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Abstract

We draw relationships between the generalized data processing theorems of Zakai and Ziv
(1973 and 1975) and the dynamical version of the second law of thermodynamics, a.k.a. the
Boltzmann H-Theorem, which asserts that the Shannon entropy, H (X;), pertaining to a finite—
state Markov process {X;}, is monotonically non—decreasing as a function of time ¢, provided
that the steady-state distribution of this process is uniform across the state space (which is the
case when the process designates an isolated system). It turns out that both the generalized
data processing theorems and the Boltzmann H-Theorem can be viewed as special cases of a
more general principle concerning the monotonicity (in time) of a certain generalized informa-
tion measure applied to a Markov process. This gives rise to a new look at the generalized data
processing theorem, which suggests to exploit certain degrees of freedom that may lead to better
bounds, for a given choice of the convex function that defines the generalized mutual information.

Index Terms: Data processing inequality, convexity, perspective function, H-Theorem, ther-
modynamics, detailed balance.
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1 Introduction

In [6], Csiszédr considered a generalized notion of the divergence between two probability distribu-
tions, a.k.a. the f-divergence, by replacing the negative logarithm function, of the classical diver-

gence,

=l )
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with a general convex function! @, i.e.,

Do(RiIPy) = [ dx-a(a:)-cz(ﬁjEQ). 2)

When the f-divergence was applied to the joint distribution (in the role of P;) and the product
of marginals (in the role of P») of two random variables, it yielded a generalized notion of mutual

information,

12 = [y Pl @ (G20 = [asay-pea)- (5 2). @)

which was shown in [6] to obey a data processing inequality, thus extending the well known data

processing inequality of the ordinary mutual information (see, e.g., [5, Section 2.8]).

The same ideas were introduced independently by Ziv and Zakai [14], with the primary moti-
vation of using it to obtain sharper distortion bounds for classes of simple codes for joint source—
channel coding (e.g., of block length 1), as well as certain situations of signal detection and es-
timation (see also [1]). The idea was to define both a “rate-distortion function,” R%(d) and a
“channel capacity,” C'?, by minimization and maximization (respectively) of the mutual informa-
tion pertaining to (), and to derive a lower bound on the distortion d from the data processing
inequality

R9(d) < C. (4)

In the sequel, this will be referred to as the 1973 version of the generalized data processing theorem.
In a somewhat less well known work [15], Zakai and Ziv have substantially further generalized their
data processing theorems, so as to apply an even more general information measures, and this will

be referred to as the 1975 version. This generalized information measure was in the form

I9(X;Y) = /dl‘dy'P(%?/)’Q </;31((j:3))7_”7‘;“((i’5))>

!Originally, this function was denoted by f in [6], hence the name f-divergence.
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where @) is now an arbitrary convex function of k variables and {u;(z,y)} are arbitrary positive
measures (not necessarily probability measures) that are defined consistently with the Markov
conditions and where p;(y|z) = pi(x,y)/P(x). It was shown in [15, Theorem 7.1] that the distortion
bounds obtained from (5) are tight in the sense that there always exist a convex function ¢ and
measures {p;} that would yield the exact distortion pertaining to the optimum communication

system, and so, there is no room for improvement of this class of bounds.?

By setting pi(y|z) = P(ylz;), i = 1,2,...,k — 1, where {z;} are k — 1 particular letters in the
alphabet of X, and uy(y|z) = P(y), they defined yet another generalized information measure that
satisfies the data processing theorem as

P(Y|X))  P(Y|Xe.) P(Y)
E{Q<P<Y\X1>’“" PATY) ’P<Y|X>>}’ ©)

where the expectation is taken w.r.t. the joint distribution
P(a,..., w5 1,2,y) = P(a)P(yl2)P(a1)P(as) - - Pla_1).

In both [14] and [15], there are many examples how these data processing inequalities can be used

to improve on earlier distortion bounds.

The data processing theorems of Csiszar and Zakai and Ziv form one aspect of this work. The
other aspect, which may seem unrelated at first glance (but will nevertheless be shown here to be
strongly related) is the second law of thermodynamics, or more precisely, Boltzmann’s H-theorem.
The second law of thermodynamics tells that in an isolated physical system (i.e., when no energy
flows in or out), the entropy cannot decrease over time. Since one of the basic postulates of
statistical physics tells that all states of the system, which have the same energy, also have the
same probability in equilibrium, it follows that the stationary (equilibrium) distribution of these
states must be uniform, because all accessible states must have the same energy when the system
is isolated. Indeed, if the state of this system is designated by a Markov process, {X;} with a
uniform stationary state distribution, the Boltzmann H-theorem tells that the Shannon entropy of

X, H(X;), cannot decrease with ¢, which is a restatement of the second law.

2This result is non—constructive, however, in the sense that this choice of @ and {p:} depends on the optimum
encoder and decoder.



We show, in this paper, that the generalized data processing theorems of [6], [14], and [15] on the
one hand, and the Boltzmann H-theorem, on the other hand, are all special cases of a more general
principle, which asserts that a certain generalized information measure, applied to the underlying
Markov process must be a monotonic function of time. This unified framework provides a new
perspective on the generalized data processing theorem. Beyond the fact that this new perspective
may be interesting on its own right, it naturally suggests to exploit certain degrees of freedom of
the Ziv—Zakai generalized mutual information that may lead to better bounds, for a given choice
of the convex function that defines this generalized mutual information. These additional degrees
of freedom may be important, because the variety of convex functions {@} which are convenient to
work with, is rather limited. The fact that better bounds may indeed be obtained is demonstrated

by an example.

The outline of the remaining part of this paper is as follows. In Section 2, we provide some
background on Markov processes with a slight physical flavor, which will include the notion of
detailed balance, global balance, as well as known results like the Boltzmann H-theorem, and
its generalizations to information measures other than the entropy. In Section 3, we relate the
generalized version of the Boltzmann H-theorem and the generalized data processing theorems and
formalize the uniform framework that supports both. This is done, first for the 1973 version [14]
of the Ziv—Zakai data processing theorem (along with an example), and then for the 1975 version

by Zakai and Ziv [15]. Finally, in Section 4, we summarize and conclude.

2 Background

2.1 Detailed Balance and Global Balance

Many dynamical models of a physical system describe the microscopic state (or microstate, for
short) of this system as a Markov process, {X;}, either in discrete time or in continuous time. In
this section, we discuss a few properties of these processes as well as the evolution of information

measures associated with them, like entropy, divergence and more.

We begin with an isolated system in continuous time, which is not necessarily assumed to have

reached yet its stationary distribution pertaining to equilibrium. Let us suppose that the state X;



may take on values in a finite set X. For x,2’ € X, let us define the state transition rates

Pr{X; s = 2/| Xy = 2}

r=1i !
Woer = lim 5 ' # (7)
which means, in other words,
Pr{X; 5 = 2| Xy = x} = Wy - 0 + 0(9). (8)
Denoting
P,(z) = Pr{X; =z}, 9)
it is easy to see that
Prrat(x) = > Py(a)Wopdt + Py(x) | 1= > Wepdt | (10)
x/;éx x/;éx

where the first sum describes the probabilities of all possible transitions from other states to state
x and the second term describes the probability of not leaving state x. Subtracting P;(x) from
both sides and dividing by d¢, we immediately obtain the following set of differential equations:
dPt (l‘)
= D [P(a ) Worg — Po(2)Wow], x€ X, (11)

/

xT

where W, is defined in an arbitrary manner, e.g., W,, = 0 for all x € X'. In the physics terminology

3

(see, e.g., [10],[12]), these equations are called the master equations.” When the process reaches

stationarity, i.e., for all x € X', P;(x) converge to some P(z) that is time-invariant, then
> [P )Wag — P(2)Wow] =0, VazeX. (12)
-
This situation is called global balance or steady state. When the physical system under discussion
is isolated, namely, no energy flows into the system or out, the steady state distribution must be
uniform across all states, because all accessible states must be of the same energy and the equilib-
rium probability of each state depends solely on its energy. Thus, in the case of an isolated system,
P(z) = 1/|X| for all x € X. From quantum mechanical considerations, as well as considerations

pertaining to time reversibility in the microscopic level,® it is customary to assume W, = Wy,

3Note that the master equations apply in discrete time too, provided that the derivative at the Lh.s. is replaced
by a simple difference, P,11(z) — Pi(x), and {W,,} are replaced one-step state transition probabilities.

4Consider, for example, an isolated system of moving particles of mass m and position vectors {ri(t)}, obeying the
differential equations md?r;(t)/dt*> = Yz Fri(t)—ri(t),i=1,2,...,n, (F(r;(t)—ri(t)) being mutual interaction
forces), which remain valid if the time variable ¢ is replaced by —t since d%r;(t)/dt* = d®r;(—t)/d(—t)%.



for all pairs {z,2’'}. We then observe that, not only do > ,[P(z")W,/,, — P(x)W,,/| all vanish, but

moreover, each individual term in this sum vanishes, as

P(2" YWy — P(2)Wyw = (Ware — Wagr) = 0. (13)

This property is called detailed balance, which is stronger than global balance, and it means equi-
librium, which is stronger than steady state. While both steady-state and equilibrium refer to
situations of time—invariant state probabilities {P(x)}, a steady—state still allows cyclic “flows of
probability.” For example, a Markov process with cyclic deterministic transitions 1 — 2 — 3 —
1—2— 3 — .--is in steady state provided that the probability distribution of the initial state
is uniform (1/3,1/3,1/3), however, the cyclic flow among the states is in one direction. On the
other hand, in detailed balance (W, = W/, for an isolated system), which is equilibrium, there
is no net flow in any cycle of states. All the net cyclic probability fluxes vanish, and therefore,
time reversal would not change the probability law, that is, {X_;} has the same probability law as
{X:} (see [9, Sect. 1.2]). For example, if {Y;} is a Bernoulli process, taking values equiprobably in
{=1,+1}, then X; defined recursively by

X1 = (X¢ + Yi)mod K, (14)

has a symmetric state—transition probability matrix W, a uniform stationary state distribution,

and it satisfies detailed balance.

2.2 Monotonicity of Information Measures

Returning to the case where the process { X;} pertaining to our isolated system has not necessarily
reached equilibrium, let us take a look at the entropy of the state

H(X) = — Z Py(x)log Py (). (15)

TEX
The Boltzmann H-theorem (see, e.g., [3, Chap. 7], [8, Sect. 3.5], [10, pp. 171-173] [12, pp. 624-626])
asserts that H(X}) is monotonically non—decreasing. This result is a restatement of the second law
of thermodynamics, which tells that the entropy of an isolated system cannot decrease with time.

To see why this is true, we next show that detailed balance implies

dH(X:)

dat  — 7 (16)



where for convenience, we denote dP;(z)/dt by P;(z). Now,

dH (X:)

— == Z[Pt(:v) log P;(x) + Pi(z)]

=—> Pi(x)log Pi(x)
= 3 S WenlPia') — Pi(x)]log Pi(a))
= 5 S Wl P!) — Pia)]log Pr(a)~

5 S WaalPila) — i) log P(a’)

z,x’

= LS WP - Pi@)] - log Pi(a) — og ()
2
>0, (17)

where in the second line we used the fact that 3" Pi(z) = 0, in the third line we used detailed
balance (W, = W,s,), and the last inequality is due to the increasing monotonicity of the loga-
rithmic function: the product [Pi(2') — Pi(z)] - [log P:(2’) — log Pi(x)] cannot be negative for any
pair (z,z’), as the two factors of this product are either both negative, both zero, or both positive.

Thus, H(X;) cannot decrease with time.

The H-theorem has a discrete—time analogue: If a finite—state Markov process has a symmetric
transition probability matrix (which is the discrete—time counterpart of the above detailed bal-
ance property), which means that the stationary state distribution is uniform, then H(X;) is a

monotonically non—decreasing sequence.

A well-known paradox, in this context, is associated with the notion of the arrow of time. On
the one hand, we are talking about time-reversible processes, obeying detailed balance, but on
the other hand, the increase of entropy suggests that there is asymmetry between the two possible
directions that the time axis can be exhausted, the forward direction and the backward direction.
If we go back in time, the entropy would decrease. So is there an arrow of time? This paradox
was resolved, by Boltzmann himself, once he made the clear distinction between equilibrium and
non—equilibrium situations: The notion of time reversibility is associated with equilibrium, where
the process {X;} is stationary. On the other hand, the increase of entropy is a result that belongs

to the non—stationary regime, where the process is on its way to stationarity and equilibrium. In



the latter case, the system has been initially prepared in a non—equilibrium situation. Of course,

when the process is stationary, H(X}) is fixed and there is no contradiction.

So far we discussed the property of detailed balance only for an isolated system, where the
stationary state distribution is the uniform distribution. How is the property of detailed balance
defined when the stationary distribution is non—uniform? For a general Markov process, whose
steady state—distribution is not necessarily uniform, the condition of detailed balance, which means
time-reversibility [9], reads

P(x)Wyy = P(x/)W:v’:u (18)

in the continuous—time case. In the discrete-time case (where ¢ takes on positive integer values only),
it is defined by a similar equation, except that W,,, and W/, are replaced by the corresponding

one—step state transition probabilities, i.e.,
P(x)P(a|z) = P(a")P(]2'), (19)

where

P(2'|z) 2 Pr{Xyy = 2'|X; = 2} (20)

The physical interpretation is that now our system is (a small) part of a much larger isolated
system, which obeys detailed balance w.r.t. the uniform equilibrium distribution, as before. A well
known example of a process that obeys detailed balance in its more general form is the M/M/1
queue with an arrival rate A and service rate p (A < p). Here, since all states are arranged along
a line, with bidirectional transitions between neighboring states only (see Fig. 1), there cannot be

any cyclic probability flux. The steady—state distribution is well-known to be geometric

P@;):(l—%)-(%)gc, x=0,1,2,..., (21)

which indeed satisfies the detailed balance P(z)\ = P(x 4 1)u for all . Thus, the Markov process

{X:}, designating the number of customers in the queue at time ¢, is time-reversible.

For the sake of simplicity, from this point onward, our discussion will focus almost exclusively on
discrete—time Markov processes, but the results to be stated, will hold for continuous—time Markov
processes as well. We will continue to denote by P;(x) the probability of X; = x, except that now
t will be limited to take on integer values only. The one—step state transition probabilities will be

denoted by {P(z'|x)}, as mentioned earlier.
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Figure 1: State transition diagram of an M/M/1 queue.

How does the H-theorem extend to situations where the stationary state distribution is not

uniform? In [5, p. 82|, it is shown (among other things) that the divergence,

D(PIP) = 3 Pl tog (22)
reEX

where P = {P(x), v € X'} is a stationary state distribution, is a monotonically non-increasing
function of . Does this result have a physical interpretation, like the H-theorem and the second law
of thermodynamics? When it comes to non-isolated systems, where the steady state distribution is
non—uniform, the extension of the second law of thermodynamics, replaces the principle of increase
of entropy by the principle of decrease of free energy, or equivalently, the decrease of the difference
between the free energy at time ¢ and the free energy in equilibrium. The information—theoretic
counterpart of this free energy difference is the divergence D(F,||P) (see, e.g., [2]). Thus, the
monotonic decrease of D(FP;||P) has a simple physical interpretation of free energy decrease, which
is the natural extension of the entropy increase. Indeed, particularizing this to the case where P is

the uniform distribution (as in an isolated system), then
D(F||P) = log|X| — H(X), (23)

which means that the decrease of the divergence is equivalent to the increase of entropy, as before.
However, here the result is more general than the H-theorem from an additional aspect: It does not
require detailed balance. It only requires the existence of the stationary state distribution. Note
that even in the earlier case, of an isolated system, detailed balance, which means symmetry of the
state transition probability matrix (P(z'|z) = P(z|z’)), is a stronger requirement than uniformity
of the stationary state distribution, as the latter requires merely that the matrix { P(2’|x)} would be
doubly stochastic, i.e., >, P(z|z') =Y, P(a2'|z) = 1 for all 2’ € X, which is weaker than symmetry

of the matrix itself. The results shown in [5] are, in fact, somewhat more general: Let P, = {P;(z)}



and P/ = {P/(x)} be two time-varying state-distributions pertaining to the same Markov chain,
but induced by two different initial state distributions, {Py(x)} and {F}(z)}, respectively. Then

D(P,||P/) is monotonically non-increasing. This is easily seen as follows:

D(F;||F;) ZPt 3

P,
= Z Py(x)P(2'|z) log —P’(x)P(m’p:

z,x’

= P(X; ==z, X141 =2')log

z,x’!

> D(P1]Plyq) (24)

P,(Xt =, Xt+1 = l‘,)

where the last inequality follows from the data processing theorem of the divergence: the divergence
between two joint distributions of (X, X¢11) is never smaller than the divergence between corre-
sponding marginal distributions of X;11. Another interesting special case of this result is obtained
if we now take the first argument of the divergence to the a stationary state distribution: This will

mean that D(P| P;) is also monotonically non-increasing.

In [9, Theorem 1.6], there is a further extension of all the above monotonicity results, where the
ordinary divergence is actually replaced by the f-divergence (though the relation to the f-divergence
is not mentioned in [9]): If { X} is a Markov process with a given state transition probability matrix
{P(2'|z)}, then the function

U(t) = Do(PIP) = 3 Plx) ( ((”““)) (25)
et Pe)

is monotonically non—increasing, provided that @ is convex. Moreover, U(t) monotonically strictly

decreasing if @ is strictly convex and {P;(x)} is not identical to {P(x)}). To see why this is true,

define the backward transition probability matrix by

P(z|z') = %ﬂ%«/m (26)

Obviously,

> Plafd) =1 (27)

for all 2/ € X, and so,

Py () 3 Pt(fcgic()ﬂclx’) -y P(xlﬁ%(x/)- (28)

(L’,

10



By the convexity of Q:

- Sre)-Q () ~ v, (20)

Now, a few interesting choices of the function ) may be considered: As proposed in [9, p. 19],
for Q(u) = ulnwu, we have U(t) = D(P||P), and we are back to the aforementioned result in [5].
Another interesting choice is Q(u) = — Inw, which gives U(t) = D(P||P;). Thus, the monotonicity
of D(P||P;) is also obtained as a special case.” Yet another choice is Q(u) = —u*, where s € [0, 1]
is a parameter. This would yield the increasing monotonicity of Y., P17%(z)Pf(z), a ‘metric’
that plays a role in the theory of asymptotic exponents of error probabilities pertaining to the
optimum likelihood ratio test between two probability distributions [13, Chapter 3]. In particular,
the choice s = 1/2 yields balance between the two kinds of error and it is intimately related to the
Bhattacharyya distance. In the case of detailed balance, there is another physical interpretation
of the approach to equilibrium and the growth of U(t) [9, p. 20]: Returning, for a moment, to the

realm of continuous—time Markov processes, we can write the master equations as follows:

ot~ &Ry | P(e) ~ Pla)
where R, = [P(2" )W) ™! = [P(2)Waw] ™!, Imagine now an electrical circuit where the indices

{z} designate the various nodes. Nodes = and z’ are connected by a wire with resistance R, and
every node x is grounded via a capacitor with capacitance P(z) (see Fig. 2). If Pi(x) is the charge
at node x at time ¢, then the master equations are the Kirchoff equations of the currents at each

node in the circuit. Thus, the way in which probability spreads across the states is analogous to

®We are not yet in a position to obtain the monotonicity of D(P,||P/) as a special case of the monotonicity of
Do (PJ|P:). This will require a slight further extension of this information measure, to be carried out later on.

11



the way charge spreads across the circuit and probability fluxes are now analogous to electrical

currents. If we now choose Q(u) = iu?, then

=3
2 T
v =53 i’g((x)), (31)

which means that the energy stored in the capacitors dissipates as heat in the wires until the system
reaches equilibrium, where all nodes have the same potential, P;(x)/P(z) = 1, and hence detailed
balance corresponds to the situation where all individual currents vanish (not only their algebraic

sum).

Figure 2: State transition diagram of a Markov chain (left part) and the electric circuit that emulates the
dynamics of {P;(z)} (right part).

We have seen, in the above examples, that various choices of the function @ yield various f-
divergences, or ‘metrics’, between {P(x))} and {P;(x)}, which are both marginal distributions of

a single symbol . What about joint distributions of two or more symbols? Consider, for example,

the function

J(t) = Z PXo=z,X;=12")-Q (Péi()%o::xi?;(i(;:xi,)) 7 )

z,7/
where @) is convex as before. Here, by the same token, J(t) is the f-divergence between the joint
probability distribution {P(Xy = z, Xy = 2’)} and the product of marginals {P(Xy = z)P(X; =
2')}, namely, it is the generalized mutual information of [6],[14], and [15], as mentioned in the
Introduction. Now, using a similar chain of inequalities as before, we get the non—decreasing
monotonicity of J(t) as follows:

Jt)= > PXo=xX,=2',X;11 =a")x

x,x! x!!
Q P(XO = x)P(Xt = .'L'/) P(Xt+1 = (L‘//‘Xt — ./L'/)
P(Xo=2,Xt =2') P(Xps1=2"|Xy=1)
=) P(Xg=u,X;1 =2")Y_ P(Xy=2/|Xo =2, Xy 1 = 2")x

z,z" !

12



0 P(Xg=x)P(X; =2/, X341 = 2")
P(Xo=uz,X; =2, X411 = 2")

< Z P(Xo=z,Xp1=2")-Q (Z P(X; =a'|Xo =2, X4 =2")x

z,z" 2/

P(Xg=xz)P(X; =2/, X411 = 2")
P(Xo=uz,X; =2, X141 =2")

= Z P(XO = $7Xt+1 = Q;//)Q (Z P(XO = J:)P_(Xt = l‘,’i(t‘bt — l‘”))

x,x' T
P(Xo = 2)P(Xi11 = 2")
= P(Xy=z, X1 =2")-
xzx” ( 0 Ty, A1 xr ) Q < P(XO — x,Xt+1 — .'L'”)
— J(t+1). (33)

This time, we assumed only the Markov property of (Xg, X¢, X;11) (not even homogeneity). This
is, in fact, nothing but the 1973 version of the generalized data processing theorem of Ziv and Zakai

[14], which was mentioned in the Introduction.

3 A Unified Framework

In spite of the general resemblance (via the notion of the f-divergence), the last monotonicity result,
concerning J(t), and the monotonicity of D(FP;||P/), do not seem, at first glance, to fall in the
framework of the monotonicity of the f-divergence Dg(P||P;). This is because in the latter, there
is an additional dependence on a stationary state distribution that appears neither in D(P;||P/) nor

in J(t). However, two simple observations can put them both in the framework of the monotonicity

of Do(P||Py).

The first observation is that the monotonicity of U(t) = Dg(P||P;) continues to hold (with a
straightforward extension of the proof) if Pi(x) is extended to be a vector of time varying state
distributions (P!(x), P?(z),..., PF(z)), and Q is taken to be a convex function of k variables.
Moreover, each component P} (z) does not have to be necessarily a probability distribution. It can

be any function ut(z) that satisfies the recursion

di(@) = S @) Ple),  1<i<k (34)

Let us then denote p,(x) = (u} (x), u?(x), ..., uk(x)) and assume that @Q is jointly convex in all its

13



k arguments. Then the redefined function

v =Y. - ()

rzeX
1 X k X
=2 P () (3%)

is monotonically non—increasing with ¢.

The second observation is rooted in convex analysis, and it is related to the notion of the
perspective of a convex function and its convexity property [4]. Here, a few words of background
are in order. Let Q(u) be a convex function of the vector w = (uy,...,ux) and let v > 0 be an

additional variable. Then, the function

A up U U
Q(’U,Ul,UQ,...,Uk):’U’Q<_17_27...7_k> (36)

v’ v

is called the perspective function of Q). A well-known property of the perspective operation is
conservation of convexity, in other words, if () is convex in u, then Q is convex in (v,u). The proof
of this fact, which is straightforward, can be found, for example, in [4, p. 89, Subsection 3.2.6] (see
also [7]) and it is brought here for the sake of completeness: Letting A; and Ag be two non—negative

numbers summing to unity and letting (v1,w1) and (ve, us2) be given, then

Q()\I(UbUl) + A2 (v, u2)) = (A1v1 + Aava) - Q <M>

)\1’014—)\22}2
C vt 4 daws) - Q OB Aev2 U
N i 272 /\17)14‘)\2112 U1 )\1U1+/\27)2 (%)

<A1 Q <ﬂ> + Aov2Q) <%>
(%] V2
= MQ(v1, u1) + A2Q (v, u2). (37)

Putting these two observations together, we can now state the following result:

Theorem 1 Let

Hx) pi(x e
- St (s e )

where Q is a convex function of k variables and {pui(z)}r_, are arbitrary functions that satisfy the

TeCUTrsion

:ui—f—l(x) = Z#f&(l“/)P(xp«"/)» 1= 07 1’ 27 s 7]{:7 (39)
fL'/

14



and where pY(x) is moreover strictly positive. Then, V (t) is a monotonically non—increasing func-

tion of t.

Using the above mentioned observations, the proof of Theorem 1 is straightforward: Letting P

be a stationary state distribution of {X;}, we have:

N o0 (@) pEE) )

V(t) —;Mt( )Q (H?(l‘)’ﬂ?(x)’“ ’u?(l‘))
- (@) )/ P(a pt () /P(x)
=2 Pl) @ (M?(l") ’ WPW)

0 1 k
(i) pi(2) i (@)
= P . ) 40
Since @ is the perspective of the convex function Q, then it is convex as well, and so, the mono-
tonicity of V(t) follows from the first observation above. It is now readily seen that both D(P;||P/)

and J(t) are special cases of V(¢) and hence we have covered all special cases seen thus far under

the umbrella of the more general information functional V (¢).

It is important to observe that the same idea exactly can be applied, first of all, to the 1973
version of the Ziv-Zakai data processing theorem (regardless of the above described monotonicity

results concerning Markov processes): Consider the generalized mutual information functional

Y2 S (e (L0, (41)

where po(z,y) > 0 and pq(x,y) are arbitrary functions that are consistent with the Markov condi-

tions, i.e., for any Markov chain X — Y — Z, these functions satisfy
ni(@,2) = 3 i) PCly) = 3 iy, 2)PGaly), i =0,1. (42)
Y y

Then, J Q(X ;Y) satisfies a data processing inequality, because, again

Q . _ T . :UO(wvy) Ml(x>y)/P(x>y)
TR = L P By (eeren)

=S (Fe e @

which is a Zakai-Ziv information functional of the 1975 version [15] and hence it satisfies a data

processing inequality.
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What functions, po(x,y) and uq(z,y), can be consistent with the Markov conditions? Two such
functions are, of course, pg(z,y) = P(z,y) and pi(z,y) = P(x)P(y), which bring us back to the
1973 Ziv—Zakai information measure. We can, of course, swap their roles and obtain a generalized
version of the lautum information [11], which is also known to satisfy a data processing inequality.
For additional options, let us consider a communication system, operating on single symbols (block
length 1), where the source symbol u is mapped into a channel input = f(u), by a deterministic
encoder f, which is then fed into the channel P(y|x), and the channel output y is in turn mapped
into the reconstruction symbol v = ¢g(y). As is argued in [15], the function pu(u,y) = P(u)P(y|uo)
is consistent with the Markov conditions for any given source symbol ugy. Indeed, since the encoder

is assumed deterministic, P(y|ug) = P(y|f(uo)) = P(y|zo), and it is easily seen that
p(u, v) = P(u) P(vluo) ZP P(yluo)P Zu u,y)P(vly) (49)
and

p(u,y) = P(u)P(yluo)
= P(ula) P(x) P(yluo)

=" P(ulz)P(2)P(ylxo) = ZP ulz)p (45)

Of course, every linear combination of all these functions is also consistent with the Markov condi-

tions. Thus, we can take

po(z,y) = soP(x,y) + > siP(x)Pyle:) (46)
T, €EX
and
pi(z,y) = toP(x,y) + > t:P(x)P(ylz:), (47)
z,€X

where {s;} and {t;} are the (arbitrary) coefficients of these linear combinations (with the limitation
that s; > 0 for all 4, with at least one s; > 0). Thus, we may define

toP(z,y) + >y cx tiP(2) P(ylzi) (48)
soP(x,y) + 3, cx siP(x)P(ylzi) )’

JOX;Y) = Z soP(z,y) + Z siP(x) P(y|w;)

or, equivalently,

| o [ PWE) 3 ex tiP(yl2i)
ZP soP(ylx) + ;E;(szp(ylxz) Q(SOP(ny)+inexsiP(y\:ci)>' (49)
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Moreoever, to eliminate the dependence on the specific encoder, we can think of {z;} as independent

random variables, take the expectation w.r.t. their randomness (in the same spirit as in [15]), and

obtain the following information measure
toP(ylr) + 3, t:P(y]X:) )} (50)

E{; P(z) | soP(y|z) +zi:5ip(y\Xi)] Q (soP(y|x) S s PyIX,)

where the expectation is w.r.t. the product measure of {X;}, P(z1,22,...) = [[, P(z;). These are

the most general information measures, that obey a data processing inequality, that we can get
with a univariate convex function ). For example, returning to eq. (49) and taking so = 1, to = 0,
s; = sP(x;) (s > 0, a parameter), and t; = P(x;), x; € X, we have ug(z,y) = P(x,y) + sP(x)P(y),

and p(z,y) = P(x)P(y), and the resulting generalized mutual information reads

JO(X:Y) ZP P(y|z) 4+ sP(y)] - Q (P(y|x])3(f)sP(y)> . (51)

The interesting point concerning these generalized mutual information measures is that even if we
remain in the framework of the 1973 version of the Ziv—Zakai data processing theorem (as opposed
to the 1975 version), we have added an extra degrees of freedom (in the above example, the param-
eter s), which may be used in order to improve the obtained bounds. If the inequality R9(d) < C?
can be transformed into an inequality on the distortion d, where the lower bound depends on s,
then this bound can be maximized w.r.t. the parameter s. If the optimum s > 0 yields a distortion
bound which is larger than that of s = 0, then we have improved on [14] for the given choice of
the convex function ). Sometimes this optimization may not be a trivial task, but even if we can
just identify one positive value of s (including the limit s — oo) that is better than s = 0, then
we have improved on the generalized data processing bound of [14], which corresponds to s = 0.
This additional degree of freedom may be important, because, as mentioned in the Introduction,
the variety of convex functions {@Q} which are convenient to work with, is somewhat limited (most
notably, the functions Q(z) = 22, Q(z) = 1/z, Q(z) = —/z and some piecewise linear functions

[14],[15]). The next example demonstrates this point.

Ezample. Consider the information functional (51) with the convex function Q(z) = —/z. Then,

the corresponding generalized mutual information is

P(v)
ZP P(v|u) + sP(v)] - \/p(v‘u)+sP(v)
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==Y P(u)y/P)[P(v]u) + sP(v)]

= =3 P)P)[s+ 2 ]ﬁ”("? | (52)

Consider now the above—described problem of joint source—channel coding, for the following source
and channel: The source is designated by a random variable U, which is uniformly distributed over
the alphabet & = {0,1,..., K — 1}. The reproduction variable, V', takes on values in the same
alphabet, i.e., V=U = {0,1,..., K — 1} and the distortion function is

0 v=u
dlu,v) =¢ 1  v=(u+1)modK (53)
oo elsewhere

which means that errors other than v = (u+ 1)modK are strictly forbidden. Therefore the channel

from U to V must be of the form

l—€¢, v=u
Pvlu) =X € v = (u+ 1)mod K (54)
0 elsewhere

where {€,} are parameters taking values in [0, 1] and complying with the distortion constraint

E{dU,V)} = % Y ew<d (55)

The channel is a noise—free L—ary channel, i.e., its input and output alphabets are X = Y =

{0,1,...,L — 1} with P(y|z) =1 for y = x, and P(y|z) = 0 otherwise.

Obviously, the case K < L is not interesting because the data can be conveyed error—free by
trivially connecting the source to the channel. In the other extreme, where K > 2L, there must be
some channel input symbol to which at least three source symbols are mapped. In such a case, it is
impossible to avoid at least one of the forbidden errors in the reconstruction. Thus, the interesting

cases are those for which L < K < 2L, or equivalently, 6 € (1,2], where 6 = /L.

We next derive a distortion bound based on the generalized data processing theorem, in the

spirit of [14] and [15], where we now have the parameter s as a degree of freedom.

As for the source, let us suppose that in addition to the distortion constraint, we impose the

constraint that the distribution of the reproduction variable V', just like U, must be uniform over
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its alphabet, namely, P(v) = 1/K for all v € V. In this case,

_1Q L Pl
JOU;V) ZP B0
K-1
KQZ[\/s—FKGu—i-\/s—FKl—eu) (K—Q)\/E}
u=0

:%I(Z:l[\/s—kl(eu—l—\/s—kl((l—eu)}—l—(1—%)\/E

gﬁ K[\/s—i-Kd—l—\/s—FK(l—d)]—F(l—%)\/E

—E[\/3+Kd+\/S+K(1—d)}+<1_3>\/gv (56)

K

where the inequality follows from the fact that the maximum of the concave function

Y Vs+ Keu+ s+ E(1-e),

subject to the distortion constraint (55), is achieved when ¢, = d for all u € U. Thus,

RP(d) :—% {\/erKd—\/erK(l—d)} - (1—%) V5. (57)
As for the channel, we have:
—J9(X;Y) ZP PJ%”;)

1
_%:IP \/7+ZP2 8+%

— 3

1-Y P o) | + 3 PP s+%x)

1
:\/g-i- %B P2($)< 8+%—\/g>
_ 2( 1/P(x)
erZP 5+1/P )+ /5

_S @
_\/_+; \/s—l-l/P(a:)—F\/; (%)

The function f(t) =t/[\/s+ 1/t + /3] is convex in ¢ (for fixed s) since f”(t) > 0 for all ¢ > 0, as
can readily be verified. Thus, —J?(X;Y") is minimized by the uniform distribution P(z) = 1/L,
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Vx, which leads to the ‘capacity’ expression:

Qe 5 — ——————.
CC=Vs- AT

Applying now the data processing theorem,
RO(d) < C¥, (60)

we obtain, after rearranging terms

K
Vs+ s+ L

Vs+ Kd+\/s+ K(1—d) > +2/5. (61)

Squaring both sides, we have:

25+ K +2v/(s + Kd)[s + K(1 — d)] > [ +2\/§}2 (62)

K
Vs+ s+ L

or

2v/(s + Kd)[s + K(1 —d)] > [ +2\/§r—25—K, (63)

K
Vs+Vs+L

which after squaring again and applying some further straightforward algebraic manipulations,

gives eventually the following inequality on the distortion d:
4d(1 — d) = ¢(s), (64)

where
2

2
02 [(%*”) —QS—K] - (65)

The resulting lower bound on the distortion is the smaller of the two solutions of the equation

4d(1 — d) = (s), which is

>
DO | =

ds

1—4(s). (66)

N | —

Thus, the larger is ¥(s), the better is the bound. The choice s = 0, which corresponds to the usual
Ziv—Zakai bound for Q(z) = —+/z, yields

w(o):% [(%)2—42: <%—1>2:(9—1)2. (67)

However, it turns out that s = 0 is not the best choice of s. We next examine the limit s — oo.

To this end, we derive a lower bound to (s) which is more convenient to analyze in this limit.
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Note that for s > L/8, it is guaranteed that the expression in the square brackets of the expression
defining 9 (s), is positive, which means that an upper bound on /s + L would yield a lower bound
to 1 (s). Thus, upper bounding v/s + L by

¢E7=ﬁwﬁﬁ%<ﬁ0+%)

we get
2

K?(s) = [(L +2\/§>2 —2s —K] — 45 — 4K
I\ +Vs+ L

2

K 2
2 [(m+2\/§> —QS—K] —482—4K8

o (4s—L\? 16K*s>  8KLs N 16 K2s? N 8K3s(4s — L)
4s+ L (4s+L)* 4s+L (4s+ L)? (4s+ L)3

2 K2y (s), (68)

where between the second and the third lines, we have skipped some standard algebraic operations.

Taking now the limit s — oo, we obtain

. 1 L 1
thoo = lim 1)o(s) = ﬁ(K2+O—2KL+K2+0) =2 (1— E) =2 (1— 5) : (69)
which yields a better bound than the bound of s = 0 since
1 2
2 1—5 >(0—1) (70)

for all 6 € (1,2).

It is interesting to compare this also to the classical data processing theorem: Since
R(d) =log K — ha(d) (71)

and

C=loglL, (72)
then the ordinary data processing theorem yields the bound
ha(d) > log 6. (73)

Since

ha(d) > 4d(1 — d) (74)
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and
1
2 <1 - 5) > log, 6 (75)
within the relevant range of 6, the bound pertaining to s — oo is also better than the classical

bound for this case. This completes the description of the example. [J

Finally, we should comment that the monotonicity result concerning V'(t) contains as special
cases, not only the H-theorem, as well as all other earlier mentioned monotonicity results, but
also the 1975 Zakai—Ziv generalized data processing [15]. Consider a Markov chain U — V — W,
where U, V and W are random variables that take on values in (finite) alphabets, U, V, and W,
respectively. Let us now map between the Markov chain (U, V, W) and the Markov process {X;}
in the following manner: (u,v) € Y € V is assigned to the state 2’ of the process at time ¢, whereas

(u,w) €U € W corresponds® to z at time ¢ + 1. Now, defining accordingly,

pi(a) = P(u,v), (76)

pi(a") = P(u)P(v), (77)

pipi(z) = Plu,w), (78)
and

pi1(z) = P(u)P(w), (79)

then due to the Markov property of (U,V, W), both measures satisfy the recursion with P(w|v)
playing the role” of P(z|z'). Le.,

P(u,w) 2 @, (z)
=" W (@) P(ala’)

= P(u,v)P(wlv) (80)
and

P(u)P(w) 2 pty (2)

SWhile V and W may be different (finite) alphabets, = and «’, of the original Markov process, must taken on values
in the same alphabet. Assuming, without loss of generality, that V = {1,2,...,|V|} and W = {1,2,...,|W]|}, then
for the purpose of this mapping, we can unify these alphabets to be both {1,2,... max{|V|, [W|}} and complete the
missing elements of the extended transition matrix P(w|v) in a consistent manner, according to the actual support
of each distribution. We omit further technical details herein.

"Consider the component u of 2’ = (u,v) and & = (u,w) simply as an index.
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= i (@) P(x|r')
= P(u)P(v)P(wlv) (81)

Thus, for Q(z) = — In z, the monotonicity of V() is nothing but the data processing of the classical
mutual information. For a general function @ of one variable (k = 1), this gives the generalized
data processing theorem of [14]. Furthermore, letting ) be a general convex function of k variables,
and pd(x') = P(u,v) as before, we get the more general form of the data processing inequality of
[15].

The above extension of the H-theorem gives rise to a seemingly more general data processing
theorem than in [15], as it is not necessary to let ul(x) be the actual joint probability distribu-
tion. However, when looking at the entire class of convex functions with an arbitrary number of
arguments, this is not really more general, as the corresponding generalized mutual information
can readily be transformed back to the form of the 1975 Zakai-—Ziv information functional using
again the perspective operation. Indeed, as mentioned in the Introduction and shown in [15, Theo-
rem 7.1], the class of generalized mutual information measures studied therein cannot be improved
upon in the sense that there always exist choices of @ and {u;} that provide tight bounds on the

distortion of the optimum system.

4 Summary and Conclusion

The main contributions of this work can be summarized as follows: First, we have establisehd a
unified framework and a relationship between (a generalized version of) the second law of thermo-
dynamics and the generalized data processing theorems of Zakai and Ziv. This unified framework
turns out to strengthen and expand both of these pieces of theory: Concerning the second law of
thermodynamics, we have identified a significantly more general information measure, which is a
monotonic function of time, when it operates on a Markov process. As for the generalized Ziv—Zakai
data processing theorem, we have proposed a wider class of information measures obeying the data
processing theorem, which includes free parameters that may be optimized so as to tighten the

distortion bounds.
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