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Background and Motivation

The analysis of redundancy of lossless coding has been studied extensively:
Capocelli & De Santis (‘92), Gallager (‘78), Jacquet & Szpankowski (‘95),
Krichevsky (‘68), Louchard & Szpankowski (‘97), Savari & Gallager (‘97),...

Szpankowski (‘00) analyzed the asymptotic (unnormalized) redundancy of the
Shannon code, the Huffman code and others for a DMS, and discovered a

weird behavior:

For a binary DMS, let o = logs 1].%1’. Then, for the Shannon code

1 . .
A 5 +o(n « irrational
Rn =E{L(X1,...,Xp)}—nH={ 72 _() _
oscillatory « rational

The frequency of the oscillations in the 2nd line — dictated by the integer

denominator of .
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Background and Motivation (Cont’d)

Q: What is the explanation for this erratic behavior?

Our purpose in this work is to try to provide some insight by drawing an

analogy with the theory of wave diffraction:

® Perfect crystal (periodic lattice) = Bragg peaks.
® Disordered medium = continuous diffraction pattern (no Bragg peaks).

The first case is parallel to rational «, and the second — to irrational «.
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Bragg Diffraction

2dsinf =n\, n=20,1,2,...
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Bragg Diffraction (Cont’d)

b .- - JBragg peaks

/
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The Hendricks—Teller (HT) Model (1942)

Assume that the distances between consecutive layers are selected

independently at random from a finite set.
For example, distance dy w.p. p and distance d; w.p. 1 — p.

dg and d; are commensurate (d; /dg — rational) = 3 wavelength A\; s.t. both
2dg sin @ and 2d; sin 8 are multiples of \;: Bragg peaks (constructive

Interference) appear at all wavelengths A\, = A1 /n.

dop and d; incommensurable = no such wavenlengths exist — no Bragg peaks.

® pand1 — pofthe source are the same as those of the HT model.

® o =log, =2 is analogous to d; /do.
2 p

® In the oscillatory case, the fundamental frequency of the oscillations of

Ry, is related to the fundamental wavenumber of the Bragg peaks.
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The Main Common Mathematical Facts

Let po,p1,...,pp—1 D€ probabilities, and define

°

M-—-1

Cm = po + Z D exp{27rimozj}, a; € RR.
j=1

|Cm, | < 1 for all m.

Cm = 1 for some m # 0 if {«; } are all rational. Otherwise, |Cn,| <1 Vm.

In the commensurate case, the smallest m # 0 for which C,,, = 1 is the
common denominator mq of all {o;}.

Cm = 1 for multiples of mg and only for these integers.
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Sketch of the Redundancy Analysis (Szpankowski ‘00)

Szpankowski derived the following asymptotic formula for the binary source

whose extension to the M —ary source is as follows:

| 5457 (5 = (Bmon)) +0(1) all {a;} are rational
= +o(1) otherwise

Po
a; = logy —,
J ij
5 = —logs po

and

mo = common denominator of all {«;}
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Sketch of Analysis (Cont'd)

Consider the Fourier series expansion of the periodic function (z):

(z) = % B Z exp{2mimx}

2mim
m=~0

Applying to R, = E[—logy P(X1,...,Xn)] — nH:

1 e—27rimn log po M—1
Rn = 5 + Z i po + Z pj exp { 2mim log(po/pj) }
m=#£0 J=1
1 e—27r7lmn log po
2 " 2 2mwim (Cm)
m7£0
where

M-—-1

Cm =po+ »  pj;exp{2mimlog(po/p;j)}.
j=1
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Sketch of Analysis (Cont'd)

® Notall o; = logpo/p; rational:
= |[Cm|<1Vm = C; —0 = R, — 1/2.

® All aj =logpg/p; rational = Cy,,, = 1:

627mkmoﬂn

Ry

_|_

Q

DO | —

2mikmog

1 e27rik5mon

1
2 mo 21k

1 1 1
= §+m—0 (5 —<5m0n>>,

Fundamental frequency of oscillations: wg = 27mg 3.

(1)
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The Hendrick—Teller Model (1D)

Let the atoms be in locations Zy, Z1, Z», ..., Z,,_1 with spacings
ANj=27;—-7Z;_1,j=1,2,...,n—1being ii.d. RV’s taking values in
{do, ...,dpr—1} with probabilities {pg,...,papr—1}

Each point (atom) at Z; contributes a scattered wave designated by the phasor
e~ 9% with ¢ = 27 /X being understood as a wavenumber. Thus, the

superposition
Ulg) =3 e
J

gives rise to the structure function (intensity):

I(q) = E{JU()*} = Y E{" "7+ 7)Yy = n + Iy (q) + I5(q)
k.0

with
Io(q) = > B{' A2} = Y [E{el 1)

k>¢ k>4
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The Hendrick—Teller Model (Cont’'d)

n—1
Io(g) = Y [E{" 1 =3 "(n—r)[C(q)]".
k>/¢ r=1

with

M—1

-

Clq)= Y  pjel®™.
j=0

The intensity is then given by
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The Hendrick—Teller Model (Cont’'d)

There are singularities (= Bragg peaks) if there are values of g with C'(¢q) = 1.
Let gm = 2mm/dp:

M—1
C,, — C(Qm) — po + Z pj627mmdj/d0,
j=1
and we have the same C,,, but now
d;
OCJ = %,

which are all rational iff {d;} are commensurate.

Bragg peaks at all multiples of g, = 27mg/dp.
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Summarizing the Analogy

® |etter probabilities {p;} < Distance probabilities {p; }.

® Log-probability ratios a; = logpg/p; < distance ratios «; = d; /dp.
® Oscillatory behavior or R,, & Bragg peaks.

®» Fund. frequency wg = 2mmo8 < fund. wavenumber qg = 2wmg/dp.

Ongoing work: Extension from i.i.d. to the Markov case (with W. Szpankowski).
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Thank You!
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