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Background

Rate—distortion functions have closed—form expressions in few cases only.

Lower Bounds

® The Shannon lower bound (SLB):

discrete SLB, continuous SLB, vector SLB,...

® The Wyner—Ziv lower bound (for source with memory):

sometimes combined with SLB.
® The autoregressive lower bound.

Upper Bounds

Can be obtained from analyzing performance a specific scheme, or a random

coding argument, e.g., the Gaussian upper bound.
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Some Notation

X € X —source symbol; X ~p
Y € Y — reproduction symbol;
d(X,Y) — distortion function.

Define
Rg(D) = min{I(X;Y) : E{d(X,Y)} <D, Y ~qj.
Of course,

R(D) = mqin Rq(D).
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Main Basic Result - MMSE Formula

Parametric representation via a parameter s > 0:
A S
Rs = R¢(Ds) = / ds-s-mmse;(A|X)
0

_ Rq(Doo)—/ ds - 5 - mmse,(A|X).

where Do 2 E{miny d(X,y)} and

mmses(A|X) = MMSE of estimating A 2 d(X,Y) based on X w.r.t. the joint
pmf

q(y)e 34w v)
Zz(s)

ps(z,y) = p(x)ws(y|r) = p(z) -

with
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Main Result (Cont’d)

Similarly,
Ds = DO—/ ds - mmse;(A|X)
0
= Doo+/ ds-mmse;(A|X).

where

Do =Y p(x)q(y)d(z,y).
L,y
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A Few Technical Comments

The result is based on the relation

Ry(D) = — min

SD—|—Zp )In Zx (s :|

reX

which is the large deviations rate function of
Pr{d(z,Y)<nD}, €7, Y ~q".

Meanings of s:
(i) Negative local slope of the curve Ry(D): s = —Rg(Ds);
(i) Lagrange multiplier of min[I(X;Y") + sE{d(X,Y)}].

The Y—marginal induced by

_ p(x)g(y)e 54U@Y)
ps(x,y) - Zx(S)

may not agree with the reproduction pmf g.
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Using the MMSE Relations for Bounds

As both R,(Ds) and D, are integrals of mmse;(A|X), upper/lower bounds on
R4(D) can be obtained via corresponding bounds on mmse;(A|X):

® Bounds derived from estimation—theoretic considerations.
» Upper bounds: MSE of a certain suboptimum estimator A(X).

# Lower bounds: Bayesian Cramér—Rao bound, or more advanced
bounds, if applicable.

® Technical bounds derived directly on the expression of MMSE.
To be demonstrated later on..

What about R(D)?

min{lowerbound, (D)} < R(D) < min{upperbound (D)}.
q q
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Comparison to I-MMSE Relations

The MMSE formula of R(Ds) rings the bell of the I-MMSE relation
[Guo—Shamai—-Verdu 2005]:

1 snr
I(X;vsnrX + N) = 5/ mmse(X|vaX + N)da; X L N ~ N(0,0°1).
0

Letting Y ~ N(0,02) and d(x,y) = (z — y)?, then ws(y|z) induces

280’5 2
Y =aX+7; a= 5; BEZ47 =
1+ 2s03 25

® Estimation — based on channel input vs. channel output.
® |Integrand of R(Ds) includes a factor of s.

® Integration variables are related nonlinearly:

4s°
07(1+ 2s03)

snr =
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Analogous MMSE Relation for Channel Capacity

Large deviations rate function of Pr{d(X,y) < nD)} for d(x,y) = — Inw(y|z)
and D = HY|X) (X ~p"; y € 1y):

Cp = —min [SH(YX +> q(y)n <Zp 5 (y|x) ﬂ

s>0
Yy

where the minimum is always attained for s* = 1. Accordingly,
1
Cp = / ds-s-mmses[lnw(Y|X)|X],
0

where the MMSE is w.r.t. the joint pmf

oy — P@)a)w” (y|z)
N SO e TED)
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Analogies with Statistical Mechanics

Zo(s) =D q(y)e*4®Y)

Yy

can be thought of as the partition function of subsystem z in equilibrium;

s = 1/kT; Hamiltonian (energy function): £:(y) = d(x, y).

—Ry(D) = msin sD + Zp(x) In Zz(s)
X
= normalized entropy in equilibrium of all |X| subsystems:

Total energy = nD; |subsystem x| = np(x) particles.
Minimizing s — equilibrium 7.

mmses (A|X) < heat capacity.
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Analogies with Stat. Mech. (Cont’d)

Alternative analogy:

s < force (pressure, magnetic field, ...)
d(x,y) <= conjugate physical quantity (volume, magnetization, ...)
—R4(D) < free energy

MMSE formula < fluctuation—dissipation thm
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Example

X has a symmetric pdf around z = 0 with E(X?) = 02, E(X*?) = pi

x-

Quadratic distortion measure: d(z,y) = (z — y)*.

Y ={-a,+a}; q(+a)=q(—a)=5 (optimum q).

In this case,

a2
e s(x—y) 25Ty

ws(y|x) — 6—s(x—a,)2 + 6—8($+a)2 - 2COSh(2GS$) .

and then

mmses(A[X) = 4a” [ag _E{X? tanhQ(zasX)}] .

High Distortion (small s): Bounds on the MMSE are obtained from

0 < tanh?(2asz) < (2asz)?
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Example (Cont’d)

LB on R(D): LB on MMSE in [ of R(Ds) eq. and UB on MMSE in [ eq. of
Dyg:

(Do — D)*  pz(Do — D)*
8a2c02 64ato8

R(D) > . Do =02 +a°.

Outperforms SLB, which = 0 at D = (2me) " 'e2MX) < 52,

UB on R(D): the other way around:

Pz

20t [1 .1 (3P32[;(D0—D)>}

R(D) < —=sin“ | = sin
(D) < dao?s

Bounds are applicable in some distortion intervals; Have the same leading

term as D T Dy.

(Dy — D)?

for D close to Dy.
8a202 0

R(D) =
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Example (Cont’d)

Low Distortion (large s): For a lower bound on R(D), we use an upper bound
on MMSE in [* of the rate and a lower bound on the MMSE in [ of the

distortion. Assuming X ~ Laplacian(6), we get:

R(D)>1- V6C1 (D — Do) .
2 cos [% sin—1 (202\/6(D51D°°)> + %}

For an upper bound, we do the opposite:

R(D) <1—+/2C1(D — Doo) + C2(D — Do)

where C7 and Cy are constants that depend only on 6/a.

The bounds sandwich the low distortion behavior:

R(D)~1—+/2C1(D — Doo).
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Conclusion

An MMSE parametric representation was introduced.

Reminds I-MMSE relations, but not quite..

Can be useful for deriving bounds on rate—distortion functions.

It would be interesting to use estimation—theoretic bounds on MMSE.

Extensions to more complicated models: successive refinement, side

info, ...
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