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The Problem

We are interested in the large deviations behavior of a system whose

steady–state obeys

P (n0, n1, . . . , nM−1) =

QM−1
i=0 pni

i

Z
,

where ni = number of elements (particles/agents,...) in ‘site’ no. i.

E.g., assess Pr{
P

i ni ≥ M · U} ∼ e−M ·I(U) for M → ∞.

Examples of Relevance:

Grand–canonical ideal Boson gas: pi = ze−βǫi (black body radiation).

One–way Markov chain: i → i w.p. pi; i → i + 1 w.p. 1 − pi.

Jackson network of M queues: pi = λi/µi.

Hopping model for transport in a disordered medium: pi = α/µi (ZRP’s).
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Hopping Model (Or A Cascade of Queues)
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The Problem (Cont’d)

The large deviations rate function

I(U) = lim
M→∞

"

−
1

M
log Pr

(

X

i

ni ≥ MU

)#

may exhibit phase transitions – Bose–Einstein condensation (BEC): Given the

event, a macroscopic fraction – jammed in one ‘site’ for U > Uc.

This is the case also with general linear combinations of {ni}, e.g.,

I(U) = lim
M→∞

−1

M
log Pr{

X

i

ni/µi

| {z }

est. time

≥ MU}.

More interestingly, how about I(U, V ) of Pr{
P

i ni ≥ MU,
P

i ni/µi ≥ MV }?

Answer gives rise to a notion of 2D BEC: A very rich phase diagram.
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A Single Constraint

Pr

(

X

i

ni ≥ MU

)

≤
D

z
P

i
ni−MU

E

z ≥ 1

= z−MU
Y

i

1 − pi

1 − piz

= exp

(

−M

"

U ln z −
1

M

X

i

ln

„

1 − pi

1 − zpi

«

#)

I(U) = sup
z≥1

"

U ln z − lim
M→∞

1

M

M−1
X

i=0

ln

„

1 − pi

1 − piz

«

#

.

Assume that {pi} have a density g(p):

fraction of {pi} ∈ [p, p + dp] → g(p)dp.
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A Single Constraint (Cont’d)

Resulting equation in z (saddle point):

U = lim
M→∞

1

M

M−1
X

i=0

zpi

1 − piz
≡ z ·

Z pmax

0

p · g(p)dp

1 − pz

∆
= U (z)

A solution z∗ is sought in [1, 1/pmax).

In analogy to the BEC, if

lim
p↑pmax

g(p)

(pmax − p)ξ
< ∞ for some ξ > 0,

then

Uc = U (1/pmax) ≡

Z pmax

0

pg(p)dp

pmax − p
< ∞

Condensation for U > Uc.
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A Single Constraint (Cont’d)

The rate function exhibits two phase transitions

I(U) =

8

>

>

<

>

>

:

0 U < Umin ≡ U (1)

supz

h

U ln z −
R pmax

0 dpg(p) ln
“

1−p
1−pz

”i

Umin ≤ U < Uc

U ln
“

1
pmax

”

−
R pmax

0 dpg(p) ln
“

1−p
1−p/pmax

”

U ≥ Uc

U < Umin – not a rare event.

Umin ≤ U < Uc – rare event; no condensation. I(U) is convex.

U > Uc – BEC: ni/N ∼ 1 − Uc/U for that i of pi = pmax. I(U) is affine.

Second order phase transition: I(U) and I ′(U) are continuous, I ′′(U) is not.
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A More General Constraint

Consider now the event {
P

i niui ≥ MU} for some deterministic sequence

u1, u2, . . . which has some density, or more simply, let ui = u(pi) for some

function u(·).

Examples:

Disordered transport model: u(p) = p/α →
P

i ni/µi (estimated time).

Ideal Boson gas: u(p) = − 1
β ln p →

P

i niǫi (energy).

A similar derivation yields the saddle–point equation

U = U (z) ≡

Z pmax

0

pu(p)zu(p)g(p)dp

1 − pzu(p)
,

whose solution z is sought in [1, Z), where Z ≡ infp∈[0,pmax]{p
−1/u(p)}.

Again, condensation takes place if Uc = U (Z) < ∞ and U > Uc.
– p. 8/18



Two Constraints

Consider now the event
˘

P

i niui ≥ MU,
P

i nivi ≥ MV
¯

for ui = u(pi) and
vi = v(pi). Here the large deviations analysis yields two equations with two
unknowns:

U = U (z1, z2) ≡

Z pmax

0

pu(p)z
u(p)
1 z

v(p)
2 g(p)dp

1 − pz
u(p)
1 z

v(p)
2

V = V (z1, z2) ≡

Z pmax

0

pv(p)z
u(p)
1 z

v(p)
2 g(p)dp

1 − pz
u(p)
1 z

v(p)
2

The rate function is

I(U, V |z1, z2) = U ln z1 + V ln z2 −

Z

dpg(p) ln

"

1 − p

1 − pz
u(p)
1 z

v(p)
2

#

.

Here, z1 and z2 are jointly limited by the inequality:

f(z1, z2)
∆
= supp[pz

u(p)
1 z

v(p)
2 ] < 1. Solutions are sought in the region

A = {(z1, z2) : z1 ≥ 1, z2 ≥ 1, f(z1, z2) < 1}.
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Two Constraints – Seven Phases

I(U, V |z1, z2) = U ln z1 + V ln z2 −

Z

dpg(p) ln

"

1 − p

1 − pz
u(p)
1 z

v(p)
2

#

.

I(U, V ) =

8

>

>

>

>

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

>

>

>

>

:

0 no LD

supz1
I(U, V |z1, 1) non-condensed – U only

supz2
I(U, V |1, z2) non-condensed – V only

supz1,z2
I(U, V |z1, z2) non-condensed

I(U, V |Z1, 1) 1D condensed – U only

I(U, V |1, Z2) 1D condensed – V only

supf(z1,z2)=1 I(U, V |z1, z2) 2D condensed

where

Z1 = solution of f(z1, 1) = 1.

Z2 = solution of f(1, z2) = 1.

We assume along the curve f(z1, z2) = 1, maxp[pz
u(p)
1 z

v(p)
2 ] is achieved by

p = p0 that is independent of z1.
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U

slope = v(p0)/u(p0)
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There Can Be Even More Phases ...

We assumed that along the curve f(z1, z2) = 1,

max
p

[pz
u(p)
1 z

v(p)
2 ]

is achieved by p = p0 that is independent of z1.

What happens when this is not the case?

For example,
u(p) ≡ 1; v(p) = −α − ln p.

Here,

argmaxf(z1,z2)=1[pz
u(p)
1 z

v(p)
2 ] =

(

pmin z1 < eα

pmax z1 > eα

Here, the 2D condensed phase, splits into three sub–phases.
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z1 = Z1

z1 ↑

phase 3 (1D):

z2 = Z2

z2 = 1
z2 ↑
z1 = 1

B

A

non-condensed

phase 6 (1D):
condensed -
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V dominates
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non-condensed-
U dominates
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C

V (1, Z2)

condensed

phase 2b

condensed

V = Ψ(U)
D

phase 4 (1D):
condensed -
U dominates

slope = ln 1
pmax

− α

U (Z1, 1)U (1, 1)
U

slope = ln 1
pmin

− α

phase 0:
no large
deviations

V

phase 2a

condensed

phase 2c
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There Can Also Be Much Less Phases ...

What happens if there are equality constraints, i.e.,

Pr

(

X

i

niu(pi)=MU,
X

i

niv(pi)=MV

)

Here z1 and z2 are not restricted to be ≥ 1.
→ all phase transitions associated with z1 = 1 and z2 = 1 disappear.

Now there are only two phases: condensed and non-condensed (always 2D),
separated by the curve V = Ψ(U), which is now continued up to the axes.
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Applications
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One–Way Markov Chains

0 1

p0 p1

1 − p0 1 − p1

p2

1 − p2

2 · · ·

P (n0, n1, . . .) =
Y

i

[pni

i (1 − pi)].

Optimum data compression: Encode ni using

ℓi(ni) = − log P (ni) = ni log(1/pi) − log(1 − pi) bits

Here u(p) = − log p. The large deviations event = buffer overlfow.
Condensation – beyond a certain buffer size for certain densities.
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Queueing Networks

A natrual application is a Jackson network with M queues, with

pi = λi/µi utilization

where λi = arrival rate to queue no. i, and µi = service rate of queue no. i.

Examples of relevant (undesirable) events:

Excess of
P

i ni = total number of customers.

Excess of
P

i ni/µi = estimation of total waiting time in all queues.

Condensation: queue with the worst utilization is jammed.

Gordon–Newell network: fixed number of customers – canonical

Bose–Einstein distribution. Related to zero–range processes (ZRP’s) in stat

mech with conservation of particles.

Jackson (1963) extended his results to allow state–dependent service times:

seems to include results on ZRP’s as special cases. – p. 17/18



Thank You!
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