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Background and Motivation

The analysis of redundancy of lossless coding has been studied extensively:

Capocelli & De Santis (‘92), Gallager (‘78), Jacquet & Szpankowski (‘95),

Krichevsky (‘68), Louchard & Szpankowski (‘97), Savari & Gallager (‘97),...

Szpankowski (‘00) analyzed the asymptotic (unnormalized) redundancy of the

Shannon code, the Huffman code and others for a DMS, and discovered a

weird behavior:

For a binary DMS, let α
△
= log2

1−p
p . Then, for the Shannon code

Rn
△
= E{L(X1, . . . , Xn)} − nH =

(

1
2 + o(n) α irrational

oscillatory α rational

The frequency of the oscillations in the 2nd line – dictated by the integer

denominator of α.
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Background and Motivation (Cont’d)

Q: What is the explanation for this erratic behavior?

Our purpose in this work is to try to provide some insight by drawing an

analogy with the theory of wave diffraction:

Perfect crystal (periodic lattice) ⇒ Bragg peaks.

Disordered medium ⇒ continuous diffraction pattern (no Bragg peaks).

The first case is parallel to rational α, and the second – to irrational α.
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Bragg Diffraction

θ d

2d sin θ = nλ, n = 0, 1, 2, . . .

– p. 4/15



Bragg Diffraction (Cont’d)

λ

I

Bragg peaks
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The Hendricks–Teller (HT) Model (1942)

Assume that the distances between consecutive layers are selected

independently at random from a finite set.

For example, distance d0 w.p. p and distance d1 w.p. 1 − p.

d0 and d1 are commensurate (d1/d0 – rational) ⇒ ∃ wavelength λ1 s.t. both

2d0 sin θ and 2d1 sin θ are multiples of λ1: Bragg peaks (constructive

interference) appear at all wavelengths λn = λ1/n.

d0 and d1 incommensurable ⇒ no such wavenlengths exist – no Bragg peaks.

p and 1 − p of the source are the same as those of the HT model.

α = log2
1−p

p is analogous to d1/d0.

In the oscillatory case, the fundamental frequency of the oscillations of

Rn is related to the fundamental wavenumber of the Bragg peaks.
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The Main Common Mathematical Facts

Let p0, p1, . . . , pM−1 be probabilities, and define

Cm = p0 +

M−1
X

j=1

pj exp{2πimαj}, αj ∈ IR.

|Cm| ≤ 1 for all m.

Cm = 1 for some m 6= 0 if {αj} are all rational. Otherwise, |Cm| < 1 ∀ m.

In the commensurate case, the smallest m 6= 0 for which Cm = 1 is the
common denominator m0 of all {αj}.

Cm = 1 for multiples of m0 and only for these integers.
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Sketch of the Redundancy Analysis (Szpankowski ‘00)

Szpankowski derived the following asymptotic formula for the binary source

whose extension to the M–ary source is as follows:

Rn =

(

1
2 + 1

m0

`

1
2 − 〈βm0n〉

´

+ o(1) all {αj} are rational
1
2 + o(1) otherwise

where 〈x〉 = x − ⌊x⌋ = fractional part of x,

αj = log2
p0

pj
,

β = − log2 p0.

and

m0 = common denominator of all {αj}
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Sketch of Analysis (Cont’d)

Consider the Fourier series expansion of the periodic function 〈x〉:

〈x〉 =
1

2
−

X

m6=0

exp{2πimx}

2πim

Applying to Rn = E⌈− log2 P (X1, . . . , Xn)⌉ − nH:

Rn =
1

2
+

X

m6=0

e−2πimn log p0

2πim

2

4p0 +

M−1
X

j=1

pj exp
˘

2πim log(p0/pj)
¯

3

5

n

=
1

2
+

X

m6=0

e−2πimn log p0

2πim
· (Cm)n

where

Cm = p0 +

M−1
X

j=1

pj exp
˘

2πim log(p0/pj)
¯

.
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Sketch of Analysis (Cont’d)

Rn =
1

2
+

X

m6=0

e2πimnβ

2πim
· (Cm)n

Not all αj = log p0/pj rational:
⇒ |Cm| < 1 ∀ m ⇒ Cn

m → 0 ⇒ Rn → 1/2.

All αj = log p0/pj rational ⇒ Ckm0
= 1:

Rn ≈
1

2
+

X

k 6=0

e2πikm0βn

2πikm0

=
1

2
+

1

m0

X

k 6=0

e2πikβm0n

2πik

=
1

2
+

1

m0

„

1

2
− 〈βm0n〉

«

, (1)

Fundamental frequency of oscillations: ω0 = 2πm0β.
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The Hendrick–Teller Model (1D)

Let the atoms be in locations Z0, Z1, Z2, . . . , Zn−1 with spacings
∆j = Zj − Zj−1, j = 1, 2, . . . , n − 1 being i.i.d. RV’s taking values in
{d0, . . . , dM−1} with probabilities {p0, . . . , pM−1}.

Each point (atom) at Zi contributes a scattered wave designated by the phasor
e−iqZj with q = 2π/λ being understood as a wavenumber. Thus, the
superposition

U(q) =
X

j

e−iqZj

gives rise to the structure function (intensity):

I(q) = E{|U(q)‖2} =
X

k,ℓ

E{eiq(Zk−Zℓ)} = n + I0(q) + I∗0 (q)

with
I0(q) =

X

k>ℓ

E{eiq(Zk−Zℓ)} =
X

k>ℓ

[E{eiq∆1 ]k−ℓ.
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The Hendrick–Teller Model (Cont’d)

I0(q) =
X

k>ℓ

[E{eiq∆1}]k−ℓ =

n−1
X

r=1

(n − r)[C(q)]r.

with

C(q) =

M−1
X

j=0

pje
iqdj .

The intensity is then given by

I(q) ≈ n ·
1 − |C(q)|2

|1 − C(q)|2
.
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The Hendrick–Teller Model (Cont’d)

There are singularities (= Bragg peaks) if there are values of q with C(q) = 1.
Let qm = 2πm/d0:

Cm = C(qm) = p0 +

M−1
X

j=1

pje
2πimdj/d0 ,

and we have the same Cm but now

αj =
dj

d0
,

which are all rational iff {dj} are commensurate.

Bragg peaks at all multiples of qm0
= 2πm0/d0.

– p. 13/15



Summarizing the Analogy

Letter probabilities {pj} ⇔ Distance probabilities {pj}.

Log-probability ratios αj = log p0/pj ⇔ distance ratios αj = dj/d0.

Oscillatory behavior or Rn ⇔ Bragg peaks.

Fund. frequency ω0 = 2πm0β ⇔ fund. wavenumber q0 = 2πm0/d0.

Ongoing work: Extension from i.i.d. to the Markov case (with W. Szpankowski).
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Thank You!

– p. 15/15


	Background and Motivation
	Background and Motivation (Cont'd)
	Bragg Diffraction
	Bragg Diffraction (Cont'd)
	The Hendricks--Teller (HT)
Model (1942)
	The Main Common Mathematical Facts
	Sketch of the Redundancy Analysis (Szpankowski `00)
	Sketch of Analysis (Cont'd)
	Sketch of Analysis (Cont'd)
	The Hendrick--Teller Model (1D)
	The Hendrick--Teller Model (Cont'd)
	The Hendrick--Teller Model (Cont'd)
	Summarizing the Analogy

