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Background

Classical joint source—channel data processing inequality (DPI) for
U—-X—->Y —>V:

R(D)<I(U;V)<I(X;Y)<C = D>RY0).
Ziv and Zakai (1973) generalized to:
Ro(D) < Io(U; V) < Ip(X;Y)<Cqo = D >Ry (Co),

where

- fusa (008

for a general convex function Q (see also Csiszar’s f—divergence, 1972).
Further generalization (Zakai & Ziv, 1975) to multivariate convex functions

In(A;B) = E {logQ (‘;((i’ﬁ)) N ‘;’j((i’go } .
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Background (Cont’d)

Gurantz (1974) examined

G(Y\fc,xh---,wk)=A}dy-PY|x(y!fL‘) X

Pyx(ylz1) Pyx (ylz2) Py x (ylzk)
oA < Py x (y|z) @ <PYX(?J$1) @3 <Qk <PYX(?JS%1)> ))) 7

and showed that for X — Y — Z,

GY,x,x1,...,x5) > G(Z,x,x1,...,%L).

Thisyields Rq(U; V) < Cg W.rt. Io(A; B) = E{G(B|A, A1,...,A)}, where
E{-}isw.rt. Pag(a,b) x Pg(a1) X ... x Py(ag).
While I can be shown to be a special case of the ZZ75 information measure,

It has an interesting structure that calls for further study.
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Choice of the Convex Functions

Consider the functions

Qi1(t) = —t" 0<a; <1
Qi(t) = t* 0<a; <1, 2<i<k

leading to

(Y20, 21, .. 2%) = — /y dyPy | x (ylvo) X

Py x (ylz1) [ Pyx(ylz2) Py x(ylzg) \ e "
Py x(ylro) \ Pyix(ylz1) \ \ Pyix(WlTe—1)

/dyH Y|X (y]z4)

where b; > 0 for all i and 335 b; = 1.

ax
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Choice of the Convex Functions (Cont'd)

Choosing b; = 1/(k + 1) for all 7 yields

k+1
IG(X;Y):—/ydy dexPX(x)P;/&*”(yyx)

Comments:
® Gallager’'s function Ej indeed satisfies a DPI (Kaplan & Shamai 1993).

® Choice of integer p (p = k) is relatively easy:
Square brackets — multidimensional integral — swapping with | dy.

® Generalizing from the Bhattacharyya distance (k = 1) to a general k.
Questions:

® Zakai & Ziv (1975) examined the choice k£ = 1 in signal parameter
estimation. Is k£ = 1 the best choice or can it be improved?

® How does the best bound of this type compare to other bounds from
estimation theory?
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Application to Estimation Theory

Consider the model
y(t) = x(t,u) +n(t), 0<t<T,

where x(t,u) Is an arbitrary waveform, parameterized by w, with

T
/ dt - z%(t,u) = E
0

and n(t) iIs AWGN with spectral density Ng/2.
It is assumed that « is realization of U ~ Unif[—1/2,4+1/2). We are interested in
lower bounds on

A

2 =EU -U)*

in the high—SNR regime E/Ngy > 1.
We focus on universal lower bounds (fundamental limits), that are independent
of the waveform. No bandwidth constraints are imposed.
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Calculation of R (D)

The high—res behavior of R (D) is as follows:

—4¢ev/ D k =

RG(D)N{ —4(%)k-0 k> 2

where

_/+°O dt
Tl ¥

log|—Rg(D)] ~ log D

For &k = 2, we have

in the sense that
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Calculation of I (U;Y)

For the AWGN channel

T
P(ylu) o< exp {—]\1,0 /0 ly(t) — (2, u)]th} :

we have
E k
where
E{/ dt - z(t, U)z tU} /dt |

and

+1/2

z(t) = E{z(t,U)} = / du - z(t,u).

1/2

Note that

T
E(1 - o) :/O dt - Var{z(t, U)}.
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DPI Estimation Error Bounds

Applying the DPI, R (D) < I (U;Y), we get

2 >

. exp{—(1 = 0)5/No} k=1 (Zakai & Ziv ‘75)
i( 7) eXP{ (1—0) 5y - Nﬁ} k> 2

and for £k =2

loge_ 2
lim inf >_Z.(1=p).
pminf g = T3 (=p)

Discussion:

9

e o @

°

k = 2 Is the best choice of £ for high SNR.
The bounds are minimized by signals with ¢ = 0.

Upon setting ¢ = 0, the bounds are independent of the modulation.

For the bounds to be tight, p(U, U") = [ dt - 2(t, U)x(t,U’)/E should be
nearly zero with high probability — rapidly vanishing correlation.

It is possible to achieve €2 ~ ¢~ F/(3No) e g., by PPM. The gap is 3dB.
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Comparison to Other Bounds

The Weiss—Weinstein bound (WWB) for a given modulation is

— su h? exp{—[1 — r(h)|E/(2No)}
WWB = hg 2(1 — exp{—[1 — r(2h)] E/(2No)})’

where

T
r(h) = plu,u+h) = /O ot w)a(t, u+ h)dt.

To derive a universal lower bound, this should be minimized over all feasible
correlation functions r(-) — not a trivial minimax problem.
One can lower bound by solving the maximin problem, yielding

o—E/No

2(1 — e~ E/No)

WWB =

But this is inferior to our earlier bounds for k& > 1.
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Comparison to Other Bounds (Cont’d)

A simple consideration of M—ary signal detection yields
1 0 \/ E M
8M? No M—-2]"
where M = 4,6, 8, .... For high SNR, this is exponentially equivalent to
. E M
X [— .
Pl72Ng M —2f°

which, for large enough M, is arbitrarily close to e~ £/(2No)  This is better than
our best bound e~ 2F/(3No),

2 >

Q: In what situations is the DPI bound superior to other bounds?

—p. 1171



Channels with Uncertainty — AWGN with Fading

Suppose that there is an unknown nuisance parameter A (e.g., fading),
iIndependent of U and

+00
Py (ylu) = / da - Pa(a)Py|u.a (ylu, a)

— O
Think of I(U;Y') as a functional of Py-;;, denoted Z(Py i (-|u)), then itis a
convex functional, namely,

unknown 4

r N\

2Ry ) =7 ([ daPa@Pyioaiusa)

— 00

+00
< / daPa(a)Z(Py .4 (-|u, )

— 0
~ /

known A

—p. 12/



The AWGN Channel With Fading

Consider the channel
y(t) =a-x(t,u) +n(t), 0<t<T

where a and u are realizations of A and U, respectively.
Assume that A ~ A/(0,c?) is independent of U.

too 2a%/(20%) . T ,
Py (ylu) / da Cexpd — / () — a- (¢, w)]2dt
No Jo

—00 V2o
T 2
X exp {9 [/ y(t)x(t,u)dt] }
0
where
2
0 A 20

NE(1+20%2E/Ng)
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Estimation Error Bounds for ANGN With Fading

Upon calculating I (U;Y) for the AWGN channel with fading (under the rapidly
vanishing correlation assumption), we obtain the high—SNR bounds

No
E

k (k+1)/2
1 2 1
9k = 4\/—<1_E> <1+E> : k=1,2,...

The tightest bound is obtained with £k — oco. Let

2> 9k
o

with

= 1i = = 0.03944.
Joo kLH;o Ik 4\/563/2

Thus, our asymptotic lower bound for high SNR is

i inf /E —22 0.03944.
E/Ng—o0 No o
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Comparison with Other Bounds

The Weiss—Weinstein bound:

No

The M-ary signal detection bound:

— .001
lim inf £ €2 > 0.00 758.
E/Ny—oo \ No o

The Chazan-Zakai—Ziv bound:

lim inf £ €2 > 0'00716,
E/NO—>oo NO o

a factor of 5.5 (7.4dB) smaller than the DPI bound.
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Conclusion and Future Work

We examined a family of information measures with a certain structure
(Gurantz, 1974).

For a specific choice of the the convex functions — equivalent to
Eo(p, Px)|,=r — an extension of the Bhattacharyya distance.

Best choice of k: k£ = 2 for AWGN; &k — oo — for AWGN with fading.

Bounds compete favorably with existing bounds, especially in situations of
uncertainty. Explanation: convexity of Zg (Py /).

Future work: Trying to close the gap between upper bound and universal
lower bound of lim g/, ., Nologe2/E.
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