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Background – Relating Estimation and Info Measures

Early work:

Duncan (1968,1970); Kailath (1968,1969,1970); Kadota, Ziv & Zakai (1971);

Bucy (1979); Mayer–Wolf & Zakai (1983).

More recent research activity:

Forney (2004); Guo, Shamai & Verdú (2005, 2008); Palomar & Verdú (2006,

2007); Mayer–Wolf & Zakai (2007); Guo (2009); Verdú (2009); Raginsky &

Coleman (2009); Weissman (2010); Merhav, Guo & Shamai (2010).
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Context of This Work

In [MGS, 2010], stat–mech methods where applied on the I–MMSE relation

dI(X ;
√

snrX + N )

d snr
=

1

2
mmse(X |√snrX + N ), N ∼ N (0, I)

to compute MMSE and to relate threshold effects (in estimation) to phase

transitions (in physics).

Main theme of this work: For the purpose of evaluating the MMSE (using

stat-mech methods), more direct relations can be used: Given P (x, y),

x ∈ IRn, y ∈ IRm:

Z(y, λ) =
X

x

exp{λT
x}P (x, y)

x̂ = E{X |y} = ∇λ ln Z(y, λ)

˛

˛

˛

˛

λ=0

; Cov{(X − X̂)} = E



∇2
λ ln Z(Y , λ)

˛

˛

˛

˛

λ=0

ff
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Advantages of the Proposed Approach

More direct and easier to use than the I–MMSE relation.

Applies to a general P (x, y); x ∈ IRn, y ∈ IRm.

In addition to the MMSE – provides also the conditional mean estimator.

Several variants can be used.

Easy to extend to the mismatched case.

Allows mismatch in the full joint distribution, not just the source.
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Some Comments

Z(y, λ) =
X

x

exp{λT
x}P (x, y)

E{X |y} = ∇λ ln Z(y, λ)

˛

˛

˛

˛

λ=0

; E
△
= Cov{(X − X̂)} = E



∇2
λ ln Z(Y , λ)

˛

˛

˛

˛

λ=0

ff

ln
h

P

x exp{λT x}P (x|y)
i

generates conditional cumulants.

OK and easier to replace P (x|y) by P (x, y).

Physics interpretation:

Z(y, λ) ⇐⇒ partition function.

{λi} ⇐⇒ ‘forces’ acting on {yi}.

Error covariance relation ⇐⇒ fluctuation–dissipation thm.
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A Few Variants

Pλ(y)
△
=

P

x exp{λT x}P (x, y)
P

x exp{λT x}P (x)

△
=

Z(y, λ)

Θ(λ)

J(Y ) = −E



∇2
λ ln Pλ(Y )

˛

˛

˛

˛

λ=0

ff

(Fisher info)

tr{E} =
n
X

i=1

E



∂2 ln Z(Y , λ)

∂λ2
i

˛

˛

˛

˛

λ=0

ff

=

n
X

i=1

"

Var{Xi} + E

(

∂2 ln Pλ(Y )

∂λ2
i

˛

˛

˛

˛

λ=0

)#

=

n
X

i=1

"

Var{Xi} − E

(

»

∂ ln Pλ(Y )

∂λi

–2 ˛
˛

˛

˛

λ=0

)#

=

n
X

i=1

"

E{X2
i } − E

(

»

∂ ln Z(Y , λ)

∂λi

–2 ˛
˛

˛

˛

λ=0

)#

2nd & 3rd lines: ln Pλ(Y ) can be replaced by i(X ; Y ) = ln[P (y|x)/Pλ(y)].
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Example 1: Codeword Sent Over an AWGN Channel

Channel input: M = enR; C = {x0, . . . , xM−1};
xi ∼ Surf{sphere of radius

√
nP}.

AWGN channel:
Y = X + N ; N ∼ N (0, σ2I)

Partition function:

Z(y, λ) =
X

x∈C

e−nR · exp{−‖y − x‖2/(2σ2) + λ
T

x}.

Can be analyzed using techniques borrowed from the random energy model
(REM) of spin glasses:

mmse(X |Y ) =

(

0 R < C
Pσ2

P+σ2 R > C
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Example 2: Curie–Weiss Model

Let x ∈ {−1,+1}n and

P (x) ∝ exp



n

»

a · m2(x)

2n
+ b · m(x)

–ff

where

m(x) =
1

n

n
X

i=1

xi

and let the channel be a BSC:

P (y|x) =
eβxy

2 cosh(β)
y ∈ {−1,+1}.

Then

Z(y, λ) ∝
X

x

exp

(

X

i

xi(b + λi + βyi)

)

· exp

8

<

:

a

2n

 

X

i

xi

!2
9

=

;
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Example 2 (Cont’d)

Using the identity

exp

8

<

:

a

2n

 

n
X

i=1

xi

!2
9

=

;

=

Z +∞

−∞

dt exp

(

−nt2

2a
+ t

n
X

i=1

xi

)

Z(y, λ) ∝
Z +∞

−∞

dt exp

(

−nt2

2a
+

n
X

i=1

ln cosh(βyi + λi + b + t)

)

x̂i =
∂ ln Z

∂λi

˛

˛

˛

˛

λ=0

= 〈tanh(βyi + b + t)〉

where the averaging is w.r.t. a weight func. proportional to

exp

(

−nt2

2a
+

n
X

i=1

ln cosh(βyi + b + t)

)

.

As n → ∞, this is dominated by t∗ that maximizes this weight.
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Example 2 (Cont’d)

By taking a 2nd order derivative:

lim
n→∞

mmse(X |Y )

n
= 1 − E{tanh2(βY + b + t0)},

where t0 is the solution to the equation

t = aE{tanh(βY + b + t)},

and where Y is a binary {±1} RV, with mean m∗ tanh(β), m∗ being the
dominant solution to the equation

m = tanh(am + b),

i.e., the maximizer of

h2((1 + m)/2) + am2/2 + bm,

where h2(·) is the binary entropy function.
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Generalized Spherical Symmetry

Suppose m = n and

P (x, y) = Fn

 

X

i

φ(xi, yi)

!

and let fn(t) = L−1{Fn(s)}. Then,

Z(y, λ) =

Z

IRn

dxeλ
T x
Z ∞

0
dtfn(t) exp

(

−t
X

i

φ(xi, yi)

)

=

Z ∞

0
dtfn(t)

Z

IRn

dxeλ
T x exp

(

−t
X

i

φ(xi, yi)

)

=

Z ∞

0
dtfn(t)

Y

i

Z

IR
dxie

λixi exp{−tφ(xi, yi)}.

and we have a product form, which can be handled easily.
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Generalized Spherical Symmetry (Cont’d)

ρ(λ, y, t)
△
= ln

»
Z ∞

−∞

dxeλx−tφ(x,y)
–

,

ρ0(y, t)
△
= ρ(0, y, t) = ln

»
Z ∞

−∞

dxe−tφ(x,y)
–

,

ζ(y, t)
△
=

∂ρ(λ, y, t)

∂λ

˛

˛

˛

˛

λ=0

=

R

IR dx · xe−tφ(x,y)

R

IR dx · e−tφ(x,y)
.

Then,

E{Xi|y} =

R∞

0 dtfn(t)ζ(yi, t)e
P

i
ρ0(yi,t)

R∞

0 dtfn(t)e
P

i
ρ0(yi,t)

which is approximated by ζ(yi, t̂), where t̂ is the maximizer of the expression

ln |fn(t)| +
X

i

ρ0(yi, t).

Similar ideas are applied to the MMSE analysis.
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Extensions

The range of t may not necessarily be [0,∞).

For

P (x, y) = Fn

 

n
X

i=1

φ1(xi, yi), . . . ,

n
X

i=1

φk(xi, yi)

!

apply a multidimensional Laplace transform.

P

i φ(xi, yi) =⇒P

i φ(xi, yi, yi−1, . . . , yi−k) for some k.

Can handle P (x, y) = Fn[(x, y)T S(x, y)] for a positive matrix S.
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Conclusion

We proposed a simple “partition function” for derivations pertaining to

MMSE estimation.

There are several advantages relative to I-MMSE relations.

The relations connect also to some info measures, e.g., information

density, Fisher information.

A few examples demonstrated.

Defined a class of joint pmf’s for which MMSE calculations are easy.
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