

Physics of the Shannon Limits

Neri Merhav

Department of Electrical Engineering

Technion – Israel Institute of Technology

Technion City, Haifa, Israel

ITW 2009, Taormina, Sicily, October 11–16, 2009

Outline

- Laws of physics:
boundaries between the **possible** and **impossible** in **Nature**.
- Coding theorems + converses in IT:
boundaries between the **possible** and **impossible** in **Communications**.

In this talk we:

- Briefly review basic background in physics.
- Discuss some **physical interpretations** of the **Shannon limits**.
- Introduce the broader physical picture – **Jarzynski's equality**.
- Propose an informational version of Jarzynski's equality.

Background in Statistical Physics

Consider a system with $n \gg 1$ particles which can lie in various **microstates**, $\{x = (x_1, \dots, x_n)\}$, e.g., a combination of locations, momenta, angular momenta, spins, ...

For every x , \exists energy $\mathcal{E}(x)$ – **Hamiltonian**.

Example: For $x_i = (p_i, r_i)$,

$$\mathcal{E}(x) = \sum_{i=1}^n \left(\frac{\|p_i\|^2}{2m} + mgh_i \right).$$

Background (Cont'd)

In thermal equilibrium, $x \sim$ Boltzmann–Gibbs distribution:

$$P(x) = \frac{e^{-\beta \mathcal{E}(x)}}{Z(\beta)}$$

where $\beta = \frac{1}{kT}$, k – Boltzmann's constant, T – temperature, and

$$Z(\beta) = \sum_x e^{-\beta \mathcal{E}(x)}, \quad \text{a normalization factor = partition function}$$

$\phi(\beta) = \ln Z(\beta) \Rightarrow$ many physical quantities:

free energy: $F = -\frac{\phi}{\beta}$;

mean internal energy: $E = -\frac{d\phi}{d\beta}$;

entropy: $S = \phi - \beta \frac{d\phi}{d\beta}$.

Background (Cont'd)

Easy to see that

$$F = E - TS.$$

Physical meaning:

$\Delta F = F_1 - F_0$ = the **minimum work** it takes to transfer the system between two equilibrium points, '0' and '1', for **fixed T** .

Minimum – achieved by a **reversible** process – so slow that the system is always almost in equilibrium.

The Information Inequality

Essentially all **fundamental limits** of IT are based on the **information inequality** in some form (DPT, Fano's inequality, "conditioning reduces entropy," ...).

For any two distributions, P and Q , over an alphabet \mathcal{X} :

$$D(P\|Q) \triangleq \sum_x P(x) \log \frac{P(x)}{Q(x)} \geq 0.$$

In physics, it is known as the **Gibbs inequality**.

The Gibbs Inequality

Let $\mathcal{E}_0(x)$ and $\mathcal{E}_1(x)$ be two Hamiltonians of a system. For a given β , let

$$P_i(x) = \frac{e^{-\beta\mathcal{E}_i(x)}}{Z_i}, \quad Z_i = \sum_x e^{-\beta\mathcal{E}_i(x)}, \quad i = 0, 1.$$

Then,

$$\begin{aligned} 0 &\leq D(P_0\|P_1) = \mathbf{E}_0 \left\{ \ln \frac{e^{-\beta\mathcal{E}_0(X)}/Z_0}{e^{-\beta\mathcal{E}_1(X)}/Z_1} \right\} \\ &= \ln Z_1 - \ln Z_0 + \beta \cdot \mathbf{E}_0\{\mathcal{E}_1(X) - \mathcal{E}_0(X)\} \end{aligned}$$

or

$$\begin{aligned} \mathbf{E}_0\{\mathcal{E}_1(X) - \mathcal{E}_0(X)\} &\geq kT \ln Z_0 - kT \ln Z_1 \\ &= F_1 - F_0 \end{aligned}$$

Interpretation of $E_0\{\mathcal{E}_1(X) - \mathcal{E}_0(X)\} \geq \Delta F$

- A system with Hamiltonian $\mathcal{E}_0(x)$ – in equilibrium $\forall t < 0$.
Free energy $= -kT \ln Z_0$.
- At $t = 0$, the Hamiltonian **jumps**, by $W = \mathcal{E}_1(x) - \mathcal{E}_0(x)$: from $\mathcal{E}_0(x)$ to $\mathcal{E}_1(x)$ – by **abruptly** applying a **force**. Energy injected:
 $E_0\{W\} = E_0\{\mathcal{E}_1(X) - \mathcal{E}_0(X)\}$.
- New system, with Hamiltonian \mathcal{E}_1 , equilibrates.
Free energy $= -kT \ln Z_1$.

Gibbs inequality: $E_0\{W\} \geq \Delta F$.

$$E_0\{W\} - \Delta F = kT \cdot D(P_0 \| P_1)$$

is the **dissipated energy** = entropy production (system + environment) due to **irreversibility** of the **abruptly** applied force.

Example – Data Compression and the Ising Model

Let $\mathbf{X} \in \{-1, +1\}^n \sim \text{Markov chain } P_0(\mathbf{x}) = \prod_i P_0(x_i | x_{i-1})$ with

$$P_0(x|x') = \frac{\exp(Jx \cdot x')}{Z_0}, \quad x, x' \in \{-1, +1\}$$

Code designer thinks that $\mathbf{X} \sim \text{Markov with parameters:}$

$$P_1(x|x') = \frac{\exp(Jx \cdot x' + Kx)}{Z_1(x')}.$$

$D(P_0 \| P_1) = \text{loss}$ in compression due to **mismatch**. Easy to see that

$$\mathcal{E}_0(\mathbf{x}) = -J \cdot \sum_i x_i x_{i-1}; \quad \mathcal{E}_1(\mathbf{x}) = -J \cdot \sum_i x_i x_{i-1} - B \cdot \sum_i x_i$$

where

$$B = K + \frac{1}{2} \ln \frac{\cosh(J - K)}{\cosh(J + K)}.$$

Thus, $W = -B \cdot \sum_i x_i$ means an abrupt application of the magnetic field B .

Physics of the Data Processing Theorem (DPT)

DPT – supports virtually all Shannon limits: For $X \rightarrow U \rightarrow V$:

$$I(X;U) - I(X;V) = \mathbf{E}\{D(P_{X|U,V}(\cdot|U,V) \| P_{X|V}(\cdot|V))\} \geq 0.$$

Let $\beta = 1$. Given (u, v) , let

$$\mathcal{E}_0(x) = -\ln P(x|u, v) = -\ln P(x|u); \quad \mathcal{E}_1(x) = -\ln P(x|v).$$

$$Z_0 = \sum_x e^{-1 \cdot [-\ln P(x|u, v)]} = \sum_x P(x|u, v) = 1$$

and similarly, $Z_1 = 1$. Thus, $F_0 = F_1 = 0$, and so, $\Delta F = 0$.

After averaging over P_{UV} :

$$\begin{aligned} \mathbf{E}_0\{W(X)\} &= \mathbf{E}\{-\ln P(X|V) + \ln P(X|U)\} \\ &= H(X|V) - H(X|U) = I(X;U) - I(X;V). \end{aligned}$$

$$\mathbf{E}_0\{W\} = I(X;U) - I(X;V) \geq 0 = \Delta F.$$

Discussion

The relation

$$E_0\{W\} - \Delta F = kT \cdot D(P_0\|P_1) \geq 0$$

is known (Jarzynski '97, Crooks '99, ..., Kawai *et. al.* '07), but with different physical interpretations, which require some limitations.

Present interpretation – holds generally; Applied in particular to the DPT.

In our case:

- Maximum irreversibility: $E_0\{W\}$ – fully dissipated: $\Delta F = 0$.
- All dissipation – in the system, none in the environment:

$$E_0\{W\} = T\Delta S = 1 \cdot [H(X|V) - H(X|U)].$$

- Rate loss due to gap between mutual informations:
irreversible process \iff irreversible info: $I(X;U) > I(X;V) \implies U$ cannot be retrieved from V .

Relation to Jarzynski's Equality

Let

$$\mathcal{E}_\lambda(x) = \mathcal{E}_0(x) + \lambda[\mathcal{E}_1(x) - \mathcal{E}_0(x)]$$

interpolate \mathcal{E}_0 and \mathcal{E}_1 . λ – a generalized **force**.

Jarzynski's equality (1997): \forall protocol $\{\lambda_t\}$ with $\lambda_t = 0 \forall t \leq 0$ and $\lambda_t = 1 \forall t \geq \tau (\tau \geq 0)$, the injected energy

$$W = \int_0^\tau d\lambda_t [\mathcal{E}_1(x_t) - \mathcal{E}_0(x_t)]$$

satisfies

$$E \left\{ e^{-\beta W} \right\} = e^{-\beta \Delta F}.$$

Jensen: $E\{e^{-\beta W}\} \geq e^{-\beta} E\{W\}$ so, $E\{W\} \geq \Delta F$ more generally.

Equality – for a **reversible** process – W = deterministic.

Informational Jarzynski Equality

Taking

$$\mathcal{E}_0(x) = -\ln P_0(x), \quad \mathcal{E}_1(x) = -\ln P_1(x), \quad \beta = 1$$

and defining a “protocol” $0 \equiv \lambda_0 \rightarrow \lambda_1 \rightarrow \dots \rightarrow \lambda_n \equiv 1$, and

$$W = \sum_{i=0}^{n-1} (\lambda_{i+1} - \lambda_i) \ln \frac{P_0(X_i)}{P_1(X_i)}, \quad X_i \sim P_{\lambda_i} \propto P_0^{1-\lambda_i} P_1^{\lambda_i},$$

one can show:

$$E\{e^{-W}\} = 1 = e^{-\Delta F}.$$

Jensen: **generalized information inequality**:

$$\int_0^1 d\lambda_t \cdot E_{\lambda_t} \left\{ \ln \frac{P_0(X)}{P_1(X)} \right\} \geq 0.$$

Summary

- Suboptimum commun. system \iff irreversible process.
- Info rate loss \iff dissipated energy \rightarrow entropy \uparrow
- Fundamental limits of IT \iff second law.
- Possible implications of Jarzynski's equality in IT.