Error Exponents of Optimum Decoding for the
Interference Channel

Raul H. Etkiri, Member, IEEE, Neri MerhaV, Fellow, IEEE, and Erik Ordentlich, Senior Member, IEEE
raul.etkin@hp.com, merhav@ee.technion.ac.il, erilentitch@hp.com

Abstract—Exponential error bounds for the finite—alphabet
interference channel (IFC) with two transmitter-receiver pairs,
are investigated under the random coding regime. Our focuss
on optimum decoding, as opposed to heuristic decoding rulgbat
have been used in previous works, like joint typicality decding,
decoding based on interference cancellation, and decodirtat
considers the interference as additional noise. Indeed, éfact
that the actual interfering signal is a codeword and not an
i.i.d. noise process complicates the application of conv&anal
techniques to the performance analysis of the optimum dece.
Using analytical tools rooted in statistical physics, we dive a
single letter expression for error exponents achievable wer
optimum decoding and demonstrate strict improvement over
error exponents obtainable using suboptimal decoding rulg, but
which are amenable to more conventional analysis.

Index Terms—Error exponent region, large deviations, method
of types, statistical physics.

I. INTRODUCTION

the error bounds underlying the achievability results i [1
yield vanishing error exponents (though still decayingoerr
probability) at all rates.

The notion of an error exponent region, or a set of achiev-
able exponential rates of decay in the error probabilitas f
different users at a given operating rate-tuple in a mudéfu
communication network, was formalized recently in [4], and
studied therein for Gaussian multiple access and broadcast
channels. Our main result, presented in Section 1V, is deing
letter characterization of an achievable error exponegibre
as a function of user rates, for tli¢ = 2 user finite alphabet,
memoryless interference channel. The region is derived by
bounding the average error probability of random codebooks
comprised of i.i.d. codewords uniformly distributed ovdype
class, under maximum likelihood (ML) decoding at each user.
Unlike the single user setting, in this case, the effectivenmel
determining each receiver’s ML decoding rule is inducedbot
by the noiseand the interfering user’s codebook. Our focus

The M-user interference channel (IFC) models the commugn optimal decoding is a departure from the conventional
nication betweenV/ transmitter-receiver pairs, wherein eaclachievability arguments in [1] and elsewhere, which aretas
receiver must decode its corresponding transmitter’s agess on joint-typicality decoding, with restrictions on the deer
from a signal that is corrupted by interference from the pthéo “treat interference as noise” or to “decode the interfess
transmitters, in addition to channel noise. The infornmatian part or in whole. However, in this work, we confine our
theoretic analysis of the IFC was initiated over 30 year agmalysis to codebook ensembles that are simpler than the
and has recently witnessed a resurgence of interest, rtextivasuperposition codebooks of [1].

by new potential applications, such as wireless commuipicat

over unregulated spectrum.

The analysis of the probability of decoding error under
optimal decoding is complicated due to correlations induce

Previous work on the IFC has focused on obtaining inn8y the interfering signal. Usual methods for bounding the
and outer bounds to the capacity region for memorylepgobability of error based on Jensen’s inequality and other
interference and noise, with a precise characterizatiotnef related inequalities (see, e.g., (8) below) fail to give goo
capacity region remaining elusive for most channels, even fresults. Our bounding approach combines some of the clas-
M =2 users. The best known inner bound for the IFC is thgical information theoretic approaches of [5] and [6] with a
Han-Kobayashi (HK) region, established in [1]. It has beeanalytical technique from statistical physics that wasliagp

found to be tight in certain special cases ([1], [2]), anceraly

recently to the study of single user channels in [7], [8]. Blor

was found to be tight to within 1 bit for the two user Gaussiagpecifically, as in [5], we use auxiliary parametersind A
IFC [3]. No achievable rates that lie outside the HK regiom ato get an upper bound on the average probability of decoding

known for any IFC withM = 2 users.

error under ML decoding, which we then bound using the

Our aim in this paper is to extend the study of achievabi@éthod of types [6]. Key in our derivation is the use of
schemes to the analysis of error exponents, or exponenfligtance enumerators in the spirit of [7] and [8], which atio
rates of decay of error probabilities, that are attainalsleaa US t0 avoid using Jensen’s inequality in some steps, andsllo
function of user rates. To our knowledge, there has been #9 0 mMaintain exponential tightness in other inequalibgs
prior treatment of error exponents for the IFC. In particula@PPlying them to only polynomially few terms (as opposed to
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exponentially many) in certain sums that bound the proligbil
of decoding error. It should be emphasized, in this contbat,
the use of this technique was pivotal to our results. Outiezarl
attempts, that were based on more ‘traditional’ toolsgefhtio
provide meaningful results. In fact, they all turned out ® b



inferior to some trivial bounds. (X,Y) given Z and the mutual information betweéiX,Y")

The paper is organized as follows. The notation, vario@d Z, respectively, computed with respect to the empirical
definitions, and the channel model assumed throughout @gtribution Pryz(z,y,z). We denote the relative entropy
paper are detailed in Section II. In Section 11, we derive a@f Kullback-Leibler divergence between distributiofig and
“easy” set of attainable error exponents which we shaltsa Py as D(Px||Py) 2 > Px(z)log(Px(z)/Py(x)), and
a benchmark for the exponents of the main section, Section We write D(Px,z||Py|z|Pz) for the conditional relative
The “easy” exponents are obtained by simple extensionséotropy between conditional distributionBy|, and Py

the interference channel of existing error exponent refolt 4 qitioned onPz, which is defined a® (Py || Py|z| Pz) A

single user and multiple access channels, based on ranoE’n Py(2) Py z(x|2) log(Px |z (x|2)/ Py z(x]2)) .
constant composition codebooks and suboptimal decodéery.”

Then, in Section IV, we derive another set of attainabi?_ce (t:tqntlnuLetwlltha erlmaI descr|pt|on ;‘; the_tvvlo;user
exponents by analyzing ML decoding for the channel induc(f setting. Letz; = (x(1),...,2i(n)) € &7, 7 = 1,2,
by the interfering codebook. In Section V, we show that tq

enote the channel input signals of the two transmitterd, an
_ . ) n i
minimizations required to evaluate the new error exponeants ‘ot ¥i = (%i(1),...,yi(n)) € Vi' be the corresponding

Lﬁlgannel outputs received by decoders 1 and 2, whgre

can be solved efficiently. We follow this up in Section VI Withand Yi denote the .|n_put and output alphabets, and wh|ch
e assume to be finite. Each (random) output symbol pair

a numerical comparison of the new exponents with the baseli . . .
' b 1(7),Y2(4)) is assumed to be conditionally independent

exponents of Section Il for a simple IFC. These numeric . .
results demonstrate that the new exponents are never woorfseall other_ outputs, and_ all input symbo!s, given the two
(at least for the chosen channel and parameters) and, fdr mCéngrespondlng (random)_ |_nput symbo(l_éfl (j_)’ X2(4)), and
rates, strictly improve over the baseline exponents. the corresponding conditional probability is assumed to be
. . . . constant from symbol to symbol. A(n, R, Ry) code for
An earlier version of this work was presented in [9]. 0 |Fc consists of pairs of encoding and decoding functions
(f1, f2) and (g1, g2), respectively, where; : {1,..., M;} —
Il. NOTATION, DEFINITIONS, AND CHANNEL MODEL xr, M; = [enfi], andg; : Y — {1,...,M;}, i = 1,2.

Unless otherwise stated. we use lowercase and erCThe performance of the code is characterized by a pair of
Wi » We W UPPErcasey probabilitesP. ; = PV, # W;), i = 1,2, where

letters for scalars, boldface lowercase letters for vegtor: . )
uppercase (boldface) letters for random variables (vejtor, ° — g:(Y:) and Y'; is the random output when user
transmits X; = f;(W;), assuming the messagé¥; are

and calligraphic letters for sets. For exampleis a scalar, . Lo L

v is a \?ect%r Y is a random variable,Xpiiz 2 random uniformly distributed on the sets of indic€d, 2, ..., M;},

vector andS,is a set For a real number we shall i = 1,2. The per user error probabilities depend on the
’ ' ' channel only through the marginal conditional distribotio

on occasion, le denotel — a. Also, we uselog(-) o of the channel outputs given the corresponding channel in-
denote natural logarithmFE to denote expectation, and Pr puts 9 P 9

to denote probability. For independent random variabtes put pairs. Vie shall .denote the§e con'ditional distributians
andY distributed according tPx y (z,y) = Px(z)Py (y), qi(ylz1, w2) = PrY(j) = yl(X1(5), X2(5)) = (21, 22)).
(z,y) € XxY, we denote the conditional expectation operator A pair of error exponent$Z,, E») is attainable at a rate
Ex() as Ex(f(X,Y)) & S pex f(x,Y)Px(z) for any pai_r (Rl,Rg) if.thclare is a sequence o(fn,Rll,Rg) codes
function f(-,-). All information quantities (entropy, mutual S&tisfyingE; < liminf,, .o —(1/n)log P ; for i = 1,2. The
information, etc.) and rates are in nats. Finally, we use Set of all attainable error exponents(&t,; , R>) comprises the
<, etc., to denote equality or inequality to the first ordef'TOr exponent region atR,, lt;) and we shall denote it as
in the exponent, i.ea, = b, < lim, o Llog% = 0; E(R1, Ry). The main result of this paper is a single letter
" ™ characterization of a non—trivial subset&fR;, R-) for each

Ri, Rs.
The empirical probability mass function of the finite al- b

phabet sequence = (v(1l),...,v(n)) with alphabetV is

denoted as the vectdrPy(v), v € V}, where eachPy(v) I1l. BACKGROUND

is the relative frequency ob(i) = v along v. The type

class associated with an empirical probability mass foncti [N this section, we present achievable error exponents for
P, which will be denoted byZp, is the set of allh—vectors the interference channel which are based on known results of
{v} whose empirical probability mass function is equalto €rror exponents for single user and multiple access channel
Similar conventions will apply to pairs and triples of verto (MAC) for fixed composition codebooks [12], [13], [11].

of lengthn, which are defined over the corresponding prodthese exponents will be used as a baseline for comparing the
uct alphabets. Information measures pertaining to enmiri(performance of the error exponents that we derive in Section
distributions will be denoted using the standard notafiont

conventions, except that we usé " as well as subscripts that In the following, we will focus on the error performance of
indicate the sequences from which these empirical distribuser 1, and as a result, all explanations and expressiohs wil
tions were extracted. For example, we wriy (X, Y|Z) be specialized to receiver 1. Similar expressions also fuld
and fmyz(X, Y:;Z) to denote the conditional entropy ofuser 2 with the exchange of indicés— 2.

an < by < limsup,,_, %1og ‘g—: <0.



A possibly suboptimal decoder for the interference channel IV. MAIN RESULT
can be obtained from a given multiple access channel decode
by simply ignoring the decoded message of the interferin
transmitter. For example, following [13], we can use a mini-
mum entropy decoder that for a given received vegtorat
receiverl computes(&;, &2)

{)ur main contribution is stated in the following theorem,
V\%lch presents a new error exponent region for the discrete
memoryless two-user IFC. While the full proof appears in
Appendix A, we also provide a proof outline below, to give
an idea of the main steps.

Theorem 1. For a discrete memoryless two-user IFC as
defined in Section I, for a family of block codes of ratBs
and R, a decoding error probability for user 1 satisfying

(Z1,22) = argmin fl;cl@yl(Xl,XﬂYl),

(.’1}1,@2)661 X Co
and throws awayk,.

It follows from [13] that for random codebooks of fixed
compositionQ: , Q», the average probability of decoding both  lim inf —— 10g P.i(n) > Eri1(R1, Ry, Q1,Q2,0,))  (2)

messages in error, where the averaging is done over g'éen be achleved as the block length of the codegoes to
random choice of codebooks, satisfies: infinity, where the error exponettty i (R1, Ro, Q1, Qa, p, )

Pr(d) # @, &y # @) < e "FL2 is given by
where Er1(Ry, R, Q1,Q2,p,\) = 4 Ry — pRy + mi
. R,1 1,412, 1, 2, P, = 2 — P 1 + min
Erp = poin o D(Py iz zllalPy, x,)

Pg %o9,P%, =Q1, P, =Q2

SO min fl(p,)\P waw);
+ I(X}’X:?) o Py %pv1 PRy 497 XiXater T XKV
+ [I(X1; Y1) + I(X2; X1,Y1) — R1 — Ro|* €51(Q1,Q2)

with | - |* = max{-,0}. .
' min falp, A\ Py Py v 3)
In addition, the average probability of decoding the messag (Px, x, v, Px;x4v/) ( X1 &a¥i XleYl)

of the interfering transmitter correctly but the messagé¢hef €52(Q1,Q2,R2)
desired transmitter incorrectly satisfies: where
. A A A A A
Pr(ﬁcl }éml,iﬁg :CEQ) SeinEl‘z fl = ( A PX1X2Y1 Pf({f(éf/l’)_H(H|Xl)+pI(X{7}/1/)
where

+ max {I(XQ;X]_, }A/l) — Ry;
= min D(Py. %, % P; 3
Pe. o, P, = Q1. Py, =Qs ( y1|X1X2||Q1| X1,Xz) o
~ ~ + p/\(I(XQ;Xl,Yl) —Rg)
+ I(X0; Xg) + |[1(X1; X5, Y1) — Ra|F
Therefore, the overall average error performance of thisCMA + max {ﬁI(Xé; V) + pI(Xh; X1, V) — R
decoder in the IFC satisfies:

Pr(@) # @) < e "mintFre Bl p(I(X3; X7, YY) — Ra); pA(I(Xh; X, YY) — Rg)} 4)
A second suboptimal decoder that leads to tractable error A NN
performance bounds is the single user maximum mutual? =9(: A Ps, 5,9, PX{X;&/)_H(H|X1)

information decoder (which in this case coincides with the +pI(X1;X2,Y1) —i—I(Xg;Xl,Yl) — Ry (5)
minimum entropy decoder):

. with
1 = argmax [. X ). A — PN
! :vg1 e 21y, (X1 10) 9 =—pAEy %, v, loga(Y1|X1, Xs)
In this case, standard application of the method of type} [11 — PAEy, %, v, log @ (V{1 X, X))

leads to the following bound on the average error probabilit
under random fixed composition codebooks of typasQ-: and

Pr(&; # x1) < e P 81(Q1,Q2) {( X1 X270 PX’XéY{) €S P PY”
where Pg, =Pg, = Q1 Py, = Py, = Qz} (6)
= :Pf(lffﬁ/l:P??llng]’PX2:Q2 D(PY]|X1X2||Q1| A X2) 82(Q1, Q2, Ro) {( X1 X2¥1 PX{XQYI’) €s?:
+ (X105 Xo) + [I(X13 Y1) — Rl Py, = Py, = Q1. Py, = Py, = Qa,
We can choose the better decoder between these two, that Ry < I(Xg;f/l) Pg v, = X, Y,} @)
leads to the better error performance. Therefore, we obtaj

Wﬂeres is the probability simplex in¥; x X> x Y. In the
bound (2),(p, A) € [0, 1]? can be chosen to maximize the error
exponenttp ;.

is an achievable error exponent at receiver 1, with an analbg In egs. (2), (3), (6), and (7¥); andQ- are probability dis-
exponent following for receiver 2. tributions defined over the alphabets and X, respectively.

that
EBJ = max{El; min{ELg; E1|2}} (1)



Expressions for the error probabilify, , and error exponent frequently used:
Er 2 equivalent to (2) and (3) can be stated for the receiver of n n
user 2 by replacing{; < X5, Y1 — Y3, andg; — ¢ in all (Z az> Z (8)
the expressions. By varyin@,; and ), over all probability - —
distributions inx; and X, respectively, we obtain the errorFor a given block lengthh, we generate the codebook of
exponent region for fixed rate®; and Rs. useri = 1,2 by choosingM; sequencese; of length n
independently and uniformly over all the sequences of kengt

) . . oL . n and type@; in X;*. Note thatQ,,i = 1,2 have rational
R2, @1, @2, p, A) is derived in Appendix B (cf. equation (B.4)) entries with denominatos. We will write x; ; to denote the
that is closer in form to the expressions underlying the benc
i-th codeword of uset.
mark exponenfz ; presented above. In particular, this lower F . h | he b decod
bound allows us to establish analytically (see Appendix B or Ia given ¢ anneh outpLglble ylf’ the estd ecg )
that s, < B, at Ry = 0 (and for sufficiently smallR,). ing rule to minimize the probability of error in decoding

Numerical computations, as presented in Section VI, irtdica fhe message of user 1 is ML decoding, which consists of

that this inequality can be strict. pICAkIII’lg the messagen which maximizes P(y,|z1,m) =
i= 21 CI1 (y1|$1,m7£132 1)/]\/[2 Letting

Mo
e (yllwl qu (Y1lz1, x2,0) 9)

NN "o o be the “average” channel observed at receiver 1, where the
Ri={R <I(Xi;Y1)} U {{Rl + Ry <I(Yy; X1, X2)} averaging is done over the codewords of user 2Cip
N{R < I()A(l;ffﬂf(z)}, the decoding error probability at recel_ver_l for t.ransndme
codewordz; ,, and codebookg; and(; is given by:
with an analogous region following for the set whésg , > 0 Poi(21m,C1,Co) =

(see Fig. 1).
ST Pea(@im. C1.Colyn) a2, (il xrm)  (10)
Y, €Y7

With the introduction of the average channel (9), and the
use of two auxiliary parametefp, ) € [0, 1]?, we can follow
the approach of [5] to bound the conditional probability of
decoding errorP, i (xm,C1,Caly,). Taking expectation over
the random choice of codebooks and C, we obtain an
average error probability:

Po, < Y ECZ{Exl[[qm(ynxlnﬂ
Yy, ey

Remark 1: A lower bound to E; , 2 max, x Er1(Ri,

A second application of the lower bound (B.4) is to deteZ
mine the set of rate pair&;, Ry for which Exr, > 0. We

show in Appendix B that this region includes hie

R

I %) - SERRRREE

IX,: 1) Ix,; Y| X) R, : E’}( [[QI ¢, (Y11X1)] } } (11)
Fig. 1. Rate regioriR; where E} , > 0. .
’ where we used Jensen’s inequality to move the second expec-

tation inside(-)”.

Furthermore, it is shown in [11] that the error exponent Equation (11) is hard to handle, mainly due to the corre-
achievable for user no. 1 with optimal decoding and randoggion introduced byC, between the two factors inside the
fixed composition codebooks is zero outside the closure @fiter expectation. Furthermore, the evaluation of the rinne
the regionR;. This result, together with our contributionexpectations oveX1 are complicated due to the powera
characterize the rate region where the attainable expsnegyd )\ affecting qlC (y,]X1). Bounding methods based on
with random constant composition codebooks are positivgensen'’s |nequal|ty *and (8) fail to give good results dudeo t
Finally, it can be shown that this region is contained in thgss of exponential tightness.

HK region [11]. We proceed with a refined bounding technique based on

Remark 2: Theorem 1 presents an asymptotic upper boutide method of types inspired by [7]. While in this approach
on the average probability of decoding error for fixed compaeve still use (8), we use it to bound sums with a number of
sition codebooks, where the averaging is done over the mndterms that only grows polynomially with, and as a result,
choice of codebooks. It is straightforward to show (see,, e.gxponential tightness is preserved.

[4]) that there exists a specific (i.e. non-random) sequ@ifce Since the channel is memoryless,

fixed composition codebooks of increasing block lengtfor M, n
which the same asymptotic error performance can be achieved q§ (yy|z1) = Z H q1(y1(t)]x1(t), 22,4(t))
i=1t=1
. . 1
Proof Outline. For n non—negative realsy,...,a, andb < =— Z Ne,y, (P %,v,)

[0,1], the following inequality [5, Problem 4.15(f)] will be My Py %,



"Bk v, logan (V1]1X1,X5)] (12) inner minimization problems. A brute force search may not

where we usedVy (P¢ ¢« ) to denote the number 0fgive accurate enough results in reasonable time. As will be
codewordsz, in C;yslucrflt)ﬁzaitfl(ml ,y,) have empirical shown below, the first minimization problem in (3) is a convex

ftriby it roblem, and as a result, it that can be solved efficiently.

distribution Py 5 y.. We also usedE; ;v (-) to denote P - _ iciently

expectation with respect to the distributiéfy. ;. ¢ In addition, convexity allows to lower bound the objective
1X2Y7”

: : . : function by its supporting hyperplane, which in turn, alfow
Replacing (12)in (11) and using (8) three times, we Obtalpd get a reliablé lower bound through the solution of a linear

Po SIS S S BelBx, [VF )] progem
M2 T Sy Xy The second minimization problem is not convex due to the
1 1

non—convex constrainR, < I(Xg;ffl). If we remove this
[N:)\( (p/)}} constraint, it will be later shown that we obtain a convex
LY problem that can be solved efficiently. There are two possibl
. PN Ep log g1 (V1| X1, X2)+AE b, log a1 (V{ | X1, X}) (13) situatiorls: o _ |
A . The first situation occurs when the optimal solution to the
where we used” = Py ¢y, and P’ = Py, ¢y, to shorten mogified problem satisfie®, < I(X»;Y;): in this case, the

Nl
EX1

the expression. solution to the modified problem is also a solution to the
We next consider the bounding of original problem.
Ely,, P, P 2 The second situation is when the optimal solution to the

modified problem satisfied?, > I(X»;Y1): in this case, a
E-!E NP p }E” [N’\ P } . (14) solution to the original problem must satisRy = I(X5; Y1).
Cz{ Xl{ Xl’yl( ) X, X“yl( ) We prove this statement by contradiction. LEf be the

and note that\ y y (15) and Ny (]3,) are formed by opt!mal solut_|on to the qumed problem, and; be an
sums of an exponlén}[ially large nuﬁigér of indicator funcstionOpt'maI solution to the original problem. Now assume con-
versely, that there is nd; that satisfiesRy, = I()gz;}fl).

each of which takes value 1 with exponentially small probabi, - . . !
ity. These sums concentrate around their means, which sh\é\g\zhi;hlz a{s;uript'((jg: V\A/eAha;/? tAhatt )B; ];QA <_I();2A’ Yl_
different behavior depending on how the number of term p o P_ 7X1X2Y1’N )?Xét;;{tb X T Xy _t
in the sum ") compares to the probability of each of¥!** X, — “Xx; = @2} Note thatD is a convex se

the indicator functions taking value 1 (depending on theeca@nd P;', P5 € D. Due to the continuity off (X»; Y1), the
considered, these probabilities take the farmi!(X2:X1.¥1)  straight line inD that joins ;' and P; must pass through

e nI(X5X1YY) ore—n[(f(é;f/{))' Whenever one of the factors@n intermediate poinf = aPy + (1 — )Py, a € (0,1),
in (14) concentrates around its mean it behaves as a consti{itt satisfies/(X2;Y1) = R,. Let f5(-) be the objective
and hence is uncorrelated with the remaining factor. As fégnction of the second minimization problem in (3), resstt
result, the correlation between the two factors of (14),aihi 10 D- It will be shown later thatfs(-), restricted to this
complicates the analysis, can be circumvented. We give @main, is a convex function. By hypothesis(P) > fa(P5)
details of this part of the derivation in Appendix A, but not@nd we havefy(P) < fo(P5) < fa(P). On the other
here that the resulting bound ofi(y,, P, P') depends on hand, from the convexity of(-), restricted toD, we have
y, only through a factorl(y, € Py, Py, Py = Py, = fa(P) < afa(Pr) + (1 — a)f2(P5) < fo(P5) and we get a
Q1;Pg, = Py, = Qo). Therefore, the innermost sum incontradlgnpn. Therefore, it folloyvg that there is a salati;
(13) can be evaluated by counting the number of vectdi the original proble_m that Sat's_f'e%Z = I(X_%Yl)_' S
y, € Y that have empirical types®, and P;,. Note Let f1(-) be the objective function of the first minimization

that this count can only be positive fof;, = p;/_ This problem in (_3)_. F_irst,_ we note theR_z* satisfies the constr_ai_nts
! of the first minimization problem since they are less retwgc

than the constraints of the second minimization problem in
(3). We next prove thaf1(Py) = f2(Py). As a result, the
gptimal solutionP* of the first minimization problem satisfies
P*) < f1(Py) = f2(P5), and we do not need to know
Py) to evaluate the argument of the maximization in (3).

sing the fact that aPy, I(Xy; V) = I(X};Y/) = R,, we
Pave:

count is approximately equal tg*7(*1) to first order in the
exponent. Furthermore, the sums o¥erand P’ in (13) have
a number of terms that only grows polynomially with
Therefore, to first order, the exponential growth rate of) (1
equals the maximum exponential growth rate of the argumeft%
of the outer two sums, where the maximization is perform
over the distributionsP and P’ which are rational, with
denominator. We can further upper bound the probability o
error by enlarging the optimization region, maximizing pve f2(Fz) = f1(Fs)

any probability distributionsP, P’. = pI(X1]; X5,Y)) — pI(X1;Y{) — p(I(X}; X{,Y]) — R2)
= p [I(X5: X1, ¥)) - 1(X3: V) - 1(X3; X1, 1) + o
=0, (15)

V. CONVEX OPTIMIZATION |SSUES

In order to get a valid evaluation oFr;(Ri1, Rz, @1,

Q2,p, A), for any 9|V_enQ17 Q2, p, A satisfying the constraints = 1, o implementation we solve the original convex optirtima problem
of the outer maximization, we need to accurately solve theing the MATLAB functionf ni ncon.



where we used the identity(X{; X}, Yy) — I(X{; YY)
I(X%; X1,Y]) — I(X4;Y{) in the second equality.

functions follows from the convexity of (X; X1, Y7) for
fixed Py , Py,, which can be proved along the same lines

In summary, if the solution to the second minimizatio@S 7).

problem in (3), without the constraint oR., satisfiesRy >

Finally, we consider the last term of (16):

I(X,; Y1), then the first minimization problem in (3) dom- e e o
inates the expression. Otherwise, the solution to the secon Max {PI(X2?Y1) + pI(Xy; X1, YY) — Ro;

minimization problem in (3) without the constraidt; <

I(X,; Y1), equals the solution to the second minimization

problem with this constraint.

It remains to show that the objective functions o

P

the minimization problems in (3)f1(PX1X2f/]v XiXéY{)’

fo(Pg, %,v, P x,1;), restricted to the domaiP, are convex
functions. Since the sum of convex functions is convex,
prove the convexity off; (-) on D, we only need to prove that

the different terms of
i=- p_)‘EXlef/] log Q(Yl|X17X2)_
PAE g, g9, log (V]| X1, X3) — H(V1|X1) + pI (X3 V()

+ max {I(XQ;X:[, Yl) — RQ;
PAI(X; X1, 1) — Rz)}
o {PICRG) + pI(R5s K1) - R

p(I(X5; X1,Y{) = Ro); pA(I(X5; X1, YY) — Ra)
(16)
are convex withinD.

First, we have that A_EEXleYl log q(V1|X1, Xy) —
PAE g1 %191 10g q(YY| X1, X3) is linear in
(Pg, %710 Pxs fféY{A) and Eherefore _ convex. Also,
have that—H (Y1|X1) = H(X1) — H(X1,Y1) is convex for
fixed P¢ due to the concavity off (X1, Y1).

In addition, /(X{; Y/) can be written as)(Py, y.|| Py, x

Py,). Let P = AP + (1 — NP for any P, P such that
PX{ = {5)3{ and)\_e [0, 1]_ We hf';\ve thaf)m}{ = /\]5):({{/1, +
(1_A/\)PX{}:/1I andPX{ XPY{VZ Pf({ i(()\PY{—F(l—)\)PY{) =
)‘(PX; X PAI/) + (1 - )\)(PXi X PAI/). The convexity of
pI(X!;Y{) for fixed Py, follows from the convexity of
D(P||Q) in the pair(P, Qﬁ:

I(X£§Y1/)

= D(FX]/Y]’HFX{ X ﬁf/{)
P
S /\D(PX{Y{”PX{ X PA{)
+ (1= N)D(Pg,y, 1Py, x Pyy)

= M(X5Y)| + 1= NI(XY)

P p
(17)

Continuing with the next term of (16),
max {I(Xz;XhYl) — Ro; pA(I(X2; X1, 1) — Ry)}

p(I(Xp: X1, 97) — Ra): pAI(Xs X1, 77) — R2>}.

Fach of the arguments of thaax{...} can be shown to be
the sum of convex functions for fixeﬂ’Xl, and Py,, using

a similar argument as the one used to prove (1?). Since the
{8aximum of convex functions is convex, the convexityfof
restricted toD follows.

Using similar arguments, it is easy to show that
fa==pAEg %7, log 1 (V1] X1, X5)—
PAE ¢, 5,5, logan (V]| X1 X3) — H(V1|X1)+
pI(X]; Xo, V]) + I(X2; X1, Y1) — Ry
is convex inD.

VI. NUMERICAL RESULTS

In this section, we present a numerical example to show
the performance of the error exponent region introduced in
Theorem 1. We use as a baseline for comparison the error
exponent region of Section Ill, which is obtained with minor
modifications from known results for single user and mudtipl
access channels.

We present results for the binary Z-channel modél:=
X1 xXop Z, Yo = Xo, WhereXl,XQ,Yl,}/Q S {O, 1}, 7~

weBernoulli(p), * is multiplication, and® is modulo 2 addition.

This is a modified version of the binary erasure IFC studied
in [10], where we add nois€ to the received signal of user
1. In the results presented here, we gix= 0.01.

The boundary of the error exponent region is a surface in
four dimensionsRy, Rz, Er 1, Er2. This surface can be ob-
tained parametrically by computingr 1, Er 2 as a function
of Ry, R2,Q1,Q2, by optimizing overp and A in (3) and in
the corresponding expression féir ». The parameterization
of Er,; in terms of Ry, Ry, Q1, @2, allows the study of the
error performance as a function of the parameters thatttjirec
influence it.

Fig. 2 shows that the error exponents under optimal decod-
ing derived in this paper can be strictly better than the lbase
error exponents of Section Ill. This suggests that the inétyu
obtained in Appendix B foi?; = 0 can be strict. In addition,
in all the plots that we computed for the Z-channel for difetr
values of@1, @2 and R, we were not able to find a single
case where the baseline exponéhy; was larger tharEg ;.

We see that the curves @iz ; (Ep 1) for fixed Ry, Q1, Q2
have a linear part foR; below a critical vaIueRgf) (Rﬁf)),

and a curvy part forR; > Rgf) (R1 > Rgf)) (note that
the critical values depend on the paramet@ss@; and Q-).

we note that it is the maximum of two convex functionsfigure 3 shows the optimal parametersind A for the Er 1
and therefore convex. The convexity of each of the individuaurves shown in Fig. 2 foR, = 0.139 and R, = 0.277



exponent region ofmin{Eg 1, Er2}. This corresponds to

°
N

q —o—Eq, forR,=0.139, Q1(1)=O.6,‘ Q,(1)=0.9 choosing@; and@- in order to maximize the error exponent
0.35 —%— Eg , for R,=0.139, Q (1)=0.6, Q,(1)=0.9| simultaneously achievable for both users. Figure 4 shows this
Br 1 for R,=0277, Q,(1)=0.6, Q,(1)=0.7 projection forR, = 0.139 and R, = 0.277 nats/channel use,
03y O Fpa OrR,70277. 0,206, Q,(=07y where, for reference, we included the corresponding curves

for the error exponent&'s 1, Ep o of Section Ill.

o
)
3

Error Exponents
o
N

0.4 T T T T
0.15 B & —o— min{ER‘l,ER‘Z) for R,=0.139 [nats/channel use]
0.35 - — min{EBvl,Esz) for R2=0.139 [nats/channel use] |
0.1 i =
0.3r 4

0.05

0 0.1 0.2 0.3 0.4 0.5 0.6
R, [nats/channel use]

Error Exponents
o
N
T

Fig. 2. Error exponents as a function Bfi for two different values ofR2
and fixed choice)1, Q2. All the rates are in nats.

1.6

—o— pfor R,=0.139, Q,(1)=0.6, Q,(1)=0.9

o i i i i e
1.4} —#— A for R,=0.139, Q,(1)=0.6, Q,(1)=0.9y 0 0.1 0.2 0.3 0.4 05
pfor R,=0.277, Q,(1)=0.6, Q,(1)=0.7 R, [nats/channel use]

o®

12} - _ _ ) . . .
—&— M forR,=0.277, Q,(1)=0.6, Q,(1)=0.7 Fig. 4. Maximum error exponent simultaneously achievablebioth users
for fixed Rs as a function ofR;.

=

For the noiseless binary channel of user Br, =
max{H(Q2) — Re;0}, and as a resultEr » decreases with

Optimal parameters
o
©

0.6 increasing RtX> = 1) for Pr(Xy; = 1) > 1/2. On the

s other hand, because of the multiplication betwégnand X

' in the received signal;, increasing RiX> = 1) results in

0.2 less interference for user 1, and a larger valueFgf;. It

follows that there is a direct trade-off betweéig ; andEr 2

% o1 02 03 04 S T %, through the choice of)>, and whenevemin{Eg 1, Er 2} is

R, [natsfchannel use] maximized,Er 1 = Eg. Therefore, in the curve of Fig. 4,
Fig. 3. Optimal parameters and A for the Er 1 curves of Fig. 2. All the ER,l = ER,2-

rates are in nats. From the plots of Figs. 2 and 4, we see that the error

nats/channel use. We see that for the linear part ofAhe exponents obtained from Theorem 1 sometimes outperform
curvesp = 1 and A = 1/2 are optimal, while for the curvy and are never worse than the baseline error exponents of
part (i.e. Ry > R'%)) the optimal p decreases to 0 andSection Ill.

the optimal A increases towards 1. FaR, in the interval

(0, min{R{™; R1®)1) the gap between thé&r, and Ep APPENDIXA
curves remains constant as both curves are lines with slope PROOF OFTHEOREM 1

—1, and this gap is equal to the gapt = 0. In general, any
gap betweerfr ; and E¢ ; at R; = 0 will remain constant
in the interval where both curves have slopé. We also note n n
_ ; ope. | (1/M2) Y ce, ¢\ (w1 |1, T2), where My = [e"1] and

since the optimal parametepsand A vary for different rates, s d2Cla . )

) R . M, = [e™*2]. Applying Gallager's general upper bound to
these parameters are indeed active, i.e. they have mfllmfnceh “ch P 1 (n)
the resulting error exponent. the “channel"P(y,|z1) = 37 Xg,cc, 1 (Y1]@1, 22), we

The curves of Fig. 2 are obtained for fixed choicegave for user no. 1: —

PA
of @1 and -, which are the distributions used to 1 n
. 2 Pg, < Z A Z Q§ )(y1|$17w2)1 X

It is easy to see that the optimum decoder for user 1
picks the messagen (1 < m < M;) that maximizes

generate the random fixed composition codebooks.

As @Q; and Q. vary in the probability simplexS, Y L2l )

we obtain the four-dimensional error exponent region 1 (n) ) A

{Ry, R, ER1(R1, R2, Q1,Q2), Er2(R1, Rz, Q1,Q2) : Z M, Z 0 (Y@, z2) (AL
Q1,Q2 € S}. In order to obtain a two-dimensional plot of T\ AT, T26C2

the region, we consider a projection: we fi% varying Ry where A > 0 and p > 0 are arbitrary parameters to be
and plot the maximum value oveép; and Q2 in the error optimized in the sequel. Thus, the average error probgbilit



is upper bounded by the expectation of the above w.r.t. thi@e next step is to bound the term involving the expectation

ensemble of codes of both users. Let us take the expectatimer C.. As noted, the codeword$X,} and {X,} are
w.r.t. the ensemble of user 1 first, and we denote this expeandomly selected i.i.d. over the type classes= 7, and
tation operator byE¢, {-}. Since the codewords of user 1 ar&/; = 7, corresponding to probability distribution@; and

independent, the expectation of the summand in the sum ab@e respectively. To avoid cumbersome notation, we denote

is given by the product of expectations, namely, the produutreafterP = Pyg X v, and P = Py, %y, and assume that
of PXl X/ - Ql’ A2 X’ - QQ! %Al Y/ and that

use the shorthand notation

A
A:Ecl l Z Q1 y1|m17m2

X y, lies in the type class correspondlnglq we will also
)‘|

2 o EczéE@[EXleéhyl(P)Ep N%l_’yl(ﬁ”)]. (A.6)

X,
The bounding of E¢, requires considering multiple cases

B
= MY Eq, [ Z qgn)(yﬂwl’wz)] . (A2) which depend on howR, compares to different information

T2€Co guantities, and also depend on properties of the joint types

Ps .9, PX O In order to guide the reader through

representation of the different cases that arise.
We first consider two different ranges &, according to

AP the different steps we present in Fig. 5 below a schematic
) y1|m1,cc2>>
its comparison with! (X4; X}, Y{):

pe | 3 (53

T #T, -'BQGCQ

AP
=M Ee, { | Y (Z qi”’(yllw’l,m))

T#L; \T26C2

Now, let Ng, .y (P, x,y,) denote the number of codewords Ec, = Ec,{ Ex [Nl PA (p)}
{x2} that form a joint empmcal PMRP; ¢ . together with Xy,
a givenz; andy,. Then, using (8)A can be bounded by

1. The range R, > I(X4; X}, Y/). Here we have:

1 R P

NERS
A— [T Ty
A:sz 1EX1[ Z Nleyl(PX1X2Y1)X |1|j€TI '

Po o o
e —~ —Ec,{ Ex [N (P ! @)
=FEc¢,{Ex, lel( )| - W~Z :ﬁl,yl( )| x
reT

PA
e”Exlxzyl log QI(Y1|X1,X2)]

1 |:N~ (P/) < en[(R2*I(X§¢,X{,Y’{))+E] v:il c 71:| }
A1 oY Y S )
SMQP Z EXle;(l,y (PXIXzYl)X neh

Pz %51, NI (f 1 _qe
_ ~ Ao P
enp)‘E)thiq log g1 (Y1|X1,X32) (A.3) + Ec, EX1 [ Xy, (P)} |:m j}ZT le Y, (P )} X
€l
whereq; (Y1] X7, X2) is the single—letter transition probability )
distribution of the IFC, and whetE ;. ¢ 5. f(X1, X, Y1), for 138 € Ty : Ng, 4y (P') > enl(Fa-I(X5Xi 7004 }
a generic functionf, denotes the expectation operator when
the RVs(Xl,Xg, Yl) are understood to be distributed accord-
ing to P Similarly, (and using Jensen’s inequality tosFe. Ex, [
X X Y '

push the expectation w.r€; into the brackets), we have:

X Py [entEED-0)
Nthl(P)} {e D=ex

— Ef S S s P
_ E 1 [(:ﬁ y,) € Tp., . } .enk(Rg—I(Xz;Xl,Yl)+€):| }

A \ . N
B <M2 P Mf E XlNX17y1 (1 X1X2)”/1)>< o

P TeT
e P + e"pr [33} €Ti: Ngy (P)> “RH(XQ*X*YD)“}}
n)\EA X logq(Yl\X1,X2) . N , NP
"M %7 (A.4) $Ee, {EX {N‘IXIPA (P)}}.e—np[H(Xl)—H(X]\Yl)]X
Taking the product of these two expressions, applying (8) to enPA(R2—1(X3;X7,YY)) (A7)

the summation in the bound fdB, and taking expectations

. . where in the second to last inequality we usg < Mo,
with respect to the codeboak yields quatty 9,y < Mo

and in the last inequality we used the fact that

Ec,(AB) < M{ My Z Z pr{gm €T :Ngy (P)> en[(Rz—I(Xé;X{Y{)He]}
Pt (H(X{)+e) i [(Ra—I1(X4:X].¥0))+<]
n(H(X! +e o n[(Ro—I(X.:X!,Y]))+e
3% N N - <e 1 ~Pr{Ni.7 (P)>e IR R }
Ec,[Ex Ny v, (P, 7 ) By Nx, o (Pxysgy)] Y A8
x exp{n[pAE¢ g v, log q1(Y1|X1, X2)

for any & € 77, which decays doubly exponentially with
+ PAE g, 5,5, log an (V{1 X7, X3)]} (A5) (cf. [7, Appendix)).



To compute Ec, {EX {N}X”; (P)H we consider
two cases, according to the comparison betwdgn and
I(X2; X1, Y1)

The case R, > I(Xy; X1,Y1). Here, we have:

ECzEX {N}cf»\ (p)} = EX1E62 [N}Xi)\ 1(p)}

< Ex. [ ((Xla?h) € TPlel) enPA(Ra— I(X2’X1'Y1))]

e*’nl(kl;Yl)enp_A(szl(Xz;Xl ,Yl)) .

(A.9)
Therefore, when
Ry > max{I(Xy; X1, Y1), I(X}; X1, Y])}
we have:

E¢, < exp {n [—I(Xl;f/l) + pPA(Ry — I(X5; X1, Y1)

—pI(X{ V) + pA(Re — I(X5: X1, ¥)] | (A10)

The case R, < I(X»; X1,Y1). Here we have:

. .
Be,Bx, |[Ng,, (P)] <Be.BEx, [Nx,, (P)
—nI(X1;Y7) .en(Rz—I(Xz;th/l))’

(A.11)

<e

where we used the fact that\ < 1 and then estimated the

expectation ofNX (P) as M, times the probabilityz,
would fall into the correspondlng conditional type. Theref,
when o o
I(X5; X1,Y]) < Ry < I(X3; X1, Y1)
we have:
Ec, <exp {n {_I(XU?I) + (Ry — I(X2; X1, Y1))

LX) + pA(Re — I(X5: XLV} (A12)

The exponents for the subcases$.10) and (A.12) corre-
sponding toRy > I(X2;X1,Y1) and Ry < I(X2; X1, Y1),
respectively, differ only in the factorsp{ and 1, resp.)
multiplying the termRy — I(X5; X1, V7). ThAereonreA, we can
consolidate these two subscasesiaf> I(X}; X1,Y/) into
the expression:

Ec, < exp {n [—I(Xl;f/l)—i—
mln{p_)\(Rg — I(XQ; Xl, Yl)),
(Ro — I(X2; X1,Y1))}

—pI(X[5¥]) + pA(R2 — I(X5: X1, Y))] | (A13)
Slncemln{p_)\ (R2 — I(Xg, Xl, }Afl)) (R2 — I(Xg, Xl, Yl))}
is p)\ (Rg — I(Xg,Xl,le)) when R2 > I(XQ,Xl,Yl) and
(Rg — I(XQ, Xl, Yl)) WhenR2 < I(XQ, Xl, Yl)

2. The range Ry < I(X}; X},Y/). In this range,
_ NP (F l4 A D/
Ec, = Be, {Ex, [Nx", (P)] B [Nk, , (7))}
1—pX > 14 D/
< Be {Bx, [Nx !y, (P)] B, [Vx, 5, ()]}
(A.14)

where
er(R2—1(X3Y)+9)]  decays doubly exponentially in the

where we assumed < 1 in the last step. The second
expectation ovetX'; can be evaluated as
Ex Nx, .y (P x;97)

= Z EXll((Xl,l’z,yl)
T2€C2

nI(Xl,X2,Y1) § :

T2€Ca

S Tp

X’X’Y/)

ETP

.’1}2,y1 X’Y’)

= e_nI(X{vXévf/ll)Ny (P

2190 (A.15)

whereNy (P, /) is the number of codewordse, } that are
jointly typical Wlt]h y, according toPy 197 Thus,

Ec, [EXIN&I%(P)EPX Nthl(P’)}

C—mpl(X1 XLV X

—e pI(X1:X5 I)EC [EX N%l (PXleyl)N?Zl(PXéYl/)]

= eI NI By Be, [N o, P55 Ny, (P
(A.16)

To boundE x Ec, [Ns?l,yl(P)N?Zl(P/)]’ we consider two

cases depending on hait, compares td (X}; Y/).
The case R, > I(X};Y/). Here, we have:

P
EXlEC2 [NX17y1

=Ex Ec, {N%ﬂ}l (P)Ng. (P')x

1 {Nyl (P) < B2 I(X35Y, >+e>} }

(P)Ng (P')

7)\ A~ A
+Ex Ec, {N&y (P)N} (P')x

I{Nyl(lﬁ/) n(Ra=1(X5:Y, >+e>”

< eno(Ra= I(X2’Y1))EX EC2[ X,y (P)}
1T

N en<p7+p>Rzp{ Ny (P') > en<R2—1<X;;Y{>+e>}
1

ﬁexp {n

+1(Ry > I(Xo; X1, Y1))pA(Ry — I(X2; X1, Y1)

p(Ry — I(X4;YY)) — I(X1; Y1)

+1(Ry < I(X2; X1, Y1))(Ry — J(XQ;Xl,Yl))] }

=exp {n

+ min{pX(Rz — I(X2; X1, 1)),

(R — I(X2; X1, YI))}} }

p(Ry — I(X}; YY) — I(X1; Y1)

(A.17)

we used the fact that [Riy (P) >



10

s vy rd i, B0, ) mr0 <o, 5 )2 )

Thecase Ry < I(X};YY). Here, we further split the evaluation 1[NX17y1(p) 2 1]}

E\;Set:wo parts. In the first partR, > I(X5; X1,Y71), and we N e"””ﬁEXl{Pr[NX yl( ) S o }}
EXlEcz[Nséhy (P)Ng (P")]

A
S'E)(l'EC2{ ;(i Y,

(P)Ngy (P')x

1 {leyyl(lf’) < en(Rz—I(Xz;Xl,Y1)+€):| }

+ EXIEC2{

NL-PA (P)N;;l (P")x

Xlayl

1 {le,yl(lf’) > en(Rz—I(Xz;Xl,Y1)+€):| }

<e’ﬂp_)\(R2—I(X2;X1 ,ifl)) X

EX1EC2{N?51 (P’)l [(Xl, yl) (S TPXN’J }

- e”Wﬂ)RzPr[NX y (P)> e”<R2—1<X2?X1Y1>+6>]
L

éen[fJ_>\(R2*1(X2%Xl-Yl))*I(jfl;f’l)]E‘c2 [N'!Zl (PX’Y’)}
271

Zexp {n[p_MRQ (R X0, V1) — IR0 )

+ Ry — I(X§§ Yll)]

(A.18)

where we used in the last inequality

E¢, [N?Zl(

valid for p < 1.

P

The other part corresponds #®, < I(X,; X;,Y7). Here

we have:

Ex Ec, NS (P)N?

Xy,

—EXlEc2{ }EIA

+Ex Ec, {Nggy (P)Ng (P))1[Ny, (P') > e™] }

SenpéEXlEcz{N;( v 2
1

. P
SEXl ECZ {NX17y1

+EX Ecz{

. n(Ro—1T X/:Y/
<50)] < Be, [Ny, (Pg,y,)] = enf2-1(X530)

()G, (1 [y, (P < ]}

(P)1[Ny, (P') > 1]

+ e"(p“”)RZPr[Ny (P') > e"s}

8
NXlayl

(P) 1[Ny, (P") > 1] x

o1
:m Z 1[([121,y1)€TPX1Y1}><

Ti1€Th
Pr[Ny, (P') > 1,Ngz, 4 (P) > 1]

(A.19)

To bound PNy (P') > 1,Ng, 4 (P) > 1], we consider
two cases:

The first case is wherPy ¢ = Py, g, in this case,

{Ng, y (P)>1} = {Ny (P') > 1}. Therefore,
PNy, (P') = 1, Ng, 4 (P) > 1] =Pt{Ng, 4 (P) > 1]
éen(R27[(X2;Xl"§/l)).

Replacing in (A.19), we get:

Ex BeNg. , (PINg,(P)
< exp {n[- I(X1;Y1) + Re — I(Xz;XhYlﬂ }

(A.20)
The other case ¥ y, # Py,y,: in this case, the same
codewordx, cannot S|multaneously satisfie,, x2,y,) €

Tpxlxzyl and (z2,y,) € Tpy) o - Therefore, we have that
271
Pr{Ny, (P') > 1, Ng, 4 (P)>1]
=Pr[3ay # @3 : (21, 2h,y,) € Tp,

X1 Xo¥y’

(w27y1) € TPA/ A{}

Z Z Pr wl,wQ,yl) TX1X2Y1

T2€C2 TY#T-

(x2,y,) € Tp

X5, Y/}
<en2R2€7nI()A(2;)A(1,Yl)ent(Xé;Yl)'

Replacing in (A.19), we get:
Ex Ec,[N} . (PING (')
ﬁexp {n[ - I(Xl,Yl) + R2 - I(XQ,Xl,}A/l)
+ Ry — I(X};:Y])] ). (A21)
This completes the decomposition &, into the various
subcases.

Consolidation. Next, we carry out a consolidation process
that merges all of the above subcases into a more compact
expression, leading ultimately to the expression in Theote
Figure 5 gives a schematic representation, in terms of a
tree, of the various consolidation steps described beldwe. T
consolidation of (A.10) and (A.12) into (A.13) was done
before, but we include it in Fig. 5 for completeness. Refeyri

to Fig. 5, the consolidation starts at the deepest leavelseof t
tree and works its way up the nodes until it reaches the root.

We begln with the last set of subsubcases derived, >

I(Xg,Xl,Yl) and Ry < I(Xg,Xl,Yl) (expressions (A.18),



(A28)

R,> (X3 X, 1) R, <I(X}; X[, 7)

(A.13) (A.26) (simplified from (A.24) (A.25))

Y) R1<1(/\:};/\},, YI)

R,> [(Xz'f Y\’)
(A.17)

R, > I(Xy X,

R, <I(X;; ¥})

(A.10) (A.12)

(A.23) (simplified from (A.22))

R,>I(X; X, 1) R< (K /\;V 1)

implicit in (A.22)

‘?(‘ x¢ R 4 E - E’. 4

(A21) (A.20)

Fig. 5. Tree representing the multiple ranges ®f considered in the
derivation, and the equations that consolidate the differanges.

(A.20), and (A.21)) for the subcasB, < I(X};Y/), and
consolidate them as follows:

_E)Cl_lac2 S exp {n{l(RQ > I(XQ;Xl,Yl))X

[PA(Ry — I(X2; X1, V1)) — I(X1: Y1)
+ Ry — I(X5;Y])]
+1(Ry < I(Xo; X1, Y1))1(Py, g, # Pgry)X
[ - I(X1;Y1) + Ra — I(Xo; X1, Y1)
+ Ry — (X} Y))]

+1(Ry < I(X2; X1,Y1))1(Py, . x

= Payyy)
[- I(X1;Y1) + Ry — I(X%Xla?lﬂ} :

(A.22)
Next we would like to decompose the indicatbfR, >

I(X,; X1,Y1)) appearing in the initial part of this expression

as
1(Ry > I(Xo; X1, Y1)
=1(Ry > I(X2; X1, Y1) 1(Py,y, = Pg;,)+
1(Ry > I(Xa; X1, V1))1(Py, 5, # Py;97)
=1(Ry > I(Xa; X1, V1) 1Py, g, # Pyyp0).

where we are taking into account in the last step that

for the present subcasdil; < I(X5;Y]), 1(Ry >
I(X2;Xlayl))1(Pf(2Yl = Pf(gfg) = 0 since f‘{rp)gm
Pg,y, we have Ry, < I(X%; YY) I(X3; Y1) <
I(XQ;Xl,}A/l).
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= P,

+1(Pg,y, XéYI’)l(RQ < I(Xg; X1,Y1))x

[— I(X1;Y1) + Ry —I(Xz;Xl,fﬁ)H}}- (A.23)

This is valid for the subcas®, < I(X5; V7).
I\AlextA, we consolidate (A.17) from the subcasg >
I(X%;Y/) with (A.23) and insert the result into (A.16) to get
EC2 S €xXp {n{ - pI(XL Xé? ifll)
1R 2 (X5 V1) [~ 1(%0s V1) +p(Ro— (X3 ¥7))
o+ min {pA(Re—1(X5; X1, Y1), (R~ (K23 X1, Y1)}
F1(Ro<I (X3 V1)) [1(Py 5, #Pyyy) [ - 1K1 1)
+min{pX(Ro—1(X2; X1,Y1)), Ro—1(X2; X1,Y1)}
+ Ry — I(X5; Y])]
+ 1(PX2Y1 = PXéY{)l(RQ < I(XQ; Xl, Yl))x

[—I(Xl;?l) + Ro — I(Xz;Xl,?l)”}}a (A.24)

which applies to the rang&, < I(X};X],Y{). Again,
expanding all terms against the indicata($; o # PXgY{)*
and1(Py,y, = P, y,), and, as above, replacing indicators by
min{---} as appropriate, we obtain

E¢, < exp {n{l(Pjle # Peyyo) | — pI(X1; X5,Y7)
- I(Xh }Afl) + mln{p_)\(RQ - I(XQ;Xla Yl))v
Ry — I(X9; X1, Y1)}
+min{p(Ry — I(X3; Y/)), Ro — I(X}; Y{)}
L(Pg, v, = Pgyy/)x

| = PL(XT; X5, 7)) + 1(Ra > 1(Xa3 1)) %

[— I(X1;Y1) + p(Ro — I(X5;YY))

+ mln{p_)\(RQ - I(XQ;Xla}Afl))a

Ry — I(Xg,Xl,i/l)H + 1(R2 < I(XQ,Y&))X

[ I(X1;Y1) + Ry — I(X2;X1,Y1)” }} (A.25)

Using the identity (proved via the chain rule)
I(X7; X, V) + (X5 V) = I(Xg; X7, V) + 1(X; YY)
twice, we can rewrite the term

Applying this decomposition to (A.22), then combining

terms having the same indicatot$Py, . # Pg,y.), and

1(Pyg,y, = PX/?{)' and replacing indicators byin{-- -} as
appropriate (s2|milar to (A.13)), we simplify (A.22) to

Ex Eec,
<exp {n{l(P)zzy] # Peyp) [ = I(X; Y1)+

min{pA(Ro—1I(X2; X1, V1)), Ro—I(X2; X1,Y1)}
+ Ry — I(XQQYO}

— pI(X1; X3, YY) + min{p(Ry — I(X5; 7)),
Ry — I(X3; YY)}

appearing after the indicatd( Py y. # PX;Y{) in (A.25) as

— pI(X{; YY) + min{p(Rs — I(X5; X1, V7)),

Ry — pI(X5;Y]) — pI(X5; X1, YY)}

Similarly, we can decompose the terpI(X}; X},Y/) ap-
pearing after thejndiPatdr(PXZY1 = PXgAY{)Aagai”St the indi-
catorsl(Ry > I(X2; Y1) and1(Ry < I(X2;Y7)), and use the



above identity to combine it witp(R, —I(X%; Y/)) appearing
after the indicatorl(R, > I(X2;Y7)). Incorporating these
steps, we can rewrite (A.25) as

Ec, < exp {n{l(PXZ{/ﬁéPXé{q)[_I(XlﬂA/l)_PI(Xi;Yl/)
+ mln{p_)\(Rg - I(XQ;Xl, }A/l)), R2 — I(XQ;Xl, Yl)}
+min{ Ry — pI(X4; V) — pI(X3; X1, Y{),

p(Rz — I(X3: X1, 7))}
+ 1P,y = Pxyyy)
1(Ry > I(X2;V1))[ — I(X1; Y1) — pI (X1 YY)
+ min{pA(Ro—1(Xa; X1, 1)), Ro—1(Xo; X1, Y1)}
+p(Ry — I(X5; X1,Y7))]
+1(Ro < I(X2;:Y1))[ = I(X1; Y1) + Ro

X

5 - w5 7]}

Finally, we consolidate (A.13) from the rangB, >

P A 1
I(X3; X1,Y]) with the just obtained (A.26) (for the range

Ry < I(X3;X{,Y7)) to get
EC2 S exp {N{I(RQ Z I(Xéaf({vf/l/))x

[ = I(XusTh) = pI (K1 Y7)
+min{pA(Ry—I(Xo; X1, V1)), (Ro—I(Xo; X1, 1))}
+PA(Rz — 1(X5; X1, ¥7))]
+ 1R < I(X3; X1, 7)) [1(Pg g, #Pgyyy) %
|10 )= pI (X1 ¥7)
+ min{pA(Ra—1I(Xa; X1, Y1)), Ro—I(Xo; X1, Y1)}
+min{ Ry — pI(X3; YY) — pI(X4; X1, YY),
p(Rz — I(X; X1, V])}]
+ 1Py, = Py
[1(Re = 1(X5: 7)) [ 1(Ka: V1) = pI(X; ¥9)
+min{pX(Ry—I(X2; X1, V1)), Ro—I(Xa; X1, Y1)}
+p(Re — I(Xéaf({vf/l/))]
+ 1(Ry < I(X2; V1)) [ - I(X1; Y1) + Ro
S S N R

As before, after expanding the first indicata( R
I(X5; X1,YY)) aga-|n.st1(PX2Y1 + PAQYL,), and 1(Pyg, v,
Py, ¢), and combining terms, we obtain

>

Ec, S exp {n{l(PXZ{/ﬁéPXé{q)[_I(XlﬂA/l)_PI(Xi;Yl/)

+ min{pA(Re—I(X2; X1, 1)), Ro—I(X2; X1, Y1)}
+min{Ry — pI(X3; YY) — pI (X35 X1, YY),

12

p(Ry — I(X5; X1, Y))), pA(Ry — I(X3; X1, Y7))}
+ 1(Pg,y, = Pgyyy)x
1(Ry > I(XQ;Yl))[_ I(X1; Y1) — pI(X1;Y7)
+min{pX(Ry—I(Xo; X1, V1)), Ro—1(X2; X1, Y1)}
+min{p(Re—1(X3; X1, Y7)), pAM(R2—1(X3; X7, ¥7))}]
+1(Ry < I(Xg;fﬁ))[— I(X1;Y1) + Ry

—I(Xz;fcl,fvl)—pI(Xi;Xé,Y{)]}}}, (A.28)

where, in simplifying, we have made use of the identity

1(R2 2 I(X57X{7}>1/))p/\(R2 - I(X57X17?1I))+
1(Ry < I(X3; X1, Y{)) min{ Ry — pI(X}; YY)
— pI(X}; X1, YY), p(Re — I(X}; X1, YY)}
= min{ Ry — pI(X3; Y{) — pI(X5; X1,Y{),
p(R2 - I(Xé,Xi, Yll))vp/\(R2 - I(Xéinv Yll))}a

along with

Py

Ly ) 1(Re > I(X35 X1,YY))
LRI (Xo: V1)L (Ro>T(X4: X1, V7)),

Xz?l =
= I(PXng

and finally

LRy > 1(X3; X1, V1)) pA (R — 1(X35 X1, Y))+

LRy < I(Xg: X7, Y)))p(Re — I(X5; X1, V7))

= min{p(Ro—1(X5; X1, V7)), pA(Ro—1(X3; X7, Y7))}.

We use (A.28) in (A.5), add over all vectogs, decompose
all joint-type-dependent terms appearing in (A.5), as well
as the termnH(Y;7) arising from the summation ovey,
per type, against the indicatory(Py ;. # PXéY{) and
1(PX2?1 = PX;Y{)' and finally optimize over the types
P, %1710 Py xyy, to obtain:

EC17C2(PE1) S exXp {n{ — Ro 4+ pR; + max{

max PAE, 5.v. log (V1| X1, X5)
Pxyxov1 Py %477
Py, = Xi:le
Pg,= Xé:Q%
PS}:PY{
Pron #Pxy v
+pAE g, ¢, 90 log u (V{]X7, X3)
+ H(V|%0)—pl (X1 V)
+ min{pA(Ro—I(Xo; X1, Y1)), Ro—I(Xo; X1, Y1)}
+min{Ry — pI(X3; YY) — pI (X35 X1, YY),

p(Ra—I(X5; X1, YY), pA(Re—1(X5; X1, Y{)}H;

max PAE ¢ ¢ ¢ log q1(Y1]X1, Xo)
=Py, =0Q1,
Px,=Px;=Q2,

Pxyv =Pxyvy
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+pAE g ¢y, log a (Y| X1, X}) [0,1],% € [0, 2]}, we can thus apply the min-max theorem of
PN PSRN P convex analysis (twice) as follows
+ 1(Ry > I(Xo; Y1) [H(Y1|X1) — pI(X1]; YY) ysis ( )

)
+min{pA(Ro—1(X2; X1, V1)), Ro—I(X; X1, Y1)} Fra
. 1L X!

+m1n{p(R2 —AI(){Qy)flayvl))a > max min {Rg—pR1+9X

PA(Re — I(X3; X1, Y7))}] (em)€> 6€101]
+1(Ry < I(X; V1)) [H(Y1|X1) + Ry min fi (pa'7aPX(l)X(l)}”/(l)aPX/(I)X’(I)Y/(I)) +

(PX§1)X§1)?1(1)’ 12 1 2 M1
—I(X2; X1,Y1) — pI(X{; X5, Y))] }}} Perm grmgra)
€851(Q1,Q2)

(A.29)

Note that the ternfZ (Y1) mentioned above has been combme(ﬁ) (2?“(121) . f2 (p’ Y Prex@p, PX{“)X;(”Y{(”) }
with the term— I(Xl,Xg) appearing in all subcases of (A.28) ,(2) ,(2) ,(2))

to yield the H(Y;|X1) appearing throughout (A.29).

The expression in Theorem 1 is obtained from (A.29)
by dropping the constrainP ¥ # Py, AL from the first — min max {32 — pRy + 6x
maximization (which, given the contlnwty of the underlgin ~ ?€[0:1] (p7)€X
terms, is not really a constraint anyway), by noting that ( o o, )
if, in the resulting expression, the second maximization is(?, (1?11(?) o Fi{p 1 P gy P grayrar ) +
attained whenR, > I(X,;Y7), it will be dominated by p. ,(1) ,(1) ,(1))
the first maximization so that the second maximization can ¢s, (3,.0,)
be restricted to the cas®, < I(XQ,Yl) and finally by
negating the resulting exponent (and propagating the megat 9 min fo (p,% PX<2)X<2)Y<2>’PX’@)X“”?’(”) }

1 2 1 1 2 1

632(Q1,Q2)

as—max{---} = min{—-- -} throughout). (Pe@ g@ 5@
PX;@)X;@)?{@))
APPENDIX B €52(Q1,Q2)
A LOWERBOUND TO Er 1 . .
’ = min max min Ro — pR1+
We can lower bound the maximization of (3) oyeand A 0 (PMER (Pr ¢y Perm grangray
by applying the min-max theorem twice, as follows. P)gg?))gg)yl(z)’PX;@)X;(?){,{(?))
First we introduce a new parametgiand bound (3) as €51(Q1,Q2)xS52(Q1,Q2)
011 (Pv%Pwn ¢y Poray g7 A’m) +
Er1 > min ( Ry — pRy 4 0x (B.1) XX XX
0€0,1] _
P (Pv%PA@) c@1@), Pore) o120
. X x2y 2y L % ( )X (2)Y (2)
min S (P/\P”(l)%l)wl) PM(])A'(UA/(]))-F A2 10Xy Y
(Px(l)x(l)yﬁ), T XX YT X XY
1 2 1
Px;“)x;“)g’“)) = min min max_ < Rp — pRi+
€51(Q1,Q2) 6€[0,1] (PX§1>X§1)91<1) aPX;(l)X,;(l)f/{(l) , (pY)ED
_ . PX§2)X§2)Y1(2) aPX;(Z)X;(2)Y1’(2))
min f2 (p, A, PX(2)X(2)Y<2>’PX“”X'@)Y“”) €81(Q1,Q2)xS2(Q1,Q2)
(P2 4@ 42> 172 1ot
1 2 1
P gog@) 011 (Pa%P mxmym, Py /<1>X'<1>Y/<1>) +
€852(Q1,Q2) _
(B.2) 0f2 (Pﬁ, PX?)X@YJ”’PXﬁ?)X;“)YI’“)) (B.3)

wheref = 1—6 and we have dropped the constraint involving

R, from S,, resulting in a lower bound, and makin§, Since, as noted above, for fixedd,( P PeUPUlTOR

convex. Peroy grograns Pre g@p@, Pyre grergre), both fi and
Letting v = pA, we claim that for fixedd, the expres- fs are affine in(p, 7) the inner maximization in (B.3) is

sion in (B.2) being minimized ovef above is convex in attained at one of the poin{®,~) = {(0,0),(1,0),(1,1)}.

(p, 7). This follows from the fact that for fixed’A(l)szylm, After simplification, we obtain

Pyogmyra, Pregope, Py /<2>X'<2)Y/<2>) both f . .

and f, are affine in (p 7) The only problem would Ex; > min min max
, 00N (Pew gy Prrm gl

come from themax's appearing in these expressions, but x, 0¥

it can be checked that these maximizations are indepen- Px<2> ey ;<2)X;<2)y'<2>)

dent of (p,v) for fixed (PX(I)X(I)Y(I)’ P, ’(UX'(U{/’(Uv 681(@1;@2)><82(Q1,Q2)

1 (1 1 1), v (1
Peo gy, Py gropie). Letting & = {(z,9) : « 9[— E [1ogq1(Yl( XD XY = B XM+



(X 20, 70) + 11X 1) - Rl ]+
5[ - F [logql (Y, 2)|X12),X2(2))} - H(Y1(2)|X1(2))+
P 5.5

~Ri+0[-E [1ogq1(?(1)|f((1) )] -
(Y(1)|X(1)) —I—I( (1), Y (1))
(X(l) X(l) Y(l))—l- |I( 1) X (1) Y (1)) R2|+:|+
5[ —FE [logql(f/l )|X12),X2(2))} - H(Y1(2 |X1(2 )+
HEL ) + 10 X2, 7))

— Ry +0] — B [logn(V; V1,7, %,0)] -
(Y(1)|X(1))—|—I( (1), Y(l))
(X (1) X (1) 1)) + |I(X(1) X(l) Y(l)) R2|+:|+

L

Next, we note the identities
(%3 %0, Y2) = (%05 %) + HTR ) — H(Ta X0, Ko)
I(X1; X0, Y1) = I(X1; Xo) + H(Y1|Xs) — HY | X, Xo)
D(Py 3, %, /a1 Pg, x,) = —H(Y1| X1, Xo)—
Eg g s (Vi1%1, %) |
and use them, with the shorthandD(™) =
D(PY(m>|X<me<m>||Q1| <m)X2<m)) and D'(m) —

D(P; /<m>‘X/<m>X'<m)||Q1| (M)X’(m))’ for m e {1,2},
2
to rewrite the bound as

Ex, > min min max
0€[0.1] (P, @ xmym-Fy W (D@

Px§2>xéz)yl<2) P ;<2>X;<2)y1'<2))

€851(Q1,Q2)xS2(Q1,Q2)
B[P+ 1K) 4 1) — R+

5[ @ 4 (X x@. X(2))}

-+ 9[D(1) + I(Xl(l);f(él)) + I()A(;(l);ffll(l))
n |I(X’(1)-X'(1) y’u)) —R2|+}+
§[D<2>+I(X<2> XP) 4 1(X®, %@, Y1<2>)},

—Ri+96 [D’<1> F XWX 4 (x4
(X &0, 1) - Ralt |+
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9|+ 1(5,%; %) + 1(% §2>;X§2>,Y1<2>>}} (B.4)

where in simplifying the third expression in the maximipati
we have also exploited the constram‘t’e{Y(1 )= HY, W)
and H(V\” | X§”) = H(¥,®|%,?).

For Ry = 0 we can further simplify this expression. In
particular, forR; = 0, the first term in the inner maximization
is readily seen to be always smaller than the second term.
Additionally, the second and third terms are symmetric in
the primed and non-primed joint distributions, which, tthgpe
with the readily established joint convexity of the maximum
of these two terms on the constraint set, imply that the inner
minimization over the joint types is achieved when the pdme
and non-primed joint distributions are equal, in which ciwee
two terms are equal. Therefore, &f = 0 we have

ER 1 = min min

€lo, 1] (Pem gy Pe@ @y @)
(1) P (2) Ql (1) P (2) =Q2

oM + I(X(l)- XM+
157 0) + 1R %0, 90) - Bal* ]+

9|D@ + (X %) + 151 X, 9| (B8)
or

X1 Xa¥1"

Epq> min{ min {D+I(X1;X2)+I(X1;Y1)
Pg =Q1,P%,=Q2

+ | I(Xo; X1, Y1) — Rz|+];

PX1X2Y1

min [D+I(X1,X2)+I(X1,X2,§>1):|}
Pg =Q1,Px,=Q:

(B.6)

whereD = .D(PY1 \Xng | |(J1 |PX1X2)'
Simplifying Ep ; at Ry = 0 gives

Ep ;1 = max min |:D+I(X1;X2)+I(X1;i\/l):|;
Pgi%o9¢

Py, =Q1,P%,=Q2

min{ min [D—FI(Xl;Xg)-i—
Pgi%o9¢

Py, =Q1,P%,=Q2
(X35 1) + 1(Xes X, 1) — Raf*;

min {D+I(X1;X2) +I(X1;X27Yl)}
lexzyl
Pg =Q1,Px,=Q:

(B.7)
which is seen to be no bigger than the above lower bound on
ER 11 since |I(X2,X1,Y1) — R2|+ > 0, I(X]_;XQ,S/&) >
I(thl) and I(thl) + [I(X2; X1,Y1) — Re|t >
[I(X1; Y1) + I(X2; X1, Y1) — Ra|*.
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Another application of the lower bound (B.4) is in deterf7] N. Merhav, “Relations between random coding exponentisd a

mining the set of rate pair®;, R, for which E%, > 0. the statistical physics of random codes@ccepted to |EEE
N N . . . . 1?’1 . Trans. Inform. Theory, Sep. 2008. Also, available on-line at:
Let (X1, X2) be independent with marginal distributionk [http://www.ee.technion.ac.il/people/merhav/paget s/ . pdf].

and Q> and Y; be the result Of(Xl,Xg) passing through [8] N. Merhav, “Error exponents of erasureflist decodingisited via mo-

: R ments of distance enumerator$EEE Trans. Inform. Theory, Vol. 54,
the channelg;. We shall argue that ifR; < IA(Xl,Yl) + No. 10, pp. 4439-4447, Oct. 2008.

[1(X2; X1, Yl) - 32 Ji = I(le Yl) +JI(X2; Yi|Xy) — R2|+- [9] R. Etkin, N. Merhav, E. Ordentlich, “Error exponents gitimum decod-
andR; < [(Xl; X, Yl) = [(Xl; Y1|X2) then the expression ing for the interference channelProceedings of the IEEE International

: Symposium on Information Theory, Toronto, Canada, pp. 1523-1527, 6-
(B.4) must be greater than 0. Indeed, for the expression 11 July 2008.

(B.4) to equal 0, we see from the first term in the innglig] R. Etkin, E. Ordentlich, “Discrete Memoryless Intadace Channel:

maximum that the minimizing and joint distributions must Ne\INfOute:_ BO#ﬂd,"Prolgeedings of the IEllegg?teéggtéon;‘J‘ %meosiugom
; . _ N _ on Information Theory, Nice, France, pp. — , 24-29 June .

SatISfy p(q)e 9]‘(1;[he fOllOWIﬂg. case ¥ = 1('2 DW= 0, [11] C. Chang, HP Labs Technical Report, 2008.

and I(X,/;X;’) = 0; case 2.6 = 0, D ) = 0, and [12] J. Pokorny, H. Wallmeier, “Random coding bound and sopeduced

I(X(Q).X(Q)) —0orcase 30 <0 <1 DL = D@ — o by permutations for the multiple-access channdEEE Trans. Inform.
L2d ey S2) o (2) ' ’ Theory, Vol. 31, No. 6, pp. 741-750, Nov. 1985.

and I(X,; X,7) = I(X;7;X57) = 0. If case 1 holds [13] yu-Sun Liu, B. L. Hughes, “A new universal random codibgund for

then (Xl(l)’ X(1)7 f/l(l)) necessarily have the same joint dis- the multiple-access channelEEE Trans. Inform. Theory, Vol. 42, No.
tribution as (X1, X»,Y1), in which case, we see from the 2, pp. 376-386, Mar. 1996.
third term in the maximum in (B.4) thak; > I(Xl;ﬁ) +

11(Xo; X1,Y7) — RgJ*. Similarly, if case 2 holds then it

follows that(X(?, X{*, ¥*)) have the same joint distribution

as(X1, X», Y1), in which case, it follows again from the third

term in the maximum thak, > I(X;; X5, Y;). Finally, if case

3 holds then bot( X", X", V) and (X{?, X{”, V"))

have the same distribution gs{;, X5,Y1), in which case,

aftgr wﬁting R =01 +A§R1, we see again thag eithé?lg

I(Xl,}/i) + |I(X2;X1,Y1) — R2|+ or Ry > I(Xl;Xg,Yl)

must hold. Thus, the three cases together establish theeabov

claim that if Ry < I(X1;Y1) + [I(X2; V1| X1) — Ro|t and

Ry < I(Xy;Y1|X,) then the expression (B.4), and hence

E7}, 1, must be greater than 0. It can be checked that this region

is equivalent to

{Rl < I(Xl,i/l)} @] {{Rl + Ry < I(i/l;Xl,Xg)}
n {Rl < I(Xl,i/lng)}

which is represented in Fig. 1 in Section IV. It is shown in][11
that for the ensemble of constant composition codes coetpris
of i.i.d. codewords uniformly distributed over the typ€s

and Q-, the exponential decay rate of the average probability
of error for user 1 must necessarily be zero for rate pairs
outside of this region, even for optimum, maximum likelilloo
decoding.
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