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Background and Motivation

Many problems in IT, SP, and related areas are associated with:

min
s∈S

Eℓ(X, s),

where X = random variable, s = “strategy” (e.g., number, variable, parameter

vector, function, etc.), and ℓ(x, s) is a loss function.

Examples:

Compression: x = data, s = code, ℓ(x, s) = − log s(x) = length [bits].

Estimation: x = (y, z), s = estimator, ℓ(x, s) = [y − s(z)]2 = squared error.

Quantization: x = data, s = quantizer, ℓ(x, s) = ρ(x − s(x)) = error.

Portfolio selection: x = stock, s = portfolio, ℓ(x, s) = log(sT
x) = wealth.

Prediction, sequential decision, ...
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Background and Motivation (Cont’d)

Minimization of exponential moments

min
s∈S

Ee
αℓ(X,s)

α > 0

received much less attention in IT & SP; more in stochastic control.

Motivations:

Robustness.

Risk–sensitivity.

Related to large deviations performance mins Pr{ℓ(X, s) ≥ L}.

Stronger than mins Eℓ(X, s) if minimized by same s for all α.

Q: Can we use knowledge on mins Eℓ(X, s) to solve mins Eeαℓ(X,s)?
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Talk Outline

A: Yes, we can!

Outline:

A simple relationship between the two criteria.

Some general discussion.

Several application examples.

The asymptotic regime.

Future work (if time permits).
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Basic Relationship

Assume ∃s ∈ S s.t.

Z(s)
∆
= EP exp{αℓ(X, s)} < ∞.

s∗ ∈ S minimizes EP exp{αℓ(X, s)} if ∃ probability distribution Q∗ on X s.t.

1. s∗ = argmins∈SEQ∗{ℓ(X, s)}.

2. Q∗(x) ∝ P (x)eαℓ(x,s∗).
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Basic Relationship

Assume ∃s ∈ S s.t.

Z(s)
∆
= EP exp{αℓ(X, s)} < ∞.

s∗ ∈ S minimizes EP exp{αℓ(X, s)} if ∃ probability distribution Q∗ on X s.t.

1. s∗ = argmins∈SEQ∗{ℓ(X, s)}.

2. Q∗(x) ∝ P (x)eαℓ(x,s∗).

Proof.

EP exp{αℓ(X, s)} = EQ∗ exp



αℓ(X, s) + ln
P (X)

Q∗(X)

ff

≥ exp
˘
αEQ∗ℓ(X, s) − D(Q∗‖P )

¯

≥ exp
˘
αEQ∗ℓ(X, s

∗) − D(Q∗‖P )
¯

= EP exp{αℓ(X, s
∗)}.
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Discussion

Partially related results: in stochastic control (e.g., Fleming et al. ‘97).

Related to the Laplace principle: lnEP eY ≡ supQ[EQY − D(Q‖P )].

Saddle point of F (s, Q) = αEQℓ(X, s) − D(Q‖P ).

mins maxQ F (s,Q) ⇔ mins maxQ: D(Q‖P )≤ǫ EQℓ(X, s) – robustness.

Risk–seeking cost:

maxs Ee−αℓ(X,s) ↔ mins minQ[αEQℓ(X, s) + D(Q‖P )].

Corresponds to mins minQ: D(Q‖P )≤ǫ EQℓ(X, s).
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Applications
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Example 1: Lossless Source Coding (Warm-up Exercise)

Here, ℓ(x, s) = − ln s(x), s = probability assignment.

Eeαℓ(X,s) – related to Pr{ℓ(X, s) ≥ L} – buffer overflow.

min
s

EQ{− ln s(X)} ⇒ s
∗ = Q.

Find

Q(x) ∝ P (x)e−α ln Q(x) =
P (x)

[Q(x)]α

⇒ s
∗(x) = Q

∗(x) ∝ [P (x)]1/(1+α)
.

Leads to the Rényi entropy

H1/(1+α)(P ) =
1 + α

α
ln

0

@
X

x∈X

[P (x)]1/(1+α)

1

A .
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Example 2: Quantization

ℓ(x, s) = [x − s(x)]2, s : X → {x̂0, x̂1, . . . , xM−1} quantizer.

For mins EP [X − s(X)]2 – iterative algorithm (Lloyd–Max):

Given x̂0, x̂1, . . . , xM−1, apply NN partioning.

Given a partition, let x̂i = centroid of i–th quantization cell.

Consider the risk–seeking cost

max
s

Ee
−α[X−s(X)]2 ⇔ min

s
min

Q: D(Q‖P )≤ǫ
EQ[X − s(X)]2.

Motivated by friendly pre-processing P → Q: dithering, companding,
watermarking... Equivalent to mins minQ{αEQ[X − s(X)]2 + D(Q‖P )}.
Suggests an iterative Lloyd–Max–like algoritm with two nested loops:

Inner loop: Given Q, apply Lloyd–Max.

Outer loop: Given s, calculate Q(x) ∝ P (x)e−α[x−s(x)]2 .
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Example 3: Non–Bayesian Estimation

Let X ∼ N (θ · u, Λ), u ∈ IRn, Λ ∈ IRn×n.
Estimation: ℓ(x, s) = [θ − s(x)]2, S = all unbiased estimators.
Eθ[θ − s(X)]2 minimized by ML estimator:

s(x) =
u

T Λ−1
x

uT Λ−1u

∆
= v

T
x.

Q: What about Eθeα[θ−s(X)]2?
Let us guess that the same s minimizes also the exonentiated square–error.

Q(x) ∝ exp



−
1

2
(x − θu)T Λ−1(x − θu) + α

“

v
T

x − θ
”2

ff

= exp



−
1

2
(x − θu)T (Λ−1 − 2αvv

T )(x − θu)

ff

,

ML estimator for Q : s(x) =
u

T (Λ−1 − 2αvv
T )x

uT (Λ−1 − 2αvvT )u
= v

T
x.
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Universal Strategies

Consider a situation where X = (X1, . . . , Xn) and for every given s,

EP eαℓ(X ,s) is asymptotically exponential in n, that is

E(s, α, P )
∆
= lim

n→∞

lnEP eαℓ(X ,s)

n
exists.

s∗ is asymptotically optimal: E(s∗, α, P ) ≤ E(s, α, P ) for all s ∈ S.

s∗ is universal: if in addition s∗ is independent of both α and P .

Observation: If ∃ s∗ and a functional λ(Q) s.t.

∀ TQ, ∀ x ∈ TQ, ℓ(x, s∗) ≤ n[λ(Q) + o(1)], and

∀ TQ, ∀ s ∈ S,
˛
˛
˛
˛
TQ ∩ {x : ℓ(x, s) ≥ n[λ(Q) − o(1)]}

˛
˛
˛
˛
≥ e−no(1)|TQ|,

then s∗ is universal and

E(s∗, α, P ) = max
Q

[αλ(Q) − D(Q‖P )].
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Examples of Universal Strategies

Example 1: Fixed–Rate Lossy Compression: Rate = R

X ∼ P is encoded–decoded by s w.r.t. distortion meaure d.

ℓ(x, s) = distortion in reconstructing x using s.

DQ(R) = distortion–rate function of Q.

Here λ(Q) = DQ(R).

Conditions above met by the covering lemma and its converse.
s∗ – based on covering each TQ by ∼ enR spheres of radius DQ(R).

Example 2: Variable–Rate Lossy Compression: Distortion = D

ℓ(x, s) = description length of x using s.

RQ(D) = rate–distortion function of Q.

λ(Q) = RQ(D).

Related results on guessing with a fidelity criterion [Arikan & M, 1998].
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Examples of Universal Strategies (Cont’d)

Example 3: Variable–Rate Lossless Compression

In the lossless case, some refined results are available:
An extension of Rissanen’s universal coding theorem [Rissanen ‘84]:

Given a parametric family of source {Pθ},

1

α
lnEθ exp{αℓ(X , s)} ≥ nH1/(1+α)(Pθ) + (1 − ǫ)

k

2
log n,

for every code s and for every θ, except a subset Aǫ(n) whose volume → 0.

For the class of DMS’s, there is s∗ that satisfied the reversed inequality if
(1 − ǫ) is replaced by (1 + ǫ).
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Examples of Universal Strategies (Cont’d)

Example 4: Universal Prediction
The universal lossless compression result can be harnessed to obtain a
non–trivial lower bound on universal prediction for Gaussian ARMA processes:
For example, let {Xt} be a Gaussian AR(1) process

Xt = θ · Xt−1 + Wt, {Wt} Gaussian i.i.d. with variance σ2

where θ is unknown. Then, denoting f(x)
∆
= 1

2 ( 1
x + ln x − 1):

1

n
ln

"

Eθ exp

(

α

nX

t=1

(Xt − s(Xt−1)2
)#

≥
ασ2

1 − 2ασ2
− f(1 − 2ασ

2)
| {z }

bound even for known θ

+
(1 − ǫ)ασ2

1 − 2ασ2
·
ln n

n
+ o

„
ln n

n

«

| {z }

price of ignorance

for all θ ∈ (−1, 1) except a set Aǫ(n) whose volume → 0.
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Thank You!
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