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Another Look at the Physics of Large Deviations
With Application to Rate–Distortion Theory

Neri Merhav

Abstract—We revisit and extend the physical interpretation
recently given to a certain identity between large–deviations rate–
functions (as well as applications of this identity to Information
Theory), as an instance of thermal equilibrium between several
physical systems that are brought into contact. Our new inter-
pretation, of mechanical equilibrium between these systems, is
shown to have several advantages relative to that of thermal
equilibrium. This physical point of view also provides a trigger
to the development of certain alternative representationsof the
rate–distortion function and channel capacity, which are new to
the best knowledge of the author.

Index Terms—Large deviations theory, Chernoff bound, statis-
tical physics, free energy mechanical equilibrium, rate–distortion
theory.

I. I NTRODUCTION

RELATIONSHIPS between information theory and sta-
tistical physics have been widely recognized in the last

few decades, from a wide spectrum of aspects. These include
conceptual aspects, of parallelisms and analogies betweenthe-
oretical principles in the two disciplines, as well as technical
aspects, of mapping between mathematical formalisms in both
fields and borrowing analysis techniques from one field to
the other. One example of such a mapping, is between the
paradigm of random codes for channel coding and certain
models of magnetic materials, most notably, Ising models
and spin glass models (cf. e.g., [10] and many references
therein). Today, it is quite widely believed that research in the
intersection between information theory and statistical physics
may have the potential of fertilizing both disciplines.

This paper is more related to the former aspect mentioned
above, namely, the relationships between the two areas in the
conceptual level. In particular, we revisit results of a recent
work [9], and propose a somewhat different perspective, which
as we believe, has certain advantages, that will be explained
and shown in the sequel.

More specifically, in [9], an identity between two forms of
the rate function of a certain large deviations event was estab-
lished, with several applications in information theory. Inspired
by a few earlier works (cf. e.g., [8], [12], [14]), this identity
was interpreted asthermal equilibriumbetween several many–
particle physical systems that are brought in contact. In partic-
ular, the parameter that undergoes optimization of the Chernoff
bound, henceforth referred to as theChernoff parameter, plays
a role that is intimately related to the equilibrium temperature:
in fact, it is the reciprocal of the temperature, called theinverse
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temperature. The corresponding large deviations rate function
is then identified with the entropy of the system.

While this physical interpretation is fairly reasonable, it
turns out, as we show in this paper, that it leaves quite some
room for improvement, and we will mention here just two
points. The first, is that this interpretation does not generalize
to rate functions of combinations of two or more rare events,
where the number of Chernoff parameters is as the number
of events. This is because there is only one temperature
parameter in physics. The other point, which is on a more
technical level, is the following (more details and clarifica-
tions will follow in Subsection 2B below): while the log–
moment generating function, pertaining to the large deviations
rate function, naturally includes weighting by probabilities,
its physical analogue, which is thepartition function, does
not. If these probabilities are subjected to optimization (e.g.,
optimization of random coding distributions), they may depend
on the Chernoff parameter, i.e., on the temperature, in a rather
complicated manner, and then the resulting expression can no
longer really be viewed as a partition function.

In this paper, we propose to interpret the above–mentioned
identity of rate functions as an instance ofmechanical equi-
librium (i.e., balance between mechanical forces), rather than
thermal equilibrium, and then the Chernoff parameter plays
the physical role of an externalforce, or field, applied to
the physical system in consideration. In this paradigm, the
large deviations rate function has a natural interpretation as the
(Helmholtz)free energyof the system, rather than as entropy.
Accordingly, since the rate–distortion function (and similarly,
also channel capacity) can be thought of as a large deviations
rate function, it can also be interpreted as the free energy of
a certain system.

This interpretation has several advantages. First, it is consis-
tent with the analogy between the free energy in physics and
the Kullback–Leibler divergence in information theory (see,
e.g., [1],[11]), which is well known to play a role as a rate
function when the large deviations analysis is approached by
the method of types [4]. Second, it is free of the limitations
mentioned in the previous paragraph, as we will see in the
sequel. Third, it serves as a trigger to develop certain repre-
sentations of the rate–distortion function (and analogously, the
channel capacity), which are new to the best knowledge of the
author.

Since the rate–distortion function can be thought of as
free energy, as mentioned above, one of the representations
of the rate–distortion function expresses it as (the minimum
achievable) mechanical work carried out by the aforemen-
tioned external force, along a ‘distance’ that is measured in
terms of the distortion. Another representation, which follows
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from the first one, is as an integral that involves the single–
letter minimum mean square error (MMSE) in estimating the
distortion given the source symbol, according to a certain
joint distribution of these two random variables. The latter
representation may suggest a new route to the derivation of
upper and lower bounds on the rate–distortion function and
channel capacity, using the plethora of upper and lower bounds
on MMSE, available from estimation theory. In particular, for
upper bounds, one may examine the mean squared error of
an arbitrary estimator, e.g., the best linear estimator. Lower
bounds, like the Bayesian Cramér–Rao bound and numerous
others are available in the literature (cf. e.g., [15],[16]and
references therein). We have not explored these directions,
however, in the framework of the work presented herein.

An additional byproduct of the proposed perspective is
the following: Given a source distribution and a distortion
measure, we can describe (at least conceptually) a concrete
physical system that emulates the rate–distortion problemin
the following manner (see Fig. 1): When no force is applied to
the system, its total length isn∆0, wheren is the number of
particles in the system (and also the block length in the rate–
distortion problem), and∆0 is the distortion corresponding
to zero coding rate. If one applies to the system a contracting
force, that increases from zero force to some final forceλ, such
that the length of the system shrinks ton∆, where∆ < ∆0

is analogous a prescribed distortion level, then the following
two facts hold true: (i) Anachievable lower boundon the total
amount of mechanical work that must be carried out by the
contracting force in order to shrink the system to lengthn∆,
is given by

W ≥ nkTR(∆),

wherek is Boltzmann’s constant,T is the temperature, and
R(∆) is the rate–distortion function. (ii) The final forceλ is
related to∆ according toλ = kTR′(∆), whereR′(·) is the
derivative ofR(·).

Thus, we observe thatR(∆) plays a role of a fundamental
limit, not only in information theory, but also in physics.

λ = kTR′(∆)

n∆0

n∆

W = nkTR(∆)

Fig. 1. Emulation ofR(∆) by a physical system.

The outline of the paper is as follows. In Section 2, we
provide some background in physics (Subsection 2A) and
give a brief description of the physical interpretation proposed
in [9] (Subsection 2B). Then, we develop the new proposed
physical interpretation, first for a generic large deviations
rate–function (Section 3), and then, in the context of the
rate–distortion problem (Section 4). In Section 5, we present
the above mentioned alternative representations of the rate–
distortion function. Finally, in Section 6, we summarize this
work and conclude.

II. PRELIMINARIES

A. Physics Background

Consider a physical system with a large numbern of
particles, which can be in a variety of microscopic states
(‘microstates’), defined by combinations of, e.g., positions,
momenta, angular momenta, spins, etc., of alln particles.
For each such microstate of the system, which we shall
designate by a vectorx = (x1, . . . , xn), there is an associated
energy, given by an Hamiltonian (energy function),E(x). For
example, ifxi = (pi, hi), wherepi is the momentum vector
of particle numberi andhi is its height, then classically,

E(x) =

n
∑

i=1

(

‖pi‖
2

2m
+ mghi

)

,

wherem is the mass of each particle andg is the gravitation
constant.

One of the most fundamental results in statistical physics
(based on the law of energy conservation and the basic
postulate that all microstates of the same energy level are
equiprobable) is that when the system is in thermal equilibrium
with its environment, the probability of a microstatex is given
by theBoltzmann–Gibbsdistribution

P (x) =
e−βE(x)

Zn(β)
(1)

whereβ = 1/(kT ), T being temperature,k being Boltzmann’s
constant, andZn(β) is the normalization constant, called the
partition function, which is given by

Zn(β) =
∑

x

e−βE(x)

or
Zn(β) =

∫

dxe−βE(x),

depending on whetherx is discrete or continuous. The role
of the partition function is by far deeper than just being a
normalization factor, as it is actually the key quantity from
which many macroscopic physical quantities can be derived,
for example, the Helmholtz free energy1 is − 1

β lnZn(β), the
average internal energy (i.e., the expectation ofE(x) where
x drawn is according (1)) is given by the negative derivative

1The physical meaning of the Helmholtz free energy is the following: The
difference between the Helmholtz free energies of two equilibrium states is
the minimum work that should be done on the system in any process of fixed
temperature (isothermal process) in the passage between these two states.
The minimum is obtained when the process is reversible (slow, quasi–static
changes in the system).
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of lnZn(β), the heat capacity is obtained from the second
derivative, etc. One of the ways to obtain eq. (1), is as
the maximum entropy distribution under an energy constraint
(owing to the second law of thermodynamics), whereβ plays
the role of a Lagrange multiplier that controls this energy level.

Under certain assumptions on the Hamiltonian function,
the following relations are well–known to hold and can
be found in any textbook on elementary statistical physics
(see, e.g., [2],[7],[10]): Defining the per–particle entropy,
S(E), associated with per–particle energyE = E(x)/n, as
limn→∞[ln Ω(E)]/n,2 (provided that the limit exists), where
Ω(E) is the number of microstates{x} with energy level
E(x) = nE, then similarly as in the method of types, one
can evaluateZn(β) defined above, as

Zn(β) =
∑

E

Ω(E)e−βE

(in the discrete case), which is of the exponential order of

exp{n max
E

[S(E) − βE]}.

Defining

φ(β) = lim
n→∞

lnZn(β)

n
,

and the Helmholtz free–energy per–particle as

F (β) = −
φ(β)

β
,

we obtain the Legendre relation

φ(β) = max
E

[S(E) − βE],

where hereE = E(β) is the maximizer of[S(E) − βE].
For a givenβ, the Boltzmann–Gibbs distribution has a sharp
peak (for largen) at the level ofE(β) Joules per–particle.
Assuming thatS(·) is concave (which is normally the case),
the above Legendre relation can be inverted to obtain

S(E) = min
β≥0

[βE + φ(β)],

and both relations can be identified with the thermodynamical
definition of the Helmholtz free energy as

F = E − TS.

In the latter relation, the minimizingβ = β(E) (the inverse
function ofE(β)) is the equilibrium inverse temperature asso-
ciated with energy levelE. The second law of thermodynamics
asserts that in an isolated system (which does not exchange en-
ergy with its environment), the total entropy cannot decrease,
and hence in equilibrium, it reaches its maximum. When the
system is allowed to exchange heat with the environment
(at constant volume and temperature), this maximum entropy
principle is replaced by theminimum free energyprinciple:
The Helmholtz free energy cannot increase, and it reaches its
minimum in equilibrium.

2Actually, the definition should also include a factor ofk, which we will
omit in this discussion, thus consideringS(E) as the per–particle entropy in
units of k.

When the Hamiltonian is additive, that is,

E(x) =
∑

i

E(xi),

thenP (x) has a product form (the particles do not interact),
and then the above mentioned physical quantities per particle
can be extracted from the casen = 1. In this additive case,
the Legendre transform, that takesφ(β) to S(E), is similar
to the Legendre transform that defines the rate function (the
exponent of the Chernoff bound) pertaining to the probability
of the event

n
∑

i=1

E(xi) ≤ nE,

thus the parameter to be optimized in the Chernoff bound plays
the role of inverse temperature in the corresponding statistical–
mechanical system.

Another look at this correspondence between large devia-
tions rate functions and thermal equilibrium is the following:
If P is the above mentioned Boltzmann–Gibbs distribution and
Q is another probability distribution on the micorstates{x},
then, as is shown e.g., in [1], the Kullback–Leibler divergence
betweenQ andP is given by

D(Q‖P ) = β(FQ − FP ),

whereFP andFQ are, respectively, the Helmholtz free ener-
gies pertaining toP and Q. The rate function pertaining to
a large deviations event is normally given by the minimum
divergence under the constraints corresponding to this event
(see, e.g., [3, Chap. 11]), and so, it is equivalent to minimum
free energy, i.e., thermal equilibrium by the second law.

Consider next a system ofn non–interacting particles as
before, except that now the Hamiltonian is shifted by a
quantity that is proportional to some parameterλ, i.e., the
Hamiltonian is redefined as

E(x, y) = E0(x) − λ ·

n
∑

i=1

yi,

where we have changed the notation of the (original)
Hamiltonian toE0(x), and where{yi} are some additional
variables used to describe the microstate. These new variables
may either be dependent or independent of the original
microstate variables{xi} (both cases are demonstrated
in Example 1 below) and their number,n, is here taken
to be the same as the number of{xi}, primarily, for
reasons of convenience.3 The parameterλ is thought of
as an external control parameter, i.e., adriving force (or
a field) that acts on the system via the state variables
{yi}. The parameterλ can be a mechanical force (e.g.,
pressure, elastic extraction/contraction force, gravitational
force), an electric field (acting on an a charged particle or
an electric dipole), a magnetic field (acting on a magnet
or spin), or even a chemical driving force (chemical potential).

Example 1 (may be skipped without loss of continuity).
Consider the following two systems. The first is the same

3In general, their number can be different, but then it is still assumed to
grow proportionally ton.
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example as in the first paragraph of this subsection, namely,
non–interacting particles in motion under gravitation. The
Hamiltonian,

∑

i

(

‖pi‖
2

2m
+ mghi

)

can be thought of as being composed of the ‘original’ Hamil-
tonian

∑

i ‖pi‖
2/(2m) (with {pi} replacing{xi}), and the

‘shifting’ term, mg
∑

i hi, whose force parameter isλ = −mg
(gravitational force), acting on the height variablesyi = hi. In
this example, the variablesx = p andy = h = (h1, . . . , hn)
are independent. The second system consists ofn one–
dimensional harmonic oscillators (e.g., springs or pendulums),
where the Hamiltonian is

∑

i

(

‖pi‖
2

2m
+

Ky2
i

2

)

,

pi being the (one–dimensional) momentum,yi – the displace-
ment of each oscillator from its equilibrium position, andK
is the elasticity constant. Now, suppose that an external force
λ is applied to each spring, so the Hamiltonian becomes

∑

i

(

‖pi‖
2

2m
+

Ky2
i

2
− λyi

)

.

In this case, the variables of the original Hamiltonianxi =
(pi, yi) contain the variables{yi}, of the shifting term, as a
subset. We also see that the modified Hamiltonian is, within
an immaterial additive constant, identical to

∑

i

[

‖pi‖
2

2m
+

K

2

(

yi −
λ

K

)2
]

.

This means that the forceλ shifts the common mean of the
RV’s {yi}, which is equilibrium point of all oscillators, by
∆y = λ/K, as expected. This concludes Example 1.�

Consider next the partition function

Z̃n(β, λ) =
∑

x,y

e−β[E0(x)−λ
P

i
yi].

The Gibbs free energy4 per particle is defined as

Gn(β, λ) = −
kT ln Z̃n(β, λ)

n

and the asymptotic Gibbs free energy per particle is

G(β, λ) = lim
n→∞

Gn(β, λ).

What is the relation between between the Helmholtz free
energy and the Gibbs free energy? LetΩ(E, Y ) ∼ enS(E,Y )

denote the number of microstates{(x, y)} for which
∑

i

E0(xi) = nE and
∑

i

yi = nY.

4The Gibbs free energy has a meaning similar to the Helmholtz free energy
(see footnote no. 1), but it refers to partial work: the difference between the
Gibbs free energies of two equilibrium points is the minimumamount of
work to be done on the system,other than work pertaining to changes in the
variables{yi}, in an isothermal process with fixedλ, in the passage between
these two points.

Then, defining the partial partition function

Zn(β, Y ) =
∑

{(x,y):
P

i
yi=nY }

e−βE0(x),

the normalized Helmholtz free energy for a givenY

Fn(β, Y ) = −
kT lnZn(β, Y )

n
,

and the corresponding asymptotic normalized Helmholtz free
energy,

F (β, Y ) = lim
n→∞

Fn(β, Y ),

we have (similarly as in the method of types):

e−βnGn(β,λ) =
∑

x,y

e−β[E0(x)−λ
P

i
yi]

=
∑

E,Y

Ω(E, Y )e−β(nE−λnY )

·
=

∑

E,Y

en[S(E,Y )−β(E−λY )]

=
∑

Y

enβλY
∑

E

en[S(E,Y )−βE]

=
∑

Y

enβλY Zn(β, Y )

=
∑

Y

enβλY · e−βnFn(β,Y )

·
= exp{nβ · max

Y
[λY − F (β, Y )} (2)

where
·
= denotes asymptotic equivalence in the exponential

scale.5 This results in the Legendre relation

G(β, λ) = min
Y

[F (β, Y ) − λY ].

Assuming thatF (β, Y ) is convex inY for fixed β, the inverse
Legendre relation is

F (β, Y ) = max
λ

[G(β, λ) + λY ]

= max
λ

[λY − kT×

lim
n→∞

1

n
ln





∑

x,y

e−β[E0(x)−λ
P

i
yi]









= kT · max
λ

[βλY −

lim
n→∞

1

n
ln





∑

x,y

e−βE0(x) · eβλ
P

i
yi









= kT · max
s

[sY −

lim
n→∞

1

n
ln





∑

x,y

e−βE0(x) · es
P

i
yi







 (3)

where in the last step, we changed the optimization variable
λ to s = βλ for fixed β. Sinces is proportional toλ for fixed
β, andλ designates force, we will henceforth refer tos also
as ‘force’ (although its physical units are different). We will
get back to eq. (3) soon.

5More precisely,an
·

= bn, for two positive sequences{an} and {bn},
means that1

n
log an

bn
→ 0, asn → ∞.
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B. A Brief Summary of [9]

First, recall that in the previous subsection, we mentioned
that the Legendre relation

S(E) = min
β≥0

[βE + φ(β)]

is similar to the rate function of the large deviations event
{
∑

i E(xi) ≤ nE} for i.i.d. RV’s {xi}, governed by a given
distribution P . The difference is that in the latter, the log–
moment generating function

ln
∑

x

P (x)e−βE(x),

that undergoes the Legendre transform, contains weightingby
the probabilities{P (x)}, unlike the log–partition

ln
∑

x

e−βE(x),

which does not. In [9] it was proposed to interpret the weights
{P (x)} as being proportional to a factor of the multiplicity of
states{x} having the same energyE(x), i.e., as thedegeneracy
in the physics terminology.6

When considering applications of large deviations theory
to information theory, one can view the rate–distortion func-
tion (and analogously, also channel capacity) as the large–
deviations rate function of the event{

∑n
i=1 d(xi, x̂i) ≤ n∆},

where x = (x1, . . . , xn) is a given typical source sequence
(i.e., its empirical distribution agrees with the sourceP )
and {x̂i} are i.i.d. RV’s drawn by a certain random coding
distribution Q. As was observed in [9], there are two ways
to express the large deviations rate function of this event,
which is also the rate–distortion function,RQ(∆), for the
given random distributionQ: The first is by considering all
distortion variables{d(xi, x̂i)} together, on the same footing,
resulting in the expression

I(∆) = −min
β≥0

[

β∆ +
∑

x

P (x) ln
∑

x̂

Q(x̂)e−βd(x,x̂)

]

,

which can also be obtained (see, e.g., [6, p. 90, Corollary
4.2.3]) using different considerations. The second way is to
separate the distortion contributions,{∆x}, allocated to the
various source letters{x}, which results in

I(∆) = − max
{∆x}:

P

x
P (x)∆x≤∆

∑

x

P (x) min
βx≥0

[β∆x+

ln
∑

x̂

Q(x̂)e−βxd(x,x̂)

]

.

The identity between these two expressions, as was proved in
[9], means that the outer maximum in the second expression
(maximum entropy) is achieved when{∆x} are allocated in
such a way that the minimizing temperature parameters{βx}
are all the same, namely, thermal equilibrium between all sub-
systems indexed byx. Once again,{Q(x̂)} can be interpreted
as degeneracy, which is fine as long asQ is fixed. However,

6Another approach, proposed in [13], was to absorbP (x) as part of the
Hamiltonian, but then the Hamiltonian becomes temperature–dependent, but
this does not comply with the common paradigm in statisticalmechanics.

the real rate–distortion function,R(∆) = minQ RQ(∆), is
obtained by optimization (of either expression) overQ and
the optimumQ may, in general, depend onβ (or equivalently,
on ∆). In this situation,Q can no longer be given the meaning
of degeneracy, because in physics, degeneracy has nothing to
do with temperature.

Another limitation of interpretingβ as temperature, is that
it does not extend to two or more rare events at the same
time. For instance, the rate–distortion functionRQ(∆1, ∆2)
w.r.t. two simultaneous distortion constraints, with distortion
measuresd1 andd2, is given by the two–dimensional Legendre
transform

RQ(∆1, ∆2) = − min
β1≤0

min
β2≤0

[

β1∆1 + β2∆2 +
∑

x∈X

P (x)×

ln

(

∑

x̂

Q(x̂)e−β1d1(x,x̂)−β2d2(x,x̂)

)]

. (4)

But this does not have any apparent physical interpretation
because there is only one temperature in physics.

III. L ARGE DEVIATIONS AND FREE ENERGY

The main idea in this paper is that in order to give a physical
interpretation to the rate function as the Legendre transform
of the log–moment generating function, we use the Legendre
transform that relates the Helmholtz free energy to the Gibbs
free energy,G(β, λ) (cf. eq. (3)), rather than the one that
relates the Helmholtz free energy to the entropy,S(E). Thus,
the Chernoff variable would be the forceλ (or s) rather than
the inverse temperatureβ. Also, considering the temperature
as being fixed throughout, we can view the weights{Q(x̂)} (in
the rate–distortion application) as part of the Hamiltonian E0,
which now may depend on the control parameterλ. This also
allows combinations of two or more large deviations events
since one may consider a system that is subjected to more
than one force, e.g., two or three components of same force,
or a superposition of different types of forces.

Specifically, let us first compare the Helmholtz free energy
expression (3) to the rate function [5] of the simple large devi-
ations event{

∑

i yi ≥ nY } w.r.t. some probability distribution
P :

I(Y ) = max
s

[

sY − lim
n→∞

1

n
ln

(

∑

y

P (y)es
P

i
y

)]

which in the case where{yi} are i.i.d. (P (y) =
∏

i P (yi)),
boils down to

max
s

[

sY − ln
∑

y

P (y)esy

]

.

Fixing the temperatureT to someT0 = 1/(kβ0), takingy ≡ x

and E0(x) ≡ E0(y) = −kT0 lnP (y), we readily see that
I(Y ) coincides withF (β0, Y ) up to the multiplicative constant
factor of kT0, which is immaterial. We observe then that the
large deviations rate function has a natural interpretation as
the Helmholtz free energy (in units ofkT0) of a system with
Hamiltonian

E0(y) = −kT0 lnP (y)
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and temperatureT0. As said, the Chernoff parameters has
(again, within the factorβ0) the meaning of a driving force
that acts on the displacement variables{yi} (cf. e.g., the
above example of the one–dimensional harmonic oscillator,
which makes it explicit). For example, in the i.i.d. case, the
driving force s required to shift the expectation of eachyi

(and hence also of1n
∑

i yi) towardsY , which is the solution
to the equation

Y =
∂

∂s
ln
∑

y

P (y)esy

or equivalently,

Y =

∑

y P (y) · yesy

∑

y P (y) · esy
.

The Legendre transform relation between the log–partition
function andI(Y ) induces a one–to–one mapping between
Y and s which is defined by the above equation. To empha-
size this dependency, we henceforth denote the value ofY ,
corresponding to a givens, by 〈y〉s, which symbolizes the
fact that it is the expectation7 of eachyi, denoted generically
by y, w.r.t. the probability distributionPs = {Ps(y)}, where

Ps(y) =
P (y)esy

∑

y′ P (y′)esy′ ,

i.e.,

〈y〉s =

∑

y P (y) · yesy

∑

y P (y) · esy
=

∂

∂s
ln
∑

y

P (y)esy.

On substituting〈y〉s instead ofY in the expression defining
I(Y ), we can re-define the rate function as a function of (the
maximizing)s, i.e.,

Î(s) = s 〈y〉s − ln
∑

y

P (y)esy.

Note that Î(s) can be represented in an integral form as
follows:

Î(s) =

∫ s

0

dŝ ·

(

〈y〉ŝ + ŝ
d〈y〉ŝ

dŝ
− 〈y〉ŝ

)

=

∫ 〈y〉
s

〈y〉
0

ŝ · d 〈y〉ŝ . (5)

Now observe that the integrand is a product of the force,ŝ,
and an infinitesimal displacement that it works upon, d〈y〉ŝ =
〈y〉ŝ −〈y〉ŝ−dŝ (which in turn is the response of the system to
a corresponding infinitesimal change in the force fromŝ− dŝ
to ŝ). In physical terms,̂s · d〈y〉ŝ is therefore an infinitesimal
contribution of the averagework (in units ofkT0) done by the
driving force ŝ on the displacement variables{yi}. Thus, the
integral,Î(s) =

∫

ŝ ·d〈y〉ŝ is the total amount of work (again,
in units of kT0) carried out by the forcês, as it increases
from zero tos during a slow process that allows the system
to equilibrate after every infinitesimally small change inŝ.
In the language of physics, this is areversible process, or a
quasi-static process. Using the concavity ofF as a function

7In the sequel, we use〈·〉s to denote other moments ofy w.r.t. Ps as well.

of s, it is easy to show that any protocol of changingŝ from
0 to s, in a way that includes abrupt changes inŝ, would
always yield an amount of work larger than or equal toÎ(s)
(which is consistent with the operative meaning ofÎ(s) as the
free energy of the system – see footnote no. 1). Thus, for any
sequence,s1, . . . , sℓ, of numbers between0 and s, we can
sandwichÎ(s) between two bounds

ℓ−1
∑

i=1

si(〈y〉si+1
− 〈y〉si

) ≤ Î(s) ≤

ℓ−1
∑

i=1

si+1(〈y〉si+1
− 〈y〉si

),

which become tighter and tighter as the partition of the interval
[0, s], defined by{si}

ℓ
i=1, becomes more refined.

For an alternative integral expression, one observes that
d〈y〉s /ds =

〈

y2
〉

s
−〈y〉

2
s

∆
= Vars{y}, namely, the variance of

y w.r.t. the probability distributionPs. Thus,

Î(s) =

∫ s

0

ŝ · Varŝ{y}dŝ

and

〈y〉s = 〈y〉0 +

∫ s

0

Varŝ{y}dŝ.

Note that, by the same token, in the interpretation of [9],
where the Chernoff parameter was the inverse temperature
β, that is conjugate to the HamiltonianE , the corresponding
integral could have been represented as

∫

β̂ ·d〈E〉β̂ =
∫ dQ

kT , Q
being heat, which is the change of entropy along a reversible
process. The corresponding variance expressions would then
be related to the heat capacity at constant volume. In the more
general context considered here, this is a special case of the
fluctuation–dissipation theorem in statistical physics (cf. e.g.,
[10, p. 32, eq. (2.44)]).

We next discuss a physical example which will be directly
relevant for the rate–distortion problem.

Example 2 [7, p. 134, Problem 13]: Consider a physical
system, modeled as a one–dimensional array ofn elements
(depicted as small springs in Fig. 2), that are arranged along
a straight line. Each element may independently be in one of
two states,A or B (e.g., in stateA the element is stretched
and in stateB, it is contracted, according to Fig. 2). The state
of the i–th element,i = 1, 2, . . . , n, is labeledx̂i ∈ {A, B}.
When an element is at statêx, its length isyx̂ and its internal
energy isǫx̂. A stretching forceλ > 0 (or a contracting force,
if λ < 0) is applied to one edge of the array, whereas the
other edge is fixed to a wall. What is the expected (and most
probable) total lengthL = nY of the array at temperatureT0?

yB

L = nY

λ
yA

Fig. 2. One–dimensional array of two–state elements.
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Since the elements are independent,

Z̃n(β0, λ)

=

1
∑

x̂1=0

. . .

1
∑

x̂n=0

exp

{

−β0

[

∑

i

ǫx̂i
− λ

∑

i

yx̂i

]}

= [e−β0(ǫA−λyA) + e−β0(ǫB−λyB)]n, (6)

and so,

nGn(β0, λ) = −kT0 ln Z̃n(β0, λ)

= −nkT0 ln
[

e−β0(ǫA−λyA) + e−β0(ǫB−λyB)
]

.

The expected length is

nY = −n ·
∂Gn(β0, λ)

∂λ

=
n[yAe−β0(ǫA−λyA) + yBe−β0(ǫB−λyB)]

e−β0(ǫA−λyA) + e−β0(ǫB−λyB)
. (7)

In terms of the foregoing discussion,s = β0λ, the force scaled
by β0, controls the expected length per element which is

Y = 〈y〉s =
yAe−β0ǫA+syA + yBe−β0ǫB+syB

e−β0ǫA+syA + e−β0ǫB+syB

.

The free energy per element is then

F (β0, Y ) = −kT0 ln
[

e−β0ǫA+syA + e−β0ǫB+syB

]

+ kT0sY

where s is related toY according to second to the last
equation, which is also the value ofs that maximizes the last
expression.

Consider now two arrays as above, labeled byx ∈ {a, b},
which consist of two different types of elements. Arrayx has
n(x) elements, and as before, each element of this array may
be in one of two states,A or B. When an element of array
x is at statex̂, its length isyx̂|x and its internal energy is
ǫx̂|x. The two arrays are connected together to form a larger
system with a total ofn = n(a) + n(b) elements, and this
larger system is stretched (or shrinked) so that its edges are
fixed at two points which are at distancenY0 far apart. What
is the contribution of each individual array to the total length,
nY , and what is the force ‘felt’ by each one of them?

Denoting pa = n(a)/n and pb = n(b)/n, the total free
energy per element is given by

paFa(β0, Ya) + pbFb(β0, Yb)

= paFa(β0, Ya) + pbFb

(

β0,
Y0 − paYa

pb

)

, (8)

whereFa andFb are the Helmholtz free energies per element
(cf. above) pertaining to the two arrays, respectively, and
Ya and Yb are their normalized lengths. At equilibrium,Ya

minimizes this expression, and the minimizingYa solves the
equation:

∂Fa(β0, Y )

∂Y

∣

∣

∣

∣

Y =Ya

=
∂Fb(β0, Y )

∂Y

∣

∣

∣

∣

Y =(Y0−paYa)/pb

.

But the left–hand side isλa = kT0sa, the force felt by array
(a), and similarly, the right–hand side isλb = kT0sb, the force
felt by array (b). The last equation tells us that in mechanical
equilibrium they are equal, which makes sense, as otherwise

the boundary point between the two arrays would keep moving
in either direction.8 In other words, the equilibrium values of
Ya andYb are adjusted in a way that

Fa(β0, Ya) = max
λ

[Ga(β0, λ) + λYa]

and
Fb(β0, Yb) = max

λ
[Gb(β0, λ) + λYb]

would be both maximized by thesame value of λ (or,
equivalently,s). In this situation, the same value ofλ would
also achieve the maximum of the weighted sum:

max
λ

[paGa(β0, λ) + pbGb(β0, λ) + λY0],

which treats the entire system as a whole. The maximizing
value ofλ is the one that corresponds to total lengthY0. This
concludes Example 2.�

In the next section, we will see how Example 2 (especially, it
second part, with two connected arrays of elements) is directly
applicable to the rate–distortion setting.

IV. RATE–DISTORTION

Let us consider now the rate–distortion coding problem.
We are given a source sequencex = (x1, . . . , xn) to be
compressed, whose letters{xi} take on values in a finite
alphabetX of size K. We assume that the source has a
given empirical distributionP = {P (x), x ∈ X} (typically,
close to the real distribution), i.e., each letterx ∈ X appears
n(x) = nP (x) times inx. Next consider a random selection
of a reproduction codeword̂x = (x̂1, . . . , x̂n), where each
reproduction symbol̂xi is drawn i.i.d. from a distribution
Q = {Q(x̂), x̂ ∈ X̂}, where X̂ is a finite reproduction
alphabet of sizeJ . For the most part of our discussion, it will
be assumed that even if the desired distortion level varies,the
random coding distributionQ is nevertheless kept fixed, for the
sake of simplicity.9 It is well known that the rate–distortion
function of the sourceP , w.r.t. a given distortion measure
d(x, x̂), is given by the rate function of the large deviations
event{

∑n
i=1 d(xi, x̂i) ≤ n∆}.

Occasionally, instead of working with the reproduction
symbols as our RV’s, we will sometimes work directly with
the distortions{d(xi, x̂i)} incurred, which will be denoted by
{δi} (playing the same role as{yi} thus far). Accordingly, we
define

Q(δ|x) =
∑

{x̂: d(x,x̂)=δ}

Q(x̂).

8This is similar to the classical mechanical equilibrium between two
volumes of gas separated by a freely moving plate, which stabilizes at the
point where the pressures from both sides equalize.

9A word of clarification is in order here: Earlier, we mentioned that the
optimumQ may depend ons, or equivalently on∆. In the sequel, we describe
certain processes along which the distortion level varies,starting from a very
high distortion level∆0, and ending at a given, desired distortion level,∆.
To make a statement concerning the rate–distortion function, computed at
the latter distortion level,R(∆), we can always pick the optimumQ for
this target value of∆ and keep it fixed, even when considering the above–
mentioned higher distortion levels. Thus, in these processes, for distortion
levels above∆, we will, in general, ‘move’ along the curveRQ(·), which
is the rate–distortion function with an output distribution constrained toQ,
rather than the curveR(·). Of course, the two curves intersect at distortion
∆. The analysis can be modified to allowQ depend ons along the process
(see comment no. 4 on this in Section 6).
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Thus, we think of the distortionδ as a RV drawn from
a distribution Q(δ|x) indexed by the corresponding source
symbolx, rather than as a function ofx and a RVx̂, whose
distributionQ(x̂) does not depend onx. The large deviations
event under consideration is then{

∑n
i=1 δi ≤ n∆}, where

{δi} are still independent, but no longer identically distributed.
For eachx ∈ X , n(x) = nP (x) of these RV’s are drawn from
Q(δ|x). The large deviations rate function, obtained when all
{δi} are handled as a whole, is given by

I(∆) = max
s

[

s∆ −
∑

x∈X

P (x) ln

(

∑

δ

Q(δ|x)esδ

)]

.

In analogy to the results of [9] (see also Subsection 2A),
another look is the following: Consider the partial distortions,
sorted according to the underlying source symbols, i.e., for
eachx ∈ X ,

∑

i: xi=x δi is the total distortion contributed by
x. Clearly, the large deviations event under discussion occurs
iff there exists a distortion allocationD = {∆x, x ∈ X} with
∑

x∈X P (x)∆x ≤ ∆ such that
∑

i: xi=x δi ≤ n(x)∆x for
all x ∈ X . Thus, it can be thought of as the union (over all
possible distortion allocations) of the intersections (overX ) of
the independent events{

∑

i: xi=x yi ≤ n(x)∆x}. As shown
in [9], since the effective number of distortion allocations is
polynomial in n, the probability is dominated by the worst
allocation, which yields

Ĩ(∆) = min
{D:

P

x∈X P (x)∆x≤∆}

∑

x∈X

P (x) ×

max
sx

[

sx∆x − ln

(

∑

δ

Q(δ|x)esxδ

)]

. (9)

We argue that̃I(∆) = I(∆) and hence both coincide with
the rate–distortion functionRQ(∆) w.r.t. the random coding
distributionQ.

Before we prove it formally, we comment that the intuition
comes from interpreting the expressions of the rate functions
in the framework of Example 2, of stretching/contracting
concatenated one dimensional arrays of elements. Here, we
have|X | = K different arrays at temperatureT0, concatenated
together to form one larger system with a total ofn elements.
Each individual array is labeled byx ∈ X and it contains
n(x) = nP (x) elements. Each such element may be in one
of J states, labeled bŷx ∈ X̂ . The ‘length’ and the internal
energy of an element of arrayx at statex̂ are δx̂|x = d(x, x̂)
and ǫx̂|x = −kT0 lnQ(x̂) (independent ofx), respectively.
Upon identifying this mapping between the rate—distortion
problem and the physical example, we immediately see that
their mathematical formalisms, and hence also their properties,
are precisely the same. Indeed, the expression ofI(∆) is the
Helmholtz free energy (in units ofkT0) per element (pertaining
to the entire system as a whole) when the total length is
shrinked ton∆. On the other hand, the expression ofĨ(∆)
describes theminimumHelmholtz free energy (again, in units
of kT0) across all partial length allocations{n(x)∆x}x∈X

that comply with a total length not exceedingn∆. But this
minimum free energy is achieved when all individual arrays
‘feel’ the same force, i.e., the same value ofsx. Hence, the two

expressions should coincide. This means, among other things,
that the typical relative contribution of each source symbol x
to the distortion behaves exactly like the relative lengthsof
the individual arrays when they lie in mechanical equilibrium.

Formally, the following proof is similar to that of [9,
Theorem 1], but for completeness, we provide it here too. We
first prove thatĨ(∆) ≥ I(∆) and then the reversed inequality.

Ĩ(∆) = min
{D:

P

x∈X P (x)∆x≤∆}

∑

x∈X

P (x) · max
sx≤0

[sx∆x

− ln

(

∑

δ

Q(δ|x)esxδ

)]

= min
{D:

P

x∈X P (x)∆x≤∆}

∑

x∈X

max
sx≤0

[sxP (x)∆x−

P (x) ln

(

∑

δ

Q(δ|x)esxδ

)]

≥ min
{D:

P

x∈X P (x)∆x≤∆}
max
s≤0

∑

x∈X

[sP (x)∆x−

P (x) ln

(

∑

δ

Q(δ|x)esδ

)]

≥ min
{D:

P

x∈X P (x)∆x≤∆}
max
s≤0

[

s
∑

x∈X

∆xP (x)−

∑

x∈X

P (x) ln

(

∑

δ

Q(δ|x)esδ

)]

≥ min
{D:

P

x∈X P (x)∆x≤∆}
max
s≤0

[s∆−

∑

x∈X

P (x) ln

(

∑

δ

Q(δ|x)esδ

)]

= max
s≤0

[

s∆ −
∑

x∈X

P (x) ln

(

∑

δ

Q(δ|x)esδ

)]

= I(∆), (10)

where we have used the fact that the sum of maxima is cannot
be smaller than the maximum of a sum, as well as the fact
that the optimums is to be sought in the ranges ≤ 0, and so,
∑

x∈X P (x)∆x ≤ ∆ implies s
∑

x∈X P (x)∆x ≥ s∆.

In the other direction, lets∗ be the achiever ofI(∆),
namely, the solutions to the equation

∆ =
∂

∂s

∑

x∈X

P (x) ln

(

∑

δ

Q(δ|x)esδ

)

and consider the distortion allocation

∆∗
x =

[

∂

∂s
ln

(

∑

δ

Q(δ|x)esδ

)]

s=s∗

which obviously complies with the overall distortion con-
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straint. Thus,

Ĩ(∆) = min
{D:

P

x∈X P (x)∆x≤∆}

∑

x∈X

P (x) ×

max
sx≤0

[

sx∆x − ln

(

∑

δ

Q(δ|x)esxδ

)]

≤
∑

x∈X

P (x) · max
sx≤0

[

sx∆∗
x − ln

(

∑

δ

Q(δ|x)esxδ

)]

=
∑

x∈X

P (x)

[

s∗∆∗
x − ln

(

∑

δ

Q(δ|x)es∗δ

)]

= s∗∆ −
∑

x∈X

P (x) ln

(

∑

δ

Q(δ|x)es∗δ

)

= I(∆). (11)

This completes the proof that̃I(∆) = I(∆). �

Comment:As noted in [9], our discussion in this section, as
well as in the next section, applies to channel capacity too,
provided thatP = {P (x)} is understood as the channel output
distribution, Q = {Q(x̂)} is the random (channel) coding
distribution, the distortion measure is taken to bed(x, x̂) =
− lnW (x|x̂), where W is the transition probability matrix
associated with the memoryless channel, and the “distortion
level” is set to∆ = −

∑

x,x̂ Q(x̂)W (x|x̂) lnW (x|x̂). In this
case, the maximizings is alwayss∗ = 1.

V. I NTEGRAL REPRESENTATIONS

In view of the observations made in Section 3, it is inter-
esting to represent the rate–distortion function as mechanical
work carried out on the distortion variable along a reversible
process, as well as in terms of the integrated variance of the
distortion:

RQ(∆) =
∑

x∈X

P (x) ·

∫ 〈δ〉
s|x

〈δ〉
0|x

ŝ · d 〈δ〉ŝ|x

=
∑

x∈X

P (x) ·

∫ s

0

dŝ · ŝ · Varŝ|x{δ}, (12)

wheres is related to∆ via the relation
∑

x∈X

P (x) 〈δ〉s|x = ∆

and where〈δ〉s|x and Vars|x{δ} are defined in the spirit of
the earlier definitions of〈y〉s and Vars{y} except thaty is
replaced byδ andPs now includes conditioning onx. I.e.,

〈δ〉s|x =

∑

δ δQ(δ|x)esδ

∑

δ Q(δ|x)esδ

and

Vars|x{δ} =

∑

δ(δ − 〈δ〉s|x)2Q(δ|x)esδ

∑

δ Q(δ|x)esδ

=

∑

δ δ2Q(δ|x)esδ

∑

δ Q(δ|x)esδ
− 〈δ〉

2
s|x . (13)

Upper and lower bounds can be obtained from

∑

x∈X

P (x) ·

ℓ−1
∑

i=1

si(〈δ〉si+1|x
− 〈δ〉si|x

)

≤ RQ(∆)

≤
∑

x∈X

P (x) ·
ℓ−1
∑

i=1

si+1(〈δ〉si+1|x
− 〈δ〉si|x

). (14)

The integrated variance formula above can also be represented
as

RQ(∆s) =

∫ s

0

dŝ·ŝ·
∑

x∈X

P (x)·Varŝ|x{δ} =

∫ s

0

dŝ·ŝ·mmse(ŝ),

where mmse(s) is the minimum mean squared error (MMSE)
in estimating the RVδ based onx, when they are jointly dis-
tributed according toPs(x, δ) = P (x)Ps(δ|x), with Ps(δ|x)
being defined as

Ps(δ|x) =
Q(δ|x)esδ

∑

δ′ Q(δ′|x)esδ′ .

At the same time, the distortion itself,〈δ〉s, which we also
denote by∆, can be represented using similar integrals, but
without the factor̂s at the integrand:

∆ ≡ 〈δ〉s

=
∑

x∈X

P (x) ·

[

〈δ〉0|x +

∫ s

0

dŝ · Varŝ|x{δ}

]

= ∆0 +

∫ s

0

dŝ · mmse(ŝ). (15)

Example 3.Consider the binary symmetric source (BSS) and
the Hamming distortion measure. In this case, the optimumQ
is also symmetric. Hereδ is a binary RV with Pr{δ = 1|x} =
es/(1 + es) independently ofx. Thus, the MMSE estimator
of δ based onx is

δ̂ =
es

1 + es
,

regardless ofx, and so the resulting MMSE is easily found to
be

mmse(s) =
es

(1 + es)2
.

Accordingly,

∆ =
1

2
+

∫ s

0

eŝdŝ

(1 + eŝ)2
=

es

1 + es

and

R(∆) =

∫ s

0

ŝeŝdŝ

(1 + eŝ)2

= ln 2 +
ses

1 + es
− ln(1 + es)

= ln 2 − h2

(

es

1 + es

)

= ln 2 − h2(∆), (16)

whereh2(u) = −u lnu−(1−u) ln(1−u) is the binary entropy
function. This concludes Example 3.�

The integrated variance expression can be generalized as
follows: Let θ = t(x, x̂) be a given function ofx and x̂
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and let〈θ〉s denote the expectation oft(x, x̂) w.r.t. the joint
distribution ofx and x̂ defined by

Ps(x, x̂) =
P (x)Q(x̂)esd(x,x̂)

∑

x̂′ Q(x̂′)esd(x,x̂′)
.

This characterizes the expected (and typical) value of
1
n

∑n
i=1 t(xi, x̂i), wherex̂ = (x̂1, . . . , x̂n) continues to be the

codeword that encodesx from a rate–distortion code designed
and operated with the metricd.10 Then,

〈θ〉s = 〈θ〉0 +

∫ s

0

dŝ ·
∑

x∈X

P (x) · Covs|x{θ, δ},

where Covs|x{θ, δ} is the covariance betweenθ = t(x, x̂) and
δ = d(x, x̂), induced by

Qs(x̂|x) =
Q(x̂)esd(x,x̂)

∑

x̂′ Q(x̂′)esd(x,x̂′)
,

for fixed x. This is an integral form of a somewhat more gen-
eral version of the fluctuation–dissipation theorem, mentioned
above.

VI. SUMMARY AND CONCLUSION

In this work, we have proposed another look at large
deviations rate functions (or Chernoff functions), where
the Chernoff parameter is viewed as ‘force’ rather than as
temperature. This leads to the interpretation of fundamental
quantities in information theory, like the rate–distortion
function and channel capacity, as free energies of certain
physical systems. This interpretation has the following
advantages relative to the one proposed in [9]:

1) As explained in Subsection 2B, there is no need to interpret
random coding distributions as degeneracy.

2) As a consequence of 1), we are able to construct an
example of a physical system whose behavior is analogous to
that of the rate–distortion coding problem. The propertiesof
this system were described in the second to the last paragraph
of the Introduction.

3) This interpretation generalizes to rate functions of
combinations of rare events. In this case, the rate function
involves several Chernoff variables (one per each event),
which may correspond to a system with several forces, each
one acting on its own variable (cf.R(∆1, ∆2) in Subsection
2B). Our earlier physical example of a one–dimensional array
can now be extended to two dimensions, where the elements
are arranged in a rectangular lattice, and each element has
both a length and a width associated with each state. The
sum [s1

∑

i d1(xi, x̂i) + s2

∑

i d2(xi, x̂i)] can be viewed as
the inner product between a two dimensional force vector
and a two–dimensional displacement vector. Alternatively,

10As motivating examples, consider the case wheret is another distortion
measure – although the codebook is designed and operated relative to the
metric d, its performance can also be judged relative to an additional metric
t. If t(x, x̂) depends on̂x only, it may serve as a transmission power function
Π(x̂) (in joint source–channel coding) or it can be the length function ℓ(x̂)
(in bits) of lossless compression for the individual reproduction symbols.

s1 and s2 may designate two different types of forces (e.g.,
a mechanical force and a magnetic force). Either way, our
derivations extend quite straightforwardly to this setting.

4) As mentioned before, we assumed throughout the derivation
that the random coding distribution is fixed, independently
of the distortion level, that is, independently ofs. This is
why we describedR(∆) as a process along the curveRQ(·)
with the understanding thatQ is chosen to be optimum
for the target distortion∆. One can modify the analysis to
correspond to a process alongR(·). As mentioned earlier,
however, in most cases, the optimumQ depends ons, and
this dependency requires correction terms that depend on
the expected values of some derivatives oflnQ(x̂) w.r.t. s.
In the analogous physical interpretation proposed here,s
continues to be an external control parameter that affects the
Hamiltonian. The dependence of the Hamiltonian ons would
now be non–linear, but this may still be physically relevant.

5) This interpretation as free energy opens the door to new
points of view on the rate–distortion function, e.g., as work
done on the distortion variable along a slow process, or as
integrated variance (or MMSE).
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