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Outline

Laws of physics:

boundaries between the possible and impossible in Nature.

Coding theorems + converses in IT:

boundaries between the possible and impossible in Communications.

In this talk we:

Briefly review basic background in physics.

Discuss some physical interpretations of the Shannon limits.

Introduce the broader physical picture – Jarzynski’s equality.

Propose an informational version of Jarzynski’s equality.
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Background in Statistical Physics

Consider a system with n >> 1 particles which can lie in various microstates,

{x = (x1, . . . , xn)}, e.g., a combination of locations, momenta, angular

momenta, spins, ...

For every x, ∃ energy E(x) – Hamiltonian.

Example: For xi = (pi, ri),

E(x) =
n

X

i=1

„

‖pi‖
2

2m
+ mghi

«

.
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Background (Cont’d)

In thermal equilibrium, x ∼ Boltzmann–Gibbs distribution:

P (x) =
e−βE(x)

Z(β)

where β = 1
kT

, k – Boltzmann’s constant, T – temperature, and

Z(β) =
X

x

e−βE(x), a normalization factor = partition function

φ(β) = ln Z(β) ⇒ many physical quantities:

free energy: F = −φ
β

;

mean internal energy: E = −dφ
dβ

;

entropy: S = φ − β dφ
dβ

.
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Background (Cont’d)

Easy to see that

F = E − TS.

Physical meaning:

∆F = F1 − F0 = the minimum work it takes to transfer the system between two

equilibrium points, ‘0’ and ‘1’, for fixed T .

Minimum – achieved by a reversible process – so slow that the system is

always almost in equilibrium.

– p. 5/??



The Information Inequality

Essentially all fundamental limits of IT are based on the information inequality
in some form (DPT, Fano’s inequality, “conditioning reduces entropy,” ...).

For any two distributions, P and Q, over an alphabet X :

D(P‖Q)
∆
=

X

x

P (x) log
P (x)

Q(x)
≥ 0.

In physics, it is known as the Gibbs inequality.
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The Gibbs Inequality

Let E0(x) and E1(x) be two Hamiltonians of a system. For a given β, let

Pi(x) =
e−βEi(x)

Zi
, Zi =

X

x

e−βEi(x), i = 0, 1.

Then,

0 ≤ D(P0‖P1) = E0

(

ln
e−βE0(X)/Z0

e−βE1(X)/Z1

)

= ln Z1 − ln Z0 + β · E0{E1(X) − E0(X)}

or

E0{E1(X) − E0(X)} ≥ kT ln Z0 − kT ln Z1

= F1 − F0
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Interpretation of E0{E1(X) − E0(X)} ≥ ∆F

A system with Hamiltonian E0(x) – in equilibrium ∀ t < 0.
Free energy = −kT ln Z0.

At t = 0, the Hamiltonian jumps, by W = E1(x) − E0(x): from E0(x) to
E1(x) – by abruptly applying a force. Energy injected:
E0{W} = E0{E1(X) − E0(X)}.

New system, with Hamiltonian E1, equilibrates.
Free energy = −kT ln Z1.

Gibbs inequality: E0{W} ≥ ∆F .

E0{W} − ∆F = kT · D(P0‖P1)

is the dissipated energy = entropy production (system + environment) due to
irreversibility of the abruptly applied force.
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Example – Data Compression and the Ising Model

Let X ∈ {−1,+1}n ∼ Markov chain P0(x) =
Q

i P0(xi|xi−1) with

P0(x|x
′) =

exp(Jx · x′)

Z0
, x, x′ ∈ {−1,+1}

Code designer thinks that X ∼ Markov with parameters:

P1(x|x
′) =

exp(Jx · x′ + Kx)

Z1(x′)
.

D(P0‖P1) = loss in compression due to mismatch. Easy to see that

E0(x) = −J ·
X

i

xixi−1; E1(x) = −J ·
X

i

xixi−1 − B ·
X

i

xi

where

B = K +
1

2
ln

cosh(J − K)

cosh(J + K)
.

Thus, W = −B ·
P

i xi means an abrupt application of the magnetic field B.
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Physics of the Data Processing Theorem (DPT)

DPT – supports virtually all Shannon limits: For X → U → V :

I(X; U) − I(X;V ) = E{D(PX|U,V (·|U, V )‖PX|V (·|V ))} ≥ 0.

Let β = 1. Given (u, v), let

E0(x) = − ln P (x|u, v) = − ln P (x|u); E1(x) = − ln P (x|v).

Z0 =
X

x

e−1·[− ln P (x|u,v)] =
X

x

P (x|u, v) = 1

and similarly, Z1 = 1. Thus, F0 = F1 = 0, and so, ∆F = 0.
After averaging over PUV :

E0{W (X)} = E{− ln P (X|V ) + ln P (X|U)}

= H(X|V ) − H(X|U) = I(X;U) − I(X;V ).

E0{W} = I(X; U) − I(X;V ) ≥ 0 = ∆F.
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Discussion

The relation
E0{W} − ∆F = kT · D(P0‖P1) ≥ 0

is known (Jarzynski ‘97, Crooks ‘99, ..., Kawai et. al. ‘07), but with different
physical interpretations, which require some limitations.

Present interpretation – holds generally; Applied in particular to the DPT.

In our case:

Maximum irreversibility: E0{W} – fully dissipated: ∆F = 0.

All dissipation – in the system, none in the environment:

E0{W} = T∆S = 1 · [H(X|V ) − H(X|U)].

Rate loss due to gap between mutual informations:
irreversible process ⇐⇒ irreversible info: I(X;U) > I(X;V ) −→ U

cannot be retrieved from V .
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Relation to Jarzynski’s Equality

Let
Eλ(x) = E0(x) + λ[E1(x) − E0(x)]

interpolate E0 and E1. λ – a generalized force.
Jarzynski’s equality (1997): ∀ protocol {λt} with λt = 0 ∀ t ≤ 0 and λt = 1

∀ t ≥ τ (τ ≥ 0), the injected energy

W =

Z τ

0
dλt[E1(xt) − E0(xt)]

satisfies

E

n

e−βW
o

= e−β∆F .

Jensen: E{e−βW } ≥ e−βE{W} so, E{W} ≥ ∆F more generally.
Equality – for a reversible process – W = deterministic.
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Informational Jarzynski Equality

Taking
E0(x) = − ln P0(x), E1(x) = − ln P1(x), β = 1

and defining a “protocol” 0 ≡ λ0 → λ1 → . . . → λn ≡ 1, and

W =

n−1
X

i=0

(λi+1 − λi) ln
P0(Xi)

P1(Xi)
, Xi ∼ Pλi

∝ P 1−λi

0 Pλi

1 ,

one can show:
E{e−W } = 1 = e−∆F .

Jensen: generalized information inequality:

Z 1

0
dλt · Eλt



ln
P0(X)

P1(X)

ff

≥ 0.
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Summary

Suboptimum commun. system ⇐⇒ irreversible process.

Info rate loss ⇐⇒ dissipated energy → entropy ↑

Fundamental limits of IT ⇐⇒ second law.

Possible implications of Jarzynski’s equality in IT.
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