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Abstract. We draw a certain analogy between the classical information–theoretic

problem of lossy data compression (source coding) of memoryless information sources

and the statistical mechanical behavior of a certain model of a chain of connected

particles (e.g., a polymer) that is subjected to a contracting force. The free energy

difference pertaining to such a contraction turns out to be proportional to the rate–

distortion function in the analogous data compression model, and the contracting force

is proportional to the derivative this function. Beyond the fact that this analogy may

be interesting on its own right, it may provide a physical perspective on the behavior

of optimum schemes for lossy data compression (and perhaps also, an information–

theoretic perspective on certain physical system models). Moreover, it triggers the

derivation of lossy compression performance for systems with memory, using analysis

tools and insights from statistical mechanics.
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1. Introduction

Relationships between information theory and statistical physics have been widely

recognized in the last few decades, from a wide spectrum of aspects. These include

conceptual aspects, of parallelisms and analogies between theoretical principles in

the two disciplines, as well as technical aspects, of mapping between mathematical

formalisms in both fields and borrowing analysis techniques from one field to the other.

One example of such a mapping, is between the paradigm of random codes for channel

coding and certain models of magnetic materials, most notably, Ising models and spin

glass models (see, e.g., [1],[11],[13],[14], and many references therein). Today, it is

quite widely believed that research in the intersection between information theory and

statistical physics may have the potential of fertilizing both disciplines.

This paper is more related to the former aspect mentioned above, namely, the

relationships between the two areas in the conceptual level. However, it has also

ingredients from the second aspect. In particular, let us consider two questions in the

two fields, which at first glance, may seem completely unrelated, but will nevertheless

turn out later to be very related. These are special cases of more general questions that

we study later in this paper.

The first is a simple question in statistical mechanics, and it is about a certain

extension of a model described in [8, page 134, Problem 13]: Consider a one–dimensional

chain of n connected elements (e.g., monomers or whatever basic units that form a

polymer chain), arranged along a straight line (see Fig. 1), and residing in thermal

equilibrium at fixed temperature T0. The are two types of elements, which will be

referred to as type ‘0’ and type ‘1’. The number of elements of each type x (with x

being either ‘0’ or ‘1’) is given by n(x) = nP (x), where P (0) + P (1) = 1 (and so,

n(0) + n(1) = n). Each element of each type may be in one of two different states,

labeled by x̂, where x̂ also takes on the values ‘0’ and ‘1’. The length and the internal

energy of an element of type x at state x̂ are given by d(x, x̂) and ǫ(x̂) (independently

of x), respectively. A contracting force λ < 0 is applied to one edge of the chain while

the other edge is fixed. What is the minimum amount of mechanical work W that must

be carried out by this force, along an isothermal process at temperature T0, in order to

shrink the chain from its original length nD0 (when no force was applied) into a shorter

length, nD, where D < D0 is a given constant?

type ‘1’type ‘0’

d(1, 1)d(0, 0)
λ

nD

d(0, 1) d(1, 0)

Figure 1. A chain with various types of elements and various lengths.

The second question is in information theory. In particular, it is the classical
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problem of lossy source coding, and some of the notation here will deliberately be

chosen to be the same as before: An information source emits a string of n independent

symbols, x1, x2, . . . , xn, where each xi may either be ‘0’ or ‘1’, with probabilities P (0)

and P (1), respectively. A lossy source encoder maps the source string, (x1, . . . , xn), into

a shorter (compressed) representation of average length nR, where R is the coding rate

(compression ratio), and the compatible decoder maps this compressed representation

into a reproduction string, x̂ = (x̂1, . . . , x̂n), where each x̂i is again, either ‘0’ or ‘1’. The

fidelity of the reproduction is measured in terms of a certain distortion (or distance)

function, d(x, x̂) =
∑n

i=1 d(xi, x̂i), which should be as small as possible, so that x̂ would

be as ‘close’ as possible to x.‡ In the limit of large n, what is the minimum coding

rate R = R(D) for which there exists an encoder and decoder such that the average

distortion, 〈d(x, x̂)〉, would not exceed nD?

It turns out, as we shall see in the sequel, that the two questions have intimately

related answers. In particular, the minimum amount of work W , in the first question, is

related to R(D) (a.k.a. the rate–distortion function), of the second question, according

to

W = nkT0R(D), (1)

provided that the Hamiltonian, ǫ(x̂), in the former problem, is given by

ǫ(x̂) = −kT0 ln Q(x̂), (2)

where k is Boltzmann’s constant, and Q(x̂) is the relative frequency (or the empirical

probability) of the symbol x̂ ∈ {0, 1} in the reproduction sequence x̂, pertaining to

an optimum lossy encoder–decoder with average per–symbol distortion D (for large n).

Moreover, the minimum amount of work W , which is simply the free energy difference

between the final equilibrium state and the initial state of the chain, is achieved by a

reversible process, where the compressing force λ grows very slowly from zero, at the

beginning of the process, up to a final level of

λ = kT0R
′(D), (3)

where R′(D) is the derivative of R(D) (see Fig. 2). Thus, physical compression

is strongly related to data compression, and the fundamental physical limit on the

minimum required work is intimately connected to the fundamental information–

theoretic limit of the minimum required coding rate.

This link between the the physical model and the lossy source coding problem is

obtained from a large deviations perspective. The exact details will be seen later on,

but in a nutshell, the idea is this: On the one hand, it is possible to represent R(D)

as the large deviations rate function of a certain rare event, but on the other hand,

this large deviations rate function, involves the use of the Legendre transform, which

is a pivotal concept in thermodynamics and statistical mechanics. Moreover, since this

‡ For example, in lossless compression, x̂ is required to be strictly identical to x̂, in which case

d(x, x̂) = 0. However, in some applications, one might be willing to trade off between compression and

fidelity, i.e., slightly increase the distortion at the benefit of reducing the compression ratio R.
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λ = kT0R
′(D)

nD0

nD

W = nkT0R(D)

Figure 2. Emulation of the rate–distortion function R(D) by a physical system.

Legendre transform is applied to the (logarithm of the) moment generating function

(of the distortion variable), which in turn, has the form a partition function, this paves

the way to the above described analogy. The Legendre transform is associated with

the optimization across a certain parameter, which can be interpreted as either inverse

temperature (as was done, for example, in [9],[10],[15],[16]) or as a (generalized) force,

as proposed here. The interpretation of this parameter as force is somewhat more solid,

for reasons that will become apparent later.

One application of this analogy, between the two models, is a parametric

representation of the rate–distortion function R(D) as an integral of the minimum mean

square error (MMSE) in a certain Bayesian estimation problem, which is obtained in

analogy to a certain variant of the fluctuation–dissipation theorem. This representation

opens the door for derivation of upper and lower bounds on the rate–distortion function

via bounds on the MMSE, as was demonstrated in a companion paper [12].

Another possible application is demonstrated in the present paper: When the setup

is extended to allow information sources with memory (non i.i.d. processes), then the

analogous physical model consists of interactions between the various particles. When

these interactions are sufficiently strong (and with high enough dimension), then the

system exhibits phase transitions. In the information–theoretic domain, these phase

transitions mean irregularities and threshold effects in the behavior of the relevant

information–theoretic function, in this case, the rate–distortion function. Thus, analysis

tools and physical insights are ‘imported’ from statistical mechanics to information
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theory. A particular model example for this is worked out in Section 4.

The outline of the paper is as follows. In Section 2, we provide some relevant

background in information theory, which may safely be skipped by readers that possess

this background. In Section 3, we establish the analogy between lossy source coding and

the above described physical model, and discuss it in detail. In Section 4, we demonstrate

the analysis for a system with memory, as explained in the previous paragraph. Finally,

in Section 5 we summarize and conclude.

2. Information–theoretic background

2.1. General overview

One of the most elementary roles of Information Theory is to provide fundamental

performance limits pertaining to certain tasks of information processing, such as

data compression, error–correction coding, encryption, data hiding, prediction, and

detection/estimation of signals and/or parameters from noisy observations, just to name

a few (see e.g., [3]).

In this paper, our focus is on the first item mentioned – data compression,

a.k.a. source coding, where the mission is to convert a piece of information (say, a

long file), henceforth referred to as the source data, into a shorter (normally, binary)

representation, which enables either perfect recovery of the original information, as in the

case of lossless compression, or non–perfect recovery, where the level of reconstruction

errors (or distortion) should remain within pre-specified limits, which is the case of lossy

data compression.

Lossless compression is possible whenever the statistical characterization of the

source data inherently exhibits some level of redundancy that can be exploited by the

compression scheme, for example, a binary file, where the relative frequency of 1’s

is much larger than that of the 0’s, or when there is a strong statistical dependence

between consecutive bits. These types of redundancy exist, more often than not, in

real–life situations. If some level of errors and distortion are allowed, as in the lossy

case, then compression can be made even more aggressive. The choice between lossless

and lossy data compression depends on the application and the type of data to be

compressed. For example, when it comes to sensitive information, like bank account

information, or a piece of important text, then one may not tolerate any reconstruction

errors at all. On the other hand, images and audio/video files, may suffer some degree

of harmless reconstruction errors (which may be unnoticeable to the human eye or ear,

if designed cleverly) and thus allow stronger compression, which would be very welcome,

since images and video files are typically enormously large. The compression ratio, or

the coding rate, denoted R, is defined as the (average) ratio between the length of the

compressed file (in bits) and the length of the original file.

The basic role of Information Theory, in the context of lossless/lossy source

coding, is to characterize the fundamental limits of compression: For a given statistical
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characterization of the source data, normally modeled by a certain random process,

what is the minimum achievable compression ratio R as a function of the allowed

average distortion, denoted D, which is defined with respect to some distortion function

that measures the degree of proximity between the source data and the recovered

data. The characterization of this minimum achievable R for a given D, denoted as

a function R(D), is called the rate–distortion function of the source with respect to

the prescribed distortion function. For the lossless case, of course, D = 0. Another

important question is how, in principle, one may achieve (or at least approach) this

fundamental limit of optimum performance, R(D)? In this context, there is a big gap

between lossy compression and lossless compression. While for the lossless case, there are

many practical algorithms (most notably, adaptive Huffman codes, Lempel–Ziv codes,

arithmetic codes, and more), in the lossy case, there is unfortunately, no constructive

practical scheme whose performance comes close to R(D).

2.2. The rate–distortion function

The simplest non–trivial model of an information source is that of an i.i.d. process, a.k.a.

a discrete memoryless source (DMS), where the source symbols, x1, x2, . . . , xn, take on

values in a common finite set (alphabet) X , they are statistically independent, and they

are all drawn from the same probability mass function, denoted by P = {P (x), x ∈ X}.

The source string x = (x1, . . . , xn) is compressed into a binary representation§ of length

ℓ = ℓ(x) (which may or may not depend on x), whose average is 〈ℓ(x)〉, and the

compression ratio is R = 〈ℓ(x)〉 /n. In the decoding (or decompression) process, the

compressed representation is mapped into a reproduction string x̂ = (x̂1, x̂2, . . . , x̂n),

where each x̂i, i = 1, 2, . . . , n, takes on values in the reproduction alphabet X̂ (which is

typically either equal to X or to a subset of X , but this is not necessary). The fidelity

of the reconstruction string x̂ relative to the original source string x̂ is measured by

a certain distortion function dn(x, x̂), where the function dn is defined additively as

dn(x, x̂) =
∑n

i=1 d(xi, x̂i), d(·, ·) being a function from X × X̂ to the non–negative reals.

The average distortion per symbol is D = 〈dn(x, x̂)〉 /n.

As said, R(D) is defined (in general) as the infimum of all rates R for which

there exist a sufficiently large n and an encoder–decoder pair for n–blocks, such that

the average distortion per symbol would not exceed D. In the case of a DMS P ,

an elementary coding theorem of Information Theory asserts that R(D) admits the

following formula

R(D) = min I(x; x̂), (4)

where x is a random variable that represents a single source symbol (i.e., it is governed

§ It should be noted that in the case of variable–length coding, where ℓ = ℓ(x) depends on x, the

code should be designed such that the running bit-stream (formed by concatenating compressed strings

corresponding to successive n–blocks from the source) could be uniquely parsed in the correct manner

and then decoded. To this end, the lengths {ℓ(x)} must be collectively large enough so as to satisfy

the Kraft inequality. The details can be found, for example, in [3].
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by P ), I(x; x̂) is the mutual information between x and x̂, i.e.,

I(x; x̂) =

〈

log
W (x̂|x)

Q(x̂)

〉

≡
∑

x∈X

∑

x̂∈X̂

P (x)P (x̂|x) log
W (x̂|x)

Q(x̂)
, (5)

Q(x̂) =
∑

x∈X P (x)W (x̂|x) being the marginal distribution of x̂, which is associated with

a given conditional distribution {W (x̂|x)}, and the minimum is over all these conditional

probability distributions for which

〈d(x, x̂)〉 ≡
∑

x∈X

∑

x̂∈X̂

P (x)W (x̂|x)d(x, x̂) ≤ D. (6)

For D = 0, x̂ must be equal to x with probability one (unless d(x, x̂) = 0 also for some

x̂ 6= x), and then

R(0) = I(x; x) = −〈log P (x)〉 ≡ H, (7)

the Shannon entropy of x, as expected. As mentioned earlier, there are concrete

compression algorithms that come close to H for large n. For D > 0, however, the

proof of achievability of R(D) is non–constructive.

2.3. Random coding

The idea for proving the existence of a sequence of codes (indexed by n) whose

performance approach R(D) as n → ∞, is based on the notion of random coding: If we

can define, for each n, an ensemble of codes of (fixed) rate R, for which the average per–

symbol distortion (across both the randomness of x̂ and the randomness of the code)

is asymptotically less than or equal to D, then there must exist at least one sequence

of codes in that ensemble, with this property. The idea of random coding is useful

because if the ensemble of codes is chosen wisely, the average ensemble performance is

surprisingly easy to derive (in contrast to the performance of a specific code) and proven

to meet R(D) in the limit of large n.

For a given n, consider the following ensemble of codes: Let W ∗ denote the

conditional probability matrix that achieves R(D) and let Q∗ denote the corresponding

marginal distribution of x̂. Consider now a random selection of M = enR reproduction

strings, x̂1, x̂2, . . . , x̂M , each of length n, where each x̂i = (x̂i,1, x̂i,2, . . . , x̂i,n), i =

1, 2, . . . , M , is drawn independently (of all other reproduction strings), according to

Q∗(x̂i) = Q∗(x̂i,1)Q
∗(x̂i,2) · · · Q

∗(x̂i,n). (8)

This randomly chosen code is generated only once and then revealed to the decoder.

Upon observing an incoming source string x, the encoder seeks the first reproduction

string x̂i that achieves dn(x, x̂i) ≤ nD, and then transmits its index i using log2 M =

nR log2 e bits, or equivalently, ln M = nR nats.‖ If no such codeword exists, which

‖ While log2 M has the obvious interpretation of the number of bits needed to specify a number

between 1 and M , the natural base logarithm is often mathematically more convenient to work with.

The quantity lnM can also be thought of as the description length, but in different units, called nats,

rather than bits, where the conversion is according to 1 nat = log2 e bits.
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is referred to as the event of encoding failure, the encoder sends an arbitrary sequence

of nR nats, say, the all–zero sequence. The decoder receives the index i and simply

outputs the corresponding reproduction string x̂i.

Obviously, the per–symbol distortion would be less than D whenever the encoder

does not fail, and so, the main point of the proof is to show that the probability of

failure (across the randomness of x and the ensemble of codes) is vanishingly small

for large n, provided that R is slightly larger than (but can be arbitrarily close to)

R(D), i.e., R = R(D) + ǫ for an arbitrarily small ǫ > 0. The idea is that for any

source string that is typical to P (i.e., the empirical relative frequency of each symbol

in x is close to its probability), one can show (see, e.g., [3]) that the probability that

a single, randomly selected reproduction string x̂ would satisfy dn(x, x̂) ≤ nD, decays

exponentially as exp[−nR(D)]. Thus, the above described random selection of the

entire codebook together with the encoding operation, are equivalent to conducting M

independent trials in the quest for having at least one i for which dn(x, x̂i) ≤ nD,

i = 1, 2, . . . , M . If M = en[R(D)+ǫ], the number of trials is much larger (by a factor of

enǫ) than the reciprocal of the probability of a single ‘success’, exp[−nR(D)], and so,

the probability of obtaining at least one such success (which is case where the encoder

succeeds) tends to unity as n → ∞. We took the liberty of assuming that source string

is typical to P because the probability of seeing a non–typical string is vanishingly small.

2.4. The Large deviations perspective

From the foregoing discussion, we see that R(D) has the additional interpretation of the

exponential rate of the probability of the event dn(x, x̂) ≤ nD, where x is a given string

typical to P and x̂ is randomly drawn i.i.d. under Q∗. Consider the following chain of

equalities and inequalities for bounding the probability of this event from above. Letting

s be a parameter taking an arbitrary non–positive value, we have:

Pr {dn(x, x̂) ≤ nD} = Pr

{

n
∑

i=1

d(xi, x̂i) ≤ nD

}

≤

〈

exp

{

s

[

n
∑

i=1

d(xi, x̂i) − nD

]}〉

= e−nsD

〈

n
∏

i=1

esd(xi,x̂i)

〉

= e−nsD
n
∏

i=1

〈

esd(xi,x̂i)
〉

= e−nsD
∏

x∈X

∏

i: xi=x

〈

esd(x,x̂i)
〉

= e−nsD
∏

x∈X

[〈

esd(x,x̂)
〉]nP (x)

= e−nI(D,s) (9)



A statistical–mechanical view on source coding 9

where I(D, s) is defined as

I(D, s) = exp







−n



sD −
∑

x∈X

P (x) ln





∑

x̂∈X̂

Q∗(x̂)esd(x,x̂)















. (10)

The tightest upper bound is obtained by minimizing it over the range s ≤ 0, which

is equivalent to maximizing I(D, s) in that range. I.e., the tightest upper bound of

this form is e−nI(D), where I(D) = sups≤0 I(D, s) (the Chernoff bound). While this

is merely an upper bound, the methods of large deviations theory (see, e.g., [4]) can

readily be used to establish the fact that the bound e−nI(D) is tight in the exponential

sense, namely, it is the correct asymptotic exponential decay rate of Pr{dn(x, x̂) ≤ nD}.

Accordingly, I(D) is called the large deviations rate function of this event. Combining

this with the foregoing discussion, it follows that R(D) = I(D), which means that an

alternative expression of R(D) is given by

R(D) = sup
s≤0



sD −
∑

x∈X

P (x) ln





∑

x̂∈X̂

Q∗(x̂)esd(x,x̂)







 . (11)

Interestingly, the same expression was obtained in [5, Corollary 4.2.3] using completely

different considerations (see also [15]). In this paper, however, we will also concern

ourselves, more generally, with the rate–distortion function, RQ(D), pertaining to a

given reproduction distribution Q, which may not necessarily be the optimum one, Q∗.

This function is defined similarly as in eq. (4), but with the additional constraint that

the marginal distribution that represents the reproduction would agree with the given Q,

i.e.,
∑

x P (x)W (x̂|x) = Q(x̂). By using the same large deviations arguments as above,

but for an arbitrary random coding distribution Q, one readily observes that RQ(D)

is of the same form as in eq. (11), except that Q∗ is replaced by the given Q (see also

[12]). This expression will now be used as a bridge to the realm of equilibrium statistical

mechanics.

3. Statistical mechanics of source coding

Consider the parametric representation of the rate–distortion function RQ(D), with

respect to a given reproduction distribution Q:

RQ(D) = sup
s≤0



sD −
∑

x∈X

P (x) ln





∑

x̂∈X̂

Q(x̂)esd(x,x̂)







 . (12)

The expression in the inner brackets,

Zx(s) ≡
∑

x̂∈X̂

Q(x̂)esd(x,x̂), (13)

can be thought of as the partition function of a single particle of “type” x, which

is defined as follows. Assuming a certain fixed temperature T = T0, consider the

Hamiltonian

ǫ(x̂) = −kT0 ln Q(x̂). (14)
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Imagine now that this particle may be in various states, indexed by x̂ ∈ X̂ . When a

particle of type x lies in state x̂ its internal energy is ǫ(x̂), as defined above, and its

length is d(x, x̂). Next assume that instead of working with the parameter s, we rescale

and redefine the free parameter as λ, where s = λ/(kT0). Then, λ has the physical

meaning of a force that is conjugate to the length. This force is stretching for λ > 0 and

contracting for λ < 0. With a slight abuse of notation, the Gibbs partition function [7,

Section 4.8] pertaining to a single particle of type x is then given by

Zx(λ) =
∑

x̂∈X̂

exp
{

−
1

kT0
[ǫ(x̂) − λd(x, x̂)]

}

, (15)

and accordingly,

Gx(λ) = −kT0 ln Zx(λ) (16)

is the Gibbs free energy per particle of type x. Thus,

G(λ) =
∑

x∈X

P (x)Gx(λ) (17)

is the average per–particle Gibbs free energy (or the Gibbs free energy density)

pertaining to a system with a total of n non–interacting particles, from |X | different

types, where the number of particles of type x is nP (x), x ∈ X . The Helmholtz free

energy per particle is then given by the Legendre transform

F (D) = sup
λ

[G(λ) + λD]. (18)

However, for D < D0 ≡
∑

x∈X

∑

x̂∈X̂ P (x)Q(x̂)d(x, x̂) (which is the interesting range,

where RQ(D) > 0), the maximizing λ is always non–positive, and so,

F (D) = sup
λ≤0

[G(λ) + λD]. (19)

Invoking now eq. (12), we readily identify that

F (D) = kT0RQ(D), (20)

which supports the analogy between the lossy data compression problem and the

behavior of the statistical–mechanical model of the kind described in the third paragraph

of the Introduction: According to this model, the physical system under discussion is

a long chain with a total of n elements, which is composed of |X | different types of

shorter chains (indexed by x), where the number of elements in the short chain of type

x is nP (x), and where each element of each chain can be in various states, indexed by x̂.

In each state x̂, the internal energy and the length of each element are ǫ(x̂) and d(x, x̂),

as described above. The total length of the chain, when no force is applied, is therefore
∑n

i=1 〈d(xi, x̂i)〉 |λ=0 = nD0. Upon applying a contracting force λ < 0, states of shorter

length become more probable, and the chain shrinks to the length of nD, where D is

related to λ according to the Legendre relation¶ (18) between F (D) and G(λ), which

is given by

λ = F ′(D) = kT0R
′
Q(D), (21)

¶ Since G(λ) is concave and F (D) is convex, the inverse Legendre transform holds as well, and so,

there is one–to–one correspondence between λ and D.
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where F ′(D) and R′
Q(D) are, respectively, the derivatives of F (D) and RQ(D) relative

to D. The inverse relation is, of course,

D = −G′(λ), (22)

where G′(λ) is the derivative of G(λ). Since RQ(D) is proportional to the free en-

ergy, where the system is held in equilibrium at length nD, it also means the minimum

amount of work required in order to shrink the system from length nD0 to length nD,

and this minimum is obtained by a reversible process of slow increase in λ, starting from

zero and ending at the final value given by eq. (21).

Discussion

This analogy between the lossy source coding problem and the statistical–mechanical

model of a chain, may suggest that physical insights may shed light on lossy source

coding and vice versa. We learn, for example, that the contribution of each source

symbol x to the distortion,
∑

i: xi=x d(xi, x̂i), is analogous to the length contributed by

the chain of type x when the contracting force λ is applied. We have also learned that

the local slope of RQ(D) is proportional to a force, which must increase as the chain is

contracted more and more aggressively, and near D = 0, it normally tends to infinity,

as R′
Q(0) = −∞ in most cases. This slope parameter also plays a pivotal role in theory

and practice of lossy source coding: On the theoretical side, it gives rise to a variety of

parametric representations of the rate–distortion function [2],[5], some of which support

the derivation of important, non–trivial bounds. On the more practical side, often data

compression schemes are designed by optimizing an objective function with the structure

of

rate + λ · distortion,

thus λ plays the role of a Lagrange multiplier. This Lagrange multiplier is now

understood to act like a physical force, which can be ‘tuned’ to the desired trade–

off between rate and distortion. As yet another example, the convexity of the rate–

distortion function can be understood from a physical point of view, as the Helmholtz

free energy is also convex, a fact which has a physical explanation (related to the

fluctuation–dissipation theorem), in addition to the mathematical one.

At this point, two technical comments are in order:

(i) We emphasized the fact that the reproduction distribution Q is fixed. For a given

target value of D, one may, of course, have the freedom to select the optimum

distribution Q∗ that minimizes RQ(D), which would yield the rate–distortion

function, R(D), and so, in principle, all the foregoing discussion applies to R(D)

as well. Some caution, however, must be exercised here, because in general, the

optimum Q may depend on D (or equivalently, on s or λ), which means, that in

the analogous physical model, the internal energy ǫ(x̂) depends on the force λ (in

addition to the linear dependence of the term λd(x, x̂)). This kind of dependence

does not support the above described analogy in a natural manner. This is the

reason that we have defined the rate—distortion problem for a fixed Q, as it avoids
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this problem. Thus, even if we pick the optimum Q∗ for a given target distortion

level D, then this Q∗ must be kept unaltered throughout the entire process of

increasing λ from zero to its final value, given by (21), although Q∗ may be sub–

optimum for all intermediate distortion values that are met along the way from D0

to D.

(ii) An alternative interpretation of the parameter s, in the partition function Zx(s),

could be the (negative) inverse temperature, as was suggested in [15] (see also [10]).

In this case, d(x, x̂) would be the internal energy of an element of type x at state

x̂ and Q(x̂), which does not include a power of s, could be understood as being

proportional to the degeneracy (in some coarse–graining process). In this case, the

distortion would have the meaning of internal energy, and since no mechanical work

is involved, this would also be the heat absorbed in the system, whereas RQ(D)

would be related to the entropy of the system. The Legendre transform, in this case,

is the one pertaining to the passage between the microcanonical ensemble and the

canonical one. The advantage of the interpretation of s (or λ) as force, as proposed

here, is that it lends itself naturally to a more general case, where there is more

than one fidelity criterion. For example, suppose there are two fidelity criteria,

with distortion functions d and d′. Here, there would be two conjugate forces, λ

and λ′, respectively (for example, a mechanical force and a magnetic force), and the

physical analogy carries over. On the other hand, this would not work naturally

with the temperature interpretation approach since there is only one temperature

parameter in physics.

We end this section by providing a representation of RQ(D) and D in an integral

form, which follows as a simple consequence of its representation as the Legendre

transform of ln Zx(s), as in eq. (12). Since the maximization problem in (12) is a

convex problem (ln Zx(s) is convex in s), the minimizing s for a given D is obtained by

taking the derivative of the r.h.s., which leads to

D =
∑

x∈X

P (x) ·
∂ ln Zx(s)

∂s

=
∑

x∈X

P (x) ·

∑

x̂∈X̂ Q(x̂)d(x, x̂)esd(x,x̂)

∑

x̂∈X̂ Q(x̂)esd(x,x̂)
. (23)

This equation yields the distortion level D for a given value of the minimizing s in eq.

(12). Let us then denote

Ds ≡
∑

x∈X

P (x) ·

∑

x̂∈X̂ Q(x̂)d(x, x̂)esd(x,x̂)

∑

x̂∈X̂ Q(x̂)esd(x,x̂)
, (24)

which means that

RQ(Ds) = sDs −
∑

x∈X

P (x) ln Zx(s). (25)

Taking the derivative of (24), we readily obtain

dDs

ds
=

∑

x∈X

P (x)
∂

∂s

[

∑

x̂∈X̂ Q(x̂)d(x, x̂)esd(x,x̂)

∑

x̂∈X̂ Q(x̂)esd(x,x̂)

]
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=
∑

x∈X

P (x)

[
∑

x̂∈X̂ Q(x̂)d2(x, x̂)esd(x,x̂)

∑

x̂∈X̂ Q(x̂)esd(x,x̂)
−

(
∑

x̂∈X̂ Q(x̂)d(x, x̂)esd(x,x̂)

∑

x̂∈X̂ Q(x̂)esd(x,x̂)

)2




=
∑

x∈X

P (x) · Vars{d(x, x̂)|x}

≡ mmses{d(x, x̂)|x}, (26)

where Vars{d(x, x̂)|x} is the variance of d(x, x̂) w.r.t. the conditional probability

distribution

Ws(x̂|x) =
Q(x̂)esd(x,x̂)

∑

x̃∈X̂ Q(x̃)esd(x,x̃)
. (27)

The last line of eq. (26) means that the expectation of Vars{d(x, x̂)|x} w.r.t. P is exactly

the MMSE of estimating d(x, x̂) based on the ‘observation’ x using the conditional mean

of d(x, x̂) given x as an estimator. Differentiating both sides of eq. (25), we get

dRQ(Ds)

ds
= s ·

dDs

ds
+ Ds −

∑

x∈X

P (x) ·
∂ ln Zx(s)

∂s

= s · mmses{d(x, x̂)|x} + Ds − Ds

= s · mmses{d(x, x̂)|x}, (28)

or, equivalently,

RQ(Ds) =
∫ s

0
s′ · mmses′{d(x, x̂)|x}ds′, (29)

and

Ds = D0 +
∫ s

0
mmses′{d(x, x̂)|x}ds′. (30)

In [12], this representation was studied extensively and was found quite useful. In

particular, simple bounds on the MMSE were shown to yield non–trivial bounds on

the rate–distortion function in some cases where an exact closed form expression is

unavailable. The physical analogue of this representation is the fluctuation–dissipation

theorem, where the conditional variance, or equivalently the MMSE, plays the role of

the fluctuation, which describes the sensitivity, or the linear response, of the length of

the system to a small perturbation in the contracting force. If s is interpreted as the

negative inverse temperature, as was mentioned before, then the MMSE is related to

the specific heat of the system.

4. Sources with memory and interacting particles

The theoretical framework established in the previous section extends, in principle, to

information sources with memory (non i.i.d. sources), with a natural correspondence

to a physical system of interacting particles. While the rate–distortion function for

a general source with memory is unknown, the maximum rate achievable by random



A statistical–mechanical view on source coding 14

coding can still be derived in many cases of interest. Unlike the case of the memoryless

source, where the best random coding distribution is memoryless as well, when the

source exhibits memory, there is no apparent reason to believe that good random coding

distributions should remain memoryless either, but it is not known what the form of the

optimum random coding distribution is. For example, there is no theorem that asserts

that the optimum random coding distribution for a Markov source is Markov too. One

can, however examine various forms of the random coding distributions and compare

them. Intuitively, the stronger is the memory of the source, the stronger should be the

memory of the random coding distribution.

In this section, we demonstrate one family of random coding distributions, with a

very strong memory, which is inspired by the Curie–Weiss model of spin arrays, that

possesses long range interactions. Consider the random coding distribution

Q(x̂) =
exp

{

B
∑n

i=1 x̂i + J
2n

(
∑n

i=1 x̂i)
2
}

Zn(B, J)
(31)

where X̂ = {−1, +1}, B and J are parameters, and Zn(B, J) is the appropriate

normalization constant. Using the identity,

exp







J

2n

(

n
∑

i=1

x̂i

)2






=

√

n

2πJ

∫ +∞

−∞

dθ exp

{

−
nθ2

2J
+ θ

n
∑

i=1

x̂i

}

, (32)

we can represent Q as a mixture of i.i.d. distributions as follows:

Q(x̂) =
∫ +∞

−∞

dθπn(θ)Qθ(x̂) (33)

where Qθ is the memoryless source

Qθ(x̂) =
exp{(B + θ)

∑n
i=1 x̂i}

[2 cosh(B + θ)]n
(34)

and the weighting function πn(θ) is given by

πn(θ) =
1

Zn(B, J)

√

n

2πJ
exp

{

−n

[

θ2

2J
− ln[2 cosh(B + θ)]

]}

. (35)

Next, we repeat the earlier derivation for each Qθ individually:

Q

{

∑

i

d(xi, x̂i) ≤ nD

}

=
∫ +∞

−∞

dθπn(θ)Qθ

{

n
∑

i=1

d(xi, x̂i) ≤ nD

}

≤
∫ +∞

−∞

dθπn(θ)e−nRθ(D), (36)

where Rθ(D) is a short–hand notation for RQθ
(D), which is well defined from the

previous section since Qθ is an i.i.d. distribution. At this point, two observations

are in order: First, we observe that a separate large deviations analysis for each i.i.d.

component Qθ is better than applying a similar analysis directly to Q itself, without the

decomposition, since it allows a different optimum choice of s for each θ, rather than one

optimization of s that compromises all values of θ. Moreover, since the upper bound

is exponentially tight for each Qθ, then the corresponding mixture of bounds is also
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exponentially tight. The second observation is that since Qθ is i.i.d., Rθ(D) depends on

the source P only via the marginal distribution of a single symbol P (x) = Pr{xi = x},

which is assumed here to be independent of i.

A saddle–point analysis gives rise to the following expression for RQ(D), the

random–coding rate distortion function pertaining to Q, which is the large deviations

rate function:

RQ(D) = min
θ

{

θ2

2J
− ln[2 cosh(B + θ)] + Rθ(D)

}

+ φ(B, J) (37)

where

φ(B, J) = lim
n→∞

ln Zn(B, J)

n
. (38)

We next have a closer look at Rθ(D), assuming X = X̂ = {−1, +1}, and using the

Hamming distortion function, i.e.,

d(x, x̂) =
1 − x · x̂

2
=

{

0 x = x̂

1 x 6= x̂
(39)

Since

∑

x̂

Qθ(x̂)esd(x,x̂) =
∑

x̂

e(B+θ)x̂

2 cosh(B + θ)
· es(1−xx̂)/2

=
es/2 cosh(B + θ − sx/2)

cosh(B + θ)
, (40)

we readily obtain

Rθ(D) = max
s≤0

[

s
(

D −
1

2

)

−
∑

x

P (x) ln cosh
(

B + θ −
sx

2

)

]

+ ln cosh(B + θ). (41)

On substituting this expression back into the expression of RQ(D), we obtain the formula

RQ(D) = min
θ

(

θ2

2J
+ max

s≤0

{

s
(

D −
1

2

)

−

∑

x

P (x) ln
[

2 cosh
(

B + θ −
sx

2

)]

})

+ φ(B, J), (42)

which requires merely optimization over two parameters. In fact, the maximization over

s, for a given θ, can be carried out in closed form, as it boils down to the solution of a

quadratic equation. Specifically, for a symmetric source (P (−1) = P (+1) = 1/2), the

optimum value of s is given by

s∗ = ln
[

√

(1 − 2D)2c2 + 4D(1 − D) − (1 − 2D)c
]

− ln[2(1 − D)], (43)

where

c = cosh(2B + 2θ). (44)

The details of the derivation of this expression are omitted as they are straightforward.
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As the Curie–Weiss model is well known to exhibit phase transitions (see, e.g.,

[6],[13]), it is expected that RQ(D), under this model, would consist of phase transitions

as well. At the very least, the last term φ(B, J) is definitely subjected to phase

transitions in B (the magnetic field) and J (the coupling parameter). The first term,

that contains the minimization over θ, is somewhat more tricky to analyze in closed

form. In essence, considering s∗ ≡ s∗(θ) as a function of θ, substituting it back into

the expression of RQ(D), and finally, differentiating w.r.t. θ and equating to zero (in

order to minimize), then it turns out that the (internal) derivative of s∗(θ) w.r.t. θ is

multiplied by a vanishing expression (by the very definition of s∗ as a solution to the

aforementioned quadratic equation). The final result of this manipulation is that the

minimizing θ should be a solution to the equation

θ = J
∑

x

P (x) tanh

(

B + θ −
s∗(θ)x

2

)

. (45)

This is a certain (rather complicated) variant of the well–known magnetization equation

in the mean field model, θ = J tanh(B + θ), which is well known to exhibit a first order

phase transition in B whenever J > Jc = 1. It is therefore reasonable to expect that the

former equation in θ, which is more general, will also have phase transitions, at least in

some cases.

5. Summary and Conclusion

In this paper, we have drawn a conceptually simple analogy between lossy compres-

sion of memoryless sources and statistical mechanics of a system of non–interacting

particles. Beyond the belief that this analogy may be interesting on its own right, we

have demonstrated its usefulness in several levels. In particular, in the last section,

we have observed that the analogy between the information–theoretic model and the

physical model is not merely on the pure conceptual level, but moreover, analysis tools

from statistical mechanics can be harnessed for deriving information–theoretic functions.

Moreover, physical insights concerning phase transitions, in systems with strong interac-

tions, can be ‘imported’ for the understanding possible irregularities in these functions,

in this case, non–smooth dependence on B and J .
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