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Outline

® [aws of physics:

boundaries between the possible and impossible in

®» Coding theorems + converses in IT:

boundaries between the possible and impossible in

In this talk we:

® Briefly review basic background in physics.

® Discuss some physical interpretations of the Shannon limits.
® Introduce the broader physical picture — Jarzynski’s equality.
9

Propose an informational version of Jarzynski’s equality.
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Background in Statistical Physics

Consider a system with n >> 1 particles which can lie in various microstates,

{x = (z1,...,zn)}, €.9., @ combination of locations, momenta, angular

momenta, spins, ...

For every x, 3 energy £(x) — Hamiltonian.

Example: For z; = (p,,7;),

E(x) = i (% —I—mgh7;> :

1=1
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Background (Cont’d)

In thermal equilibrium, x ~ Boltzmann—-Gibbs distribution:

o~ BE(T)

Z(6)

P(x) =

where ,_%T k — Boltzmann’s constant, 7' — temperature, and

Z(B) = e PE®) anormalization factor = partition function
xZr

»(B) =InZ(B) = many physical quantities:

free energy: F = —%;

mean internal energy: £ = —

Q.|Q‘
e

entropy: S = ¢ — 395.
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Background (Cont’d)

Easy to see that

F=F-TS.

Physical meaning:
AF = Fy — Fy = the minimum work it takes to transfer the system between two

equilibrium points, ‘0’ and ‘1’, for fixed 7.

Minimum — achieved by a reversible process — so slow that the system is

always almost in equilibrium.
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The Information Inequality

Essentially all fundamental limits of IT are based on the information inequality
iIn some form (DPT, Fano’s inequality, “conditioning reduces entropy,” ...).

For any two distributions, P and @, over an alphabet X';

D(P||Q) £ ZP )log 5 Plz) - o,

In physics, it is known as the Gibbs inequality.
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The Gibbs Inequality

Let & (x) and & (x) be two Hamiltonians of a system. For a given g, let

Pi(z) = 7 Zq;:zx:e_ﬁgi(w), i=0,1.
Then,
e~ P& (X)) /7,
0 < D(POPl):EO{lneﬁgl(X)/Zl}
= InZ; —InZo+ B Eo{&1(X) — & (X)}
or

Eg{&1(X) =& (X)) > kTInZy—kTInZ;
F1 — Fo
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Interpretation of Ey{&1(X) — (X))} > AF

® A system with Hamiltonian &y(z) — in equilibrium vV ¢ < 0.
Free energy = —kT In Zj.

$ Attt =0, the Hamiltonian jumps, by W = &1 (x) — &y (x): from &Ey(x) to
&1(x) — by abruptly applying a force. Energy injected:
Eo{W} = Eo{&1(X) — &0(X)}.

® New system, with Hamiltonian &1, equilibrates.
Free energy = —kT'In 7.

Gibbs inequality: Eq{W} > AF.
Eo{W} —AF = kT - D(Pyl||P1)

IS the dissipated energy = entropy production (system + environment) due to
irreversibility of the abruptly applied force.
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Example — Data Compression and the Ising Model

Let X € {—1,+1}" ~ Markov chain Py(x) =[], Po(x;|z;—1) with

/
P0(3?|37/) — eXp(éﬁ - )’ x,x/ S {_17+1}

Code designer thinks that X ~ Markov with parameters:

exp(Jz -2’ + Kz)
Z1 (CIZ’) .

P (z]2') =
D(Ppl||P1) = loss in compression due to mismatch. Easy to see that

:_J szxz 1; 51 :—J szxz 1 — B - sz

where
1. cosh(J — K)
B=K+ -1 :
i o cosh(J + K)

Thus, W = —B - > . z; means an abrupt application of the magnetic field B.
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Physics of the Data Processing Theorem (DPT)

DPT — supports virtually all Shannon limits: For X — U — V'
I(X;U0) - I(X;V) = E{D(Pxy,v (|U,V)||[Pxv(:[V))} > 0.
Let 5 = 1. Given (u,v), let

Eo(x) = —In P(z|u,v) = —In P(x|u); &1(x) = —In P(z|v).

ZO _ Ze—l-[— In P(a:|u,v)] _ ZP(CElU,’U) —1

X

and similarly, Z, = 1. Thus, Fy = F; =0, and so, AF' = 0.
After averaging over Py .

Eo{W(X)} = E{-WnP(X|V)+IhP(X|U)}
— H(X|V)-HX|U)=I(X;U) - I(X;V).

Eo{W}=1(X;U)—-I(X;V)>0=AF.
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Discussion

The relation
Eo{W}— AF = kT - D(Py||P1) > 0

Is known (Jarzynski ‘97, Crooks ‘99, ..., Kawai et. al. ‘07), but with different
physical interpretations, which require some limitations.

Present interpretation — holds generally; Applied in particular to the DPT.
In our case:

» Maximum irreversibility: Eq{W} — fully dissipated: AF = 0.

® All dissipation — in the system, none in the environment:
Eog{W}=TAS=1-[H(X|V)—- H(X|U)].
® Rate loss due to gap between mutual informations:

Irreversible process <= irreversible info: I(X;U) > I(X;V) — U
cannot be retrieved from V.
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Relation to Jarzynski’'s Equality

Let
5)\(3?) = 50(3?) + )\[51 (x) — &0 (x)]

Interpolate £ and &£;. A — a generalized force.
Jarzynski's equality (1997): V protocol {\¢:} with Ay =0Vt <0and \; =1
V¢t > 7 (r > 0), the injected energy

W = /OT dA¢[€1(xt) — Eo(at)]

satisfies

Jensen: E{e W1 > ¢ PE{W} 50 E{W} > AF more generally.
Equality — for a reversible process — W = deterministic.
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Informational Jarzynski Equality

Taking
Eo(z) =—InPy(x), &i(x)=—-—InPi(x), B=1

and defining a “protocol’0 = \g - A\ — ... — A\, = 1, and

i Fo(Xi) 1-X; ps
E X;~ P\, x Py TP
'L—i_]_ Pl(X,L)’ 1 >\’L X 0 1

one can show:
E{e_W} =1=¢ 2T,

Jensen: generalized information inequality:

/01 d\; - E,, {m Ifjl)gi} > 0.
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L I B

Summary

Suboptimum commun. system < irreversible process.

Info rate loss < dissipated energy — entropy 1
Fundamental limits of IT < second law.

Possible implications of Jarzynski's equality in IT.
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