax] (35)

where X™ is defined by concatenating X™7T with a random 7-vector in X7 that is an arbitrary
function of (Z', L,U*, S™,Y™) (or (W,L,U%, S™ Y™)). Thus, the minimum required key rate,
H(K™|L)/m, of any s—state encrypter—decrypter cannot be smaller than rs(D + 7 - dpmax/m) by

definition.

We can achieve this performance by block codes as follows. For a given empirical distribution
of X™ and SI channel Pg|y, find the optimum distribution conditional distribution Py -z xm, the
encrypter g and the decrypter h that achieve r4(D). For every x;, i = 1,2,...,n/m, apply the
channel PWL|Xm to generate w; and [; given «;, and then compute g; = g(wi,li,wi,uli). Next,
transmit g; plus one-time pad encrypted versions of w; and [; (to avoid any leakage of information
concerning x; via these random variables). These encryptions of w; and [; require extra key rates
of (2logs)/m and (as — 1)(logm)/m, respectively. The information concerning the optimum h
should be transmitted to the decrypter once in an n—block. Its one-time pad encryption requires
additional key rate given by the description length of A, which depends only on m (as well as the
alphabet sizes), normalized by n, and hence it is negligible when n > m. The decrypter simply

applies the decoding function h and outputs the reconstruction.
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Finally, note that if the eavesdropper has another version of the side information sequence, say,

5" (generated from z" by another known memoryless channel Pg‘ ), everything remains the same

except that the perfect security requirement (ii) is replaced by X™ — Sm Y.
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