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Background

Classical joint source–channel data processing inequality (DPI) for
U → X → Y → V :

R(D) ≤ I(U ;V ) ≤ I(X;Y ) ≤ C ⇒ D ≥ R−1(C).

Ziv and Zakai (1973) generalized to:

RQ(D) ≤ IQ(U ;V ) ≤ IQ(X;Y ) ≤ CQ ⇒ D ≥ R−1
Q (CQ),

where

IQ(A; B) = E



log Q

„
P (A)P (B)

P (A, B)

«ff

for a general convex function Q (see also Csiszár’s f–divergence, 1972).
Further generalization (Zakai & Ziv, 1975) to multivariate convex functions

IQ(A; B) = E



log Q

„
µ1(A, B)

P (A, B)
, . . . ,

µk(A, B)

P (A, B)

«ff

.
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Background (Cont’d)

Gurantz (1974) examined

G(Y |x, x1, . . . , xk) =

Z

Y
dy · PY |X(y|x) ×

Q1

 

PY |X(y|x1)

PY |X(y|x)
· Q2

 

PY |X(y|x2)

PY |X(y|x1)
· Q3

 

. . . Qk

 

PY |X(y|xk)

PY |X(y|xk−1)

!

. . .

!!!

,

and showed that for X → Y → Z,

G(Y, x, x1, . . . , xk) ≥ G(Z, x, x1, . . . , xk).

This yields RG(U ; V ) ≤ CG w.r.t. IG(A; B) = E{G(B|A,A1, . . . , Ak)}, where

E{·} is w.r.t. PAB(a, b) × PA(a1) × . . . × PA(ak).

While IG can be shown to be a special case of the ZZ75 information measure,

it has an interesting structure that calls for further study.
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Choice of the Convex Functions

Consider the functions

Q1(t) = −ta1 0 ≤ a1 ≤ 1

Qi(t) = tai 0 ≤ ai ≤ 1, 2 ≤ i ≤ k

leading to

G(Y |x0, x1, . . . , xk) = −
Z

Y
dyPY |X(y|x0) ×

0

@
PY |X(y|x1)

PY |X(y|x0)

 

PY |X(y|x2)

PY |X(y|x1)

 

. . .

 

PY |X(y|xk)

PY |X(y|xk−1)

!ak
!ak−1

. . .

!a2

1

A

a1

= −
Z

Y
dy

kY

i=0

P bi

Y |X(y|xi)

where bi ≥ 0 for all i and
Pk

i=0 bi = 1.

– p. 4/16



Choice of the Convex Functions (Cont’d)

Choosing bi = 1/(k + 1) for all i yields

IG(X;Y ) = −
Z

Y
dy

»Z

X
dxPX(x)P

1/(k+1)
Y |X

(y|x)

–k+1

= − exp{−E0(ρ, PX)}
˛
˛
˛
˛
ρ=k

.

Comments:

Gallager’s function E0 indeed satisfies a DPI (Kaplan & Shamai 1993).

Choice of integer ρ (ρ = k) is relatively easy:
Square brackets → multidimensional integral → swapping with

R
dy.

Generalizing from the Bhattacharyya distance (k = 1) to a general k.

Questions:

Zakai & Ziv (1975) examined the choice k = 1 in signal parameter
estimation. Is k = 1 the best choice or can it be improved?

How does the best bound of this type compare to other bounds from
estimation theory?
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Application to Estimation Theory

Consider the model

y(t) = x(t, u) + n(t), 0 ≤ t < T,

where x(t, u) is an arbitrary waveform, parameterized by u, with

Z T

0
dt · x2(t, u) = E

and n(t) is AWGN with spectral density N0/2.
It is assumed that u is realization of U ∼ Unif[−1/2,+1/2). We are interested in
lower bounds on

ǫ2 = E(Û − U)2

in the high–SNR regime E/N0 ≫ 1.
We focus on universal lower bounds (fundamental limits), that are independent
of the waveform. No bandwidth constraints are imposed.
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Calculation of RG(D)

The high–res behavior of RG(D) is as follows:

RG(D) ∼

8

<

:

−4c
√

D k = 1

−4
“

k
k−2

”k
· D k > 2

where

c =

Z +∞

−∞

dt

(1 + t2)2
.

For k = 2, we have
log[−RG(D)] ∼ log D

in the sense that

lim
D→0

log[−RG(D)]

log D
= 1.
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Calculation of IG(U ;Y )

For the AWGN channel

P (y|u) ∝ exp

(

− 1

N0

Z T

0
[y(t) − x(t, u)]2dt

)

,

we have

IG(U ; Y ) ≤ − exp



− E

N0
· k

(k + 1)
· (1 − ̺)

ff

,

where

̺ =
1

E
E

(Z T

0
dt · x(t, U)x(t, U ′)

)

=
1

E

Z T

0
dt · [x(t)]2,

and

x(t) = E{x(t, U)} =

Z +1/2

−1/2
du · x(t, u).

Note that

E(1 − ̺) =

Z T

0
dt · Var{x(t, U)}.
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DPI Estimation Error Bounds

Applying the DPI, RG(D) ≤ IG(U ; Y ), we get

ǫ2 ≥

8

<

:

1
16c2 exp{−(1 − ̺)E/N0} k = 1 (Zakai & Ziv ‘75)
1
4

`
1 − 2

k

´k
exp

n

−(1 − ̺) k
k+1 · E

N0

o

k > 2

and for k = 2

lim inf
E/N0→∞

log ǫ2

E/N0
≥ −2

3
· (1 − ρ).

Discussion:

k = 2 is the best choice of k for high SNR.

The bounds are minimized by signals with ̺ = 0.

Upon setting ̺ = 0, the bounds are independent of the modulation.

For the bounds to be tight, ρ(U, U ′) =
R T
0 dt · x(t, U)x(t, U ′)/E should be

nearly zero with high probability – rapidly vanishing correlation.

It is possible to achieve ǫ2 ∼ e−E/(3N0), e.g., by PPM. The gap is 3dB.
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Comparison to Other Bounds

The Weiss–Weinstein bound (WWB) for a given modulation is

WWB = sup
h 6=0

h2 exp{−[1 − r(h)]E/(2N0)}
2(1 − exp{−[1 − r(2h)]E/(2N0)})

,

where

r(h) = ρ(u, u + h) =
1

E

Z T

0
x(t, u)x(t, u + h)dt.

To derive a universal lower bound, this should be minimized over all feasible
correlation functions r(·) – not a trivial minimax problem.
One can lower bound by solving the maximin problem, yielding

WWB =
e−E/N0

2(1 − e−E/N0)
.

But this is inferior to our earlier bounds for k > 1.
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Comparison to Other Bounds (Cont’d)

A simple consideration of M–ary signal detection yields

ǫ2 ≥ 1

8M2
· Q
 r

E

N0
· M

M − 2

!

,

where M = 4, 6, 8, . . .. For high SNR, this is exponentially equivalent to

exp



− E

2N0
· M

M − 2

ff

,

which, for large enough M , is arbitrarily close to e−E/(2N0). This is better than

our best bound e−2E/(3N0).

Q: In what situations is the DPI bound superior to other bounds?
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Channels with Uncertainty – AWGN with Fading

Suppose that there is an unknown nuisance parameter A (e.g., fading),
independent of U and

PY |U (y|u) =

Z +∞

−∞
da · PA(a)PY |U,A(y|u, a).

Think of IG(U ; Y ) as a functional of PY |U , denoted I(PY |U (·|u)), then it is a
convex functional, namely,

I(PY |U (·|u)) =

unknown A
z }| {

I
„Z +∞

−∞
daPA(a)PY |U,A(·|u, a)

«

≤
Z +∞

−∞
daPA(a)I(PY |U,A(·|u, a))

| {z }

known A
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The AWGN Channel With Fading

Consider the channel

y(t) = a · x(t, u) + n(t), 0 ≤ t < T,

where a and u are realizations of A and U , respectively.
Assume that A ∼ N (0, σ2) is independent of U .

PY |U (y|u) ∝
Z +∞

−∞
da · ea2/(2σ2)

√
2πσ2

· exp

(

− 1

N0

Z T

0
[y(t) − a · x(t, u)]2dt

)

∝ exp

8

<

:
θ

"Z T

0
y(t)x(t, u)dt

#2
9

=

;

where

θ
∆
=

2σ2

N2
0 (1 + 2σ2E/N0)

.
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Estimation Error Bounds for AWGN With Fading

Upon calculating IG(U ; Y ) for the AWGN channel with fading (under the rapidly
vanishing correlation assumption), we obtain the high–SNR bounds

ǫ2 ≥ gk

σ
·
r

N0

E

with

gk =
1

4
√

2

„

1 − 2

k

«k „

1 +
1

k

«(k+1)/2

, k = 1, 2, . . .

The tightest bound is obtained with k → ∞. Let

g∞ = lim
k→∞

gk =
1

4
√

2e3/2
= 0.03944.

Thus, our asymptotic lower bound for high SNR is

lim inf
E/N0→∞

r
E

N0
· ǫ2 ≥ 0.03944

σ
.
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Comparison with Other Bounds

The Weiss–Weinstein bound:

WWB ∝ N0

σ2E
.

The M–ary signal detection bound:

lim inf
E/N0→∞

r
E

N0
· ǫ2 ≥ 0.001758

σ
.

The Chazan–Zakai–Ziv bound:

lim inf
E/N0→∞

r
E

N0
· ǫ2 ≥ 0.00716

σ
,

a factor of 5.5 (7.4dB) smaller than the DPI bound.
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Conclusion and Future Work

We examined a family of information measures with a certain structure
(Gurantz, 1974).

For a specific choice of the the convex functions – equivalent to
E0(ρ, PX)|ρ=k – an extension of the Bhattacharyya distance.

Best choice of k: k = 2 for AWGN; k → ∞ – for AWGN with fading.

Bounds compete favorably with existing bounds, especially in situations of
uncertainty. Explanation: convexity of IG(PY |U ).

Future work: Trying to close the gap between upper bound and universal
lower bound of limE/N0→∞ N0 log ǫ2/E.
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