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Abstract

We consider the problem of signal estimation (denoising) from a statistical mechanical perspective,

using a relationship between the minimum mean square error (MMSE), of estimating a signal, and the

mutual information between this signal and its noisy version. The paper consists of essentially two parts.

In the first, we derive several statistical–mechanical relationships between a few important quantities in

this problem area, such as the MMSE, the differential entropy, the Fisher information, the free energy,

and a generalized notion of temperature. We also draw analogies and differences between certain relations

pertaining to the estimation problem and the parallel relations in thermodynamics and statistical physics.

In the second part of the paper, we provide several application examples, where we demonstrate how

certain analysis tools that are customary in statistical physics, prove useful in the analysis of the MMSE.

In most of these examples, the corresponding statistical–mechanical systems turn out to consist of strong

interactions that cause phase transitions, which in turn are reflected as irregularities and discontinuities

(similar to threshold effects) in the behavior of the MMSE.
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I. INTRODUCTION

The relationships and the interplay between Information Theory and Statistical Physics have been

recognized and exploited for several decades by now. The roots of these relationships date back to the

celebrated papers by Jaynes from the late fifties of the previous century [15], [16], but their aspects

and scope have been vastly expanded and deepened ever since. Much of the research activity in this

interdisciplinary problem area revolves around the identification of ‘mappings’ between problems in

Information Theory and certain many–particle systems in Statistical Physics, which are analogous at least

as far as their mathematical formalisms go. One important example is the paralellism and analogy between

random code ensembles in Information Theory and certain models of disordered magnetic materials,

known as spin glasses. This analogy was first identified by Sourlas (see, e.g., [27], [28]) and has been

further studied in the last two decades to a great extent. Beyond the fact that these paralellisms and

analogies are academically interesting in their own right, they also prove useful and beneficial. Their

utility stems from the fact that physical insights, as well as statistical mechanical tools and analysis

techniques can be harnessed in order to advance the knowledge and the understanding with regard to the

information–theoretic problem under discussion.

In this context, our work takes place at the meeting point of Information Theory, Statistical Physics,

and yet another area – Estimation Theory, where the bridge between information–theoretic and the

estimation–theoretic ingredients of the topic under discussion is established by an identity [12, Theorem

2], equivalent to the de Bruijn identity (cf. e.g., [3, Theorem 17.7.2]), which relates the minimum mean

square error (MMSE), of estimating a signal in additive white Gaussian noise (AWGN), to the mutual

information between this signal and its noisy version. We henceforth refer to this relation as the I–MMSE

relation. It should be pointed out that the present work is not the first to deal with the interplay between

the I–MMSE relation and statistical mechanics. In an earlier paper by Shental and Kanter [26], the

main theme was an attempt to provide an alternative proof of the I–MMSE relation, which is rooted in

thermodynamics and statistical physics. However, to this end, the authors of [26] had to generalize the

theory of thermodynamics.

Our study is greatly triggered by [26] (in its earlier versions), but it takes a substantially different route.

Rather than proving the I–MMSE relation, we simply use it in conjunction with analysis techniques used

in statistical physics. The basic idea that is underlying our work is that when the channel input signal is

rather complicated (but yet, not too complicated), which is the case in certain applications, the mutual

information with its noisy version can be evaluated using statistical–mechanical analysis techniques, and
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then related to the MMSE using the I–MMSE relation. This combination proves rather powerful, because

it enables one to distinguish between situations where irregular (i.e., non–smooth or even discontinuous)

behavior of the mean square error (as a function of the signal–to–noise ratio) is due to artifacts of a

certain ad–hoc signal estimator, and situations where these irregularities are inherent in the model, in the

sense that they are apparent even in optimum estimation. In the latter situations, these irregularities (or

threshold effects) are intimately related to phase transitions in the parallel statistical–mechanical systems.

These motivations set the stage for our study of the relationships between the MMSE and statistical

mechanics, first of all, in the general level, and then in certain concrete applications. Accordingly, the

paper consists of two main parts. In the first, which is a general theoretical study, we derive several

statistical–mechanical relationships between a few important quantities such as the MMSE, the differential

entropy, the Fisher information, the free energy, and a generalized notion of temperature. We also draw

analogies and differences between certain relations pertaining to the estimation problem and the parallel

relations in thermodynamics and statistical physics. In the second part of the paper, we provide several

application examples, where we demonstrate how certain analysis tools that are customary in statistical

physics (in conjunction with large deviations theory) prove useful in the analysis of the MMSE. In light

of the motivations described in the previous paragraph, in most of these examples, the corresponding

statistical–mechanical systems turn out to consist of strong interactions that cause phase transitions, which

in turn are reflected as irregularities and discontinuities in the behavior of the MMSE.

The remaining part of this paper is organized as follows: In Section II, we establish a few notation

conventions and we formalize the setting under discussion. In Section III, we provide the basic background

in statistical physics that will be used in the sequel. Section IV is devoted to the general theoretical study,

and finally, Section V includes application examples, where the MMSE will be analyzed using statistical–

mechanical tools.

II. NOTATION CONVENTIONS, FORMALIZATION AND PRELIMINARIES

A. Notation Conventions

Throughout this paper, scalar random variables (RV’s) will be denoted by capital letters, like X and

Y , their sample values will be denoted by the respective lower case letters, and their alphabets will be

denoted by the respective calligraphic letters. A similar convention will apply to random vectors and their

sample values, which will be denoted with the same symbols in the boldface font. Thus, for example,

X will denote a random n-vector (X1, . . . , Xn), and x = (x1, ..., xn) is a specific vector value in X n,

the n-th Cartesian power of X .
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Sources and channels will be denoted generically by the letters P and Q. The expectation operator

will be denoted by E{·}. When the underlying probability measure is indexed by a parameter, say, β,

then it will used as a subscript of P , p and E, unless there is no ambiguity.

For two positive sequences {an} and {bn}, the notation an
·= bn means that an and bn are asymp-

totically of the same exponential order, that is, limn→∞
1
n ln an

bn
= 0. Similarly, an

·
≤ bn means that

lim supn→∞
1
n ln an

bn
≤ 0, etc. Information theoretic quantities like entropies and mutual informations

will be denoted following the usual conventions of the Information Theory literature.

B. Formalization and Preliminaries

We consider the simplest variant of the signal estimation problem setting studied in [12], with a few

slight modifications in notation. Let (X,Y ) be a pair of random vectors in IRn, related by the Gaussian

channel

Y = X +N , (1)

where N is a random vector (noise), whose components are i.i.d., zero–mean, Gaussian random variables

(RV’s) whose variance is 1/β, where β is a given positive constant designating the signal–to–noise ratio

(SNR), or the inverse temperature in statistical–mechanical point of view (cf. Section III). It is assumed

that X and N are independent. Upon receiving Y , one is interested in inferring about the (desired)

random vector X . As is well known, the best estimator of X given the observation vector Y , in the

mean square error (MSE) sense, i.e., the MMSE estimator, is the conditional mean X̂ = E(X|Y ) and the

corresponding MMSE, E‖X̂ −X‖2 will denoted by mmse(X|Y ). Theorem 2 in [12], which provides

the I–MMSE relation, relates the MMSE to the mutual information I(X;Y ) (defined using the natural

base logarithm) according to
dI(X;Y )

dβ
=

mmse(X|Y )
2

. (2)

For example, if n = 1 and X ∼ N (0, 1), then I(X;Y ) = 1
2 ln(1 + β), which leads to mmse(X|Y ) =

1/(1 + β), in agreement with elementary results. The relationship has been used in [24] to compute the

mutual information achieved by low-density parity-check (LDPC) codes over Gaussian channels through

evaluation of the marginal estimation error.

A very important function, which will be pivotal to our derivation of both E(X|Y ) and mmse(X|Y ),

as well as to the mutual information I(X;Y ), is the posterior distribution. Denoting the probability mass
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function of x by Q(x) and the channel induced by (1) by P (y|x), then

P (x|y) =
Q(x)P (y|x)∑
x′ Q(x′)P (y|x′)

=
Q(x) exp[−β · ‖y − x‖2/2]

Z(β|y)
, (3)

where we defined

Z(β|y)
4
=
∑
x
Q(x) exp[−β · ‖y − x‖2/2] = (2π/β)n/2Pβ(y) (4)

where Pβ(y) is the channel output density. Here we have assumed that x is discrete, as otherwise Q

should be replaced by the probability density function (pdf) and the summation over {x′} should be

replaced by an integral. The function Z(β|y) is very similar to the so-called partition function, which is

well known to play a very central role in statistical mechanics, and will also play a central role in our

analysis. In the next section, we then give some necessary background in statistical mechanics that will

be essential to our study.

III. PHYSICS BACKGROUND

Consider a physical system with n particles, which can be in a variety of microscopic states (‘mi-

crostates’), defined by combinations of physical quantities associated with these particles, e.g., positions,

momenta, angular momenta, spins, etc., of all n particles. For each such microstate of the system, which

we shall designate by a vector x = (x1, . . . , xn), there is an associated energy, given by a Hamiltonian

(energy function), E(x). For example, if xi = (pi, ri), where pi is the momentum vector of particle

number i and ri is its position vector, then classically, E(x) =
∑N

i=1

[
‖p

i
‖2

2m +mgzi

]
, where m is the

mass of each particle, zi is its height – one of the coordinates of ri, and g is the gravitation constant.

One of the most fundamental results in statistical physics (based on the law of energy conservation and

the basic postulate that all microstates of the same energy level are equiprobable) is that when the system

is in thermal equilibrium with its environment, the probability of finding the system in a microstate x is

given by the Boltzmann–Gibbs distribution

P (x) =
e−βE(x)

Z(β)
(5)

where β = 1/(kT ), k being Boltmann’s constant and T being temperature, and Z(β) is the normalization

constant, called the partition function, which is given by

Z(β) =
∑
x
e−βE(x),
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assuming discrete states. In case of continuous state space, the partition function is defined as

Z(β) =
∫

dx e−βE(x),

and P (x) is understood as a pdf. The role of the partition function is by far deeper than just being a

normalization factor, as it is actually the key quantity from which many macroscopic physical quantities

can be derived, for example, the free energy1 is F (β) = − 1
β lnZ(β), the average internal energy is

given by Ē
4
= E{E(X)} = −(d/dβ) lnZ(β) with X ∼ P (x), the heat capacity is obtained from the

second derivative, etc. One of the ways to obtain eq. (5), is as the maximum entropy distribution under

an average energy constraint (owing to the second law of thermodynamics), where β plays the role of a

Lagrange multiplier that controls the average energy.

An important special case, which is very relevant both in physics and in the study of AWGN channel

considered here, is the case where the Hamiltonian E(x) is additive and quadratic (or “harmonic” in

the physics terminology), i.e., E(x) =
∑n

i=1
1
2κx

2
i , for some constant κ > 0, or even more generally,

E(x) =
∑n

i=1
1
2κix

2
i , which means that the components {xi} are Gaussian and independent. A classical

result in this case, known as the equipartition theorem of energy, which is very easy to show, asserts that

each particle (or, more precisely, each degree of freedom) contributes an average energy of E{1
2κiX

2
i } =

1/(2β) = kT/2 independently of κ (or κi).

Returning to the case of a general Hamiltonian, it is instructive to relate the Shannon entropy, pertaining

to the Boltzmann–Gibbs distribution, to the quantities we have seen thus far. Specifically, the Shannon

entropy S(β) = −E{lnP (X)} associated with P (x) = e−βE(x)/Z(β), is given by

S(β) = E ln
[
Z(β)
e−βE(x)

]
= lnZ(β) + β · Ē,

where, as mentioned above,

Ē = −d lnZ(β)
dβ

(6)

is the average internal energy. This suggests the differential equation

ψ̇(β)− ψ(β)
β

=
S(β)
β

, (7)

where ψ(β) = − lnZ(β) and ψ̇ means the derivative of ψ. Equivalently, eq. (7) can be rewritten as:

β
d

dβ

[
ψ(β)
β

]
=
S(β)
β

, (8)

1The free energy means the maximum work that the system can carry out in any process of fixed temperature. The maximum

is obtained when the process is reversible (slow, quasi–static changes in the system).
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whose solution is easily found to be

ψ(β) = βE0 − β
∫ ∞
β

dβ̂S(β̂)

β̂2
, (9)

where E0 = minx E(x) is the ground–state energy, here obtained as a constant of integration by

examining the limit of β → ∞. Thus, we see that the log–partition function at a given temperature

can be expressed as a heat integral of the entropy, namely, as an integral of a function that consists of

the entropy at all lower temperatures. This is different from the other relations we mentioned thus far,

which were all ‘pointwise’ in the temperature domain, in the sense that all quantities were pertaining to

the same temperature. Taking the derivative of ψ(β) according to eq. (9), we obtain the average internal

energy:

Ē = ψ̇(β) = E0 −
∫ ∞
β

dβ̂S(β̂)

β̂2
+
S(β)
β

, (10)

where the first two terms form the free energy.2

As a final remark, we should note that although the expression Z(β|y) of eq. (4) is similar to that

of Z(β) defined in this section (for a quadratic Hamiltonian), there is nevertheless a small difference:

The exponentials in (4) are weighted by probabilities {Q(x)}, which are independent of β. However, as

explained in [17, p. 3713], this is not an essential difference because these weights can be interpreted

as degeneracy of states, that is, as multiple states (whose number is proportional to Q(x)) of the same

energy.

IV. THEORETICAL DERIVATIONS

Consider the Gaussian channel (1) and the corresponding posterior (3). Denoting by Eβ the expectation

operator w.r.t. joint pdf of (X,Y ) induced by β, we have:

I(X;Y ) = Eβ

{
ln

exp[−β · ‖Y −X‖2/2]
Z(β|Y )

}
= −β

2
Eβ

{
‖Y −X‖2

}
−Eβ {lnZ(β|Y )}

= −n
2
−Eβ {lnZ(β|Y )} (11)

2By changing the integration variable from β to T , this is identified with the relation F = E0 −
∫ T
0
SdT ′, which together

with F = Ē − ST , complies with the relation Ē = E0 +
∫ S
0
TdS′ = E0 +

∫ Q
0

dQ′, accounting for the simple fact that in the

absence of any external work applied to the system, the internal energy is simply the heat accumulated as temperature is raised

from 0 to T .
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where we use the fact that Eβ

{
‖Y −X‖2

}
= Eβ

{
‖N‖2

}
= n/β. Taking derivatives w.r.t. β, and

using the I–MMSE relation, we then have:

mmse(X|Y )
2

=
∂I(X;Y )

∂β
= − ∂

∂β
Eβ{lnZ(β|Y )}. (12)

and so, we obtain a very simple relation between the MMSE and the partition function of the posterior:

mmse(X|Y ) = −2
∂

∂β
Eβ{lnZ(β|Y )} (13)

By calculating the derivative of the right-hand side (r.h.s.) more explicitly, one further obtains the

following:

− ∂

∂β
Eβ lnZ(β|Y ) = − ∂

∂β

∫
IRn

dy · Pβ(y) lnZ(β|y)

= −
∫

IRn

dy · Pβ(y)
∂ lnZ(β|y)

∂β
−
∫

IRn

dy ·
∂Pβ(y)
∂β

· lnZ(β|y). (14)

Now, the first term at the right–most side of (14) can easily be computed by using the fact that lnZ(β|y)

is a log–moment generating function of the energy (as is customarily done in statistical mechanics, cf.

eq. (6)), which implies that it is given by Eβ{‖Y −X‖2} = n/(2β) = nkT/2, just like in the energy

equipartition theorem for quadratic Hamiltonians. As for the second term, we have∫
IRn

dy ·
∂Pβ(y)
∂β

· lnZ(β|y)

=
∫

IRn

dy · Pβ(y) ·
∂ lnPβ(y)

∂β
· lnZ(β|y)

=
∫

IRn

dy ·
(

2π
β

)−n/2∑
x
Q(x)

[
n

2β
− 1

2
‖y − x‖2

]
· exp{−β‖y − x‖2/2} lnZ(β|y)

= −1
2

Cov{‖Y −X‖2, lnZ(β|Y )}. (15)

The MMSE is then given by

mmse(X|Y ) = −2
∂

∂β
Eβ{lnZ(β|Y )} =

n

β
+ Cov{‖Y −X‖2, lnZ(β|Y )}, (16)

which can then be viewed as a variant of the energy equipartition theorem with a correction term that

stems from the fact the pdf of Y depends on β.

Another look, from an estimation–theoretic point of view, at this expression reveals the following:

The first term, n/β = E‖Y −X‖2, is the amount of noise in the raw data Y , without any processing.

The second term, which is always negative, designates then the noise suppression level due to MMSE

estimation relative to the raw data. The intuition behind the covariance term is that when the ‘correct’

x (the one that actually feeds the Gaussian channel) dominates the partition function then lnZ(β|Y ) ≈

December 28, 2008 DRAFT



9

−β‖Y −X‖2/2, and so, there is a very strong negative correlation between ‖Y −X‖2 and lnZ(β|Y ).

In particular,

Cov{‖Y −X‖2,−β‖Y −X‖2/2} = −n
β
, (17)

which exactly cancels the above–mentioned first term, n/β, and so, the overall MMSE essentially

vanishes. When the correct x is not dominant, this correlation is weaker. Also, note that since

E‖Y −X‖2 = mmse(X|Y ) +E‖Y −E(X|Y )‖2, (18)

then this implies that

E‖Y −E(X|Y )‖2 = −Cov{‖Y −X‖2, lnZ(β|Y )}. (19)

It is now interesting to relate the noise suppression level

∆
4
= E‖Y −E(X|Y )‖2 = −Cov{‖Y −X‖2, lnZ(β|Y )}

to the Fisher information matrix and then to a new generalized notion of temperature due to Narayanan

and Srinivasa [21] via the de Bruijn identity. According to de Bruijn’s identity, if W is a vector of i.i.d.

standard normal components, independent of X , then

d
dt
h(X +

√
tW ) =

1
2

tr{J(X +
√
tW )}

where h(Y ) is differential entropy and J(Y ) is the Fisher information matrix associated with Y w.r.t.

a translation parameter, namely,

tr{J(Y )} =
n∑
i=1

E


[
∂ lnPβ(y)

∂yi

∣∣∣∣
y=Y

]2
 =

n∑
i=1

∫
IRn

dy
Pβ(y)

[
∂Pβ(y)
∂yi

]2

.

Note that since Pβ(y) and Z(β|y) differ only by a multiplicative factor of (β/2π)n/2, it is obvious that

∂ lnPβ(y)/∂yi = ∂ lnZ(β|y)/∂yi and so, the Fisher information can also be related directly to the free

energy by

tr{J(Y )} =
n∑
i=1

E


[
∂ lnZ(β|y)

∂yi

∣∣∣∣
y=Y

]2


=
n∑
i=1

E{[E{−β(Yi −Xi)|Y }]2}

= β2
n∑
i=1

E{E2(Ni|Y )}, (20)
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where Ni = Yi −Xi and where we have used the fact that the derivative of exp{−β‖y − x‖2} w.r.t. yi

is given by −β(yi − xi) · exp{−β‖y − x‖2}. Now, as is also shown in [12]:

I(X;X +N) = I(X;X +W /
√
β)

= h(X +W /
√
β)− h(W /

√
β)

= h(X +W /
√
β)− n

2
ln (2πe/β) . (21)

Thus,

mmse(X|X +N) = 2 · ∂I(X;X +N)
∂β

= 2 · ∂h(X;X +W /
√
β)

∂β
+
n

β

= − 1
β2

tr{J(Y )}+
n

β
, (22)

where the factor −1/β2 in front of the Fisher information term accounts for the passage from the variable

t to the variable β = 1/t, as dt/ dβ = −1/β2. Combining this with the previously obtained relations,

we see that the noise suppression level due to MMSE estimation is given by

∆ =
tr{J(Y )}

β2
.

In [21, Theorem 3.1], a generalized definition of the inverse temperature is proposed, as the response of

the entropy to small energy perturbations, using de Bruijn’s identity. As a consequence of that definition,

the generalized inverse temperature in [21] turns out to be proportional to the Fisher information of Y ,

and thus, in our setting, it is also proportional to β2∆.3 It should be pointed out that whenever the system

undergoes a phase transition (as is the case with most of our forthcoming examples), then ∆, and hence

also the effective temperature, may exhibit a non–smooth behavior, or even a discontinuity.

Additional relationships can be obtained in analogy to certain relations in statistical thermodynamics

that were mentioned in Section III: Consider again the chain of equalities (11), but this time, instead

using the relation Eβ{‖Y −X‖2} = n/β, in the passage from the second to the third line, we use the

3As is shown in [21], the generalized inverse temperature coincides with the ordinary inverse temperature when Y is purely

Gaussian with variance proportional to 1/β, i.e., the ordinary Boltzmann distribution with a quadratic Hamiltonian. In our

setting, on the other hand, Y is given by a mixture of Gaussians whose weights are independent of β. To avoid confusion, it

is important to emphasize that the original parameter β, in our setting, pertains to the Boltzmann form of the distribution of X

given Y = y according to the posterior P (x|y), whereas the current discussion concerns the temperature associated with the

(unconditional) ensemble of Y = X + N .
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relation Eβ{‖Y −X‖2} = −Eβ{ d
dβ lnZ(β|Y )} in conjunction with the identity (cf. eq. (14)):

Eβ

{
d lnZ(β|Y )

dβ

}
=

dEβ{lnZ(β|Y )}
dβ

−
∫

IRn

dy
dPβ(y)

dβ
· lnZ(β|y)

=
dEβ{lnZ(β|Y )}

dβ
+

1
2

Cov{‖Y −X‖2, lnZ(β|Y )}, (23)

to obtain

Eβ{lnZ(β|Y )} − β · d
dβ
Eβ{lnZ(β|Y ) =

β

2
Cov{‖Y −X‖2, lnZ(β|Y )} − I(X;Y ). (24)

Thus, redefining the function ψ(β) as

ψ(β) = −Eβ{lnZ(β|Y )}, (25)

we obtain the following differential equation which is very similar to (7):

ψ̇(β)− ψ(β)
β

=
Σ(β)
β

(26)

where

Σ(β) =
β

2
Cov{‖Y −X‖2, lnZ(β|Y )} − I(X;Y ). (27)

Thus, the solution to this equation is precisely the same as (9), except that S(β) is replaced by Σ(β)

and the ground–state energy E0 is redefined as

E0 = Eβ{min
x
‖Y − x‖2}.

Consequently, mmse(X|Y ) = 2ψ̇(β), where

ψ̇(β) = E0 −
∫ ∞
β

dβ̂Σ(β̂)

β̂2
+

Σ(β)
β

and one can easily identify the contributions of the free energy and the internal energy (heat), as was

done in Section III.

To summarize, we see that the I-MMSE relation gives rise essentially similar relations as in statistical

thermodynamics except that the “effective entropy” Σ(β) includes correction terms that account for the

fact that our ensemble corresponds to a posterior distribution P (x|y) and the fact that the distribution

of Y depends on β.

December 28, 2008 DRAFT



12

V. EXAMPLES

In this section, we provide a few examples where we show how the asymptotic MMSE can be calculated

by using the I–MMSE relation in conjunction with statistical–mechanical techniques for evaluating the

mutual information, or the partition function pertaining to the posterior distribution.

After the first example, of a Gaussian i.i.d. channel input, which is elementary, we turn to explore three

examples where the channel input is a randomly selected codebook vector from a certain ensemble of

codebooks that comply with a power constraint 1
nE{‖X‖

2} ≤ Px. There could be various motivations

for MMSE estimation when the desired signal is a codeword: One example is that of a user that, in

addition to its desired signal, receives also a relatively strong interfering signal, which carries digital

information (a codeword) intended to other users, and which comes from a codebook whose rate exceeds

the capacity of this crosstalk channel between the interferer and our user, so that the user cannot fully

decode this interference. Nonetheless, our user would like to estimate it as accurately as possible in order

to subtract it and thereby perform interference cancellation.

In the first example of a code ensemble (Subsection V-B), we deal with a simple ensemble of block

codes, and we demonstrate that the MMSE exhibits a phase transition at the value of β for which the

channel capacity C(β) = 1
2 ln(1+βPx) agrees with the coding rate R. The second ensemble (Subsection

V-C) consists of an hierarchical structure which is suitable for the Gaussian broadcast channel. Here,

we will observe two phase transitions, one corresponding to the weak user and one – to the strong

user. The third ensemble (Subsection V-D) is also hierarchical, but in a different way: here the hierarchy

corresponds to that of a tree structured code that works in two (or more) segments. In this case, there could

be either one phase transition or two, depending on the coding rates at the two segments (see also [19]).

Our last example is not related to coding applications, and it is based on a very simple model of sparse

signals which is motivated by compressed sensing applications. Here we show that phase transitions can

be present when the signal components are strongly correlated.

The statistical–mechanical considerations in this section provide unique insight into the coding and

estimation problems, in particular by examining the typical behavior of the geometry of the free energy.

This is in fact related to the notion of joint typicality for proving coding theorems, but more concrete

geometry is seen due to the special structures of the code ensembles. In some of the ensuing examples,

the mutual information can also be obtained through existing channel capacity results from information

theory. In the last example pertaining to sparse signals (Subsection V-E), however, we are not aware of

any alternative to the calculation using statistical mechanical techniques.
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A. Gaussian I.I.D. Input

Our first example is very simple: Here, the components of X are zero–mean, i.i.d., Gaussian RV’s

with variance Px. In this case, we readily obtain

Z(β|y) =
exp{−‖y‖2/[2(Px + 1/β)]}

(1 + βPx)n/2
,

thus

lnZ(β|y) = −n
2

ln(1 + βPx)− ‖y‖2

2(Px + 1/β)
.

Clearly,

Eβ lnZ(β|Y ) = −n
2

ln(1 + βPx)− n

2

and its negative derivative is nPx/[2(1 + βPx)], which is indeed half of the MMSE. Here, we have:

∆ =
n

β
− nPx

1 + βPx
=

n

β(1 + βPx)

and

tr{J(Y )} = nE

[
Y

Px + 1/β

]2

=
nβ

1 + βPx

and so, the relation tr{J(Y )} = β2∆ is easily verified. Thus, the generalized temperature here is β/(1+

βPx), which is the reciprocal of the variance of the Gaussian output.

B. Random Codebook on a Sphere Surface

Let X assume a uniform distribution over a codebook C = {x1, . . . ,xM}, M = enR, where each

codeword xi is drawn independently under the uniform distribution over the surface of the n–dimensional

sphere, which is centered at the origin, and whose radius is
√
nPx. The code is capacity achieving (the

input becomes essentially i.i.d. Gaussian as n→∞). In the following we show that the MMSE vanishes

if the code rate R is below channel capacity, but is no different than that of i.i.d. Gaussian input (without

code structure) if R exceeds the capacity. We note that such a phase transition has been shown for good

binary codes in general in [25] using the I-MMSE relationship.

Here, for a given y, we have:

Z(β|y) =
∑
x∈C

e−nR exp[−β‖y − x‖2/2]

= e−nR exp[−β‖y − x0‖2/2] +
∑

x∈C\{x0}

e−nR exp[−β‖y − x‖2/2]

4
= Zc(β|y) + Ze(β|y) (28)
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where, without loss of generality, we assume x0 to be the transmitted codeword. Now, since ‖y−x0‖2 is

typically around n/β, Zc(β|y) would typically be about e−nRe−β·n/(2β) = e−n(R+1/2). As for Ze(β|y),

we have:

Ze(β|y) ·= e−nR
∫

IR
dεN(ε)e−βnε,

where N(ε) is the number of codewords {x} in C −{x0} for which ‖y−x‖2/2 ≈ nε, namely, between

nε and n(ε + dε). Now, given y, N(ε) =
∑M

i=1 1{xi : ‖y − xi‖2/2 ≈ nε} is the sum of M i.i.d.

Bernoulli RV’s and so, its expectation is

N(ε) =
M∑
i=1

Pr{‖y −Xi‖2/2 ≈ nε} = enRPr{‖y −X1‖2/2 ≈ nε}. (29)

Denoting Py = 1
n

∑n
i=1 y

2
i (typically, Py is about Px + 1/β), the event ‖y − x‖2/2 ≈ nε is equivalent

to the event 〈x,y〉 ≈ [(Px + Py)/2− ε]n or equivalently,

ρ(x,y)
4
=
〈x,y〉

n
√
PxPy

≈
1
2(Px + Py)− ε√

PxPy

4
=
Pa − ε
Pg

where have defined Pa = (Px + Py)/2 and Pg =
√
PxPy (the arithmetic and the geometric means

between Px and Py, respectively). The probability that a randomly chosen vector X on the sphere would

have an empirical correlation coefficient ρ with a given vector y (that is, X falls within a cone of half

angle arccos(ρ) around y) is exponentially exp[n2 ln(1− ρ2)]. For convenience, let us define

Γ(ρ) =
1
2

ln
(
1− ρ2

)
so that we can write

Pr{‖y −X1‖2/2 ≈ nε}
·= exp

{
nΓ
(
Pa − ε
Pg

)}
.

From this point and onward, our considerations are very similar to those that have been used in the

random energy model (REM) of spin glasses in statistical mechanics [5]–[7], a model of disordered

magnetic materials where the energy levels pertaining to the various configurations of the system {E(x)}

are i.i.d. RV’s. These considerations have already been applied in the analogous analysis of random code

ensemble performance, where the randomly chosen codewords give rise to random scores that play the

same role as the random energies of the REM. The reader is referred to [27], [28], [20, Chapters 5,6],

and [18] for a more detailed account of these ideas.

Applied to the random code ensemble considered here, the line of thought is as follows: If ε is such

that

Γ
(
Pa − ε
Pg

)
> −R,
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then the energy level ε will be typically populated with an exponential number of codewords, concentrated

very strongly around its mean

N(ε) ·= exp
{
n

[
R+ Γ

(
Pa − ε
Pg

)]}
,

otherwise (which means that N(ε) is exponentially small), the energy level ε will not be populated by

any codewords typically. This means that the populated energy levels range between

ε1
4
= Pa − Pg

√
1− e−2R

and

ε2
4
= Pa + Pg

√
1− e−2R,

or equivalently, the populated values of ρ range between −ρ∗ and +ρ∗ where ρ∗ =
√

1− e−2R. By large

deviations and saddle–point methods [4], [11], it follows that for a typical realization of the randomly

chosen code, we have

Ze(β|y) ·= e−nR max
ε∈[ε1,ε2]

exp
{
n

[
R+ Γ

(
Pa − ε
Pg

)
− βε

]}
= max

ε∈[ε1,ε2]
exp

{
n

[
Γ
(
Pa − ε
Pg

)
− βε

]}
= exp

{
n

[
max
|ρ|≤ρ∗

{
1
2

ln(1− ρ2)− β(Pa − ρPg)
}]}

.

The derivative of 1
2 ln(1− ρ2) + ρβPg w.r.t. ρ vanishes within [−1, 1] at:

ρ = ρβ
4
=
√

1 + θ2 − θ

where

θ
4
=

1
2βPg

.

This is the maximizer as long as
√

1 + θ2 − θ ≤ ρ∗, namely, θ > e−2R/2ρ∗, or equivalently, β <

ρ∗e
2R/Pg, which for Pg =

√
Px(Px + 1/β), is equivalent to β < βR

4
= (e2R − 1)/Px. Thus, for the

typical code we have

φe(β,R)
4
= lim

n→∞

lnZe(β|y)
n

=


1
2 ln(1− ρ2

β)− β(Pa − ρβPg), β < βR

−R− β(Pa − ρ∗Pg), β ≥ βR .

Taking now into account Zc(β|y), it is easy to see that for β ≥ βR (which means R < C), Zc(β|y)

dominates Ze(β|y), whereas for β < βR it is the other way around. It follows then that

φ(β,R)
4
= lim

n→∞

lnZ(β|y)
n

=


1
2 ln(1− ρ2

β)− β(Pa − ρβPg), β < βR

−R− 1
2 , β ≥ βR .
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On substituting Pa = Px + 1/(2β), Pg =
√
Px(Px + 1/β) and

ρβ =
√

1 + θ2 − θ =

√
βPx

1 + βPx
,

we then get:

ψ(β) = − lim
n→∞

lnZ(β|y)
n

=


1
2 ln(1 + βPx) + 1

2 , β < βR

R+ 1
2 β ≥ βR .

Note that ψ(β) is a continuous function but it is not smooth at β = βR. Now,

lim
n→∞

mmse(X|Y )
n

= 2
dψ(β)

dβ
=


Px

1+βPx
, β < βR

0, β ≥ βR .

(30)

which means that there is a first order phase transition4 in the MMSE: As long as β ≥ βR, which means

R < C, the MMSE essentially vanishes since the correct codeword can be reliably decoded, whereas for

R > C, the MMSE behaves as if the inputs were i.i.d. Gaussian with variance Px (cf. Subsection V-A).

C. Hierarchical Code Ensemble for the Degraded Broadcast Channel

Consider the following hierarchical code ensemble: First, randomly draw M1 = enR1 cloud–center

vectors {ui} on the
√
n–sphere. Then, for each ui, randomly draw M2 = enR2 codewords {xi,j}

according to xi,j = αui +
√

1− α2 vi,j , where {vi,j} are randomly drawn uniformly and independently

on the
√
n–sphere. This means that ‖xi,j−αui‖2 = n(1−α2)

4
= nb. Without essential loss of generality,

here and in Subsection V-D, we take the channel input power to be Px = 1.

Let x0,0, belonging to cloud center u0, be the input to the Gaussian channel (1). It is easy to see that

if the SNR of the Gaussian channel is high enough, the codeword xi,j can be decoded; while at certain

lower SNR only the cloud center ui can be decoded but not vi,j . In the following we show the phase

transitions of the MMSE as a function of the SNR.

4By “first–order phase transition”, we mean, in this context, that the MMSE is a discontinuous function of β.
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We will decompose the partition function as follows:

Z(β|y) = e−nR
∑
i,j

exp(−β‖y − xi,j‖2/2)

= e−nR exp(−β‖y − x0,0‖2/2) + e−nR
∑
j≥1

exp(−β‖y − x0,j‖2/2)

+ e−nR
∑
i≥1

∑
j

exp(−β‖y − xi,j‖2/2)

4
= Zc(β|y) + Ze1(β|y) + Ze2(β|y) (31)

where once again, Zc(β|y) – the contribution of the correct codeword, is typically about e−n(R+1/2).

The other two terms Ze1(β|y) and Ze2(β|y) correspond to contributions of incorrect codewords from

the same cloud and from other clouds, respectively.

Let us consider Ze1(β|y) first. The distance ‖y − x0,j‖2 is decomposed as follows:

‖y − x0,j‖2 = ‖(y − αu0) + (αu0 − x0,j)‖2

= ‖y − αu0‖2 + ‖αu0 − x0,j‖2 + 2〈y − αu0, αu0 − x0,j〉 . (32)

Now, ‖y−αu0‖2 is typically about n/β+nb
4
= na and ‖αu0−x0,j‖2 = nb. Thus, for ‖y−x0,j‖2/2 to

be around nε, 〈y−αu0, αu0−x0,j〉 must be around n[ε−(a+b)/2]
4
= n[ε−Pa]. Now, the question is this:

Given y−αu0, what is the typical number of codewords in cloud 0 for which 〈y−αu0, αu0−x0,j〉 =

n[ε− Pa]. Similarly as before, the answer is the following:

N(ε) ·=

exp
{
n
[
R2 + Γ

(
ε−Pa

Pg

)]}
, ε ∈ [Pa − ρ2Pg, Pa + ρ2Pg]

0, elsewhere
(33)

where Pg
4
=
√
ab and ρ2 =

√
1− e−2R2 . Thus,

Ze1(β|y) ·= e−nR exp
{
n

[
max
|ρ|≤ρ2

{R2 + Γ(ρ)− β(Pa − ρPg)}
]}

= e−nR1 exp
{
n

[
max
|ρ|≤ρ2

{
1
2

ln(1− ρ2) + βρPg

}
− βPa

]}
. (34)

As before, the derivative of [12 ln(1− ρ2) + ρβPg] w.r.t. ρ vanishes within [−1, 1] at:

ρ = ρβ
4
=
√

1 + θ2 − θ

where

θ
4
=

1
2βPg

.
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This is the maximizer as long as
√

1 + θ2 − θ ≤ ρ2, namely, θ > e−2R2/2ρ2, or equivalently, β <

ρ2e
2R2/Pg, which for Pg =

√
b(b+ 1/β), is equivalent to β < β(R2)

4
= (e2R2 − 1)/b. Thus, for the

typical code we have

ψe1(β)
4
= − lim

n→∞

lnZe1(β|y)
n

=

R1 − 1
2 ln(1− ρ2

β) + β(Pa − ρβPg), β < β(R2)

R+ β(Pa − ρ2Pg), β ≥ β(R2) .

Similarly as before, it is easy to see that

Zc + Ze1
·= exp

{
−n
[
R1 + min

{
R2,

1
2

ln(1 + bβ)
}

+
1
2

]}
.

Turning now to Ze2(β|y), we have the following consideration. Given ui, i ≥ 1, let y′ = y − αui

and vi,j = xi,j − αui. We would like to estimate how many codewords in cloud i, Ni(ε), contribute

‖y − xi,j‖2/2 = ‖y′ − vi,j‖2/2 = nε. Similarly as before, Ni(ε) is given by exactly the same formula

as (33) where this time, Pa = (1 − α2 + ‖y − αui‖2/n)/2 and Pg =
√

(1− α2)‖y − αui‖2/n. Thus,

we have expressed the typical number of codewords that cloud i contributes with energy ε as Ni(ε) =

exp{nF (‖y − αui‖2/n, ε)}, and the total number is N(ε) =
∑

iNi(ε). Now let M(δ) be the number

of {ui} for which ‖y − αui‖2/n = δ. Then,

N(ε) ·=
∑
δ

M(δ)enF (δ,ε).

Now,

M(δ) =

exp
{
n
[
R1 + Γ

(
δ/2−P ′a
P ′g

)]}
, δ ∈ [δ1, δ2] ,

0, elsewhere

where P ′a = (1 + 1/β + α2)/2, P ′g = α
√

1 + 1/β, δ1 = 2(P ′a − P ′g
√

1− e−2R1)
4
= 2(P ′a − ρ1P

′
g) and

δ2 = 2(P ′a + P ′gρ1). Thus,

N(ε) ·= exp
{
n max
δ1≤δ≤δ2

[
R1 + Γ

(
P ′a − δ
P ′g

)
+ F (δ, ε)

]}
.

Putting it all together, we get:

ψe2(β)
4
= − lim

n→∞

lnZe2(β|y)
n

= − max
|r1|≤ρ1

max
|r2|≤ρ2(r1)

{
1
2

ln(1− r21) +
1
2

ln(1− r22)−

β

[
1− α2

2
+ P ′a − r1P ′g − r2

√
2(1− α2)(P ′a − r1P ′g)

]}
,

(35)

where ρ1 =
√

1− e−2R1 , ρ2(r1) =
√

1− e−2R/(1− r21), P ′a = (1+1/β+α2)/2, and P ′g = α
√

1 + 1/β.

The above expression does not seem to lend itself to closed form analysis in an easy manner. Numerical

results (cf. Fig. 1) show a reasonable match (within the order of magnitude of 1× 10−5) between values
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Fig. 1. Graph of limn→∞ I(X; Y )/n = −Eβ{lnZ(β|Y )}/n − 1/2 as a function of β for R1 = 0.1, R2 = 0.6206, and

α = 0.7129, which result in β1 = 0.5545 and β2 = 5.001. As can be seen quite clearly, there are phase transitions at these

values of β.

of limn→∞ I(X;Y )/n obtained numerically from the asymptotic exponent of Eβ lnZ(β|Y ) and those

that are obtained from the expected behavior in this case:

lim
n→∞

I(X;Y )
n

=


1
2 ln(1 + β), β < β1

R1 + 1
2 ln(1 + βb), β1 ≤ β < β2

R = R1 +R2, β ≥ β2

where

β1
4
=

e2R1 − 1
1− be2R1

, β2
4
=
e2R2 − 1

1− b
,

and it is assumed that the parameters of the model (R1, R2 and α) are chosen such that β1 < β2.

Accordingly, the MMSE undergoes two phase transitions, where it behaves as if the input was: (i)

Gaussian i.i.d. with unit variance for β < β1 (where no information can be decoded), (ii) Gaussian input

of a smaller variance (corresponding to the cloud), in the intermediate range (where the cloud center is

decodable, but the refined message is not), and (iii) the MMSE altogether vanishes for β > β2, where
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both messages are reliably decodable.

The hierarchical code ensemble takes the superposition code structure which achieves the capacity

region of the Gaussian broadcast channel. Consider two receivers, referred to as receiver 1 and receiver

2, with β1 and β2 respectively. Receiver 1 can decode the cloud center, whereas receiver 2 can decode

the entire codeword. In other words, suppose the hierarchical code ensemble with rate pair (R1, R2)

and parameter α is sent to two receivers with fixed SNR of γ1 and γ2 respectively. Then the minimum

decoding error probability vanishes as long as (R1, R2, α) are such that

R1 <
1
2

log
(

1 +
α2γ1

1 + (1− α2)γ1

)
, (36)

R2 <
1
2

log
(
1 + α2γ2

)
. (37)

In particular, all boundary points of the capacity region can be achieved by varying the power distribution

coefficient α. This capacity region result also leads to the fact that if only the cloud center is decodable,

then the MMSE for the codeword vi,j is no different to that if the elements of vi,j were i.i.d. standard

Gaussian. Knowledge of the codebook structure of {vi,j} does not reduce the MMSE because otherwise

the code cannot achieve the capacity region of the Gaussian broadcast channel.

D. Hierarchical Tree–Structured Code

Consider next an hierarchical code with the following structure: The block of length n is partitioned

into two segments, the first is of length n1 = λ1n (λ1 ∈ (0, 1)) and the second is of length n2 = λ2n

(λ2 = 1−λ1). We randomly draw M1 = en1R1 first–segment codewords {xi} on the surface of the
√
n1–

sphere, and then, for each xi, we randomly draw M2 = en2R2 second–segment codewords {x′i,j} on the

surface of the
√
n2–sphere. The total message of length nR = n1R1 + n2R2 (thus R = λ1R1 + λ2R2)

is encoded in two parts: The first–segment codeword depends only on the first n1R1 bits of the message

whereas the second–segment codeword depends on the entire message.

Let (x0,x0,0) be the transmitted codeword, and let y and y′ be the corresponding segments of the

channel output vector (y,y′). The partition function is as follows:

Z(β|y) = e−nR exp{−β[‖y − x0‖2 + ‖y′ − x0,0‖2]/2}

+ e−nR exp{−β[‖y − x0‖2/2}
∑
j

exp{−β‖y′ − x0,j‖2]/2}

+ e−nR
∑
i≥1

∑
j

exp{−β[‖y − xi‖2/2} exp{−β‖y′ − xi,j‖2]/2}

4
= Zc + Ze1 + Ze2. (38)
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Now, as before, Zc
·= e−n(R+1/2). As for Ze1, it can also be treated as in Subsection V-B: The first factor

contributes e−nR · e−nλ1/2. The second factor is e−nλ2[min{R2,C(β)}+1/2], where C(β) = 1
2 ln(1 + β).

Thus,

Ze1(β|y) + Zc
·= exp

{
−n
[
λ1R1 + λ2 min{R2, C(β)}+

1
2

]}
.

Consider next the term Ze2. Let r1 = 〈x,y〉/(n1Pg) and r2 = 〈x′,y′〉/(n2Pg) where Pg is as in

Subsection V-B. Of course, 〈(x,x′), (y,y′)〉/(nPg) = λ1r1 + λ2r2. What is the typical number of

codewords (xi,x′i,j) of Ze2 whose correlation with (y,y′) is exactly r? The answer is

lim
n→∞

lnN(r)
n

= max
|r1|≤ρ(R1)

{
λ1R1 + λ1Γ(r1) + λ2R2 + λ2Γ

(
r − λ1r1
λ2

)}
,

where ρ(x) =
√

1− e−2x. This expression behaves differently depending on whether R1 > R2 or

R1 < R2. In the first case, it behaves exactly as in the ordinary ensemble, that is:

lim
n→∞

lnN(r)
n

=

R+ 1
2 ln(1− r2), |r| ≤ ρ(R)

0, |r| > ρ(R) .

and then, of course, Ze2 is as before:

Ze2 + Zc
·= exp{−n[min{R,C(β)}+ 1/2]}.

When R1 < R2, however, we have two phase transitions:

lim
n→∞

lnN(r)
n

=


R+ Γ(r), |r| ≤ ρ(R1)

λ2

[
R2 + Γ

(
r−λ1ρ(R1)

λ2

)]
, ρ(R1) ≤ |r| ≤ λ1ρ(R1) + λ2ρ(R2)

0, |r| > λ1ρ(R1) + λ2ρ(R2) .

In this case, we get:

lim
n→∞

ln(Ze2 + Zc)
n

=


−C(β)− 1

2 , β ≤ β(R1)

−λ1R1 − λ2C(β)− 1
2 , β(R1) < β ≤ β(R2)

−R− 1
2 , β > β(R2)

where β(R) is the solution β to the equation C(β) ≡ 1
2 ln(1 + β) = R. To summarize, we have the

following: Zc
·= e−n(R+1/2), Ze1 + Zc

·= exp{−n[λ1R1 + λ2 min{R2, C(β)}+ 1/2]} and

Ze2 + Zc
·=

exp{−n[min{R,C(β)}+ 1/2]}, R1 > R2

exp{−n[λ1 min{R1, C(β)}+ λ2 min{R2, C(β)}+ 1/2]}, R1 ≤ R2 .
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Clearly, if R1 ≤ R2 then Ze2 + Zc dominates Ze1 + Zc. If R1 > R2, we note that

min{λ1R1 + λ2 min{R2, C(β)},min{R,C(β)}} ≡ min{R,C(β)}.

Thus,

Z
·=

exp{−n[min{R,C(β)}+ 1/2]}, R1 > R2

exp{−n[λ1 min{R1, C(β)}+ λ2 min{R2, C(β)}+ 1/2]}, R1 ≤ R2 .

The MMSE then is as in (30) in Subsection V-B when R1 > R2, and given by

mmse(X|Y ) =


1

1+β , β ≤ β(R1)

λ2
1+β , β(R1) < β ≤ β(R2)

0, β > β(R2)

(39)

when R1 < R2. This dichotomy between these two types of behavior have their roots in the behavior of

the GREM, a generalized version of the random energy model, where the random energy levels of the

various system configurations are correlated (rather than being i.i.d.) in an hierarchical structure [8]–[10].

The GREM turns out to have an intimate analogy with the tree–structured code ensemble considered

here. The reader is referred to [19] for a more elaborate discussion on this topic.

The preceding result on the MMSE is consistent with the analysis based solely on information theoretic

considerations. In case R1 < R2, the first segment code is decodable as long as R1 < (1/2) log(1 + β),

whereas the second segment code is decodable if also R2 < (1/2) log(1 + β). Hence the MMSE is

given by (39). In case R1 > R2, the second-segment code is decodable if and only if the first-segment

is also decodable, i.e., the two codes can be decoded jointly. This requires R2 < (1/2) log(1 + β),

λ1R1 < λ1 log(1 + β) + λ2 log(1 + β) and R = λ1R1 + λ2R2 < log(1 + β). The last inequality

dominates, hence the MMSE is given by (30).

E. Estimation of Sparse Signals

Let the components of X be given by Xi = SiUi, i = 1, 2, . . . , n, where Si ∈ {0, 1} and {Ui} are

N (0, σ2) i.i.d. and independent of {Xi}. As before Y = X +N , where the components of N are i.i.d.

Gaussian N (0, 1/β). One motivation of this simple model is in compressed sensing applications, where

the signal X (possibly, in some transform domain) is assumed to possess a limited fraction of non–zero

components, here designated by the non–zero components of S = (S1, S2, . . . , Sn). The signal X is

considered sparse if the relative fraction of 1’s in S is small. We will assume that S, whose realization

is not revealed to the estimator, is governed by a given probability distribution P (s). We first derive an
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expression of the partition function for a general P (s) and then particularize our study to a certain form

of P (s). First, we have the following:

P (x) =
∑
s
P (s)P (x|s)

=
∑
s
P (s)

∏
i: si=0

δ(xi)
∏

i: si=1

[
(2πσ2)−1/2 exp{−x2

i /(2σ
2)}
]

=
∑
s
P (s)

n∏
i=1

[
(2πsiσ2)−1/2 exp{−x2

i /(2siσ
2)}
]

(40)

where a zero–variance Gaussian distribution is understood to be equivalent to the Dirac delta–function.

Thus,

Z(β|y) =
∫

IRn

dxP (x) exp{−β‖y − x‖2/2}

=
∑
s
P (s)

n∏
i=1

[∫ ∞
−∞

dxi(2πsiσ2)−1/2 exp{−x2
i /(2siσ

2)} · exp{−β(yi − xi)2/2}
]

=
∑
s
P (s)

n∏
i=1

[
(1 + qsi)−1/2 exp

{
− βy2

i

2(1 + qsi)

}]

=
∑
s
P (s)

n∏
i=1

exp
{
−1

2

[
βy2

i

1 + qsi
+ ln(1 + qsi)

]}
(41)

where we have used the notation5 q = βσ2. Transforming s to “spins” µ = (µ1, . . . , µn) by the relation

µi = 1− 2si ∈ {−1,+1}, we get:

βy2
i

1 + qsi
+ ln(1 + qsi) =

(1 + q/2)βy2
i

1 + q
+

1
2

ln(1 + q)− 2µihi

where

hi = − β2σ2y2
i

4
(
1 + βσ2

) +
1
4

ln
(
1 + βσ2

)
. (42)

On substituting back into the partition function we get:

Z(β|y) = (1 + q)−n/4 · exp
{
−β(1 + q/2)

2(1 + q)
‖y‖2

}
·
∑
µ
P (µ) exp

{
n∑
i=1

µihi

}
. (43)

Thus hi is given the statistical–mechanical interpretation of the random ‘local’ magnetic field felt by the

i–th spin.

Eq. (43) holds for a general distribution P (s) or equivalently, P (µ). To further develop this expression,

we must make some assumptions on one of these distributions. At this point, we have the freedom to

5The quantity q is proportional to the SNR.
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examine certain models of P (µ), and by viewing the expression
∑
µ P (µ) exp{

∑
i µihi} as the partition

function of a certain spin system with a non–uniform, random field {Hi} (whose realization is {hi}),

we can borrow techniques from statistical physics to analyze its behavior. Evidently, for every spin glass

model that exhibits phase transitions, it is conceivable that there will be analogous phase transitions in

the corresponding signal estimation problem.

Assuming certain symmetry properties among the various components of s, it would be plausible to

postulate that all {s} with the same number of 1’s are equally likely, or equivalently, all spin configurations

{µ} with the same magnetization

m(µ) =
1
n

n∑
i=1

µi

have the same probability. This means that P (µ) depends on µ only via m(µ). Consider then the form

P (µ) = Cn exp{nf(m(µ))},

where f(m) is an arbitrary function and Cn is a normalization constant. Further, let us assume that f is

twice differentiable with finite first derivative on [−1, 1]. Clearly,

Cn =
(∑
µ

exp{n f(m(µ))}
)−1

·= exp
{
−nmax

m
{H2((1 +m)/2) + f(m)}

}
= exp {−n (H2((1 +ma)/2) + f(ma))} (44)

where H2(·) denotes the binary entropy function and ma is the maximizer of H2((1 +m)/2) +f(m). In

other words, ma is the a–priori magnetization, namely the magnetization that dominates P (µ). Of course,

when f(m) is linear in m, the components of µ are i.i.d. Note that if f is monotonically increasing in

m, then P (µ) has a sharp peak at m = 1, which corresponds to a vanishing fraction of sites with si = 1,

i.e., a sparse signal. Our derivation, however, will take place for general f .

1) General Solution: On substituting the above expression of P (µ) into that of Z(β|y), our main

concern is then how to deal with the expression

Ẑ(β|h)
4
=
∑
µ
P (µ)e

∑
i µihi = Cn

∑
µ

exp

{
n

[
f(m(µ)) +

1
n

∑
i

µihi

]}
. (45)

We investigate the typical behavior of the partition function, or more precisely, calculate the following

quantity:

1
n

logE
{
Ẑ(β|H)

}
=

1
n

log

CnE
∑
µ

exp

{
n

[
f(m(µ)) +

1
n

∑
i

µiHi

]}
 (46)
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where H consists of i.i.d. random variables with arbitrary distribution p(H).

Using large deviations theory, as n→∞, the dominant value of m in (46), henceforth denoted as m∗

is shown to satisfy

m∗ = E{tanh(f ′(m∗) +H)} (47)

and

E{tanh2(f ′(m∗) +H)} > 1− 1
f ′′(m∗)

. (48)

The detailed analysis is relegated to Appendix A. Clearly, m∗ is the dominant magnetization a–posteriori,

i.e., the one that dominates the posterior of m(µ) given (a typical) y. It is also shown in Appendix A

that

lim
n→∞

1
n

logE
{
Ẑ(β|H)

}
= lim

n→∞

1
n

logCn − ψ(m∗) (49)

where

ψ(m∗)
4
= f ′(m∗)m∗ − f(m∗)−E

{
log
[
2 cosh(f ′(m∗) +H)

]}
(50)

and the normalized exponent of Cn is given by (44). Thus the asymptotic normalized mutual information

is expressed as

lim
n→∞

I(X;Y )
n

= −1
2

+
1
4

ln(1 + q) +
β(1 + q/2)E{Y 2}

2(1 + q)
− lim
n→∞

lnCn
n

+ ψ(m∗). (51)

For the sparse signal model described by (40), H is defined by (42) with yi replaced by Y and the

expectation over Y is w.r.t. a mixture of two Gaussians: N (0, 1/β) with weight (1+ma)/2, andN (0, σ2+

1/β) with weight (1−ma)/2.

The solution to

E{tanh2(f ′(m) +H)} = 1− 1
f ′′(m)

(52)

is known as a critical point, beyond which the solution to (47) ceases to be a local maximum and it

becomes a local minimum. The dominant m∗ must jump elsewhere. Also, as we vary one of the other

parameters of the model, it might happen that the global maximum jumps from one local maximum to

another.

2) Special Case with Quadratic Exponent: In the case where f is quadratic6 in m, i.e.,

f(m) = am+ bm2/2. (53)

6A quadratic model can be thought of as consisting of the first few terms of the Taylor expansion of a smooth function f .
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This is similar though not identical to the random–field Curie-Weiss model (RFCW model) of spin

systems7 (cf. e.g., [2] and references therein). Eq. (47) becomes

m = E{tanh(bm+ a+H)},

similarly as in the mean field model with a random field [2]. Eq. (52) for the critical point satisfies

E{tanh2(bm+ a+H)} = 1− (1/b). (54)

To demonstrate that the global maximum might jump from one local maximum to another, consider

the quadratic case and assume that β and σ2 are so small that the fluctuations in H can be neglected.

Equation (47) can then be approximated by

m = tanh(bm+ a),

which is actually the same the equation of the magnetization as in the Curie–Weiss model (a.k.a. the

mean field model or the infinite–range model) of spin arrays (cf. e.g., [22, Sect. 4.2], [1, Chap. 3], [14,

Sect. 4.5.1]), which is actually a special case of the above with Hi ≡ 0 for all i. For a = 0 and b > 1,

this equation has two symmetric non–zero solutions ±m0, which both dominate the partition function.

If a 6= 0 but small, then the symmetry is broken, and there is only one dominant solution which is about

m0 sgn(a). To approximate m0 for the case where |a| is small and b is only slightly larger than 1, one

can use the Taylor expansion of the function tanh(·) (as is customarily done in the theory of the infinite

range Ising model; see e.g., [22, p. 188, eqs. (4.21a), (4.21b)]) and get

m ≈ bm+ a− (bm+ a)3

3
.

Neglecting the contribution of a, we get a simple quadratic equation whose solutions are ±m0 with

m0 = 1
b

√
3(1− 1/b). Thus, for small values of |a| and b− 1,

m∗ ≈ m0 · sgn(a),

and so, m∗ jumps between +m0 and −m0 as a crosses the origin. Similarly, for a = 0, m∗ jumps from

zero to +m0 or −m0 as b passes the value b = 1 while increasing.

7There is a certain difference in the sense that in the RFCW {Hi} are i.i.d., whereas here each Hi depends on the corresponding

µi because the variance of yi depends on whether µi = −1 or µi = +1. Also as a result, {Hi} here are not i.i.d. because they

depend on each other via the dependence between {µi}. These differences are not crucial, however.
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By (51), the asymptotic normalized mutual information of this model is given by

lim
n→∞

I(X;Y )
n

= −1
2

+
1
4

ln(1 + q) +
β(1 + q/2)

2(1 + q)

[
1 +ma

2
· 1
β

+
1−ma

2

(
σ2 +

1
β

)]
+H2

(
1 +ma

2

)
+ f(ma) + ψ(m∗)

= −1
2

+
1
4

ln(1 + q) +
1 + q/2
2(1 + q)

(
1 +

1−ma

2
· q
)

+H2

(
1 +ma

2

)
+ ama +

bm2
a

2
−E{ln[2 cosh(bm∗ + a+H)]}+

b(m∗)2

2
. (55)

In this special case of quadratic exponent, the Hubbard-Stratonovich transformation can be used to

obtain an alternative, more straightforward derivation of the mutual information result (55). The details

are provided in Appendix B.

The MMSE is equal to twice the derivative of (55) w.r.t. β. Note that the dominant value m∗ is

dependent on β. In Appendix C, we carry out the calculation and obtain

lim
n→∞

mmse(X|Y )
n

=
σ2q

2(1 + q)2
+

(1−ma)σ2

2

[
1− q(1 + q/2)

(1 + q)2

]
+

1 +ma

2

[
Cov0{Y 2, ln[2 cosh(bm∗ + a+H)]}+E0{H ′ tanh(bm∗ + a+H)}

]
+

1−ma

2

[
1

(1 + q)2
· Cov1{Y 2, ln[2 cosh(bm∗ + a+H)]}+E1{H ′ tanh(bm∗ + a+H)}

]
(56)

where H ′ is defined by

H ′ = − σ2

2(1 + q)
+

q(q + 2)
2(1 + q)2

· Y 2 (57)

which is in fact the derivative of (42) w.r.t. β. To ease understanding of the MMSE, we evaluate its value

in two extreme cases in Appendix D.

3) Discussion: Returning now to the general expression of the MMSE, it is reasonable to expect that

at the critical points, where m∗ jumps from one solution of eq. (47) to another as the parameters of the

model vary, the MMSE may also undergo an abrupt change, and so the MMSE may be discontinuous

(w.r.t. these parameters) at these points. A related abrupt change takes place also in the response of the

MMSE estimator itself at the critical points: Note that m∗ is the dominant magnetization a–posteriori.

Thus, as m∗ jumps, say, from m∗ = m1 to m∗ = m2, the conditional mean estimator, which is a weighted

average of {x}, transfers most of the weight from a set of x–vectors whose binary support vectors {s}

correspond to magnetization m1, into another set of x–vectors supported by {s} with magnetization m2.
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It is not surprising then that this abrupt change in the response of the estimator is accompanied by a

corresponding sudden drop in the MMSE.

It is instructive to compare the type of the phase transition in our example to those of the ordinary

Curie–Weiss model. In the Curie-Weiss model, we have:

• A first order phase transition w.r.t. the magnetic field (below the critical temperature), i.e., the

first derivative of the free energy w.r.t. the magnetic field (which is exactly the magnetization) is

discontinuous (at the point of zero field).

• A second order phase transition w.r.t. temperature, i.e., the first derivative of the free energy w.r.t.

temperature (which is related to the internal energy) is continuous, but the second derivative (which

is related to the specific heat) is not.

Here, on the other hand, in physics terms, what we observe is a first order phase transition w.r.t.

temperature. The reason for this discrepancy is that in our model, the dependency of the free energy

on temperature is introduced via the variables {hi} that play the role of magnetic fields.

In case of quadratic exponent (53), b = 0 corresponds to the special case of i.i.d. {Si}. In this case,

our problem is analogous to a system of non-interacting particles, where of course, no phase transitions

can exist. Therefore, what we learn from statistical physics here is that phase transitions in the MMSE

estimator cannot be a property of the sparsity alone (because sparsity may be present also for the i.i.d.

case with P{Si = 1} small), but rather a property of strong dependency between {Si}, whether it comes

with sparsity or not.
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APPENDIX A

ESTIMATION OF SPARSE SIGNALS: THE DOMINANT MAGNETIZATION

For the time being let us assume that Hi, i = 1, . . . , n take on values from a discrete set {h1, . . . , hK},

where of the n variables, qkn of them taking the value of hk. The sum in (46) can be rewritten as∑
µ

exp

{
nf(m(µ)) +

K∑
k=1

hk

qkn∑
i=1

µki

}
(58)
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where we relabel µi as µki with i = 1, . . . , qkn for each k. The expectation on the r.h.s. of (46) can be

viewed as an integral

2n
∫ 1

−1
· · ·
∫ 1

−1
exp

{
nf(m) +

K∑
k=1

hk(qkn)mk

}
N( dm1, · · · , dmK) (59)

where N is a probability measure proportional to the number of sequences µ with 1
qkn

∑qkn
i=1 µki ≈ mk.

Here m =
∑K

k=1 qkmk. For µ uniformly randomly chosen from ±1 sequences, the probability measure

satisfies large deviations property, the rate function (or entropy) of which is obtained as (using the

Legendre-Fenchel transform)8

I(m1, . . . ,mK) =
K∑
k=1

qk

(
log 2−H2

(
1 +mk

2

))
. (61)

Not surprisingly, the rate function achieves its maximum at mk = 0, k = 1, . . . ,K, where the number of

±1’s in each subsequence µki, i = 1, . . . , qkn is balanced. Due to large deviations property, the integral

(59) is dominated by unique values of mk, k = 1, . . . ,K. Specifically, we use Varadhan’s Theorem [4],

[11] to obtain9

1
n

log
∫
· · ·
∫

exp

{
nf(m) +

K∑
k=1

hk(qkn)mk

}
N( dm1, . . . , dmk)

→ sup
m1,...,mK∈[−1,1]

{
f(m) +

K∑
k=1

hkqkmk − I(m1, . . . ,mK)

}

= 2−n · sup
m1,...,mK∈[−1,1]

ψ(m1, . . . ,mK) (63)

where we use (61) and define

ψ(m1, . . . ,mK)
4
= f

(
K∑
k=1

qkmk

)
+

K∑
k=1

hkqkmk +
K∑
k=1

qkH2

(
1 +mk

2

)
. (64)

8By Cramér’s theorem [11, Theorem II.4.1], the probability measure of the empirical mean 1
n
Xi of i.i.d. random variables Xi

satisfy, as n→∞, the large deviations property with some rate function I(m). The rate of the probability measure is given by

the Legendre-Fenchel transform of the cumulant generating function (logarithm of the moment generating function) [4], [11]:

I(m) = sup
η

[
ηm− log E

{
eηX

}]
. (60)

It is straightforward to generalize to the product measure of the means of subgroups of i.i.d. random variables.
9The Varadhan’s Theorem basically states that, if the sequence of probability measures Nn on IR satisfies large deviations

property with rate function I(m), and that F is continuous and upper bounded on IR, then

lim
n→∞

1

n
log

∫
IR

exp{F (m)}Nn( dm) = sup
m
{F (m)− I(m)} . (62)

The result can also be generalized to multiple dimensions.
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The maximum of ψ is achieved by an internal point in (−1, 1)K . This is because H2 is concave with

infinite derivative at the boundary mk = ±1, whereas the derivative of f is finite by assumption. Because

the function ψ is twice differentiable, at its maximum, the gradient of ψ w.r.t. every mk should be equal

to 0, whereas the Hessian of ψ should be negative definite. It can be shown by taking derivative of ψ

w.r.t. mk that zero gradient is achieved by setting

mk = tanh

(
f ′

(
K∑
l=1

qlml

)
+ hk

)
(65)

for all k, so that

m =
K∑
k=1

qk tanh
(
f ′(m) + hk

)
. (66)

The Hessian of ψ is determined by noting that

∂2ψ

∂mk∂ml
= qkqlf

′′(m)− qk
δk,l

1−m2
k

(67)

where δk,l is equal to 1 if k = l and equal to 0 otherwise. The Hessian is negative definite if and only if(
K∑
k=1

qkxk

)2

f ′′(m) ≤
K∑
k=1

qk
x2
k

1−m2
k

(68)

for all xk ∈ IR, k = 1, . . . ,K, which is equivalent to

f ′′(m) ≤ min
x1,...,xK

∑K
k=1 qkx

2
k/(1−m2

k)(∑K
k=1 qkxk

)2 . (69)

Using Lagrange multiplier, the minimum on the r.h.s. of (69) is obtained as 1 −
∑K

k=1 qkm
2
k. Further,

by (65), the condition (69) reduces to

f ′′(m) ≤ 1

1−
∑K

k=1 qk tanh2(f ′(m) + hk)
. (70)

In other words, a solution of (65) is a local maximum of ψ if and only if it also satisfies (70). In multiple

such solutions exist, the global supremum is identified by comparing the corresponding values of ψ.

In the limit n → ∞, the requirement that Hi take discrete values is not necessary (the continuous

distribution can be regarded as the limit of a degenerate discrete one). Using (66) and (70), the dominant

magnetization m∗ satisfy (47) and (48) for general distribution of H . This can be made precise by

formulating a variational problem.

We also note an alternative technique for evaluating the free energy (46) using Fourier transform and

saddle point method, which is standard in statistical mechanics (often without rigorous justification).

Usage of this technique in information theory can be found in e.g., [23].
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APPENDIX B

ESTIMATION OF SPARSE SIGNALS: AN ALTERNATIVE DERIVATION OF (55)

In case of quadratic exponent (53), the partition function (45) can be written using the Hubbard–

Stratonovich transformation as∑
µ
P (µ)e

∑
i µihi = Cn

∑
µ

exp

{
a
∑
i

µi +
∑
i

µihi +
b

2n

(∑
i

µi

)2
}

= Cn

√
nb

2π

∫ ∞
−∞

dm exp
{
−nbm

2

2

}∑
µ

exp

{
a
∑
i

µi +
∑
i

µihi + bm
∑
i

µi

}

= Cn

√
nb

2π

∫ ∞
−∞

dm exp
{
−nbm

2

2

} n∏
i=1

[2 cosh (a+ bm+ hi)]

= Cn

√
nb

2π

∫ ∞
−∞

dm exp

{
n

[
− bm2

2
+

1
n

n∑
i=1

ln[2 cosh(a+ bm+ hi)]
]}

. (71)

Thus, we have − ln Ẑ ≈ nminm ψ(m)− lnCn, where ψ is defined by (50), whose minimum is attained

at m∗ = m∗(β), one of the solutions to the equation m = E{tanh(bm+a+H}, as before.10 The mutual

information is then obtained as (55).

APPENDIX C

ESTIMATION OF SPARSE SIGNALS: THE MMSE

The MMSE is equal to twice the derivative of (55) w.r.t. β. We will denote hereafter Hi as given by

(42) with yi replaced by Yi and H = (H1, . . . ,Hn). Let us present the asymptotic MMSE per sample,

limn→∞mmse(X|Y )/n, as A+ B, where A is the double derivative of the first three terms, and B is

the contribution of the other terms. The easy part is the former:

A =
σ2q

2(1 + q)2
+

(1−ma)σ2

2

[
1− q(1 + q/2)

(1 + q)2

]
.

As for B, we have the following consideration: The first three terms depend only on ma, which in turn

is independent of β, therefore their derivatives w.r.t. β all vanish. For the last two terms, pertaining to

10The function ψ(m) is (within a factor of the inverse temperature) identified with the Landau free energy function for this

problem [22, p. 186, eq. (4.15a)], [14, Sect. 4.6].
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ψ(m∗), it proves useful to return to the original expression of the Gaussian integral (71), i.e.,

B = − 2
n

∂

∂β
E{ln Ẑ(β|H)}

= − 2
n

∂

∂β
E

{
ln
∫ ∞
−∞

dν√
2π

exp

{
n

[
−(ν − a)2

2b
+

1
n

n∑
i=1

ln[2 cosh(ν + hi)]

]}}

= − 2
n

∂

∂β

∫
IRn

dyPβ(y) ln
∫ ∞
−∞

dm exp

{
n

[
−bm

2

2
+

1
n

n∑
i=1

ln[2 cosh(bm+ a+ hi)]

]}

= − 2
n

∫
IRn

dy
∂Pβ(y)
∂β

ln
∫ ∞
−∞

dm exp

{
n

[
−bm

2

2
+

1
n

n∑
i=1

ln[2 cosh(bm+ a+ hi)]

]}

− 2
n

∫
IRn

dyPβ(y)
∂

∂β
ln
∫ ∞
−∞

dm exp

{
n

[
−bm

2

2
+

1
n

n∑
i=1

ln[2 cosh(bm+ a+ hi)]

]}
4
= B1 +B2. (72)

Now, Pβ(y) is the mixture of Gaussians weighted by {P (µ)}}, where the dominant µ–configurations

are those with (1 +ma)/2 (+1)’s and (1−ma)/2 (−1)’s. Each such configuration contributes the same

quantity to B1 and B2, because for every given such µ, the random variables {Yi} (and hence also

{Hi}) are all independent, a fraction (1 + ma)/2 of them are N (0, 1/β) and the remaining fraction of

(1−ma)/2 are N (0, σ2 + 1/β). Thus, it is sufficient to confine attention to one such sequence, call it

µ∗, whose first n1
4
= n(1−ma)/2 components are all −1 and last n− n1 = n(1 +ma)/2 components

are all +1. Thus,

B1 ≈ −
2
n

∫
IRn

dy
∂Pβ(y|µ∗)

∂β
ln
∫ ∞
−∞

dm exp

{
n

[
−bm

2

2
+

1
n

n∑
i=1

ln[2 cosh(bm+ a+ hi)]

]}

≈ 1
n

Cov

{
n1∑
i=1

Y 2
i +

1
(1 + q)2

n∑
i=n1+1

Y 2
i ,

n∑
i=1

ln[2 cosh(bm∗ + a+Hi)]

}

=
1 +ma

2
· Cov0{Y 2, ln[2 cosh(bm∗ + a+H)]}

+
1−ma

2
· 1

(1 + q)2
· Cov1{Y 2, ln[2 cosh(bm∗ + a+H)]}. (73)
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where Covs{·, ·} denotes covariance with respect to N (0, σ2s+ 1/β), s = 0, 1. Finally, for B2, we have:

B2 = − 2
n

∫
IRn

dyPβ(y)
∂

∂β
ln
∫ ∞
−∞

dm exp

{
n

[
−bm

2

2
+

1
n

n∑
i=1

ln[2 cosh(bm+ a+ hi)]

]}

=
1
n

∫
IRn

dyPβ(y) ·
∫∞
−∞ dm [

∑
i h
′
i tanh(bm+ a+ hi)] e−nψ(m)∫∞
−∞ dme−nψ(m)

≈ E

{
1
n

n∑
i=1

H ′i tanh(bm∗ + a+Hi)

}

≈ 1 +ma

2
·E0{H ′ tanh(bm∗ + a+H)}+

1−ma

2
·E1{H ′ tanh(bm∗ + a+H)}, (74)

where Es denotes expectation w.r.t. N (0, σ2s+1/β), s = 0, 1, and H ′ is given by (57), and correspond-

ingly, h′i and H ′i are given by the same formula with Y replaced by yi and Y ′i respectively. Collecting

all terms, A, B1, and B2, we have (56).

APPENDIX D

ESTIMATION OF SPARSE SIGNALS: TWO EXTREME CASES

Two extreme cases, where it is relatively easy to examine the resulting expression are as follows:

• When b� 1 and a� −1, we have ma ≈ −1 and m∗ ≈ −1 (which means that most si = 1), and

so we can approximate

ln[2 cosh(bm∗ + a+H)] ≈ ln[2 cosh(−b+ a+H)] ≈ b− a−H

and tanh(bm∗ + a+H) ≈ −1, and we get

lim
n→∞

MMSE(X|Y )
n

≈ σ2

1 + q
,

the classical Wiener expression, as expected.11

• When b � 1 and a � 1, we have ma ≈ 1 and m∗ ≈ 1 (which means that most si = 0), and then

ln[2 cosh(bm∗ + a+H)] ≈ b+ a+H and tanh(bm∗ + a+H) ≈ 1, so we get

lim
n→∞

MMSE(X|Y )
n

≈ 1−ma

2
· σ2,

which means the conditional–mean estimator simply outputs essentially the all–zero sequence without

attempting to detect (explicitly or implicitly) which of the few signal components are active. The

intuition behind this behavior is that when there are so few active components of the clean signal,

11Here, by limn→∞MMSE(X|Y )/n ≈ F (a, b, β, σ2), for a generic function F , we mean that

lima→−∞ limb→∞ limn→∞ nF (a, b, β, σ2)/MMSE(X|Y ) = 1. A similar comment applies to item number 2 below.
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then even if there are nevertheless a few observations {yi} with large absolute values (and hence

could have been suspected to stem from places where si = 1), it is still more plausible for the

estimator to “assume” that they simply belong to the tail of N (0, 1/β) (with si = 0) rather than

to N (0, σ2 + 1/β) with si = 1. This because the prior for si = 1 is so small that it becomes

comparable to the tail probability of N (0, 1/β).12
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