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The Problem

We are interested in the large deviations behavior of a system whose

steady—state obeys

M—1 n;
| p?’
Z Y]

P(ng,n1,...,np—1) =

where n; = number of elements (particles/agents,...) in ‘site’ no. i.

E.g., assess Pr{> . n; > M- U} ~ e~ M1W) for M — 0.
Examples of Relevance:

® Grand—canonical ideal Boson gas: p; = zeP¢ (black body radiation).
®» One-way Markov chain: i — iw.p.p;; ¢ —i+1wp. 1—p;.

®» Jackson network of M queues: p; = \;/ ;.
9

Hopping model for transport in a disordered medium: p; = a/u; (ZRP’S).
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Hopping Model (Or A Cascade of Queues)




The Problem (Cont’d)

The large deviations rate function

[(U) = lim [—]\Zbgpr{zanU}

M — o0

may exhibit phase transitions — Bose—Einstein condensation (BEC): Given the

event, a macroscopic fraction — jammed in one ‘site’ for U > U..

This is the case also with general linear combinations of {n;}, e.g.,

, —1
I(U)= lim Mlong{Zni/MZMU}.
1

M — o0

S J/
Ve

est. time

More interestingly, how about I(U, V) of Pr{}_. n; > MU, > .n;/u; > MV}?

Answer gives rise to a notion of 2D BEC: A very rich phase diagram.

—p. 4/1



A Single Constraint

Pr{ZmZMU} < <z2i"i_MU> z2>1

I(U) = sup
z>1

, M-l 1 p,
Ulnz — lim — 1 .

e MlinooM Z n(l—mz)]
Assume that {p;} have a density g(p):

fraction of {p;} € [p,p + dp] — g(p)dp.
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A Single Constraint (Cont'd)

Resulting equation in z (saddle point):

M-—-1

. Pmax .
0

M—oo M — 1—p;z 1 —pz

A solution z* is soughtin [1,1/pmax).

In analogy to the BEC, if

lim 9(p)

< oo forsome ¢ >0,
PTPmax (pmax — p)g

then

Pmax d
Ue = U(l/pmax) = / pg(p) P < 0
0 Pmax — P

Condensation for U > U.,.

—p. 6/1



A Single Constraint (Cont'd)

The rate function exhibits two phase transitions

2

0 U < Upin = U(l)
sup, |Ulnz — fpmax dpg(p) In (11_—ppz)} Umin S U < Ue
pmax 1_
\ Uln pmax> f dpg(p (1_p/ppmax) U 2 UC

® U < Ui, — ot a rare event.

® U,in <U < U -rare event; no condensation. I(U) is convex.

® U>U.-BEC:n;/N ~1—-U./U for that i of p; = pmax. I(U) Is affine.

Second order phase transition: I(U) and I'(U) are continuous, I”(U) is not.
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A More General Constraint

Consider now the event {> . n;u; > MU} for some deterministic sequence
uy,u2, ... Which has some density, or more simply, let u; = u(p;) for some

function u(-).

Examples:

® Disordered transport model: u(p) = p/a — > .n;/u; (€stimated time).

#® Ideal Boson gas: u(p) = —g5lnp — Y, ne; (energy).

A similar derivation yields the saddle—point equation

U=U() = /pmax pu(p)="'") g(p)dp
o 0 1 — pzu(p) ’

whose solution z is sought in [1, Z), where Z = inf ¢ (g, _{p~"/“®)}.

Again, condensation takes place if U = U (Z) < coc and U > U..
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Two Constraints

Consider now the event {3, nju; > MU, >, njv; > MV} for u; = u(p;) and
v; = v(p;). Here the large deviations analysis yields two equations with two
unknowns:

P pu(p)y' "z " g (p)dp

1 — pzib(p)zg(p)

U = U(z1,z2)5/0

pmax py(p) 22 P) 22 ®) g (p)dp

1 — pzy(p) Z;(p)

vV = V(Zl,ZQ)E/O

The rate function is

1 —
I(U,Vzl,zg):U1n21+V1n22—/dpg(p)ln[ u(]; IR
1 —pzg P 2 P
Here, z; and zo are jointly limited by the inequality:

Flz1,22) 2 Supp[pzqf(mz;(p)] < 1. Solutions are sought in the region
A={(z1,22): 21 > 1, 220 > 1, f(21,22) < 1}.
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Two Constraints — Seven Phases

I(U,Vzl,zg):Ulnzl—I—Vln,Z'Q—/dpg(p)ln[ l—p ]

I(U,V) =«

f

0

sup,, 1(U,V|z1,1)
sup,, I(U, V|1, z2)
Sup,, ., 1(U, V|21, 22)
I(U,V|Z1,1)

I(U, V|1, Z2)

where

\ Supf(zl,ZQ):l I(U7 V"Zla 22)

® 7, =solution of f(z1,1) = 1.
® /> =solution of f(1,29) = 1.

1 — pzfib(p)zg(p)
no LD

non-condensed — U only
non-condensed — V' only
non-condensed

1D condensed — U only
1D condensed — V only
2D condensed

We assume along the curve f(z1,22) = 1, max, [pzib(p)z;)(p)] is achieved by
p = po that is independent of z;.
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V (1, Z2)

V(1,1)

phase 6 (1D):

condensed -
V' dominates

/_____—slope = v(po)/u(po

phase 2 (2D):

phase 5 (1D):
non-condensed-

B condensed
V = (U
ZQTZ ZQ 3 < )

V' dominates phase 1 (2D): ol 1 1
non-condensed
21 — 1
21 i«l L 1 phase 4 (1D):
2 p—
condensed -
A U dominates
pnr:)a;er Oe: phase 3 (1D):
deviati%ns ”gnc'lcon_de?sed-
ominates
U(1,1) U(1, %)
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There Can Be Even More Phases ...

We assumed that along the curve f(z1,22) =1,

maX[pziﬁ(P)Zg(P)]

p

IS achieved by p = pg that is independent of z;.
What happens when this is not the case?

For example,
u(p) =1; wv(p) =—a—Inp.
Here,
Pmin 21 <€

u(p) _v(p)
alrgmax _ Z Z —
g f(21722)—1[p 1 2 ] { Pmax 21 > R’

Here, the 2D condensed phase, splits into three sub—phases.
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1

Vo slope = In — — «
/ condensed
pr(]:i?ledefjn(sle[;):- condenseq ~ Phase 2¢ slope=1In —4/— — «
V' dominates phase 2a
V(l, 22 condensed
T phase 2b
29 — Zz s
phase 5 (1D): V = U (U)
non-condensed- _
V' dominates phase 1 (2D): 5 =4
non-condensed C
21 = 1
z2 T\_ '%12 T: 1 phase 4 (1D):
condensed -
V(1,1) T U dominates
phase O: phase 3 (1D):
30 large non-condensed-
eviations U dominates
- U

U(1,1)

U(Z,1)
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There Can Also Be Much Less Phases ...

What happens if there are equality constraints, i.e.,

Pr {Z n;u(p; ) =MU, Z niv(pi)—MV}

Here z; and zo are not restricted to be > 1.
— all phase transitions associated with z; = 1 and z» = 1 disappear.

Now there are only two phases: condensed and non-condensed (always 2D),
separated by the curve V = ¥(U), which is now continued up to the axes.
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Applications



One-Way Markov Chains

P(ng,n1,...) = | [[p{" (1 = pi)l.
Optimum data compression: Encode n; using

li(n;) = —log P(n;) = n;log(1/p;) —log(l — p;) bits

Here u(p) = —logp. The large deviations event = buffer overlfow.
Condensation — beyond a certain buffer size for certain densities.
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Queueing Networks

A natrual application is a Jackson network with M queues, with
pi = A\i/p;  utilization

where \; = arrival rate to queue no. i, and p; = service rate of queue no. .

Examples of relevant (undesirable) events:

® Excess of ) . n; = total number of customers.

® Excess of ). n;/u; = estimation of total waiting time in all queues.

Condensation: queue with the worst utilization is jammed.

Gordon—Newell network: fixed number of customers — canonical
Bose—Einstein distribution. Related to zero—range processes (ZRP’s) in stat
mech with conservation of particles.

Jackson (1963) extended his results to allow state—dependent service times:

seems to include results on ZRP’s as special cases. ~p. 171



Thank You!
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