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Abstract

We consider the problem of signal estimation (denoising) from a statistical mechanical perspective,
using a relationship between the minimum mean square error (MMSE), of estimating a signal, and the
mutual information between this signal and its noisy version. The paper consists of essentially two parts.
In the first, we derive several statistical-mechanical relationships between a few important quantities in
this problem area, such as the MMSE, the differential entropy, the Fisher information, the free energy,
and a generalized notion of temperature. We also draw analogies and differences between certain relations
pertaining to the estimation problem and the parallel relations in thermodynamics and statistical physics.
In the second part of the paper, we provide several application examples, where we demonstrate how
certain analysis tools that are customary in statistical physics, prove useful in the analysis of the MMSE.
In most of these examples, the corresponding statistical-mechanical systems turn out to consist of strong
interactions that cause phase transitions, which in turn are reflected as irregularities and discontinuities

(similar to threshold effects) in the behavior of the MMSE.
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I. INTRODUCTION

The relationships and the interplay between Information Theory and Statistical Physics have been
recognized and exploited for several decades by now. The roots of these relationships date back to the
celebrated papers by Jaynes from the late fifties of the previous century [15], [16], but their aspects
and scope have been vastly expanded and deepened ever since. Much of the research activity in this
interdisciplinary problem area revolves around the identification of ‘mappings’ between problems in
Information Theory and certain many—particle systems in Statistical Physics, which are analogous at least
as far as their mathematical formalisms go. One important example is the paralellism and analogy between
random code ensembles in Information Theory and certain models of disordered magnetic materials,
known as spin glasses. This analogy was first identified by Sourlas (see, e.g., [27], [28]) and has been
further studied in the last two decades to a great extent. Beyond the fact that these paralellisms and
analogies are academically interesting in their own right, they also prove useful and beneficial. Their
utility stems from the fact that physical insights, as well as statistical mechanical tools and analysis
techniques can be harnessed in order to advance the knowledge and the understanding with regard to the
information—theoretic problem under discussion.

In this context, our work takes place at the meeting point of Information Theory, Statistical Physics,
and yet another area — Estimation Theory, where the bridge between information—theoretic and the
estimation—theoretic ingredients of the topic under discussion is established by an identity [12, Theorem
2], equivalent to the de Bruijn identity (cf. e.g., [3, Theorem 17.7.2]), which relates the minimum mean
square error (MMSE), of estimating a signal in additive white Gaussian noise (AWGN), to the mutual
information between this signal and its noisy version. We henceforth refer to this relation as the I-MMSE
relation. It should be pointed out that the present work is not the first to deal with the interplay between
the [-MMSE relation and statistical mechanics. In an earlier paper by Shental and Kanter [26], the
main theme was an attempt to provide an alternative proof of the I-MMSE relation, which is rooted in
thermodynamics and statistical physics. However, to this end, the authors of [26] had to generalize the
theory of thermodynamics.

Our study is greatly triggered by [26] (in its earlier versions), but it takes a substantially different route.
Rather than proving the I-MMSE relation, we simply use it in conjunction with analysis techniques used
in statistical physics. The basic idea that is underlying our work is that when the channel input signal is
rather complicated (but yet, not too complicated), which is the case in certain applications, the mutual

information with its noisy version can be evaluated using statistical-mechanical analysis techniques, and
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then related to the MMSE using the [-MMSE relation. This combination proves rather powerful, because
it enables one to distinguish between situations where irregular (i.e., non—smooth or even discontinuous)
behavior of the mean square error (as a function of the signal-to—noise ratio) is due to artifacts of a
certain ad-hoc signal estimator, and situations where these irregularities are inherent in the model, in the
sense that they are apparent even in optimum estimation. In the latter situations, these irregularities (or
threshold effects) are intimately related to phase transitions in the parallel statistical-mechanical systems.

These motivations set the stage for our study of the relationships between the MMSE and statistical
mechanics, first of all, in the general level, and then in certain concrete applications. Accordingly, the
paper consists of two main parts. In the first, which is a general theoretical study, we derive several
statistical-mechanical relationships between a few important quantities such as the MMSE, the differential
entropy, the Fisher information, the free energy, and a generalized notion of temperature. We also draw
analogies and differences between certain relations pertaining to the estimation problem and the parallel
relations in thermodynamics and statistical physics. In the second part of the paper, we provide several
application examples, where we demonstrate how certain analysis tools that are customary in statistical
physics (in conjunction with large deviations theory) prove useful in the analysis of the MMSE. In light
of the motivations described in the previous paragraph, in most of these examples, the corresponding
statistical-mechanical systems turn out to consist of strong interactions that cause phase transitions, which
in turn are reflected as irregularities and discontinuities in the behavior of the MMSE.

The remaining part of this paper is organized as follows: In Section II, we establish a few notation
conventions and we formalize the setting under discussion. In Section III, we provide the basic background
in statistical physics that will be used in the sequel. Section IV is devoted to the general theoretical study,
and finally, Section V includes application examples, where the MMSE will be analyzed using statistical—

mechanical tools.

II. NOTATION CONVENTIONS, FORMALIZATION AND PRELIMINARIES
A. Notation Conventions

Throughout this paper, scalar random variables (RV’s) will be denoted by capital letters, like X and
Y, their sample values will be denoted by the respective lower case letters, and their alphabets will be
denoted by the respective calligraphic letters. A similar convention will apply to random vectors and their
sample values, which will be denoted with the same symbols in the boldface font. Thus, for example,
X will denote a random n-vector (X7,...,X,), and * = (x1,...,x,) is a specific vector value in X",

the n-th Cartesian power of X.
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Sources and channels will be denoted generically by the letters P and (). The expectation operator
will be denoted by E{-}. When the underlying probability measure is indexed by a parameter, say, /3,
then it will used as a subscript of P, p and E, unless there is no ambiguity.

For two positive sequences {a,} and {b,}, the notation a,, = b, means that a, and b,, are asymp-
totically of the same exponential order, that is, lim, % ln‘g—: = 0. Similarly, a, g b, means that

an

lim sup,,_, %lnb— < 0, etc. Information theoretic quantities like entropies and mutual informations

will be denoted following the usual conventions of the Information Theory literature.

B. Formalization and Preliminaries

We consider the simplest variant of the signal estimation problem setting studied in [12], with a few
slight modifications in notation. Let (X,Y") be a pair of random vectors in IR", related by the Gaussian
channel

Y = X + N, (1)

where IV is a random vector (noise), whose components are i.i.d., zero—mean, Gaussian random variables
(RV’s) whose variance is 1/3, where 3 is a given positive constant designating the signal-to—noise ratio
(SNR), or the inverse temperature in statistical-mechanical point of view (cf. Section III). It is assumed
that X and N are independent. Upon receiving Y, one is interested in inferring about the (desired)
random vector X. As is well known, the best estimator of X given the observation vector Y, in the
mean square error (MSE) sense, i.e., the MMSE estimator, is the conditional mean X=E (X|Y) and the
corresponding MMSE, E||X — X||2 will denoted by mmse(X |Y'). Theorem 2 in [12], which provides
the -MMSE relation, relates the MMSE to the mutual information 7(X;Y") (defined using the natural

base logarithm) according to
dI(X;Y) mmse(X|Y)
g 2

For example, if n = 1 and X ~ N(0,1), then I(X;Y) = $1In(1 + ), which leads to mmse(X|Y) =

. 2)

1/(1+ /), in agreement with elementary results. The relationship has been used in [24] to compute the
mutual information achieved by low-density parity-check (LDPC) codes over Gaussian channels through
evaluation of the marginal estimation error.

A very important function, which will be pivotal to our derivation of both E(X|Y") and mmse(X|Y),

as well as to the mutual information I(X;Y"), is the posterior distribution. Denoting the probability mass
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function of x by Q(x) and the channel induced by (1) by P(y|x), then
Q(z)P(y|x)

T s @ P
_ Q@) exp[-8-|ly —z[*/2]
- Z(Aly) | ¥
where we defined
Z(ly) 2 > Q@) exp[—5- |ly — z|*/2] = (27/5)"* Ps(y) “4)

where Pg(y) is the channel output density. Here we have assumed that « is discrete, as otherwise )
should be replaced by the probability density function (pdf) and the summation over {z’'} should be
replaced by an integral. The function Z(3|y) is very similar to the so-called partition function, which is
well known to play a very central role in statistical mechanics, and will also play a central role in our
analysis. In the next section, we then give some necessary background in statistical mechanics that will

be essential to our study.

III. PHYSICS BACKGROUND

Consider a physical system with n particles, which can be in a variety of microscopic states (‘mi-
crostates’), defined by combinations of physical quantities associated with these particles, e.g., positions,
momenta, angular momenta, spins, etc., of all n particles. For each such microstate of the system, which
we shall designate by a vector = (x1,...,x,), there is an associated energy, given by a Hamiltonian
(energy function), £(x). For example, if x; = (p,,r;), where p, is the momentum vector of particle

2
number ¢ and r; is its position vector, then classically, £(x) = Zf\il %

4+ mgz;|, where m is the

mass of each particle, z; is its height — one of the coordinates of r;, and g is the gravitation constant.
One of the most fundamental results in statistical physics (based on the law of energy conservation and

the basic postulate that all microstates of the same energy level are equiprobable) is that when the system

is in thermal equilibrium with its environment, the probability of finding the system in a microstate x is

given by the Boltzmann—Gibbs distribution
e—BE(T)

P@) =5 (5)

where 0 = 1/(kT'), k being Boltmann’s constant and 7" being temperature, and Z(/3) is the normalization

constant, called the partition function, which is given by

28) = Y e 5@,
Zr
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assuming discrete states. In case of continuous state space, the partition function is defined as

Z(6) = / de e PEE),

and P(x) is understood as a pdf. The role of the partition function is by far deeper than just being a
normalization factor, as it is actually the key quantity from which many macroscopic physical quantities
can be derived, for example, the free energy! is F(3) = —%ln Z([3), the average internal energy is
given by E 2 E{&(X)} = —(d/dB)In Z(B) with X ~ P(x), the heat capacity is obtained from the
second derivative, etc. One of the ways to obtain eq. (5), is as the maximum entropy distribution under
an average energy constraint (owing to the second law of thermodynamics), where (3 plays the role of a
Lagrange multiplier that controls the average energy.

An important special case, which is very relevant both in physics and in the study of AWGN channel
considered here, is the case where the Hamiltonian £(x) is additive and quadratic (or “harmonic” in
the physics terminology), i.e., £(z) = >, %/@x?, for some constant k > 0, or even more generally,
E(z) =Y, 2k;x2, which means that the components {z;} are Gaussian and independent. A classical
result in this case, known as the equipartition theorem of energy, which is very easy to show, asserts that
each particle (or, more precisely, each degree of freedom) contributes an average energy of E{%/—@iX ZQ} =
1/(28) = kT /2 independently of x (or k;).

Returning to the case of a general Hamiltonian, it is instructive to relate the Shannon entropy, pertaining
to the Boltzmann—Gibbs distribution, to the quantities we have seen thus far. Specifically, the Shannon
entropy S(3) = —E{ln P(X)} associated with P(z) = e #¢(T) /Z(3), is given by

$(3) = Eln L_Zﬁ(ff;)] —mZ(8) + 8- F,

where, as mentioned above,
dln Z(5)

E =
a7 (6)
is the average internal energy. This suggests the differential equation
; v(B) _ SB)
- = )
¥(P) 5 5
where () = —In Z(3) and ) means the derivative of . Equivalently, eq. (7) can be rewritten as:
d w(ﬁ)] S(8)
B { ===, ®)
s | 8 g

!The free energy means the maximum work that the system can carry out in any process of fixed temperature. The maximum

is obtained when the process is reversible (slow, quasi—static changes in the system).
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whose solution is easily found to be
> dB5(p)
wo) =B -5 [0, ©)
g B

where Fy = ming E(x) is the ground-state energy, here obtained as a constant of integration by
examining the limit of 5 — oo. Thus, we see that the log—partition function at a given temperature
can be expressed as a heat integral of the entropy, namely, as an integral of a function that consists of
the entropy at all lower temperatures. This is different from the other relations we mentioned thus far,
which were all ‘pointwise’ in the temperature domain, in the sense that all quantities were pertaining to

the same temperature. Taking the derivative of () according to eq. (9), we obtain the average internal

energy:

_ o _/; dps(h) | 5B) (10)

E=¢(ﬁ): BQ 3 )

where the first two terms form the free energy.’

As a final remark, we should note that although the expression Z((3|y) of eq. (4) is similar to that
of Z(f) defined in this section (for a quadratic Hamiltonian), there is nevertheless a small difference:
The exponentials in (4) are weighted by probabilities {Q)(x)}, which are independent of 3. However, as
explained in [17, p. 3713], this is not an essential difference because these weights can be interpreted
as degeneracy of states, that is, as multiple states (whose number is proportional to Q(x)) of the same

energy.

IV. THEORETICAL DERIVATIONS

Consider the Gaussian channel (1) and the corresponding posterior (3). Denoting by E 3 the expectation

operator w.r.t. joint pdf of (X,Y) induced by 3, we have:
exp[—3- Y — X|*/2] }

I(X;Y) = Eg {m

Z(Y)
_ _gEg{HY — X[*} - Eg{nZ(3Y)}
- _g — Es{InZ(B|Y)} (11)

By changing the integration variable from (3 to T, this is identified with the relation F' = Fy — fOT SdT’, which together
with F' = E — ST, complies with the relation £ = Fo + jos TdS' = Ey + fOQ dQ’, accounting for the simple fact that in the
absence of any external work applied to the system, the internal energy is simply the heat accumulated as temperature is raised

from O to 7.
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where we use the fact that Eg {||Y — X|?} = Es{||N||*} = n/p. Taking derivatives w.r.t. 3, and
using the I-MMSE relation, we then have:

mmse(X|Y) 0I(X;Y) 0
5 == - —aﬁEg{an(ﬁ]Y)}. (12)

and so, we obtain a very simple relation between the MMSE and the partition function of the posterior:

mmse(X|Y) = —Q%Eﬁ{an(MY)} (13)

By calculating the derivative of the right-hand side (r.h.s.) more explicitly, one further obtains the

following:

B B
_%Eﬁan(my) :—%/]R” dy - Ps(y) In Z(Bly)

o Z(Bly) / OPs(y)

— [y Paw) " dy- = mz ().

Now, the first term at the right-most side of (14) can easily be computed by using the fact that In Z(3|y)
is a log—-moment generating function of the energy (as is customarily done in statistical mechanics, cf.
eq. (6)), which implies that it is given by Eg{||Y — X ||?} = n/(28) = nkT/2, just like in the energy

equipartition theorem for quadratic Hamiltonians. As for the second term, we have

[y 22w zaly)

95
= [y pat)- Pzl

- [ (2”)/ S Q() [” Ly — 22| - expi-slly - =)?/2m 2(31y)
w0\ B . 25 2
= 5 Cov{[[Y — X|%. n Z(5]Y)}. (15)
The MMSE is then given by
mimse(X[Y) = ~2 By{In Z(3¥)} = 5 + Cov{|¥ — X% ln Z(31Y ), (16)

which can then be viewed as a variant of the energy equipartition theorem with a correction term that
stems from the fact the pdf of Y depends on (.

Another look, from an estimation—theoretic point of view, at this expression reveals the following:
The first term, n/3 = E||Y — X ||?, is the amount of noise in the raw data Y, without any processing.
The second term, which is always negative, designates then the noise suppression level due to MMSE
estimation relative to the raw data. The intuition behind the covariance term is that when the ‘correct’

x (the one that actually feeds the Gaussian channel) dominates the partition function then In Z(5|Y") ~
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—B|lY — X ||?/2, and so, there is a very strong negative correlation between ||Y — X || and In Z(3]Y").
In particular,

Cov{[|Y — X |2, -8|Y — X|?/2} = —g, (17)

which exactly cancels the above-mentioned first term, n/3, and so, the overall MMSE essentially

vanishes. When the correct & is not dominant, this correlation is weaker. Also, note that since
E|Y - X|?=mmse(X|Y) + E||Y — E(X|Y)|?, (18)
then this implies that
ElY - E(X|Y)|* = ~Cov{|[Y — X|*,In Z(8]Y)}. (19)
It is now interesting to relate the noise suppression level
A2 E[Y - E(X|Y)|? = —Cov{|Y - X|%In Z(5]Y)}

to the Fisher information matrix and then to a new generalized notion of temperature due to Narayanan
and Srinivasa [21] via the de Bruijn identity. According to de Bruijn’s identity, if W is a vector of i.i.d.

standard normal components, independent of X, then
d 1
GMX+ VIW) = S (X + VIW)}

where h(Y") is differential entropy and J(Y') is the Fisher information matrix associated with Y~ w.r.t.

g )51l

Note that since Ps(y) and Z(B3|y) differ only by a multiplicative factor of (3/27)"/2, it is obvious that

a translation parameter, namely,

tr{J(Y)} = ZE

0ln Pg(y)/0y; = 01In Z(Bly)/0y; and so, the Fisher information can also be related directly to the free
energy by

w{J(Y)} = ZE (Mﬂ]y)’ Yr
Yy

Yi

=Y E{[E{-B(Y - X,)|Y}]"}

i=1

= *Y  E{E*(Ni|Y)}, (20)
=1
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10

where N; = Y; — X; and where we have used the fact that the derivative of exp{—23|ly — z||*} w.r.t. y;
is given by —3(y; — ;) - exp{—f||ly — x||*}. Now, as is also shown in [12]:
I(X;X+N)=I(X;X+W/\/3)

= WX +W//B) = (W /+/5)

:h(X+W/\/B)—gln(27re/ﬁ). Q1)
Thus,
mmse(X|X + N) =2 aI(X;a);+N)
_, WX X+ W/VB) | n
op B
— — IV} + 5, @)

where the factor —1/3% in front of the Fisher information term accounts for the passage from the variable
t to the variable 3 = 1/t, as dt/d3 = —1/3%. Combining this with the previously obtained relations,
we see that the noise suppression level due to MMSE estimation is given by
wf{J(Y)}

B

In [21, Theorem 3.1], a generalized definition of the inverse temperature is proposed, as the response of

A =

the entropy to small energy perturbations, using de Bruijn’s identity. As a consequence of that definition,
the generalized inverse temperature in [21] turns out to be proportional to the Fisher information of Y,
and thus, in our setting, it is also proportional to 32A.3 It should be pointed out that whenever the system
undergoes a phase transition (as is the case with most of our forthcoming examples), then A, and hence
also the effective temperature, may exhibit a non—smooth behavior, or even a discontinuity.

Additional relationships can be obtained in analogy to certain relations in statistical thermodynamics
that were mentioned in Section III: Consider again the chain of equalities (11), but this time, instead

using the relation E3{||Y — X ||} = n/f, in the passage from the second to the third line, we use the

3As is shown in [21], the generalized inverse temperature coincides with the ordinary inverse temperature when Y is purely
Gaussian with variance proportional to 1/0, i.e., the ordinary Boltzmann distribution with a quadratic Hamiltonian. In our
setting, on the other hand, Y is given by a mixture of Gaussians whose weights are independent of 3. To avoid confusion, it
is important to emphasize that the original parameter 3, in our setting, pertains to the Boltzmann form of the distribution of X
given Y = y according to the posterior P(x|y), whereas the current discussion concerns the temperature associated with the

(unconditional) ensemble of Y = X + N.
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11

relation Eg{||Y — X||?} = —E@{diﬂ In Z(B|Y)} in conjunction with the identity (cf. eq. (14)):

dan(ﬂY)} _ dEs{nZ(BY)} dPs(y)
Eﬁ{ 5 = a3 LW mZ0ly)
- S IIR | Seov(ly - XIPmZ@Y)) @)
to obtain
By{lnZ(Y)} - 5+ 55 By{n Z(31Y) = JCov{[[Y - X2 Z(3Y)} - X Y). 24
Thus, redefining the function () as
(B) = —Ep{ln Z(B]Y)}, (25)
we obtain the following differential equation which is very similar to (7):
; $(B) _ E(B)
_ A 2V 26
$(B) 3 3 (26)
where
2(5) = DCov{[¥ — XIP.n Z(31Y)} — I(X:Y). @)

Thus, the solution to this equation is precisely the same as (9), except that S(/3) is replaced by ()
and the ground—state energy Ej is redefined as
By = By{min [¥ — a]?).

Consequently, mmse(X |Y') = 2¢(3), where

oy [0, 20

and one can easily identify the contributions of the free energy and the internal energy (heat), as was

done in Section III.

To summarize, we see that the [-MMSE relation gives rise essentially similar relations as in statistical
thermodynamics except that the “effective entropy” (/) includes correction terms that account for the
fact that our ensemble corresponds to a posterior distribution P(x|y) and the fact that the distribution

of Y depends on f3.
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12

V. EXAMPLES

In this section, we provide a few examples where we show how the asymptotic MMSE can be calculated
by using the I-MMSE relation in conjunction with statistical-mechanical techniques for evaluating the
mutual information, or the partition function pertaining to the posterior distribution.

After the first example, of a Gaussian i.i.d. channel input, which is elementary, we turn to explore three
examples where the channel input is a randomly selected codebook vector from a certain ensemble of
codebooks that comply with a power constraint + E{|| X |[|*} < P,. There could be various motivations
for MMSE estimation when the desired signal is a codeword: One example is that of a user that, in
addition to its desired signal, receives also a relatively strong interfering signal, which carries digital
information (a codeword) intended to other users, and which comes from a codebook whose rate exceeds
the capacity of this crosstalk channel between the interferer and our user, so that the user cannot fully
decode this interference. Nonetheless, our user would like to estimate it as accurately as possible in order
to subtract it and thereby perform interference cancellation.

In the first example of a code ensemble (Subsection V-B), we deal with a simple ensemble of block
codes, and we demonstrate that the MMSE exhibits a phase transition at the value of 3 for which the
channel capacity C'(3) = %ln(l + BP,) agrees with the coding rate R. The second ensemble (Subsection
V-C) consists of an hierarchical structure which is suitable for the Gaussian broadcast channel. Here,
we will observe two phase transitions, one corresponding to the weak user and one — to the strong
user. The third ensemble (Subsection V-D) is also hierarchical, but in a different way: here the hierarchy
corresponds to that of a tree structured code that works in two (or more) segments. In this case, there could
be either one phase transition or two, depending on the coding rates at the two segments (see also [19]).
Our last example is not related to coding applications, and it is based on a very simple model of sparse
signals which is motivated by compressed sensing applications. Here we show that phase transitions can
be present when the signal components are strongly correlated.

The statistical-mechanical considerations in this section provide unique insight into the coding and
estimation problems, in particular by examining the typical behavior of the geometry of the free energy.
This is in fact related to the notion of joint typicality for proving coding theorems, but more concrete
geometry is seen due to the special structures of the code ensembles. In some of the ensuing examples,
the mutual information can also be obtained through existing channel capacity results from information
theory. In the last example pertaining to sparse signals (Subsection V-E), however, we are not aware of

any alternative to the calculation using statistical mechanical techniques.
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A. Gaussian L1.D. Input

13

Our first example is very simple: Here, the components of X are zero—mean, i.i.d., Gaussian RV’s

with variance P;. In this case, we readily obtain

exp{—|lyl*/[2(P. + 1/6)]}
(1+ BP,)"/2 ’

Z(Bly) =

thus

2
InZ(Bly) = —gln(l + BP,) — 2(]%"!1”1/5)

Clearly,
n n
and its negative derivative is nP;/[2(1 + $P;)], which is indeed half of the MMSE. Here, we have:

_n nbP; n
B8 1+B8P, B+ PR

and

tr{J(Y)}:nE[ Y ]2 np

P.+1/8] ~ 1+ 8P,

and so, the relation tr{.J(Y)} = 3?A is easily verified. Thus, the generalized temperature here is 3/(1

BP,), which is the reciprocal of the variance of the Gaussian output.

B. Random Codebook on a Sphere Surface

+

Let X assume a uniform distribution over a codebook C = {x1,...,zy}, M = ", where each

codeword x; is drawn independently under the uniform distribution over the surface of the n—dimensional

sphere, which is centered at the origin, and whose radius is y/nFP,. The code is capacity achieving (the

input becomes essentially i.i.d. Gaussian as n — o0). In the following we show that the MMSE vanishes

if the code rate R is below channel capacity, but is no different than that of i.i.d. Gaussian input (without

code structure) if R exceeds the capacity. We note that such a phase transition has been shown for good

binary codes in general in [25] using the I-MMSE relationship.

Here, for a given y, we have:

Z(Bly) =Y e "Fexp[-Bly — z|*/2]

xeC
= " explflly —woll?/2+ D e explplly - /2]
TeC\{To}
2 Z.(8ly) + Z.(Bly) 29
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14

where, without loss of generality, we assume x to be the transmitted codeword. Now, since ||y — xol|? is
typically around n/f, Z.(8|y) would typically be about e~ e=07/(20) = ¢=(E+1/2) " As for Z.(6y),
we have:

Ze(Bly) = e " /]R deN(e)e ™,

where N (¢) is the number of codewords {x} in C — {xo} for which ||y — x||?/2 ~ ne, namely, between
ne and n(e + de). Now, given y, N(e) = Zf\il Hax; : ||y — zi||?/2 = ne} is the sum of M i.i.d.
Bernoulli RV’s and so, its expectation is
M
N(e)=> Pr{lly — Xi|?/2 ~ ne} = " Pr{|ly — X1|*/2 = ne}. (29)
i=1
Denoting P, = 1 ™" | 2 (typically, P, is about P, + 1//3), the event ||y — z||?/2 ~ ne is equivalent
to the event (x,y) ~ [(Py + P,)/2 — €|n or equivalently,
pla,y) = (@y) (Pt P)—cnPu—c
T /PP, VPP, P,

where have defined P, = (P, + P,)/2 and P, = /P, P, (the arithmetic and the geometric means

between P, and P, respectively). The probability that a randomly chosen vector X on the sphere would
have an empirical correlation coefficient p with a given vector y (that is, X falls within a cone of half

angle arccos(p) around y) is exponentially exp[% In(1 — p?)]. For convenience, let us define
1
I'(p) = ) In (1 - 92)

so that we can write

Pr{lly — X1[/2 ~ ne} = exp {nr (P“P‘ ) } |

g

From this point and onward, our considerations are very similar to those that have been used in the
random energy model (REM) of spin glasses in statistical mechanics [5]-[7], a model of disordered
magnetic materials where the energy levels pertaining to the various configurations of the system {&(x)}
are i.i.d. RV’s. These considerations have already been applied in the analogous analysis of random code
ensemble performance, where the randomly chosen codewords give rise to random scores that play the
same role as the random energies of the REM. The reader is referred to [27], [28], [20, Chapters 5,6],
and [18] for a more detailed account of these ideas.

Applied to the random code ensemble considered here, the line of thought is as follows: If € is such

P, —
r ( 6) > R,
Pg
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then the energy level e will be typically populated with an exponential number of codewords, concentrated

W@ =ew | mer (F5)

otherwise (which means that N (e€) is exponentially small), the energy level e will not be populated by

very strongly around its mean

any codewords typically. This means that the populated energy levels range between
eléPa—Pg 1—e 2R
and

A
€2 = P, 4+ Py/1 — e 2R,

or equivalently, the populated values of p range between —p, and +p. where p, = V1 — e=2E, By large
deviations and saddle—point methods [4], [11], it follows that for a typical realization of the randomly

chosen code, we have

Ze(Bly) = e "R max exp{n [R+P<P“P_E) —ﬁe]}

€c [E] 762} g

P, —¢
= max expsn | — (e
e€ler, €] P { [ < Pg > ﬂ } }

oo -l

The derivative of In(1 — p?) + p3P, w.r.t. p vanishes within [—1, 1] at:

p:pgé\/l+92—9

where
A 1
- 28P,

This is the maximizer as long as v/1+602 — 6 < p,, namely, § > e 2%/2p,, or equivalently, 3 <
p«€22/ Py, which for P, = \/P,(P, + 1/3), is equivalent to 3 < fBg 2 (e2® — 1)/P,. Thus, for the

typical code we have

o

1 2
In Z, 31— p3) = B(Pa — psPy), B <Br
6.(8,R) £ lim “755'?/): 2 o 5Py
n—oo
~B = B(Fa = peFy), B> fr .
Taking now into account Z.((3|y), it is easy to see that for § > [Br (which means R < C), Z.(8|y)

dominates Z.((|y), whereas for 3 < [y it is the other way around. It follows then that
s WZ(Ey) sIn(1—p2) — B(Pa — psPy), B<Pr
= lim ———==

¢(8, R) =
—R— %7 ﬂ > ﬁR .

n—00 n
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On substituting P, = P, + 1/(20), Py = \/Px(Pr + 1/5) and
Py
p= Vit @=L

1+ 3P’
we then get:
Lin(1 + BP,) + 3,
5(8) = — tim BZGl) _ [ 2+ BF) + 5, f < Fr
R+s 8> b .

n—0o00 n

Note that /() is a continuous function but it is not smooth at 5 = Sr. Now,

p mmse(X[Y) _dv(B) _ g B<DOr
e W lo Bz

which means that there is a first order phase transition* in the MMSE: As long as 3 > (g, which means

(30)

R < C, the MMSE essentially vanishes since the correct codeword can be reliably decoded, whereas for

R > C, the MMSE behaves as if the inputs were i.i.d. Gaussian with variance P, (cf. Subsection V-A).

C. Hierarchical Code Ensemble for the Degraded Broadcast Channel

Consider the following hierarchical code ensemble: First, randomly draw M; = e cloud—center
vectors {u;} on the \/n-sphere. Then, for each w;, randomly draw M, = €™ codewords {z;;}
according to x; j = au; + V1—a2 v; j, where {v; ;} are randomly drawn uniformly and independently
on the y/n-sphere. This means that ||z; ; —aw;||* = n(1—a?) 2 b, Without essential loss of generality,
here and in Subsection V-D, we take the channel input power to be P, = 1.

Let xq,0, belonging to cloud center ug, be the input to the Gaussian channel (1). It is easy to see that
if the SNR of the Gaussian channel is high enough, the codeword x; ; can be decoded; while at certain
lower SNR only the cloud center u; can be decoded but not v; ;. In the following we show the phase

transitions of the MMSE as a function of the SNR.

4By “first—order phase transition”, we mean, in this context, that the MMSE is a discontinuous function of .
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We will decompose the partition function as follows:

Z(Bly) = e "> " exp(—Blly — zi;|?/2)

1,J
= e "Rexp(—flly — z00l?/2) + e 7Y exp(—Blly — o,%/2)
j=>1
+e YN Cexp(—Blly — mill*/2)
i>1 g
2 Z.(Bly) + Ze1(Bly) + Ze2(Bly) 31)

where once again, Z.(3|y) — the contribution of the correct codeword, is typically about e "(5+1/2),
The other two terms Z.;(8|y) and Z.2(8|y) correspond to contributions of incorrect codewords from
the same cloud and from other clouds, respectively.

Let us consider Z.1(Bly) first. The distance ||y — xo;||* is decomposed as follows:

2

Iy = @, = Ity = auo) + (oo — o.)|

= |ly — quol” + [oao — o 41> + 2(y — oo, aug — o 5) - (32)

Now, ||y — augl|? is typically about n/3+nb 2 pa and |awg — xo ;|| = nb. Thus, for ||y — = ;||?/2 to

A D
be around ne, (y —aug, cug—xo, ;) must be around nje—(a+b)/2] = nje— F,]. Now, the question is this:
Given y — avug, what is the typical number of codewords in cloud 0 for which (y — aug, aug — x ;) =

nle — P,]. Similarly as before, the answer is the following:

exp {n [Rg 4T (*TP)} } . € [Py 2Py, Pu+ p2P)

N(e) = (33)
0, elsewhere
where P, 2 Vab and po = /1 — e~2R2 Thus,
Za(Aly) = e exp {in | max (1 + 1) - 57, - o2, |
1
= e Mhexp {n {max { In(1 — p?) + ﬂpPg} — ﬁPa] } . (34)
lp|<p2 2

As before, the derivative of [ In(1 — p?) 4+ p3P,] w.r.t. p vanishes within [—1,1] at:

p:pﬁA\/l—i-HQ—@

where
1

28P,

1>

0

December 28, 2008 DRAFT



18

This is the maximizer as long as v/1+ 62 — 6 < po, namely, 6 > e 2R: /2p2, or equivalently, 5 <
p2e®f2 /Py, which for P, = /b(b+1/p), is equivalent to 8 < B(Ry) 2 (e2F2 —1)/b. Thus, for the

typical code we have

nZa(@ly) )R- sIn(1 = p3) + B(Pa — psFy), B < B(Ry)

A
R+ B(P, — p2Py), B> B(Rs) .

— 1l

n—oo n

7pel (5)

Similarly as before, it is easy to see that

Ze+ Ze1 = exp {—n [Rl + min {RQ, 5111(1 +bﬁ)} 4 2] } )

Turning now to Z.2(0|y), we have the following consideration. Given u;, i > 1, let ¥/ = y — au;
and v; ; = x; j — au;. We would like to estimate how many codewords in cloud 4, N;(e), contribute
ly — i ;1?/2 = ||y’ — vi;||>/2 = ne. Similarly as before, N;(e) is given by exactly the same formula

as (33) where this time, P, = (1 — o2 + |ly — au;|?/n)/2 and P, = /(1 — a?)[jly — au;|?/n. Thus,

we have expressed the typical number of codewords that cloud 4 contributes with energy e as NV;(€) =
exp{nF(||ly — au;||?/n,€)}, and the total number is N(e) = >, N;(e). Now let M () be the number
of {u;} for which ||y — au;||*/n = . Then,

N(e) = M(8)e™ ).
)

Now,

exp {n [Rl +T (5/21;9,]3‘;)}}, d € [01,09] ,

0, elsewhere

M(8) =

where P, = (1+ 1/8+a2)/2, P, = ay/T+ 1/B, 61 = 2(P, — P)W/T—e 2R) £ 2(P, — p,P}) and
0y = 2(Pé + Pépl) Thus,

: P -
N(e) = exp {nélrggicéz [Rl +T ( Pl ) + F(9, e)} } .

Putting it all together, we get:
A . InZeo(ly)
m .

1 1
() =— 1 = — max  max {lnl—r2 + = In(1 —r2)—
be2(B) = — lim —— Jnax | max (1 =77)+ 5 -r))
1—a? )
ﬂ[ S+ PPy =12y 20— 0)(P —rlPé)} }

where py = V1 — e 2l py(r1) = /1 —e2R/(1 —1}), P, = (1+1/8+a?)/2, and P} = a\/1 + 1/B.
The above expression does not seem to lend itself to closed form analysis in an easy manner. Numerical

results (cf. Fig. 1) show a reasonable match (within the order of magnitude of 1 x 10~°) between values
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0.8

0.7 b

0.6 b

0.5 b

1(X;Y)
o
~

0.3 b

0.2 b

0.1F b

Fig. 1. Graph of lim,, .o I(X;Y)/n = —Eg{ln Z(B|Y)}/n — 1/2 as a function of 3 for Ry = 0.1, Ry = 0.6206, and
a = 0.7129, which result in 81 = 0.5545 and B2 = 5.001. As can be seen quite clearly, there are phase transitions at these

values of 3.

of lim,, .o I(X;Y’)/n obtained numerically from the asymptotic exponent of Ezln Z(3|Y) and those

that are obtained from the expected behavior in this case:

%hl(]. +B)7 /B < ﬁl
. I(X3Y) 1
nlLI&T: R1+§ln(l+ﬁb), 51§ﬂ<ﬁ2
R=Ri+ Ry, B> B2
where
2R 2R
A et ] A e —1
M= Tpem e S

and it is assumed that the parameters of the model (R;, Rs and «) are chosen such that 3; < (s.
Accordingly, the MMSE undergoes two phase transitions, where it behaves as if the input was: (i)
Gaussian i.i.d. with unit variance for 5 < 31 (where no information can be decoded), (ii) Gaussian input
of a smaller variance (corresponding to the cloud), in the intermediate range (where the cloud center is

decodable, but the refined message is not), and (iii) the MMSE altogether vanishes for 3 > 32, where
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both messages are reliably decodable.

The hierarchical code ensemble takes the superposition code structure which achieves the capacity
region of the Gaussian broadcast channel. Consider two receivers, referred to as receiver 1 and receiver
2, with (1 and B, respectively. Receiver 1 can decode the cloud center, whereas receiver 2 can decode
the entire codeword. In other words, suppose the hierarchical code ensemble with rate pair (R, R2)
and parameter « is sent to two receivers with fixed SNR of v, and ~» respectively. Then the minimum

decoding error probability vanishes as long as (Rj, Ro, «) are such that

1 oy
Ri<c-log(l4——b— 36
1<20g<+1+(1—a2)’)/1)7 ( )
1
Ry < ;log (1+ a?y2) . (37)

In particular, all boundary points of the capacity region can be achieved by varying the power distribution
coefficient . This capacity region result also leads to the fact that if only the cloud center is decodable,
then the MMSE for the codeword v; ; is no different to that if the elements of v; ; were i.i.d. standard
Gaussian. Knowledge of the codebook structure of {v; ;} does not reduce the MMSE because otherwise

the code cannot achieve the capacity region of the Gaussian broadcast channel.

D. Hierarchical Tree—Structured Code

Consider next an hierarchical code with the following structure: The block of length n is partitioned
into two segments, the first is of length n; = Ain (A1 € (0,1)) and the second is of length no = Aon
(A2 = 1—XA1). We randomly draw M; = emba first-segment codewords {x;} on the surface of the \/n1—
sphere, and then, for each x;, we randomly draw M, = en2ftz second—segment codewords {m; j} on the
surface of the \/no—sphere. The total message of length nR = n1R; + noRs (thus R = ARy + A2 R»)
is encoded in two parts: The first-segment codeword depends only on the first n1 R; bits of the message
whereas the second—segment codeword depends on the entire message.

Let (xo,xop) be the transmitted codeword, and let y and y’ be the corresponding segments of the

channel output vector (y,y’). The partition function is as follows:
Z(Bly) = e "Fexp{~Blly — zol* + Iy — zo0l*]/2}

e M exp{~pllly — @oll*/2} 3 exp{~Bly’ — o;]%]/2)

+e MY N exp{=Bllly — @:]*/2} exp{—Blly’ — =i ;]%]/2}

i>1

A
= Zc + Zel + ZeZ- (38)
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Now, as before, Z,. = e~ MB+L/2) Ag for Ze1, it can also be treated as in Subsection V-B: The first factor
contributes e~ . ¢="*1/2 The second factor is e~ [min{F2,C(B}+1/2] where C(8) = $1In(1 + B).
Thus,

Ze1(Bly) + Ze = exp {—n {AlRl + N min{Ry, C(B)} + ;] } |

Consider next the term Zgo. Let r; = (x,y)/(n1P;) and o = (x/,y’)/(n2P,) where P, is as in
Subsection V-B. Of course, ((x,z’),(y,y’))/(nP;) = Air1 + Agra. What is the typical number of
codewords (z;, ] ;) of Zeo whose correlation with (y,y’) is exactly 7? The answer is

In N Y
i V) {Adﬁ%nhfwﬁ4mhR2+Aﬂ“<rNj)},
n—00 n |r1|<p(R1) A2

where p(x) = /1 —e~2%. This expression behaves differently depending on whether Ry > Ry or

R; < Rs. In the first case, it behaves exactly as in the ordinary ensemble, that is:

. InN(r) R+ 5In(1—72), |r| < p(R)
noco  m

0, | > p(R) -

and then, of course, Z.o is as before:
Zeo + Z. = exp{—n[min{R, C(8)} + 1/2]}.

When R; < Ry, however, we have two phase transitions:

R+1I(r), Ir| < p(R1)
. InN(r) .
Jim = = 4, {Rg +T (M)} , p(R1) < [r| < Aip(Rr) + Aop(Re)
0, ‘7” > )\1p(R1) —+ )\zp(Rg) .
In this case, we get:
. ln(Zez —+ ZC) 1
T}LHOIO T = —)\1R1 — )\QC(ﬁ) — 9 B(Rl) < ﬁ < B(R2)

—-R— %7 ﬁ > ﬁ(RQ)
where (3(R) is the solution /3 to the equation C(8) = 31In(1 + ) = R. To summarize, we have the

following: Z, = e ™B+1/2) 7 + Z. = exp{—n[\ Ry + Ao min{ Ry, C(3)} + 1/2]} and

Lot 7~ exp{—n[min{R,C(3)} + 1/2]}, Ri1 > Ry

exp{—n[A\ min{R;,C(B)} + Aamin{Ro,C(5)} + 1/2]}, Ri1 < Ry .

December 28, 2008 DRAFT



22

Clearly, if Ry < Rp then Z.o + Z. dominates Z.1 + Z.. If R; > Ro, we note that
min{\ R; + Ae min{ Ry, C(3)}, min{R, C(5)}} = min{ R, C(5)}.
Thus,
exp{~nlmin{R, C(9)} +1/2)} Ri> Ry
exp{—n[A min{Ry,C(5)} + Aemin{Ro,C(5)} + 1/2]}, Ri1 < Ry .
The MMSE then is as in (30) in Subsection V-B when R; > Ry, and given by
ﬁa ﬁ S /6(R1)
mmse(X|Y) = 1/~\fﬁ’ B(R1) < B < B(Ry) (39)
07 ﬁ > ﬁ(RZ)

when R; < Ry. This dichotomy between these two types of behavior have their roots in the behavior of

the GREM, a generalized version of the random energy model, where the random energy levels of the
various system configurations are correlated (rather than being i.i.d.) in an hierarchical structure [8]-[10].
The GREM turns out to have an intimate analogy with the tree—structured code ensemble considered
here. The reader is referred to [19] for a more elaborate discussion on this topic.

The preceding result on the MMSE is consistent with the analysis based solely on information theoretic
considerations. In case R; < Ra, the first segment code is decodable as long as Ry < (1/2)log(1 + f3),
whereas the second segment code is decodable if also Ry < (1/2)log(1 + [3). Hence the MMSE is
given by (39). In case R; > Ry, the second-segment code is decodable if and only if the first-segment
is also decodable, i.e., the two codes can be decoded jointly. This requires Ra < (1/2)log(1l + f3),
MR < AMlog(l + B) + Aglog(l 4+ 8) and R = ARy + AaRy < log(1 4 (3). The last inequality
dominates, hence the MMSE is given by (30).

E. Estimation of Sparse Signals

Let the components of X be given by X; = S;U;, i = 1,2,...,n, where S; € {0,1} and {U;} are
N(0,0?) i.i.d. and independent of {X;}. As before Y = X + IN, where the components of IV are i.i.d.
Gaussian N (0,1//3). One motivation of this simple model is in compressed sensing applications, where
the signal X (possibly, in some transform domain) is assumed to possess a limited fraction of non—zero
components, here designated by the non-zero components of S = (S1,53,...,S5,). The signal X is
considered sparse if the relative fraction of 1’s in .S is small. We will assume that .S, whose realization

is not revealed to the estimator, is governed by a given probability distribution P(s). We first derive an
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expression of the partition function for a general P(s) and then particularize our study to a certain form

of P(s). First, we have the following:
P(z) =)  P(s)P(z]s)
s

=Y Ps) [T o) [T [@ro®) 2 expi-a?/(20%)}]
S 0

1. 8;= 7. 8;,=1
=3 P]] [(27&%02)_1/2 exp{—a2 /(231-02)}} (40)
S =1

where a zero—variance Gaussian distribution is understood to be equivalent to the Dirac delta—function.

Thus,

S i=1 o
n
_ By;
=S P [T |0+ as) e {5
S [T o+ L
n
L[ By
= Z:P(s)‘l_[exp{—2 LJrCZ]Si +ln(1+qsi)]} 41)
S i=1
where we have used the notation® ¢ = o2, Transforming s to “spins” g = (j1,. .., itn) by the relation
wi =1—2s; € {—1,+1}, we get:
By; (1+4q/2)8y; 1
In(1 ) = L+ —1In(1 — 2uh;
1+q3i+n( +asi) 1+4+4¢ +2n( ) = 2l
where
By 1 )
hi=———<+-In(1+ . 42
"7 4(1 + Bo?) (14507 42)

On substituting back into the partition function we get:

Z(Bly) = (1 +q) ™ exp {—WW} - P(p)exp {Zm} . 43)
M i=1

Thus h; is given the statistical-mechanical interpretation of the random ‘local’ magnetic field felt by the
i—th spin.
Eq. (43) holds for a general distribution P(s) or equivalently, P(u). To further develop this expression,

we must make some assumptions on one of these distributions. At this point, we have the freedom to

SThe quantity g is proportional to the SNR.
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examine certain models of P(u), and by viewing the expression » p P () exp{)_, pih;} as the partition
function of a certain spin system with a non—uniform, random field { H;} (whose realization is {h;}),
we can borrow techniques from statistical physics to analyze its behavior. Evidently, for every spin glass
model that exhibits phase transitions, it is conceivable that there will be analogous phase transitions in
the corresponding signal estimation problem.

Assuming certain symmetry properties among the various components of s, it would be plausible to
postulate that all {s} with the same number of 1’s are equally likely, or equivalently, all spin configurations

{p} with the same magnetization
1 n
m(p) = " 21 Hi
1=

have the same probability. This means that P () depends on g only via m(u). Consider then the form

P(p) = Cyexp{nf(m(u))},

where f(m) is an arbitrary function and C), is a normalization constant. Further, let us assume that f is

twice differentiable with finite first derivative on [—1, 1]. Clearly,

Gy = (%:exp{nf(m(u))}>_l

= exp { —nmax{Ha((1+m)/2) + f(m)}}
= exp{—n (Ha((1 +mq)/2) + f(ma)} (44

where Hs(+) denotes the binary entropy function and m, is the maximizer of Ha((14+m)/2)+ f(m). In
other words, m,, is the a—priori magnetization, namely the magnetization that dominates P (). Of course,
when f(m) is linear in m, the components of p are i.i.d. Note that if f is monotonically increasing in
m, then P () has a sharp peak at m = 1, which corresponds to a vanishing fraction of sites with s; = 1,
i.e., a sparse signal. Our derivation, however, will take place for general f.

1) General Solution: On substituting the above expression of P(u) into that of Z(/3|y), our main

concern is then how to deal with the expression
250 2 Y Pyt = 0, e {
I I

We investigate the typical behavior of the partition function, or more precisely, calculate the following

f(m(p)) + % Z Mihi] } : (45)

quantity:

%logE{ZA(ﬁ]H)} = %log C.E %:GXP {n

f(m(p)) + % Z uH] } (46)
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where H consists of i.i.d. random variables with arbitrary distribution p(H).
Using large deviations theory, as n — oo, the dominant value of m in (46), henceforth denoted as m*
is shown to satisfy
m* = E{tanh(f'(m*) + H)} (47)

and
E{tanh?(f(m*) + H)} > 1 — f(lm) 48)

The detailed analysis is relegated to Appendix A. Clearly, m* is the dominant magnetization a—posteriori,

i.e., the one that dominates the posterior of m(u) given (a typical) y. It is also shown in Appendix A

that
Tim. % log E {Z(mﬂ)} = lim_ % log C, — 3b(m*) (49)
where
P(m*) 2 f(m*)ym* — f(m*) — E {log [2cosh(f'(m*) + H)]} (50)

and the normalized exponent of C,, is given by (44). Thus the asymptotic normalized mutual information
is expressed as

s 2
h 1Y) L L BAT /DB Gy

n—oo  n 2 4 2(1+q) n—oo  n +ym). oD

For the sparse signal model described by (40), H is defined by (42) with y; replaced by Y and the
expectation over Y is w.r.t. a mixture of two Gaussians: A'(0, 1/3) with weight (1+m,)/2, and N'(0, 0%+
1/3) with weight (1 —m,)/2.

The solution to
1

f"(m)

is known as a critical point, beyond which the solution to (47) ceases to be a local maximum and it

E{tanh?(f'(m)+ H)} =1 — (52)

becomes a local minimum. The dominant m* must jump elsewhere. Also, as we vary one of the other
parameters of the model, it might happen that the global maximum jumps from one local maximum to
another.

2) Special Case with Quadratic Exponent: In the case where f is quadratic® in m, i.e.,

f(m) = am + bm? /2. (53)

A quadratic model can be thought of as consisting of the first few terms of the Taylor expansion of a smooth function f.
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This is similar though not identical to the random—field Curie-Weiss model (RFCW model) of spin

systems’ (cf. e.g., [2] and references therein). Eq. (47) becomes
m = E{tanh(bm +a+ H)},
similarly as in the mean field model with a random field [2]. Eq. (52) for the critical point satisfies
E{tanh’(bm +a+ H)} =1 — (1/b). (54)

To demonstrate that the global maximum might jump from one local maximum to another, consider
the quadratic case and assume that 3 and o2 are so small that the fluctuations in H can be neglected.

Equation (47) can then be approximated by
m = tanh(bm + a),

which is actually the same the equation of the magnetization as in the Curie—Weiss model (a.k.a. the
mean field model or the infinite-range model) of spin arrays (cf. e.g., [22, Sect. 4.2], [1, Chap. 3], [14,
Sect. 4.5.1]), which is actually a special case of the above with H; = 0 for all ¢. For a = 0 and b > 1,
this equation has two symmetric non—zero solutions £mg, which both dominate the partition function.
If a # 0 but small, then the symmetry is broken, and there is only one dominant solution which is about
mo sgn(a). To approximate mg for the case where |a| is small and b is only slightly larger than 1, one
can use the Taylor expansion of the function tanh(-) (as is customarily done in the theory of the infinite
range Ising model; see e.g., [22, p. 188, egs. (4.21a), (4.21b)]) and get

(bm + a)3‘

~ b —
m m + a 3

Neglecting the contribution of a, we get a simple quadratic equation whose solutions are £mg with

mo = 3+/3(1 — 1/b). Thus, for small values of |a| and b — 1,
m* ~ mg - sgn(a),

and so, m* jumps between +mg and —mg as a crosses the origin. Similarly, for a = 0, m* jumps from

zero to +mg or —myg as b passes the value b = 1 while increasing.

"There is a certain difference in the sense that in the RECW { H;} are i.i.d., whereas here each H; depends on the corresponding
1; because the variance of y; depends on whether p; = —1 or p; = +1. Also as a result, { H;} here are not i.i.d. because they

depend on each other via the dependence between {;}. These differences are not crucial, however.
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By (51), the asymptotic normalized mutual information of this model is given by

. I(X;Y)__l 1 B(1+q/2) 1+ma.l L—m, (5 1
A T e T Ty [ > 3 2 (U+ﬁ>}
1 ” i
+H2< - )+f(ma)+¢(m)
—_} 1 1+gq/2 1_ma' 14+ m,
= 2+4ln(1+q)+2(1+q)<1+ 5 q>+H2 5 )
2 *\ 2
+ amg + b _ E{In[2cosh(bm™ +a+ H)|} + b(m”) (55)

In this special case of quadratic exponent, the Hubbard-Stratonovich transformation can be used to
obtain an alternative, more straightforward derivation of the mutual information result (55). The details
are provided in Appendix B.

The MMSE is equal to twice the derivative of (55) w.r.t. 3. Note that the dominant value m* is

dependent on (. In Appendix C, we carry out the calculation and obtain

lim MSeX[Y)
n—oo n
iy ) ool
2(1 +q)? 2 (1+q)2 w
1 a
! T {COVO{YQ’ Inf2 cosh(bm™ + a + H)|} + Eo{ H' tanh(bm” + a + H)}}
11— a 1
2m |:(1 — )2 . COVl{Y271n[2 Cosh(bm* +a+ H)]} + El{Hl tanh(bm* Lad H)}:|
q
where H' is defined by
2
H—_ a(g+2) - .

2(1+¢q)  2(1+q)?
which is in fact the derivative of (42) w.r.t. 3. To ease understanding of the MMSE, we evaluate its value
in two extreme cases in Appendix D.

3) Discussion: Returning now to the general expression of the MMSE, it is reasonable to expect that
at the critical points, where m* jumps from one solution of eq. (47) to another as the parameters of the
model vary, the MMSE may also undergo an abrupt change, and so the MMSE may be discontinuous
(w.r.t. these parameters) at these points. A related abrupt change takes place also in the response of the
MMSE estimator itself at the critical points: Note that m* is the dominant magnetization a—posteriori.
Thus, as m* jumps, say, from m* = m; to m* = meg, the conditional mean estimator, which is a weighted
average of {x}, transfers most of the weight from a set of x—vectors whose binary support vectors {s}

correspond to magnetization mq, into another set of x—vectors supported by {s} with magnetization ms.
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It is not surprising then that this abrupt change in the response of the estimator is accompanied by a
corresponding sudden drop in the MMSE.

It is instructive to compare the type of the phase transition in our example to those of the ordinary
Curie—Weiss model. In the Curie-Weiss model, we have:

e A first order phase transition w.r.t. the magnetic field (below the critical temperature), i.e., the
first derivative of the free energy w.r.t. the magnetic field (which is exactly the magnetization) is
discontinuous (at the point of zero field).

e A second order phase transition w.r.t. temperature, i.e., the first derivative of the free energy w.r.t.
temperature (which is related to the internal energy) is continuous, but the second derivative (which
is related to the specific heat) is not.

Here, on the other hand, in physics terms, what we observe is a first order phase transition w.r.t.
temperature. The reason for this discrepancy is that in our model, the dependency of the free energy
on temperature is introduced via the variables {h;} that play the role of magnetic fields.

In case of quadratic exponent (53), b = 0 corresponds to the special case of i.i.d. {S;}. In this case,
our problem is analogous to a system of non-interacting particles, where of course, no phase transitions
can exist. Therefore, what we learn from statistical physics here is that phase transitions in the MMSE
estimator cannot be a property of the sparsity alone (because sparsity may be present also for the i.i.d.
case with P{S; = 1} small), but rather a property of strong dependency between {S;}, whether it comes

with sparsity or not.

ACKNOWLEDGEMENT

N. Merhav would like to thank Yonina Eldar for a few interesting discussions concerning the example

of estimating sparse signals (in Subsection V-E) during the early stages of this work.

APPENDIX A

ESTIMATION OF SPARSE SIGNALS: THE DOMINANT MAGNETIZATION

For the time being let us assume that H;, i = 1,...,n take on values from a discrete set {hy,...,hx},

where of the n variables, gin of them taking the value of hy. The sum in (46) can be rewritten as

K qrn
> exp {nf(m(u)) +Y he Y ,um} (58)
7 k=1 =1
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where we relabel p; as py; with ¢ = 1,..., ggn for each k. The expectation on the r.h.s. of (46) can be

viewed as an integral

1 1 K
2n/1.../1exp nf(m) +th(qkn)mk N(dmq,---, dmg) (59)
- - k=1

1

where NV is a probability measure proportional to the number of sequences p with o

I ks = My
Here m = Zszl qrmyg. For p uniformly randomly chosen from +1 sequences, the probability measure
satisfies large deviations property, the rate function (or entropy) of which is obtained as (using the

Legendre-Fenchel transform)®

K
I(ml,...,mK):qu <10g2—H2 (Hmk>> (61)

2
k=1
Not surprisingly, the rate function achieves its maximum at my = 0, k = 1, ..., K, where the number of
+1’s in each subsequence px;, ¢ = 1,...,qin is balanced. Due to large deviations property, the integral

(59) is dominated by unique values of my, k = 1,..., K. Specifically, we use Varadhan’s Theorem [4],

[11] to obtain®

K

1

nlog/.../exp nf(m)+2hk(qkn)mk N(dmy,..., dmyg)
k=1

K
- sup Fm) + > hygeme — I(ma, ... mi)
m1,...,mK€[—1,1} k’:].
=2"". sup 1/)(7)11, <o 7mK) (63)
mi,...,mg€[—1,1]
where we use (61) and define
A K K K l+m
Y(my,...,mg) = f ;%mk +;thkmk+;QkH2 <2k> : (64)

8By Cramér’s theorem [11, Theorem I1.4.1], the probability measure of the empirical mean %Xi of i.i.d. random variables X;
satisfy, as n — oo, the large deviations property with some rate function I(m). The rate of the probability measure is given by

the Legendre-Fenchel transform of the cumulant generating function (logarithm of the moment generating function) [4], [11]:
I(m) = sup [nm —log E {e"XH . (60)
n

It is straightforward to generalize to the product measure of the means of subgroups of i.i.d. random variables.

9The Varadhan’s Theorem basically states that, if the sequence of probability measures N,, on IR satisfies large deviations

property with rate function I(m), and that F' is continuous and upper bounded on IR, then

n—oo 1

lim 1 log/]R exp{F(m)}N,(dm) = sip{F(m) —I(m)} . (62)

The result can also be generalized to multiple dimensions.
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The maximum of 1 is achieved by an internal point in (—1, 1) This is because H> is concave with
infinite derivative at the boundary m; = 41, whereas the derivative of f is finite by assumption. Because
the function 1 is twice differentiable, at its maximum, the gradient of ¢ w.r.t. every m; should be equal
to 0, whereas the Hessian of i) should be negative definite. It can be shown by taking derivative of v

w.r.t. my that zero gradient is achieved by setting

K
my = tanh ( f! (Z qlml> + hk> (65)
=1

for all k£, so that

K
m =Y qtanh (f'(m) + hy) . (66)
k=1
The Hessian of 1 is determined by noting that
821/} " Ok,1
= — 7 67
Smeom, — Bt (m) = ar— 2 (67)

where dy,; is equal to 1 if £ = [ and equal to O otherwise. The Hessian is negative definite if and only if

K 2 K 22
"(m) < k 68
(Z%m) [ (m) _Z%l—m% (68)
k=1 k=1
for all z;, € IR, k =1,..., K, which is equivalent to

fl/(m) < min Zf:l qu%/(l — mi) )

2
L1, TK K
(Zk:1 Qkxk)

Using Lagrange multiplier, the minimum on the r.h.s. of (69) is obtained as 1 — Zle qkmi. Further,

(69)

by (65), the condition (69) reduces to

f”(m) < _ 1 . ‘
1— Zk:l qr tanh (f’(m) + hk)

In other words, a solution of (65) is a local maximum of ¢ if and only if it also satisfies (70). In multiple

(70)

such solutions exist, the global supremum is identified by comparing the corresponding values of ).

In the limit n — oo, the requirement that H; take discrete values is not necessary (the continuous
distribution can be regarded as the limit of a degenerate discrete one). Using (66) and (70), the dominant
magnetization m* satisfy (47) and (48) for general distribution of H. This can be made precise by
formulating a variational problem.

We also note an alternative technique for evaluating the free energy (46) using Fourier transform and
saddle point method, which is standard in statistical mechanics (often without rigorous justification).

Usage of this technique in information theory can be found in e.g., [23].
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APPENDIX B

ESTIMATION OF SPARSE SIGNALS: AN ALTERNATIVE DERIVATION OF (55)

In case of quadratic exponent (53), the partition function (45) can be written using the Hubbard-

Stratonovich transformation as

2
ZP(u)eZimhi:C’nZexp{aZui—l—thi—l—2?1<2m> }
o o i i i
:Cn\/g/oo dmexp{_nb;nQ}Zexp{aZm+Zuihi+bmzui}
- 1) i i i
:Cn\/;»i/oo dmexp{nb;lz}ﬁ[Qcosh(a+bm+hi)]

=1

[nb [ bm? 1
=C, 27F/—oo dm exp {n[—2+n;1n[2(:osh(a+bm+hi)]]}. (71)

Thus, we have —In Z ~ nmin, ¥(m) —In C),, where 1) is defined by (50), whose minimum is attained

at m* = m*(f3), one of the solutions to the equation m = E{tanh(bm+a+ H?}, as before.!® The mutual

information is then obtained as (55).

APPENDIX C

ESTIMATION OF SPARSE SIGNALS: THE MMSE

The MMSE is equal to twice the derivative of (55) w.r.t. 3. We will denote hereafter H; as given by
(42) with y; replaced by Y; and H = (H,..., H,). Let us present the asymptotic MMSE per sample,
lim;,, ..o mmse(X|Y)/n, as A + B, where A is the double derivative of the first three terms, and B is

the contribution of the other terms. The easy part is the former:

At (1 —my)o? ~q(1+4q/2)
4= i [1 (1+4q)* ]

2(1+ q)? 2
As for B, we have the following consideration: The first three terms depend only on m,, which in turn

is independent of 3, therefore their derivatives w.r.t. 3 all vanish. For the last two terms, pertaining to

'9The function t(m) is (within a factor of the inverse temperature) identified with the Landau free energy function for this

problem [22, p. 186, eq. (4.15a)], [14, Sect. 4.6].
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(m*), it proves useful to return to the original expression of the Gaussian integral (71), i.e.,

5= -2 Bl 2(6/H)
— _ZaaﬁE {ln/_z d;r exp {n [_(u;baf + % gln[QCOSh(V + hy)] }}
= _Zaaﬁ - dyPs(y) In /Z dm exp {n [—bZLQ + % gln[Q cosh(bm + a + h;)] }
= _% /IR dy%ln/_z dmexp {n [_brgz + % gln[Q cosh(bm + a + h;)] }
- Z/n dyPg(y);ﬁln/Z dmexp {n [—meQ +igln[2605h(bm+a+hi)] }
£ B+ B, (72)

Now, P3(y) is the mixture of Gaussians weighted by {P(p)}}, where the dominant p—configurations
are those with (14 m,)/2 (+1)’s and (1 —m,)/2 (—1)’s. Each such configuration contributes the same
quantity to B; and Bs, because for every given such p, the random variables {Y;} (and hence also
{H;}) are all independent, a fraction (1 + m,)/2 of them are N'(0,1/3) and the remaining fraction of
(1 —myg)/2 are N'(0,02 + 1/8). Thus, it is sufficient to confine attention to one such sequence, call it

p*, whose first n; 2 n(l —mg)/2 components are all —1 and last n — n; = n(1 + m,)/2 components

}

are all +1. Thus,

2 OPs(y|pu* o 2 1e
B ~ _n/n, dyﬁg;‘u’)m/oo dmexp{n [—b? + n;ln[Qcosh(bm—i—a—khi)]

n

1 n1 ) 1 ) n »
nCov{;Yi + 0+ q? Z Y; ,Zln[2cosh(bm —I—a—i-Hi)]}

t=n1+1 =1

%

1 a
= LM Cov{y 2. nf2cosh(bm* + a -+ H)])
n L —mq 1 Cov1{Y?,In[2 cosh(bm* + a + H)} 73)
2 (I+g? U |
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where Covg{-, -} denotes covariance with respect to N'(0,02s+1/83), s = 0, 1. Finally, for By, we have:

}

3_2/ dyPs(y) 21 /Ood I LSS g cosh(bm t o + h)
2=~ ny[gyaﬁn_oo mexp< n 5 ni:ln cosh(bm + a + h;

1 [ dm[X; B tanh(bm + a + hy)] e
"R f dme—m¥(m

—0o0

1 n

zE{ZH{tanh(bm*—Fa%—Hi)}

n
i=1

N 1+ mg

T2

1—m,

- Eo{H' tanh(bm* +a + H)} +

. E\{H' tanh(bm* + a + H)}, (74)

where E denotes expectation w.r.t. N'(0,02s+1/3), s = 0,1, and H' is given by (57), and correspond-
ingly, h; and H are given by the same formula with Y replaced by y; and Y respectively. Collecting
all terms, A, Bi, and By, we have (56).

APPENDIX D

ESTIMATION OF SPARSE SIGNALS: TWO EXTREME CASES

Two extreme cases, where it is relatively easy to examine the resulting expression are as follows:

e When b > 1 and a <« —1, we have m, ~ —1 and m* ~ —1 (which means that most s; = 1), and

SO we can approximate
In[2cosh(bm* +a+ H)|] ~ In[2cosh(—b+a+ H)|~b—a—H

and tanh(bm* + a + H) =~ —1, and we get

. MMSE(X]Y) o?
lim R ,
n—00 n 14¢

the classical Wiener expression, as expected.'!
e When b > 1 and a > 1, we have m, ~ 1 and m* ~ 1 (which means that most s; = 0), and then
In[2 cosh(bm* + a+ H)] ~ b+ a + H and tanh(bm* +a+ H) ~ 1, so we get
MMSE(X|Y 1—
lim SE(X]Y) ~ Ta 52

n—oo n 2 ’

which means the conditional-mean estimator simply outputs essentially the all-zero sequence without
attempting to detect (explicitly or implicitly) which of the few signal components are active. The

intuition behind this behavior is that when there are so few active components of the clean signal,

"Here, by limn,—oo MMSE(X|Y)/n =~  F(a,b,B,0%), for a generic function F, we mean that

1im— — o0 limp—00 limp—eo nF(a, b, 3,0%) /MMSE(X|Y) = 1. A similar comment applies to item number 2 below.
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then even if there are nevertheless a few observations {y;} with large absolute values (and hence
could have been suspected to stem from places where s; = 1), it is still more plausible for the
estimator to “assume” that they simply belong to the tail of AV(0,1/3) (with s; = 0) rather than
to N(0,02 + 1/8) with s; = 1. This because the prior for s; = 1 is so small that it becomes
comparable to the tail probability of N(0,1/3).1?
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