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Abstract

Using well-known results from statistical physics, concerning the almost—sure behavior of
the free energy of directed polymers in a random medium, we prove that random tree codes
achieve the distortion-rate function almost surely under a certain symmetry condition.
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1 Introduction

Tree source coding with a fidelity criterion has been studied since the late sixties and the early
seventies of the previous century, see, e.g., [1, Subsection 6.2.4],[6],[10],[12],[14],[15]. The first
results, that were obtained by Jelinek and Anderson [15], were for tree coding of binary sources
with the Hamming distortion measure, and by Dick, Berger and Jelinek [10] for Gaussian sources
and the squared error distortion measure. Davis and Hellman [6] proved a tree coding theorem for
a general memoryless source and a general fidelity criterion. In particular, they pointed out that
in an earlier paper by Jelinek [14], the proof of the coding theorem was valid only for symmetric
sources, and so, by modifying the branching process associated with the tree code, they were able
to relax the symmetry condition of the tree coding theorem. In this context, it should be pointed

out that Gallager [12] also made a symmetry assumption in the same spirit.

The main message in this short paper is, first of all, in the observation that the tree source coding
problem is very intimately related to an important model in statistical physics of disordered systems,
namely, the directed polymer in a random medium (DPRM)), cf. e.g., [2],[3],[4],[5],[7],[8],[11],[18],[19]
and references therein. Loosely speaking, in the DPRM, each configuration of the underlying
physical system corresponds to a walk along consecutive bonds of a certain lattice, or a tree, where
each such bond is assigned with an independent random variable (energy), and where the total
energy (which is analogous to the distortion of the tree code) of this walk is the sum of energies
along the bonds visited. For a given realization of these random energy variables, the probability
of each walk is given by the Boltzmann distribution, namely, it is proportional to an exponential
function of the negative total energy. The main challenge, as usual in equilibrium statistical physics,
is to characterize the asymptotic normalized free energy of a typical realization of the system. For
the case where the walks are defined on a tree (from the root to one of the leaves), this problem

has a closed—form solution.

This relationship between tree codes and the DPRM is interesting on its own right. It turns
out to be so strong, that the various analysis techinques! and the results concerning the DPRM
can readily be harnessed to the ensemble peformance analysis of tree codes. In particular, the

distortion achieved by the best codeword in the tree codebook is identified with the free energy

!These techniques are different from those of the papers mentioned in the first paragraph.



of the DPRM when the system is frozen (taken to zero temperature). This observation, does
not merely provide an alternative proof of the tree coding theorem, but moreover, it enables to
show that, at least under a certain symmetry assumption concerning the source and the distortion
function?, the distortion-rate function is achieved eventually almost surely (with respect to the
randomness of the code) for every individual source sequence. This is different from (and stronger
than) the previous findings, mentioned in the first paragraph above, which were coding theorems

concerning the average distortion.

The outline of this work is as follows: In Section 2, we establish our notation conventions and
give a brief background in statistical mechanics in general and on the DPRM in particular. In
Section 3, we show how the solution to the DPRM model can be used to prove that the tree code
ensemble achieves distortion-rate function almost surely for every input. Finally, in Section 4, we

provide a short summary of this paper.

2 Notation Conventions and Background

2.1 Notation Conventions

Throughout this paper, scalar random variables (RV’s) will be denoted by capital letters, like X
and Y, their sample values will be denoted by the respective lower case letters, and their alphabets
will be denoted by the respective calligraphic letters. A similar convention will apply to random
vectors and their sample values, which will be denoted with the same symbols in the boldface font.
Thus, for example, X will denote a random n-vector (X1, ..., X,,), and € = (z1, ..., x,) is a specific
vector value in X", the n-th Cartesian power of X. Sources and other probability measures that
underly sequence generation will be denoted generically by the letters P and ), and specific letter
probabilities will be denoted by the corresponding lower case letters, e.g., p(z), q(y), etc. The
expectation operator will be denoted by E{-}. Information theoretic quantities like entropies and
mutual informations will be denoted following the usual conventions of the Information Theory

literature.

2This assumption is in the spirit of the above mentioned assumption by Gallager, though it is somewhat different.



2.2 Background

Consider a physical system with n particles, which can be in a variety of microscopic states (‘mi-
crostates’), defined by combinations of physical quantities associated with these particles, e.g., po-
sitions, momenta, angular momenta, spins, etc., of all n particles. For each such microstate of the
system, which we shall designate by a vector © = (z1,...,x,), there is an associated energy, given
by an Hamiltonian (energy function), £(x). For example, if z; = (p;, 7;), where p; is the momentum

2
vector of particle number ¢ and r; is its position vector, then classically, £(x) = Ef\; 1 [%

—l—mgzi],
where m is the mass of each particle, z; is its height — one of the coordinates of r;, and g is the

gravitation constant.

One of the most fundamental results in statistical physics (based on the law of energy conser-
vation and the basic postulate that all microstates of the same energy level are equiprobable) is
that when the system is in thermal equilibrium with its environment, the probability of finding the
system in a microstate x is given by the Boltzmann—Gibbs distribution

e BE(T)

P(x) = “Z0) (1)

where § = 1/(kT), k being Boltzmann’s contant and 7" being temperature, and Z(3) is the nor-
malization constant, called the partition function, which is given by

ACED

xTr

or
Z(B) = / daePE(®@),

depending on whether x is discrete or continuous. The role of the partition function is by far
deeper than just being a normalization factor, as it is actually the key quantity from which many
macroscopic physical quantities can be derived, for example, the free energy?® is F(3) = —% In Z(5),
the average internal energy (i.e., the expectation of £(x) where  drawn is according (1)) is given
by E 2 E{&(X)} = —(d/dB)In Z(3), the heat capacity is obtained from the second derivative, etc.

One of the ways to obtain eq. (1), is as the maximum entropy distribution under an average energy

3The free energy means the maximum work that the system can carry out in any process of fixed temperature.
The maximum is obtained when the process is reversible (slow, quasi-static changes in the system).



constraint (owing to the second law of thermodynamics), where [ plays the role of a Lagrange

multiplier that controls the average energy.

Quite often, real-world physical systems of many particles, such as magnetic materials and
solid-state devices, are subjected to effects of impurity (e.g., defects) that may appear as amorphic
structures and disorder. To model such disorder, it is customary to let the Hamiltonian, £(x),
depend also on certain random parameters and to examine the behavior of systems pertaining to
typical realizations of these random parameters. There are many models of this kind in the physics
literature. One of them is the DPRM, which is defined on a certain graph, such as a hypercubic
lattice, or a tree. We henceforth focus on the latter and describe it more formally than in the

Introduction.

Consider a Cayley tree, namely, a full balanced tree with branching ratio d and depth n (cf. Fig.
1, where d = 2 and n = 3). Let us index the branches by a pair of integers (i,j), where 1 <i <n
describes the generation (with ¢ = 1 corresponding to the d branches that emanate from the root),
and 0 < j < d' — 1 enumerates the branches of the i-th generation, say, from left to right (see
Fig. 1). For each branch (i,5), 1 < j < d’, 1 <1i < n, we randomly draw an independent random
variable ¢; ; according to a fixed probability function ¢(e) (i.e., a probability mass function in the

discrete case, or probability density function in the continuous case).

Figure 1: A Cayley tree with branching factor d = 2 and depth n = 3.

A walk w, from the root of the tree to one of its leaves, is described by a finite sequence



{(i, ji)}?y, where 0 < jy < d—1and dj; < jiy1 < dji +d—1,i=1,2,...,(n —1).* For a given
realization of the RV’s {¢;; : i =1,2,...,n, j = 0,1,...,d" — 1}, we define the Hamiltonian

associated with w as E(w) =" | & j,, and then the partition function as:
Zn(B) =D exp{—BE(w)}. 2)
w

Of course, since {¢; j} are RV’s, then so is Z,(3). The primary question addressed by physicists,
in this context, concerns the (typical) behavior of the RV

11>

%m Zu(6) (3)

for n large, which is (up to the minus sign), exactly the normalized free energy per step. It turns out

fn(B)

(as proved e.g., in [3],[8]) that f,,(3) has a self-averaging property, in the terminology of physicists,
in other words, the sequence of random variables { f,,(3)}n>1 converges in probability (and in fact,

almost surely, as is shown in [3]) to a deterministic constant f(3), which is given by

_[eB) B<h
0= 5o 654 @

with the function ¢ being defined as

nld - Bfe—bBe
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where the expectation, which is assumed finite, is taken w.r.t. ¢(¢), and where [, is the value of 3
at which ¢(f) is minimum, or equivalently, the solution to the equation ¢'(3) = 0, where ¢’ is the

derivative of ¢.

As can be seen, = f3. is a point at which the asymptotic normalized free energy per step, f(53),
changes its behavior: Although f((3) and its first derivative are continuous functions for all 3, the
second derivative is discontinuous at G = (.. In the terminology of physicists, this is referred to as a
second order phase transition. Observe that while one might expect that the sequence f, () would
converge to the same limit as E{f,(0)} = n—lﬂE{ln Zn(B)}, i.e., the so called quenched average, the
high temperature phase result (4) corresponds to % In[E{Z,(8)}], which is called the annealed
average. This means that Jensen’s inequality is essentially tight at this range of 3. However, these

two averages depart from each other at the low temperature phase, § > (.. As can be observed,

4In fact, for a given n, the number j, alone dictates the entire walk.



in this phase, the asymptotic normalized free energy no longer depends on 3, and it is referred to
as the glassy phase or the frozen phase, which is characterized by zero thermodynamical entropy,
in other words, the partition function is dominated by a sub—exponential number of configurations
possessing the ground-state energy (cf. e.g., [17, Chap. 5]). For reasons that will become apparent

shortly, this frozen phase is the relevant phase for our source coding problem.

The asymptotic free energy formula (4) has been proved in the physics literature at least in four
different ways: The first [3] is based on martingales, the second is based on non-integer moments
of the partition function [8],[11], the third is based on a recursion of a certain generating function
of the partition function as well as on traveling waves [7],[9], and the fourth method is the so—called

replica method [7], which, although not rigorous, is very useful in statistical mechanics.

3 Main Result

We now turn to our lossy source coding problem, where some of the notation that will be used will
be deliberately identical to that of Subsection 2.2. Consider a discrete memoryless source (DMS)
P that generates symbols X1, Xo, ... from a finite® alphabet X'. Let ) denote a finite reproduction

alphabet and let p : X x ) — [0,00) be a given distortion function.

Consider next an ensemble of tree codes for encoding source n—tuples, * = (z1,...,z,), which
is defined as follows: Given a coding rate R (in nats/source-symbol), which is assumed to be
the natural logarithm of some positive integer® d, and given a probability distribution on the
reproduction alphabet, @ = {q(y), ¥y € Y}, let us draw d = e independent copies of ¥ under Q,
and denote them by Y7, Ys,...,Y;. We shall refer to the randomly chosen set, C; = {Y1,Ya,..., Yy},
as our ‘codebook’ for the first source symbol, X;. Next, for each 1 < j; < d, we randomly
select another such codebook under @, Coj;, = {Yj; 1, Y} 2,--.,Yj,.a}, for the second symbol, Xo.
Then, for each 1 < j; < d and 1 < jy < d, we again draw under ) yet another codebook

C3j1.gs = \Yj1.jo1> Y1 jo,2r - - -5 Vi1 ja.d}> fOr X3, and so on. In general, for each ¢ < n, we randomly

SFinite alphabet assumptions are made mostly for simplicity. It is expected that our derivations continue to hold
in the continuous case as well under suitable regularity conditions.

6 At first sight, it might appear that this gives a rather limited variety of coding rates to work with. Obviously, this
can be improved by working with a superalphabet of (small) blocks, as was done in previous works on tree coding.
But since the source alphabet could have been defined for these blocks in the first place, there is no essential loss of
generality in this setting.



draw d'~! codebooks under @), which are indexed by (j1,j2,...,jt-1), 1 < jp <d, 1 <k <t—1.

Once the above described random code selection process is complete, the resulting set of code-
books {C1,Ctj,,..5,1, 2<t<mn, 1 <j, <d, 1 <k <t—1} is revealed to both the encoder and

decoder, and the encoding-decoding system works as follows:

e Encoding: Given a source n—tuple X", find a vector of indices (ji,75,...,/;) that minimizes
the overall distortion > ;' | p(X¢,Yj,,.j,)- Represent each component j; (based on j; ;) by
R = Ind nats (that is, logy d bits), thus a total of nR nats.

e Decoding: At each time t (1 <t < n), after having decoded (j7,...,j;), output the repro-
duction symbol Y+

;3K
S M

A few comments are in order at this point: First, as we see, the codebook generation process is
branching hierarchically by a factor of d at each step, hence it is convenient to think of the code
as having the structure of a Cayley tree, as in Subsection 2.2. The encoder seeks the best walk on
that tree in the sense of minimum distortion. Note also that the process of converting the optimum
walk w* = (ji,75,...,J;) into a compressed bitstream is extremely simple: We just convert each
jt € {1,...,d} into its binary representation using logsy d bits without any attempt at compression.
In other words, the entropy coding part is trivial in the sense that it uses neither the memory that
may be present in the sequence (j7,7j5,...,J), nor the possible skewdness of the distributions of
these symbols. Finally, the decoding process is a purely sequential delayless process: At time ¢, the
decoder outputs the t-th reproduction symbol. This is in contrast to the decoder of a general block
code, which has to wait until the entire bit string of length nR has been received before it can start
to decode. Thus, at least the decoding delay is saved this way. There is also a slight reduction in

the search complexity at the encoder, due to the tree structure, but not a dramatic one.

In order to analyze the rate—distortion performance of this ensemble of codes, using the results
of Subsection 2.2, we now make the following assumption:
The random coding distribution Q is such that the distribtion of the RV p(x,Y") is the same for all
T EX.

It turns out that this assumption is fulfilled quite often — it is the case whenever the random

coding distribution together with distortion function exhibit a sufficiently high degree of symmetry.



For example, if @ is the uniform distribution over ) and the rows of the distortion matrix {p(z,y)}
are permutations of each other, which is in turn the case, for example, when X = ) is a group
and p(z,y) = v(x — y) is a difference distortion function w.r.t. the group difference operation.
Somewhat more generally, this assumption still holds when the different rows of the distortion
matrix are formed by permutations of each other subject to the following rule: p(x,y) can be

swapped with p(x,y’) provided that ¢(y') = q(y).

It should be pointed out that if the optimum random coding distribution Q*, namely, the one
corresponding to the output of the test channel that achieves the rate—distortion function of X,
happens to satisfy the above symmetry assumption, then as we show below (using a technique
different from those of the earlier papers on tree coding), the rate-distortion performance of the
above descrirbed code ensemble achieves the rate—distortion function. Moreover, this will turn out

to be the case, not only in expectation, but also with probability one.

We now turn to our analysis which makes heavy use of the results of Subsection 2.2. For a
given & and a given realization of the set of codebooks, define the partition function in analogy to

that of the DPRM: .
Zn(ﬂ) = ZGXP{—BZP(«TUle,...,jt)}7 (6)
w t=1

where the summation extends over all d" possible walks, w = (ji,...,Jn), along the Cayley tree, as
defined in Subsection 2.2. Clearly, considering our symmetry assumption, this falls exactly under
the umbrella of the DPRM, with the distortions {p(z¢,Yj, . ;,)} playing the role of the branch
energies {¢; j}. Therefore, % In Z,,(3) converges almost surely, as n grows without bound, to f(3),

now defined as

[ B<h
=1 5o 654 ®

where

In[d - BE{e~Pr@Y)1]
g

In[ef . E{e=Pr=Y)Y]
g

R+ 1In[E{e fr@Y)1]

= 3 ) (8)

1>

¢(8)

where x is an arbitrary member of X', which is immaterial by the symmetry assumption. Thus, for



every (x1,x2,...), the distortion is given by

1>

lim sup — Zp xt, Y] J¥,- Jt)

lim sup — min

n—oo T
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In[E{e~PP@YN] + R

B8=0

1>

DO(R)7

where: (1) {f¢}s>1 is an arbitrary sequence tending to infinity, (ii) the almost—sure equality is due

to [3, Theorem 1], and (iii) the inequality at the third line is justified by the following chain:

Inexp{—A 31y plar,

IA

lim sup lim sup
n—o0 {—o00

e

lim sup lim sup [—
n— o0 {—o00

= limsup — prt, it it

= limsuplimsup — Zp xe, Vi, jx)

{—o00 n— o0

111 exp{—0¢ > 71 p(xe, Yir .

= limsuplimsup [—
{—o00 n—oo

a-" Zw eXp{—ﬂg E?:1 p(fﬂt, Yj17~~~,jt)}

< limsup lim sup [— il

{—o00 n—oo

o . ~InZ,(Br)
= limsup < lim sup
t—oo | n—oo Benv
InZ,
= limsup lim sup [— M
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We have shown then that the almost—sure distortion performance is uniformly given by Dy(R) for

every individual source sequence z1, xo,.... Now, let us suppose that @) is chosen to be the output

distribution * induced by the source P and the test channel X — )Y that achieves the rate—

distortion function, and that the symmetry assumption continues to hold for Q* = {¢*(y), vy € V}.

Then, we claim that Dg(R), defined with @ = Q*, coincides with the distortion-rate function of

the source, D(R).

10



To see why this is true, recall that the rate—distortion function R(D) has the following repre-
sentation (see, e.g., [13, p. 90, Corollary 4.2.3],[20],[16]):

R(D) = — Iﬁn;g Hgn 8D + Z p(z)In Z q(y)ePr@w) (12)
- TEX yey

which, due to convexity in # and concavity in @, is equaivalent to

R(D) = —minmin{ BD+ Y p(x)ln | q(y)e )
= —mi * () e~ 00(@y)
min ¢ D+ > pla)In | Y a"(y)e , (13)

and which, under the symmetry assumption, tells us that for every point (D, R) on the rate-

distortion curve, we have:

— i D4l * —Bp(z.,y) ] 14
R=—min D +1n y%fJ(y)e (14)

Let 8* achieve this minimum, i.e.,

—R=03*D+1n Z g (y)e Frev) | (15)
yey

or, equivalently,
In |,y a" ()e ?7o9| + R

D(R) = 5 (16)

Thus, clearly,

In [Syep 4" (0)e 70 +
D(R) < Igg(})( — |: ey B :| = DO(R)7 (17)

and so, it remains to show also the converse inequality, D(R) > Dy(R). To this end, observe that

eq. (14) implies that for every point (D, R) on the rate-distortion function:

—R<BD+In | > g (y)e oV | (18)
yey

holds for all 8 > 0 (with equality for g = §*). Equivalently, for all 8 > 0:

0[Sy e 4 1

D>— :
- B
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and so,

D(R) > max § — 5 = Do(R), (20)

thus proving that Do(R) = D(R).

4 Conclusion

In this short paper, we tried to convey the following messages: (i) There is an intimate relationship
between tree coding and the statistical physics of the DPRM, which we believe, is interesting, first
of all, on its own right. (ii) The statistical mechanical approach provides an alternative way to
prove the tree coding theorem. (iii) Existing results concerning the DPRM are harnessed right away
to provide almost—sure convergence to the distortion-rate function of the source, thus strenghening

the existing coding theorem, at least under a certain symmetry condition.

It is speculated that the various statistical mechanical techniques that were exercised in the
DPRM model (cf. last paragraph of Subsection 2.2) and otherwise may shed more light on ensemble
performance analysis on this and other information—theoretic settings of theoretical and practical

interest. This research direction is currently pursued further.
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