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Abstract—Exponential error bounds for the finite–alphabet
interference channel (IFC) with two transmitter–receiver pairs,
are investigated under the random coding regime. Our focus is
on optimum decoding, as opposed to heuristic decoding rulesthat
have been used in previous works, like joint typicality decoding,
decoding based on interference cancellation, and decodingthat
considers the interference as additional noise. Indeed, the fact
that the actual interfering signal is a codeword and not an
i.i.d. noise process complicates the application of conventional
techniques to the performance analysis of the optimum decoder.
Using analytical tools rooted in statistical physics, we derive a
single letter expression for error exponents achievable under
optimum decoding and demonstrate strict improvement over
error exponents obtainable using suboptimal decoding rules, but
which are amenable to more conventional analysis.

Index Terms—Error exponent region, large deviations, method
of types, statistical physics.

I. I NTRODUCTION

TheM -user interference channel (IFC) models the commu-
nication betweenM transmitter-receiver pairs, wherein each
receiver must decode its corresponding transmitter’s message
from a signal that is corrupted by interference from the other
transmitters, in addition to channel noise. The information
theoretic analysis of the IFC was initiated over 30 year ago
and has recently witnessed a resurgence of interest, motivated
by new potential applications, such as wireless communication
over unregulated spectrum.

Previous work on the IFC has focused on obtaining inner
and outer bounds to the capacity region for memoryless
interference and noise, with a precise characterization ofthe
capacity region remaining elusive for most channels, even for
M = 2 users. The best known inner bound for the IFC is the
Han-Kobayashi (HK) region, established in [1]. It has been
found to be tight in certain special cases ([1], [2]), and recently
was found to be tight to within 1 bit for the two user Gaussian
IFC [3]. No achievable rates that lie outside the HK region are
known for any IFC withM = 2 users.

Our aim in this paper is to extend the study of achievable
schemes to the analysis of error exponents, or exponential
rates of decay of error probabilities, that are attainable as a
function of user rates. To our knowledge, there has been no
prior treatment of error exponents for the IFC. In particular,
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the error bounds underlying the achievability results in [1]
yield vanishing error exponents (though still decaying error
probability) at all rates.

The notion of an error exponent region, or a set of achiev-
able exponential rates of decay in the error probabilities for
different users at a given operating rate-tuple in a multi-user
communication network, was formalized recently in [4], and
studied therein for Gaussian multiple access and broadcast
channels. Our main result, presented in Section IV, is a single
letter characterization of an achievable error exponent region,
as a function of user rates, for theM = 2 user finite alphabet,
memoryless interference channel. The region is derived by
bounding the average error probability of random codebooks
comprised of i.i.d. codewords uniformly distributed over atype
class, under maximum likelihood (ML) decoding at each user.
Unlike the single user setting, in this case, the effective channel
determining each receiver’s ML decoding rule is induced both
by the noiseand the interfering user’s codebook. Our focus
on optimal decoding is a departure from the conventional
achievability arguments in [1] and elsewhere, which are based
on joint-typicality decoding, with restrictions on the decoder
to “treat interference as noise” or to “decode the interference”
in part or in whole. However, in this work, we confine our
analysis to codebook ensembles that are simpler than the
superposition codebooks of [1].

The analysis of the probability of decoding error under
optimal decoding is complicated due to correlations induced
by the interfering signal. Usual methods for bounding the
probability of error based on Jensen’s inequality and other
related inequalities (see, e.g., (8) below) fail to give good
results. Our bounding approach combines some of the clas-
sical information theoretic approaches of [5] and [6] with an
analytical technique from statistical physics that was applied
recently to the study of single user channels in [7], [8]. More
specifically, as in [5], we use auxiliary parametersρ and λ
to get an upper bound on the average probability of decoding
error under ML decoding, which we then bound using the
method of types [6]. Key in our derivation is the use of
distance enumerators in the spirit of [7] and [8], which allows
us to avoid using Jensen’s inequality in some steps, and allows
us to maintain exponential tightness in other inequalitiesby
applying them to only polynomially few terms (as opposed to
exponentially many) in certain sums that bound the probability
of decoding error. It should be emphasized, in this context,that
the use of this technique was pivotal to our results. Our earlier
attempts, that were based on more ‘traditional’ tools, failed to
provide meaningful results. In fact, they all turned out to be
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inferior to some trivial bounds.

The paper is organized as follows. The notation, various
definitions, and the channel model assumed throughout the
paper are detailed in Section II. In Section III, we derive an
“easy” set of attainable error exponents which we shall treat as
a benchmark for the exponents of the main section, Section IV.
The “easy” exponents are obtained by simple extensions to
the interference channel of existing error exponent results for
single user and multiple access channels, based on random
constant composition codebooks and suboptimal decoders.
Then, in Section IV, we derive another set of attainable
exponents by analyzing ML decoding for the channel induced
by the interfering codebook. In Section V, we show that the
minimizations required to evaluate the new error exponentscan
be written as convex optimization problems, and, as a result,
can be solved efficiently. We follow this up in Section VI with
a numerical comparison of the new exponents with the baseline
exponents of Section III for a simple IFC. These numerical
results demonstrate that the new exponents are never worse
(at least for the chosen channel and parameters) and, for most
rates, strictly improve over the baseline exponents.

An earlier version of this work was presented in [9].

II. N OTATION, DEFINITIONS, AND CHANNEL MODEL

Unless otherwise stated, we use lowercase and uppercase
letters for scalars, boldface lowercase letters for vectors,
uppercase (boldface) letters for random variables (vectors),
and calligraphic letters for sets. For example,a is a scalar,
v is a vector,X is a random variable,X is a random
vector, andS is a set. For a real numbera we shall,
on occasion, leta denote 1 − a. Also, we uselog(·) to
denote natural logarithm,E to denote expectation, and Pr
to denote probability. For independent random variablesX
and Y distributed according toPX,Y (x, y) = PX(x)PY (y),
(x, y) ∈ X×Y, we denote the conditional expectation operator

EX(·) as EX(f(X, Y ))
4
=
∑

x∈X f(x, Y )PX(x) for any
function f(·, ·). All information quantities (entropy, mutual
information, etc.) and rates are in nats. Finally, we use

.
=,

.

≤, etc., to denote equality or inequality to the first order
in the exponent, i.e.an

.
= bn ⇔ limn→∞

1
n

log an

bn
= 0;

an

.

≤ bn ⇔ lim supn→∞
1
n

log an

bn
≤ 0.

The empirical probability mass function of the finite al-
phabet sequencev = (v(1), . . . , v(n)) with alphabetV is
denoted as the vector{Pv(v), v ∈ V}, where eachPv(v)
is the relative frequency ofv(i) = v along v. The type
class associated with an empirical probability mass function
P , which will be denoted byTP , is the set of alln–vectors
{v} whose empirical probability mass function is equal toP .
Similar conventions will apply to pairs and triples of vectors
of length n, which are defined over the corresponding prod-
uct alphabets. Information measures pertaining to empirical
distributions will be denoted using the standard notational
conventions, except that we use “ˆ ” as well as subscripts that
indicate the sequences from which these empirical distribu-
tions were extracted. For example, we writêHxyz(X, Y |Z)

and Îxyz(X, Y ; Z) to denote the conditional entropy of

(X, Y ) given Z and the mutual information between(X, Y )
and Z, respectively, computed with respect to the empirical
distribution Pxyz(x, y, z). We denote the relative entropy
or Kullback-Leibler divergence between distributionsPX and

PY as D(PX ||PY )
4
=
∑

x PX(x) log(PX(x)/PY (x)), and
we write D(PX|Z ||PY |Z |PZ) for the conditional relative
entropy between conditional distributionsPX|Z and PY |Z

conditioned onPZ , which is defined asD(PX|Z ||PY |Z |PZ)
4
=

∑

x,z PZ(z)PX|Z(x|z) log(PX|Z(x|z)/PY |Z(x|z)) .

We continue with a formal description of the two–user
IFC setting. Letxi = (xi(1), . . . , xi(n)) ∈ Xn

i , i = 1, 2,
denote the channel input signals of the two transmitters, and
let yi = (yi(1), . . . , yi(n)) ∈ Yn

i be the corresponding
channel outputs received by decoders 1 and 2, whereXi

and Yi denote the input and output alphabets, and which
we assume to be finite. Each (random) output symbol pair
(Y1(j), Y2(j)) is assumed to be conditionally independent
of all other outputs, and all input symbols, given the two
corresponding (random) input symbols(X1(j), X2(j)), and
the corresponding conditional probability is assumed to be
constant from symbol to symbol. An(n, R1, R2) code for
the IFC consists of pairs of encoding and decoding functions,
(f1, f2) and (g1, g2), respectively, wherefi : {1, . . . , Mi} →
Xn

i , Mi = denRie, and gi : Yn
i → {1, . . . , Mi}, i = 1, 2.

The performance of the code is characterized by a pair of
error probabilitiesPe,i = Pr(Ŵi 6= Wi), i = 1, 2, where
Ŵi = gi(Y i) and Y i is the random output when useri
transmits Xi = fi(Wi), assuming the messagesWi are
uniformly distributed on the sets of indices{1, 2, . . . , Mi},
i = 1, 2. The per user error probabilities depend on the
channel only through the marginal conditional distributions
of the channel outputs given the corresponding channel in-
put pairs. We shall denote these conditional distributionsas

qi(y|x1, x2)
4
= Pr(Yi(j) = y|(X1(j), X2(j)) = (x1, x2)).

A pair of error exponents(E1, E2) is attainable at a rate
pair (R1, R2) if there is a sequence of(n, R1, R2) codes
satisfyingEi ≤ lim infn→∞ −(1/n) logPe,i for i = 1, 2. The
set of all attainable error exponents at(R1, R2) comprises the
error exponent region at(R1, R2) and we shall denote it as
E(R1, R2). The main result of this paper is a single letter
characterization of a non–trivial subset ofE(R1, R2) for each
R1, R2.

III. B ACKGROUND

In this section, we present achievable error exponents for
the interference channel which are based on known results of
error exponents for single user and multiple access channels
(MAC) for fixed composition codebooks [12], [13], [11].
These exponents will be used as a baseline for comparing the
performance of the error exponents that we derive in Section
IV.

In the following, we will focus on the error performance of
user 1, and as a result, all explanations and expressions will
be specialized to receiver 1. Similar expressions also holdfor
user 2 with the exchange of indices1 ↔ 2.
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A possibly suboptimal decoder for the interference channel
can be obtained from a given multiple access channel decoder
by simply ignoring the decoded message of the interfering
transmitter. For example, following [13], we can use a mini-
mum entropy decoder that for a given received vectory1 at
receiver1 computes(x̂1, x̂2)

(x̂1, x̂2) = arg min
(x̃1,x̃2)∈C1×C2

Ĥx̃1x̃2y1
(X1, X2|Y1),

and throws awaŷx2.

It follows from [13] that for random codebooks of fixed
compositionQ1, Q2, the average probability of decoding both
messages in error, where the averaging is done over the
random choice of codebooks, satisfies:

Pr(x̂1 6= x1, x̂2 6= x2)
.

≤ e−nE1,2

where

E1,2 = min
P

X̂1X̂2Ŷ1
:P

X̂1
=Q1,P

X̂2
=Q2

D(P
Ŷ1|X̂1X̂2

||q1|PX̂1,X̂2
)

+ I(X̂1; X̂2)

+ |I(X̂1; Ŷ1) + I(X̂2; X̂1, Ŷ1) − R1 − R2|
+

with | · |+ = max{·, 0}.

In addition, the average probability of decoding the message
of the interfering transmitter correctly but the message ofthe
desired transmitter incorrectly satisfies:

Pr(x̂1 6= x1, x̂2 = x2)
.

≤ e−nE1|2

where

E1|2 = min
P

X̂1X̂2Ŷ1
:P

X̂1
=Q1,P

X̂2
=Q2

D(P
Ŷ1|X̂1X̂2

||q1|PX̂1,X̂2
)

+ I(X̂1; X̂2) + |I(X̂1; X̂2, Ŷ1) − R1|
+.

Therefore, the overall average error performance of this MAC
decoder in the IFC satisfies:

Pr(x̂1 6= x1)
.

≤ e−n min{E1,2,E1|2}.

A second suboptimal decoder that leads to tractable error
performance bounds is the single user maximum mutual
information decoder (which in this case coincides with the
minimum entropy decoder):

x̂1 = argmax
x1∈C1

Îx1y1
(X1; Y1).

In this case, standard application of the method of types [11]
leads to the following bound on the average error probability
under random fixed composition codebooks of typesQ1, Q2:

Pr(x̂1 6= x1)
.

≤ e−nE1,

where

E1 = min
P

X̂1X̂2Ŷ1
:P

X̂1
=Q1,P

X̂2
=Q2

D(P
Ŷ1|X̂1X̂2

||q1|PX̂1,X̂2
)

+ I(X̂1; X̂2) + |I(X̂1; Ŷ1) − R1|
+.

We can choose the better decoder between these two, that
leads to the better error performance. Therefore, we obtain
that

EB,1 = max{E1; min{E1,2; E1|2}} (1)

is an achievable error exponent at receiver 1, with an analogous
exponent following for receiver 2.

IV. M AIN RESULT

Our main contribution is stated in the following theorem,
which presents a new error exponent region for the discrete
memoryless two–user IFC. While the full proof appears in
Appendix A, we also provide a proof outline below, to give
an idea of the main steps.

Theorem 1: For a discrete memoryless two-user IFC as
defined in Section I, for a family of block codes of ratesR1

andR2 a decoding error probability for user 1 satisfying

lim inf
n→∞

−
1

n
log P e,1(n) ≥ ER,1(R1, R2, Q1, Q2, ρ, λ) (2)

can be achieved as the block length of the codesn goes to
infinity, where the error exponentER,1(R1, R2, Q1, Q2, ρ, λ)
is given by

ER,1(R1, R2, Q1, Q2, ρ, λ) =

{

R2 − ρR1 + min

{

min
(P

X̂1X̂2Ŷ1
,P

X̂′
1

X̂′
2

Ŷ ′
1
)

∈S1(Q1,Q2)

f1

(

ρ, λ, P
X̂1X̂2Ŷ1

, P
X̂′

1X̂′
2Ŷ ′

1

)

;

min
(P

X̂1X̂2Ŷ1
,P

X̂′
1

X̂′
2

Ŷ ′
1
)

∈S2(Q1,Q2,R2)

f2

(

ρ, λ, P
X̂1X̂2Ŷ1

, P
X̂′

1X̂′
2Ŷ ′

1

)

}}

(3)

where

f1
4
=g(ρ, λ, P

X̂1X̂2Ŷ1
, P

X̂′
1X̂′

2Ŷ ′
1
) − H(Ŷ1|X̂1) + ρI(X̂ ′

1; Ŷ
′
1)

+ max

{

I(X̂2; X̂1, Ŷ1) − R2;

ρλ(I(X̂2; X̂1, Ŷ1) − R2)

}

+ max

{

ρI(X̂ ′
2; Ŷ

′
1) + ρI(X̂ ′

2; X̂
′
1, Ŷ

′
1) − R2;

ρ(I(X̂ ′
2; X̂

′
1, Ŷ

′
1) − R2); ρλ(I(X̂ ′

2; X̂
′
1, Ŷ

′
1) − R2)

}

(4)

f2
4
=g(ρ, λ, P

X̂1X̂2Ŷ1
, P

X̂′
1X̂′

2Ŷ ′
1
) − H(Ŷ1|X̂1)

+ ρI(X̂ ′
1; X̂

′
2, Ŷ

′
1) + I(X̂2; X̂1, Ŷ1) − R2 (5)

with

g
4
= − ρλE

X̂1,X̂2,Ŷ1
log q1(Ŷ1|X̂1, X̂2)

− ρλE
X̂′

1,X̂′
2,Ŷ ′

1
log q1(Ŷ

′
1 |X̂

′
1, X̂

′
2)

and

S1(Q1, Q2)
4
=
{

(P
X̂1X̂2Ŷ1

, P
X̂′

1X̂′
2Ŷ ′

1
) ∈ S2 : P

Ŷ1
= P

Ŷ ′
1
,

P
X̂1

= P
X̂′

1
= Q1, PX̂2

= P
X̂′

2
= Q2

}

(6)

S2(Q1, Q2, R2)
4
=
{

(P
X̂1X̂2Ŷ1

, P
X̂′

1X̂′
2Ŷ ′

1
) ∈ S2 :

P
X̂1

= P
X̂′

1
= Q1, PX̂2

= P
X̂′

2
= Q2,

R2 ≤ I(X̂2; Ŷ1), PX̂2,Ŷ1
= P

X̂′
2,Ŷ ′

1

}

(7)

whereS is the probability simplex inX1 × X2 × Y1. In the
bound (2),(ρ, λ) ∈ [0, 1]2 can be chosen to maximize the error
exponentER,1.

In eqs. (2), (3), (6), and (7),Q1 andQ2 are probability dis-
tributions defined over the alphabetsX1 andX2 respectively.
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Expressions for the error probabilityPe,2 and error exponent
ER,2 equivalent to (2) and (3) can be stated for the receiver of
user 2 by replacingX1 ↔ X2, Y1 → Y2, andq1 → q2 in all
the expressions. By varyingQ1 and Q2 over all probability
distributions inX1 andX2 respectively, we obtain the error
exponent region for fixed ratesR1 andR2.

Remark 1: A lower bound toE∗
R,1

4
= maxρ,λ ER,1(R1,

R2, Q1, Q2, ρ, λ) is derived in Appendix B (cf. equation (B.4))
that is closer in form to the expressions underlying the bench-
mark exponentEB,1 presented above. In particular, this lower
bound allows us to establish analytically (see Appendix B)
that EB,1 ≤ E∗

R,1 at R1 = 0 (and for sufficiently smallR1).
Numerical computations, as presented in Section VI, indicate
that this inequality can be strict.

A second application of the lower bound (B.4) is to deter-
mine the set of rate pairsR1, R2 for which E∗

R,1 > 0. We
show in Appendix B that this region includes

R1 = {R1 < I(X̂1; Ŷ1)} ∪
{

{R1 + R2 < I(Ŷ1; X̂1, X̂2)}

∩ {R1 < I(X̂1; Ŷ1|X̂2)
}

,

with an analogous region following for the set whereE∗
R,2 > 0

(see Fig. 1).

R

R

1

1

2

^ ^

11I(X ; Y )

^ ^

12I(X ; Y )

^ ^

11 2I(X ; Y X )|
^

^ ^

12 1I(X ; Y X )|
^

R

Fig. 1. Rate regionR1 whereE∗
R,1

> 0.

Furthermore, it is shown in [11] that the error exponent
achievable for user no. 1 with optimal decoding and random
fixed composition codebooks is zero outside the closure of
the regionR1. This result, together with our contribution
characterize the rate region where the attainable exponents
with random constant composition codebooks are positive.
Finally, it can be shown that this region is contained in the
HK region [11].

Remark 2: Theorem 1 presents an asymptotic upper bound
on the average probability of decoding error for fixed compo-
sition codebooks, where the averaging is done over the random
choice of codebooks. It is straightforward to show (see, e.g.,
[4]) that there exists a specific (i.e. non-random) sequenceof
fixed composition codebooks of increasing block lengthn for
which the same asymptotic error performance can be achieved.

Proof Outline. For n non–negative realsa1, . . . , an and b ∈
[0, 1], the following inequality [5, Problem 4.15(f)] will be

frequently used:
(

n
∑

i=1

ai

)b

≤

n
∑

i=1

ab
i . (8)

For a given block lengthn, we generate the codebook of
user i = 1, 2 by choosingMi sequencesxi of length n
independently and uniformly over all the sequences of length
n and typeQi in Xn

i . Note thatQi, i = 1, 2 have rational
entries with denominatorn. We will write xi,j to denote the
j-th codeword of useri.

For a given channel outputy1 ∈ Yn
1 , the best decod-

ing rule to minimize the probability of error in decoding
the message of user 1 is ML decoding, which consists of
picking the messagem which maximizesP (y1|x1,m) =
∑M2

i=1 q
(n)
1 (y1|x1,m, x2,i)/M2. Letting

q
(n)
1,C2

(y1|x1)
4
=

1

M2

M2
∑

i=1

q
(n)
1 (y1|x1, x2,i) (9)

be the “average” channel observed at receiver 1, where the
averaging is done over the codewords of user 2 inC2,
the decoding error probability at receiver 1 for transmitted
codewordx1,m and codebooksC1 andC2 is given by:

Pe,1(x1,m, C1, C2) =
∑

y
1
∈Yn

1

Pe,1(x1,m, C1, C2|y1)q
(n)
1,C2

(y1|x1,m) (10)

With the introduction of the average channel (9), and the
use of two auxiliary parameters(ρ, λ) ∈ [0, 1]2, we can follow
the approach of [5] to bound the conditional probability of
decoding errorPe,1(xm, C1, C2|y1). Taking expectation over
the random choice of codebooksC1 and C2 we obtain an
average error probability:

PE1 ≤Mρ
1

∑

y1∈Yn
1

EC2

{

EX1

[

[q
(n)
1,C2

(y1|X1)]
ρλ

]

· Eρ

X1

[

[q
(n)
1,C2

(y1|X1)]
λ

]}

(11)

where we used Jensen’s inequality to move the second expec-
tation inside(·)ρ.

Equation (11) is hard to handle, mainly due to the corre-
lation introduced byC2 between the two factors inside the
outer expectation. Furthermore, the evaluation of the inner
expectations overX1 are complicated due to the powersρλ

and λ affecting q
(n)
1,C2

(y1|X1). Bounding methods based on
Jensen’s inequality and (8) fail to give good results due to the
loss of exponential tightness.

We proceed with a refined bounding technique based on
the method of types inspired by [7]. While in this approach
we still use (8), we use it to bound sums with a number of
terms that only grows polynomially withn, and as a result,
exponential tightness is preserved.

Since the channel is memoryless,

q
(n)
1,C2

(y1|x1) =
1

M2

M2
∑

i=1

n
∏

t=1

q1(y1(t)|x1(t), x2,i(t))

=
1

M2

∑

P
X̂1X̂2Ŷ1

Nx1,y
1
(P

X̂1X̂2Ŷ1
)
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· enE
X̂1X̂2Ŷ1

[log q1(Ŷ1|X̂1,X̂2)] (12)

where we usedNx1,y1
(P

X̂1X̂2Ŷ1
) to denote the number of

codewordsx2 in C2 such that(x1, x2, y1) have empirical
distribution P

X̂1X̂2Ŷ1
. We also usedE

X̂1X̂2Ŷ1
(·) to denote

expectation with respect to the distributionP
X̂1X̂2Ŷ1

.
Replacing (12) in (11) and using (8) three times, we obtain:

PE1 ≤
Mρ

1

M2

∑

P̂

∑

P̂ ′

∑

y
1
∈Yn

1

EC2

{

EX1

[

Nρλ

X1,y1

(P̂ )

]

· Eρ

X1

[

Nλ

X1,y1

(P̂ ′)

]

}

· en[ρλE
P̂

log q1(Ŷ1|X̂1,X̂2)+λE
P̂ ′ log q1(Ŷ ′

1 |X̂
′
1,X̂′

2) (13)

where we used̂P = P
X̂1X̂2Ŷ1

and P̂ ′ = P
X̂′

1X̂′
2Ŷ ′

1
to shorten

the expression.
We next consider the bounding of

E(y1, P̂ , P̂ ′)
4
=

EC2

{

EX1

[

Nρλ

X1,y1

(P̂ )

]

E
ρ

X1

[

Nλ

X1,y
1

(P̂ ′)

]

}

, (14)

and note thatNX1,y1
(P̂ ) and NX1,y1

(P̂ ′) are formed by
sums of an exponentially large number of indicator functions,
each of which takes value 1 with exponentially small probabil-
ity. These sums concentrate around their means, which show
different behavior depending on how the number of terms
in the sum (enR2) compares to the probability of each of
the indicator functions taking value 1 (depending on the case
considered, these probabilities take the forme−nI(X̂2;X̂1,Ŷ1),
e−nI(X̂′

2;X̂
′
1,Ŷ ′

1), or e−nI(X̂′
2;Ŷ

′
1 )). Whenever one of the factors

in (14) concentrates around its mean it behaves as a constant,
and hence is uncorrelated with the remaining factor. As a
result, the correlation between the two factors of (14), which
complicates the analysis, can be circumvented. We give the
details of this part of the derivation in Appendix A, but note
here that the resulting bound onE(y1, P̂ , P̂ ′) depends on
y1 only through a factor1(y1 ∈ P

Ŷ1
, P

Ŷ ′
1
; P

X̂1
= P

X̂′
1

=

Q1; PX̂2
= P

X̂′
2

= Q2). Therefore, the innermost sum in
(13) can be evaluated by counting the number of vectors
y1 ∈ Yn

1 that have empirical typesP
Ŷ1

and P
Ŷ ′
1
. Note

that this count can only be positive forP
Ŷ1

= P
Ŷ ′
1
. This

count is approximately equal toenH(Ŷ1) to first order in the
exponent. Furthermore, the sums overP̂ and P̂ ′ in (13) have
a number of terms that only grows polynomially withn.
Therefore, to first order, the exponential growth rate of (13)
equals the maximum exponential growth rate of the argument
of the outer two sums, where the maximization is performed
over the distributionsP̂ and P̂ ′ which are rational, with
denominatorn. We can further upper bound the probability of
error by enlarging the optimization region, maximizing over
any probability distributionsP̂ , P̂ ′.

V. CONVEX OPTIMIZATION ISSUES

In order to get a valid evaluation ofER,1(R1, R2, Q1,
Q2, ρ, λ), for any givenQ1, Q2, ρ, λ satisfying the constraints
of the outer maximization, we need to accurately solve the

inner minimization problems. A brute force search may not
give accurate enough results in reasonable time. As will be
shown below, the first minimization problem in (3) is a convex
problem, and as a result, it that can be solved efficiently.
In addition, convexity allows to lower bound the objective
function by its supporting hyperplane, which in turn, allows
to get a reliable1 lower bound through the solution of a linear
program.

The second minimization problem is not convex due to the
non–convex constraintR2 ≤ I(X̂2; Ŷ1). If we remove this
constraint, it will be later shown that we obtain a convex
problem that can be solved efficiently. There are two possible
situations:

The first situation occurs when the optimal solution to the
modified problem satisfiesR2 ≤ I(X̂2; Ŷ1): in this case, the
solution to the modified problem is also a solution to the
original problem.

The second situation is when the optimal solution to the
modified problem satisfiesR2 > I(X̂2; Ŷ1): in this case, a
solution to the original problem must satisfyR2 = I(X̂2; Ŷ1).
We prove this statement by contradiction. LetP ∗

1 be the
optimal solution to the modified problem, andP ∗

2 be an
optimal solution to the original problem. Now assume con-
versely, that there is noP ∗

2 that satisfiesR2 = I(X̂2; Ŷ1).
With this assumption, we have that atP ∗

2 , R2 < I(X̂2; Ŷ1).
Let D , {P = (P

X̂1X̂2Ŷ1
, P

X̂′
1X̂′

2Ŷ ′
1
) : P

X̂1
= P

X̂′
1

=

Q1, PX̂2
= P

X̂′
2

= Q2}. Note that D is a convex set

and P ∗
1 , P ∗

2 ∈ D. Due to the continuity ofI(X̂2; Ŷ1), the
straight line inD that joins P ∗

1 and P ∗
2 must pass through

an intermediate pointP = αP ∗
1 + (1 − α)P ∗

2 , α ∈ (0, 1),
that satisfiesI(X̂2; Ŷ1) = R2. Let f2(·) be the objective
function of the second minimization problem in (3), restricted
to D. It will be shown later thatf2(·), restricted to this
domain, is a convex function. By hypothesis,f2(P ) > f2(P

∗
2 )

and we havef2(P
∗
1 ) ≤ f2(P

∗
2 ) < f2(P ). On the other

hand, from the convexity off2(·), restricted toD, we have
f2(P ) ≤ αf2(P

∗
1 ) + (1 − α)f2(P

∗
2 ) ≤ f2(P

∗
2 ) and we get a

contradiction. Therefore, it follows that there is a solution P ∗
2

to the original problem that satisfiesR2 = I(X̂2; Ŷ1).
Let f1(·) be the objective function of the first minimization

problem in (3). First, we note thatP ∗
2 satisfies the constraints

of the first minimization problem since they are less restrictive
than the constraints of the second minimization problem in
(3). We next prove thatf1(P

∗
2 ) = f2(P

∗
2 ). As a result, the

optimal solutionP ∗ of the first minimization problem satisfies
f1(P

∗) ≤ f1(P
∗
2 ) = f2(P

∗
2 ), and we do not need to know

f2(P
∗
2 ) to evaluate the argument of the maximization in (3).

Using the fact that atP ∗
2 , I(X̂2; Ŷ1) = I(X̂ ′

2; Ŷ
′
1) = R2, we

have:

f2(P
∗
2 ) − f1(P

∗
2 )

= ρI(X̂ ′
1; X̂

′
2, Ŷ

′
1) − ρI(X̂ ′

1; Ŷ
′
1) − ρ(I(X̂ ′

2; X̂
′
1, Ŷ

′
1) − R2)

= ρ
[

I(X̂ ′
2; X̂

′
1, Ŷ

′
1) − I(X̂ ′

2; Ŷ
′
1) − I(X̂ ′

2; X̂
′
1, Ŷ

′
1) + R2

]

= 0, (15)

1In our implementation we solve the original convex optimization problem
using the MATLAB functionfmincon.
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where we used the identityI(X̂ ′
1; X̂

′
2, Ŷ

′
1) − I(X̂ ′

1; Ŷ
′
1) =

I(X̂ ′
2; X̂

′
1, Ŷ

′
1) − I(X̂ ′

2; Ŷ
′
1) in the second equality.

In summary, if the solution to the second minimization
problem in (3), without the constraint onR2, satisfiesR2 >
I(X̂2; Ŷ1), then the first minimization problem in (3) dom-
inates the expression. Otherwise, the solution to the second
minimization problem in (3) without the constraintR2 ≤
I(X̂2; Ŷ1), equals the solution to the second minimization
problem with this constraint.

It remains to show that the objective functions of
the minimization problems in (3),f1(PX̂1X̂2Ŷ1

, P
X̂′

1X̂′
2Ŷ ′

1
),

f2(PX̂1X̂2Ŷ1
, P

X̂′
1X̂′

2Ŷ ′
1
), restricted to the domainD, are convex

functions. Since the sum of convex functions is convex, to
prove the convexity off1(·) onD, we only need to prove that
the different terms of

f1 = − ρλE
X̂1X̂2Ŷ1

log q(Ŷ1|X̂1, X̂2)−

ρλE
X̂′

1X̂′
2Ŷ ′

1
log q(Ŷ ′

1 |X̂
′
1, X̂

′
2) − H(Ŷ1|X̂1) + ρI(X̂ ′

1; Ŷ
′
1)

+ max

{

I(X̂2; X̂1, Ŷ1) − R2;

ρλ(I(X̂2; X̂1, Ŷ1) − R2)

}

+ max

{

ρI(X̂ ′
2; Ŷ

′
1) + ρI(X̂ ′

2; X̂
′
1, Ŷ

′
1) − R2;

ρ(I(X̂ ′
2; X̂

′
1, Ŷ

′
1) − R2); ρλ(I(X̂ ′

2; X̂
′
1, Ŷ

′
1) − R2)

}

(16)

are convex withinD.

First, we have that−ρλE
X̂1X̂2Ŷ1

log q(Ŷ1|X̂1, X̂2) −

ρλE
X̂′

1X̂′
2Ŷ ′

1
log q(Ŷ ′

1 |X̂
′
1, X̂

′
2) is linear in

(P
X̂1X̂2Ŷ1

, P
X̂′

1X̂′
2Ŷ ′

1
) and therefore convex. Also, we

have that−H(Ŷ1|X̂1) = H(X̂1) − H(X̂1, Ŷ1) is convex for
fixed P

X̂1
due to the concavity ofH(X̂1, Ŷ1).

In addition,I(X̂ ′
1; Ŷ

′
1) can be written asD(P

X̂′
1Ŷ ′

1
||P

X̂′
1
×

P
Ŷ ′
1
). Let P = λP̂ + (1 − λ)P̌ for any P̂ , P̌ such that

P̂
X̂′

1
= P̌

X̂′
1

andλ ∈ [0, 1]. We have thatP
X̂′

1Ŷ ′
1

= λP̂
X̂′

1Ŷ ′
1
+

(1−λ)P̌
X̂′

1Ŷ ′
1

andP
X̂′

1
×P

Ŷ ′
1

= P̂
X̂′

1
×(λP̂

Ŷ ′
1
+(1−λ)P̌

Ŷ ′
1
) =

λ(P̂
X̂′

1
× P̂

Ŷ ′
1
) + (1 − λ)(P̌

X̂′
1
× P̌

Ŷ ′
1
). The convexity of

ρI(X̂ ′
1; Ŷ

′
1) for fixed P

X̂′
1

follows from the convexity of
D(P‖Q) in the pair(P, Q):

I(X̂ ′
1; Ŷ

′
1)

∣

∣

∣

∣

P

= D(P
X̂′

1Ŷ ′
1
‖P

X̂′
1
× P

Ŷ ′
1
)

≤ λD(P̂
X̂′

1Ŷ ′
1
‖P̂

X̂′
1
× P̂

Ŷ ′
1
)

+ (1 − λ)D(P̌
X̂′

1Ŷ ′
1
‖P̌

X̂′
1
× P̌

Ŷ ′
1
)

= λI(X̂ ′
1; Ŷ

′
1)

∣

∣

∣

∣

P̂

+ (1 − λ)I(X̂ ′
1; Ŷ

′
1)

∣

∣

∣

∣

P̌

.

(17)

Continuing with the next term of (16),

max
{

I(X̂2; X̂1, Ŷ1) − R2; ρλ(I(X̂2; X̂1, Ŷ1) − R2)
}

we note that it is the maximum of two convex functions,
and therefore convex. The convexity of each of the individual

functions follows from the convexity ofI(X̂2; X̂1, Ŷ1) for
fixed P

X̂1
, P

X̂2
, which can be proved along the same lines

as (17).

Finally, we consider the last term of (16):

max

{

ρI(X̂ ′
2; Ŷ

′
1) + ρI(X̂ ′

2; X̂
′
1, Ŷ

′
1) − R2;

ρ(I(X̂ ′
2; X̂

′
1, Ŷ

′
1) − R2); ρλ(I(X̂ ′

2; X̂
′
1, Ŷ

′
1) − R2)

}

.

Each of the arguments of themax{. . .} can be shown to be
the sum of convex functions for fixedP

X̂′
1

and P
X̂′

2
, using

a similar argument as the one used to prove (17). Since the
maximum of convex functions is convex, the convexity off1

restricted toD follows.

Using similar arguments, it is easy to show that

f2 = −ρλE
X̂1X̂2Ŷ1

log q1(Ŷ1|X̂1, X̂2)−

ρλE
X̂′

1X̂′
2Ŷ ′

1
log q1(Ŷ

′
1 |X̂

′
1X̂

′
2) − H(Ŷ1|X̂1)+

ρI(X̂ ′
1; X̂2, Ŷ

′
1) + I(X̂2; X̂1, Ŷ1) − R2

is convex inD.

VI. N UMERICAL RESULTS

In this section, we present a numerical example to show
the performance of the error exponent region introduced in
Theorem 1. We use as a baseline for comparison the error
exponent region of Section III, which is obtained with minor
modifications from known results for single user and multiple
access channels.

We present results for the binary Z-channel model:Y1 =
X1 ∗ X2 ⊕ Z, Y2 = X2, whereX1, X2, Y1, Y2 ∈ {0, 1}, Z ∼
Bernoulli(p), ∗ is multiplication, and⊕ is modulo 2 addition.
This is a modified version of the binary erasure IFC studied
in [10], where we add noiseZ to the received signal of user
1. In the results presented here, we fixp = 0.01.

The boundary of the error exponent region is a surface in
four dimensionsR1, R2, ER,1, ER,2. This surface can be ob-
tained parametrically by computingER,1, ER,2 as a function
of R1, R2, Q1, Q2, by optimizing overρ andλ in (3) and in
the corresponding expression forER,2. The parameterization
of ER,i in terms ofR1, R2, Q1, Q2, allows the study of the
error performance as a function of the parameters that directly
influence it.

Fig. 2 shows that the error exponents under optimal decod-
ing derived in this paper can be strictly better than the baseline
error exponents of Section III. This suggests that the inequality
obtained in Appendix B forR1 = 0 can be strict. In addition,
in all the plots that we computed for the Z-channel for different
values ofQ1, Q2 and R2 we were not able to find a single
case where the baseline exponentEB,1 was larger thanER,1.

We see that the curves ofER,1 (EB,1) for fixed R2, Q1, Q2

have a linear part forR1 below a critical valueR(R)
1c (R(B)

1c ),
and a curvy part forR1 > R

(R)
1c (R1 > R

(B)
1c ) (note that

the critical values depend on the parametersR2, Q1 andQ2).
Figure 3 shows the optimal parametersρ andλ for the ER,1

curves shown in Fig. 2 forR2 = 0.139 and R2 = 0.277
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Fig. 2. Error exponents as a function ofR1 for two different values ofR2

and fixed choicesQ1, Q2. All the rates are in nats.
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Fig. 3. Optimal parametersρ andλ for the ER,1 curves of Fig. 2. All the
rates are in nats.

nats/channel use. We see that for the linear part of theER,1

curvesρ = 1 and λ = 1/2 are optimal, while for the curvy
part (i.e. R1 > R

(R)
1c ) the optimal ρ decreases to 0 and

the optimal λ increases towards 1. ForR1 in the interval
(0, min{R

(R)
1c ; R

(B)
1c }) the gap between theER,1 and EB,1

curves remains constant as both curves are lines with slope
−1, and this gap is equal to the gap atR1 = 0. In general, any
gap betweenER,1 andEG,1 at R1 = 0 will remain constant
in the interval where both curves have slope−1. We also note
since the optimal parametersρ andλ vary for different rates,
these parameters are indeed active, i.e. they have influenceon
the resulting error exponent.

The curves of Fig. 2 are obtained for fixed choices
of Q1 and Q2, which are the distributions used to
generate the random fixed composition codebooks.
As Q1 and Q2 vary in the probability simplex S,
we obtain the four-dimensional error exponent region
{R1, R2, ER,1(R1, R2, Q1, Q2), ER,2(R1, R2, Q1, Q2) :
Q1, Q2 ∈ S}. In order to obtain a two-dimensional plot of
the region, we consider a projection: we fixR2 varying R1

and plot the maximum value overQ1 and Q2 in the error

exponent region ofmin{ER,1, ER,2}. This corresponds to
choosingQ1 andQ2 in order to maximize the error exponent
simultaneously achievable for both users. Figure 4 shows this
projection forR2 = 0.139 andR2 = 0.277 nats/channel use,
where, for reference, we included the corresponding curves
for the error exponentsEB,1, EB,2 of Section III.
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Fig. 4. Maximum error exponent simultaneously achievable for both users
for fixed R2 as a function ofR1.

For the noiseless binary channel of user 2,ER,2 =
max{H(Q2) − R2; 0}, and as a result,ER,2 decreases with
increasing Pr(X2 = 1) for Pr(X2 = 1) ≥ 1/2. On the
other hand, because of the multiplication betweenX1 andX2

in the received signalY1, increasing Pr(X2 = 1) results in
less interference for user 1, and a larger value ofER,1. It
follows that there is a direct trade-off betweenER,1 andER,2

through the choice ofQ2, and whenevermin{ER,1, ER,2} is
maximized,ER,1 = ER,2. Therefore, in the curve of Fig. 4,
ER,1 = ER,2.

From the plots of Figs. 2 and 4, we see that the error
exponents obtained from Theorem 1 sometimes outperform
and are never worse than the baseline error exponents of
Section III.

APPENDIX A
PROOF OFTHEOREM 1

It is easy to see that the optimum decoder for user 1
picks the messagem (1 ≤ m ≤ M1) that maximizes
(1/M2)

∑

x2∈C2
q
(n)
1 (y1|x1, x2), where M1 = denR1e and

M2 = denR2e. Applying Gallager’s general upper bound to
the “channel”P (y1|x1) = 1

M2

∑

x2∈C2
q
(n)
1 (y1|x1, x2), we

have for user no. 1:

PE1 ≤
∑

y1

[

1

M2

∑

x2∈C2

q
(n)
1 (y1|x1, x2)

]ρλ

×





∑

x′
1 6=x1

(

1

M2

∑

x2∈C2

q
(n)
1 (y1|x

′
1, x2)

)λ




ρ

, (A.1)

where λ ≥ 0 and ρ ≥ 0 are arbitrary parameters to be
optimized in the sequel. Thus, the average error probability
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is upper bounded by the expectation of the above w.r.t. the
ensemble of codes of both users. Let us take the expectation
w.r.t. the ensemble of user 1 first, and we denote this expec-
tation operator byEC1{·}. Since the codewords of user 1 are
independent, the expectation of the summand in the sum above
is given by the product of expectations, namely, the product
of

A
4
= EC1







[

1

M2

∑

x2∈C2

q
(n)
1 (y1|x1, x2)

]ρλ






= Mρλ−1
2 EC1







[

∑

x2∈C2

q
(n)
1 (y1|x1, x2)

]ρλ






. (A.2)

and

B
4
= EC1











∑

x′
1 6=x1

(

1

M2

∑

x2∈C2

q
(n)
1 (y1|x

′
1, x2)

)λ




ρ





= M−ρλ
2 EC1











∑

x′
1 6=x1

(

∑

x2∈C2

q
(n)
1 (y1|x

′
1, x2)

)λ




ρ





.

Now, let Nx1,y
1
(P

X̂1X̂2Ŷ1
) denote the number of codewords

{x2} that form a joint empirical PMFP
X̂1X̂2Ŷ1

together with
a givenx1 andy1. Then, using (8),A can be bounded by

A =Mρλ−1
2 EX1

[

∑

P
X̂1X̂2Ŷ1

NX1,y
1
(P

X̂1X̂2Ŷ1
)×

enE
X̂1X̂2Ŷ1

log q1(Ŷ1|X̂1,X̂2)

]ρλ

≤Mρλ−1
2

∑

P
X̂1X̂2Ŷ1

EX1
Nρλ

X1,y1

(P
X̂1X̂2Ŷ1

)×

enρλE
X̂1X̂2Ŷ1

log q1(Ŷ1|X̂1,X̂2) (A.3)

whereq1(Ŷ1|X̂1, X̂2) is the single–letter transition probability
distribution of the IFC, and whereE

X̂1X̂2Ŷ1
f(X̂1, X̂2, Ŷ1), for

a generic functionf , denotes the expectation operator when
the RV’s(X̂1, X̂2, Ŷ1) are understood to be distributed accord-
ing to P

X̂1X̂2Ŷ1
. Similarly, (and using Jensen’s inequality to

push the expectation w.r.t.C1 into the brackets), we have:

B ≤M−ρλ
2 Mρ

1

[

∑

P
X̂1X̂2Ŷ1

EX1
Nλ

X1,y
1

(P
X̂1X̂2Ŷ1

)×

enλE
X̂1X̂2Ŷ1

log q(Ŷ1|X̂1,X̂2)

]ρ

(A.4)

Taking the product of these two expressions, applying (8) to
the summation in the bound forB, and taking expectations
with respect to the codebookC2 yields

EC2(AB) ≤ Mρ
1 M−1

2

∑

P
X̂1X̂2Ŷ1

∑

P
X̂′

1
X̂′

2
Ŷ ′
1

EC2 [EX1
Nρλ

X1,y
1

(P
X̂1X̂2Ŷ1

)Eρ

X1
Nλ

X1,y1

(P
X̂′

1X̂′
2Ŷ ′

1
)]

× exp{n[ρλE
X̂1X̂2Ŷ1

log q1(Ŷ1|X̂1, X̂2)

+ ρλE
X̂′

1X̂′
2Ŷ ′

1
log q1(Ŷ

′
1 |X̂

′
1, X̂

′
2)]} (A.5)

The next step is to bound the term involving the expectation
over C2. As noted, the codewords{X1} and {X2} are
randomly selected i.i.d. over the type classesT1 = TQ1 and
T2 = TQ2 corresponding to probability distributionsQ1 and
Q2, respectively. To avoid cumbersome notation, we denote
hereafterP̂ = P

X̂1X̂2Ŷ1
and P̂ ′ = P

X̂′
1X̂′

2Ŷ ′
1

and assume that
P

X̂1
= P

X̂′
1

= Q1, P
X̂2

= P
X̂′

2
= Q2, P

Ŷ1
= P

Ŷ ′
1

and that
y1 lies in the type class corresponding toP

Ŷ1
. We will also

use the shorthand notation

EC2 , EC2 [EX1
Nρλ

X1,y1

(P̂ )Eρ

X1
Nλ

X1,y1

(P̂ ′)]. (A.6)

The bounding ofEC2 requires considering multiple cases
which depend on howR2 compares to different information
quantities, and also depend on properties of the joint types
P

X̂1X̂2Ŷ1
, P

X̂′
1X̂′

2Ŷ ′
1
. In order to guide the reader through

the different steps we present in Fig. 5 below a schematic
representation of the different cases that arise.

We first consider two different ranges ofR2, according to
its comparison withI(X̂ ′

2; X̂
′
1, Ŷ

′
1):

1. The rangeR2 ≥ I(X̂ ′
2; X̂

′
1, Ŷ

′
1). Here we have:

EC2 = EC2

{

EX1

[

N1−ρλ

X1,y1

(P̂ )
]

×

[

1

|T1|

∑

x̃∈T1

Nλ
x̃1,y

1
(P̂ ′)

]ρ
}

=EC2

{

EX1

[

N1−ρλ

X1,y
1

(P̂ )
]

·

[

1

|T1|

∑

x̃∈T1

Nλ
x̃1,y1

(P̂ ′)

]ρ

×

1
[

Nx̃1,y1
(P̂ ′) ≤ en[(R2−I(X̂′

2;X̂′
1,Ŷ ′

1))+ε], ∀x̃1 ∈ T1

]

}

+ EC2

{

EX1

[

N1−ρλ

X1,y
1

(P̂ )
]

[

1

|T1|

∑

x̃∈T1

Nλ
x̃1,y1

(P̂ ′)

]ρ

×

1
[

∃x̃ ∈ T1 : Nx̃1,y
1
(P̂ ′) > en[(R2−I(X̂′

2;X̂′
1,Ŷ ′

1))+ε]
]

}

≤EC2

{

EX1

[

Nρλ

X1,y1

(P̂ )
]

·

[

e−n(H(X̂′
1)−ε)×

∑

x̃∈T1

1
[

(x̃, y1) ∈ TP
X̂′

1
Ŷ ′
1

]

· enλ(R2−I(X̂′
2;X̂′

1,Ŷ ′
1)+ε)

]ρ
}

+ enR2Pr
[

∃x̃ ∈ T1 : Nx̃,y1
(P̂ ′) > en[(R2−I(X̂′

2;X̂′
1,Ŷ ′

1 ))+ε]
]

.

≤EC2

{

EX1

[

N1−ρλ

X1,y
1

(P̂ )
]}

· e−nρ[H(X̂′
1)−H(X̂′

1|Ŷ
′
1)]×

enρλ(R2−I(X̂′
2;X̂′

1,Ŷ ′
1)) (A.7)

where in the second to last inequality we usedNx1,y ≤ M2,
and in the last inequality we used the fact that

Pr
{

∃x̃ ∈ T1 : Nx̃,y1
(P̂ ′) > en[(R2−I(X̂′

2;X̂
′
1,Ŷ ′

1))+ε]
}

≤ en(H(X̂′
1)+ε) · Pr

{

Nx̃,y1
(P̂ ′) > en[(R2−I(X̂′

2;X̂′
1,Ŷ ′

1))+ε]
}

(A.8)

for any x̃ ∈ T1, which decays doubly exponentially withn
(cf. [7, Appendix]).



9

To compute EC2

{

EX1

[

N1−ρλ

X1,y1

(P̂ )
]}

we consider

two cases, according to the comparison betweenR2 and
I(X̂2; X̂1, Ŷ1):

The case R2 ≥ I(X̂2; X̂1, Ŷ1). Here, we have:

EC2EX1

[

N1−ρλ

X1,y1

(P̂ )
]

= EX1
EC2

[

N1−ρλ

X1,y1

(P̂ )
]

.

≤ EX1

[

1
(

(X1, y1) ∈ TP
X̂1Ŷ1

)

enρλ(R2−I(X̂2;X̂1,Ŷ1))
]

.
= e−nI(X̂1;Ŷ1)enρλ(R2−I(X̂2;X̂1,Ŷ1)). (A.9)

Therefore, when

R2 ≥ max{I(X̂2; X̂1, Ŷ1), I(X̂ ′
2; X̂

′
1, Ŷ

′
1)}

we have:

EC2

.

≤ exp
{

n
[

−I(X̂1; Ŷ1) + ρλ(R2 − I(X̂2; X̂1, Ŷ1))

−ρI(X̂ ′
1; Ŷ

′
1) + ρλ(R2 − I(X̂ ′

2; X̂
′
1, Ŷ

′
1))
]}

. (A.10)

The case R2 < I(X̂2; X̂1, Ŷ1). Here we have:

EC2EX1

[

Nρλ

X1,y1

(P̂ )
]

≤ EC2EX1

[

NX1,y1
(P̂ )
]

.

≤ e−nI(X̂1;Ŷ1) · en(R2−I(X̂2;X̂1,Ŷ1)),
(A.11)

where we used the fact thatρλ ≤ 1 and then estimated the
expectation ofNX1,y

1
(P̂ ) as M2 times the probabilityx2

would fall into the corresponding conditional type. Therefore,
when

I(X̂ ′
2; X̂

′
1, Ŷ

′
1) ≤ R2 < I(X̂2; X̂1, Ŷ1)

we have:

EC2

.

≤ exp
{

n
[

−I(X̂1; Ŷ1) + (R2 − I(X̂2; X̂1, Ŷ1))

−ρI(X̂ ′
1; Ŷ

′
1) + ρλ(R2 − I(X̂ ′

2; X̂
′
1, Ŷ

′
1))
]}

. (A.12)

The exponents for the subcases(A.10) and (A.12) corre-
sponding toR2 ≥ I(X̂2; X̂1, Ŷ1) and R2 < I(X̂2; X̂1, Ŷ1),
respectively, differ only in the factors (ρλ and 1, resp.)
multiplying the termR2 − I(X̂2; X̂1, Ŷ1). Therefore, we can
consolidate these two subscases ofR2 ≥ I(X̂ ′

2; X̂
′
1, Ŷ

′
1) into

the expression:

EC2

.

≤ exp
{

n
[

−I(X̂1; Ŷ1)+

min{ρλ(R2 − I(X̂2; X̂1, Ŷ1)),

(R2 − I(X̂2; X̂1, Ŷ1))}

−ρI(X̂ ′
1; Ŷ

′
1) + ρλ(R2 − I(X̂ ′

2; X̂
′
1, Ŷ

′
1))
]}

, (A.13)

sincemin{ρλ (R2 − I(X̂2; X̂1, Ŷ1)), (R2 − I(X̂2; X̂1, Ŷ1))}
is ρλ (R2 − I(X̂2; X̂1, Ŷ1)) when R2 ≥ I(X̂2; X̂1, Ŷ1) and
(R2 − I(X̂2; X̂1, Ŷ1)) whenR2 < I(X̂2; X̂1, Ŷ1).

2. The rangeR2 < I(X̂ ′
2; X̂

′
1, Ŷ

′
1). In this range,

EC2 = EC2

{

EX1

[

N1−ρλ

X1,y1

(P̂ )
]

E
ρ

X1

[

Nλ

X1,y
1

(P̂ ′)
]}

≤ EC2

{

EX1

[

N1−ρλ

X1,y
1

(P̂ )
]

E
ρ

X1

[

NX1,y1
(P̂ ′)

]}

(A.14)

where we assumedλ ≤ 1 in the last step. The second
expectation overX1 can be evaluated as

EX1
NX1,y

1
(P

X̂′
1X̂′

2Ŷ ′
1
)

=
∑

x2∈C2

EX1
1((X1, x2, y1) ∈ TP

X̂′
1

X̂′
2

Ŷ ′
1

)

·
= e−nI(X̂′

1;X̂
′
2,Ŷ ′

1)
∑

x2∈C2

1((x2, y1) ∈ TP
X̂′

2
Ŷ ′
1

)

= e−nI(X̂′
1;X̂

′
2,Ŷ ′

1)Ny1
(P

X̂′
2Ŷ ′

1
), (A.15)

whereNy1
(P

X̂′
2Ŷ ′

1
) is the number of codewords{x2} that are

jointly typical with y1 according toP
X̂′

2Ŷ ′
1
. Thus,

EC2

[

EX1
Nρλ

X1,y
1

(P̂ )Eρ

X1
NX1,y1

(P̂ ′)
]

·
= e−nρI(X̂′

1;X̂′
2,Ŷ ′

1)EC2

[

EX1
Nρλ

X1,y1

(P
X̂1X̂2Ŷ1

)Nρ
y1

(P
X̂′

2Ŷ ′
1
)
]

= e−nρI(X̂′
1;X̂′

2,Ŷ ′
1)EX1

EC2

[

Nρλ

X1,y1

(P
X̂1X̂2Ŷ1

)Nρ
y1

(P
X̂′

2Ŷ ′
1
)
]

.

(A.16)

To boundEX1
EC2 [N

ρλ

X1,y1

(P̂ )Nρ
y1

(P̂ ′)], we consider two

cases depending on howR2 compares toI(X̂ ′
2; Ŷ

′
1).

The case R2 ≥ I(X̂ ′
2; Ŷ

′
1). Here, we have:

EX1
EC2 [N

ρλ

X1,y1

(P̂ )Nρ
y1

(P̂ ′)]

=EX1
EC2

{

Nρλ

X1,y
1

(P̂ )Nρ
y

1
(P̂ ′)×

1

[

Ny1
(P̂ ′) ≤ en(R2−I(X̂′

2;Ŷ ′
1 )+ε)

]

}

+ EX1
EC2

{

Nρλ

X1,y
1

(P̂ )Nρ
y1

(P̂ ′)×

1

[

Ny1
(P̂ ′) > en(R2−I(X̂′

2;Ŷ ′
1 )+ε)

]

}

.

≤enρ(R2−I(X̂′
2;Ŷ

′
1 ))EX1

EC2

[

Nρλ

X1,y
1

(P̂ )

]

+ en(ρλ+ρ)R2Pr

[

Ny
1
(P̂ ′) > en(R2−I(X̂′

2;Ŷ ′
1 )+ε)

]

.

≤ exp

{

n

[

ρ(R2 − I(X̂ ′
2; Ŷ

′
1)) − I(X̂1; Ŷ1)

+ 1(R2 ≥ I(X̂2; X̂1, Ŷ1))ρλ(R2 − I(X̂2; X̂1, Ŷ1))

+ 1(R2 < I(X̂2; X̂1, Ŷ1))(R2 − I(X̂2; X̂1, Ŷ1))

]

}

=exp

{

n

[

ρ(R2 − I(X̂ ′
2; Ŷ

′
1)) − I(X̂1; Ŷ1)

+ min{ρλ(R2 − I(X̂2; X̂1, Ŷ1)),

(R2 − I(X̂2; X̂1, Ŷ1))}

]

}

(A.17)

where we used the fact that Pr
[

Ny
1
(P̂ ′) >

en(R2−I(X̂′
2;Ŷ

′
1 )+ε)

]

decays doubly exponentially in the
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third inequality, and boundedEX1
EC2

[

Nρλ

X1,y1

(P̂ )
]

using

(A.9) and (A.11) in the last inequality.

The case R2 < I(X̂ ′
2; Ŷ

′
1). Here, we further split the evaluation

into two parts. In the first part,R2 ≥ I(X̂2; X̂1, Ŷ1), and we
have:

EX1
EC2 [N

ρλ

X1,y
1

(P̂ )Nρ
y

1
(P̂ ′)]

≤EX1
EC2

{

N1−ρλ

X1,y
1

(P̂ )Nρ
y

1
(P̂ ′)×

1

[

NX1,y1
(P̂ ) ≤ en(R2−I(X̂2;X̂1,Ŷ1)+ε)

]

}

+ EX1
EC2

{

N1−ρλ

X1,y
1

(P̂ )Nρ
y

1
(P̂ ′)×

1

[

NX1,y1
(P̂ ) > en(R2−I(X̂2;X̂1,Ŷ1)+ε)

]

}

.

≤enρλ(R2−I(X̂2;X̂1,Ŷ1))×

EX1
EC2

{

Nρ
y

1
(P̂ ′)1

[

(X1, y1) ∈ TP
X̂1Ŷ1

]

}

+ en(ρλ+ρ)R2Pr

[

NX1,y
1
(P̂ ) > en(R2−I(X̂2;X̂1,Ŷ1)+ε)

]

.

≤en[ρλ(R2−I(X̂2;X̂1,Ŷ1))−I(X̂1;Ŷ1)]EC2

[

Nρ
y1

(P
X̂′

2Ŷ ′
1
)
]

.

≤ exp

{

n
[

ρλ(R2 − I(X̂2; X̂1, Ŷ1)) − I(X̂1; Ŷ1)

+ R2 − I(X̂ ′
2; Ŷ

′
1)
]

}

(A.18)

where we used in the last inequality

EC2

[

Nρ
y1

(P
X̂′

2Ŷ ′
1
)
]

≤ EC2

[

Ny
1
(P

X̂′
2Ŷ ′

1
)
] .

= en(R2−I(X̂′
2;Ŷ

′
1 ))

valid for ρ ≤ 1.

The other part corresponds toR2 < I(X̂2; X̂1, Ŷ1). Here
we have:

EX1
EC2 [N

ρλ

X1,y1

(P̂ )Nρ
y1

(P̂ ′)]

=EX1
EC2

{

N1−ρλ

X1,y1

(P̂ )Nρ
y1

(P̂ ′)1
[

Ny
1
(P̂ ′) ≤ enε

]

}

+ EX1
EC2

{

Nρλ

X1,y1

(P̂ )Nρ
y1

(P̂ ′)1
[

Ny1
(P̂ ′) > enε

]

}

≤enρεEX1
EC2

{

Nρλ

X1,y
1

(P̂ )1
[

Ny1
(P̂ ′) ≥ 1

]

}

+ en(ρλ+ρ)R2Pr

[

Ny
1
(P̂ ′) > enε

]

.

≤EX1
EC2

{

Nρλ

X1,y1

(P̂ ) · 1
[

Ny
1
(P̂ ′) ≥ 1

]

×

1
[

NX1,y1
(P̂ ) ≤ enε

]

}

+ EX1
EC2

{

Nρλ

X1,y1

(P̂ ) · 1
[

Ny
1
(P̂ ′) ≥ 1

]

×

1
[

NX1,y1
(P̂ ) > enε

]

}

.

≤enρλεEX1
EC2

{

1
[

Ny
1
(P̂ ′) ≥ 1

]

×

1
[

NX1,y1
(P̂ ) ≥ 1

]

}

+ enρλR2EX1

{

Pr
[

NX1,y1
(P̂ ) > enε

]

}

.
=

1

|T1|

∑

x̃1∈T1

1
[

(x̃1, y1) ∈ TP
X̂1Ŷ1

]

×

Pr
[

Ny1
(P̂ ′) ≥ 1, Nx̃1,y1

(P̂ ) ≥ 1
]

(A.19)

To bound Pr
[

Ny
1
(P̂ ′) ≥ 1, Nx̃1,y1

(P̂ ) ≥ 1
]

, we consider
two cases:

The first case is whenP
X̂2Ŷ1

= P
X̂′

2Ŷ ′
1
: in this case,

{

Nx̃1,y1
(P̂ ) ≥ 1

}

⇒
{

Ny
1
(P̂ ′) ≥ 1

}

. Therefore,

Pr
[

Ny
1
(P̂ ′) ≥ 1, Nx̃1,y

1
(P̂ ) ≥ 1

]

=Pr
[

Nx̃1,y
1
(P̂ ) ≥ 1

]

.

≤en(R2−I(X̂2;X̂1,Ŷ1)).

Replacing in (A.19), we get:

EX1
EC2 [N

ρλ

X1,y1

(P̂ )Nρ
y1

(P̂ ′)]
.

≤ exp
{

n
[

− I(X̂1; Ŷ1) + R2 − I(X̂2; X̂1, Ŷ1)
]}

.
(A.20)

The other case isP
X̂2Ŷ1

6= P
X̂′

2Ŷ ′
1
: in this case, the same

codewordx2 cannot simultaneously satisfy(x̃1, x2, y1) ∈
TP

X̂1X̂2Ŷ1
and (x2, y1) ∈ TP

X̂′
2

Ŷ ′
1

. Therefore, we have that

Pr
[

Ny
1
(P̂ ′) ≥ 1, Nx̃1,y1

(P̂ ) ≥ 1
]

=Pr
[

∃x′
2 6= x2 : (x̃1, x

′
2, y1) ∈ TP

X̂1X̂2Ŷ1
,

(x2, y1) ∈ TP
X̂′

2,Ŷ ′
1

]

≤
∑

x2∈C2

∑

x′
2 6=x2

Pr
[

(x̃1, x
′
2, y1) ∈ TP

X̂1X̂2Ŷ1
,

(x2, y1) ∈ TP
X̂′

2,Ŷ ′
1

]

.

≤en2R2e−nI(X̂2;X̂1,Ŷ1)e−nI(X̂′
2;Ŷ

′
1 ).

Replacing in (A.19), we get:

EX1
EC2 [N

ρλ

X1,y
1

(P̂ )Nρ
y

1
(P̂ ′)]

.

≤ exp
{

n
[

− I(X̂1; Ŷ1) + R2 − I(X̂2; X̂1, Ŷ1)

+ R2 − I(X̂ ′
2; Ŷ

′
1)
]}

. (A.21)

This completes the decomposition ofEC2 into the various
subcases.

Consolidation. Next, we carry out a consolidation process
that merges all of the above subcases into a more compact
expression, leading ultimately to the expression in Theorem 1.
Figure 5 gives a schematic representation, in terms of a
tree, of the various consolidation steps described below. The
consolidation of (A.10) and (A.12) into (A.13) was done
before, but we include it in Fig. 5 for completeness. Referring
to Fig. 5, the consolidation starts at the deepest leaves of the
tree and works its way up the nodes until it reaches the root.

We begin with the last set of subsubcases derived,R2 ≥
I(X̂2; X̂1, Ŷ1) and R2 < I(X̂2; X̂1, Ŷ1) (expressions (A.18),
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(A.10)

(A.28)

(A.12)

(A.13)

(A.17)

(A.26) (simplified from (A.24) (A.25))

(A.23) (simplified from (A.22))

(A.18) implicit in (A.22)

(A.21) (A.20)

R  > I(X' ; X' , Y' )
^ ^ ^

1 122

R  > I(X ; X , Y )
^ ^ ^

1 122
R  < I(X ; X , Y )

^ ^ ^

1 122

R  < I(X' ; X' , Y' )
^ ^ ^

1 122

R  < I(X' ; Y' )
^ ^

122R  > I(X' ; Y' )
^ ^

122

R  > I(X ; X , Y )
^ ^ ^

1 122 R  < I(X ; X , Y )
^ ^ ^

1 122

X  Y
^ ^

12

P = PX' Y'
^ ^

12

/
X  Y
^ ^

12

P = PX' Y'
^ ^

12

Fig. 5. Tree representing the multiple ranges ofR2 considered in the
derivation, and the equations that consolidate the different ranges.

(A.20), and (A.21)) for the subcaseR2 < I(X̂ ′
2; Ŷ

′
1), and

consolidate them as follows:

EX1
EC2

.

≤ exp

{

n
{

1(R2 ≥ I(X̂2; X̂1, Ŷ1))×

[

ρλ(R2 − I(X̂2; X̂1, Ŷ1)) − I(X̂1; Ŷ1)

+ R2 − I(X̂ ′
2; Ŷ

′
1)
]

+ 1(R2 < I(X̂2; X̂1, Ŷ1))1(P
X̂2Ŷ1

6= P
X̂′

2Ŷ ′
1
)×

[

− I(X̂1; Ŷ1) + R2 − I(X̂2; X̂1, Ŷ1)

+ R2 − I(X̂ ′
2; Ŷ

′
1)
]

+ 1(R2 < I(X̂2; X̂1, Ŷ1))1(P
X̂2Ŷ1

= P
X̂′

2Ŷ ′
1
)×

[

− I(X̂1; Ŷ1) + R2 − I(X̂2; X̂1, Ŷ1)
]

}

}

.

(A.22)

Next we would like to decompose the indicator1(R2 ≥
I(X̂2; X̂1, Ŷ1)) appearing in the initial part of this expression
as

1(R2 ≥ I(X̂2; X̂1, Ŷ1))

=1(R2 ≥ I(X̂2; X̂1, Ŷ1))1(P
X̂2Ŷ1

= P
X̂′

2Ŷ ′
1
)+

1(R2 ≥ I(X̂2; X̂1, Ŷ1))1(P
X̂2Ŷ1

6= P
X̂′

2Ŷ ′
1
)

=1(R2 ≥ I(X̂2; X̂1, Ŷ1))1(P
X̂2Ŷ1

6= P
X̂′

2Ŷ ′
1
),

where we are taking into account in the last step that
for the present subcaseR2 < I(X̂ ′

2; Ŷ
′
1), 1(R2 ≥

I(X̂2; X̂1, Ŷ1))1(P
X̂2Ŷ1

= P
X̂′

2Ŷ ′
1
) = 0 since for P

X̂2Ŷ1
=

P
X̂′

2Ŷ ′
1

we have R2 < I(X̂ ′
2; Ŷ

′
1) = I(X̂2; Ŷ1) ≤

I(X̂2; X̂1, Ŷ1).

Applying this decomposition to (A.22), then combining
terms having the same indicators1(P

X̂2Ŷ1
6= P

X̂′
2Ŷ ′

1
), and

1(P
X̂2Ŷ1

= P
X̂′

2Ŷ ′
1
), and replacing indicators bymin{· · · } as

appropriate (similar to (A.13)), we simplify (A.22) to

EX1
EC2

.

≤ exp

{

n
{

1(P
X̂2Ŷ1

6= P
X̂′

2Ŷ ′
1
)
[

− I(X̂1; Ŷ1)+

min{ρλ(R2−I(X̂2; X̂1, Ŷ1)), R2−I(X̂2; X̂1, Ŷ1)}

+ R2 − I(X̂ ′
2; Ŷ

′
1)
]

+ 1(P
X̂2Ŷ1

= P
X̂′

2Ŷ ′
1
)1(R2 < I(X̂2; X̂1, Ŷ1))×

[

− I(X̂1; Ŷ1) + R2 − I(X̂2; X̂1, Ŷ1)
]

]}

}

. (A.23)

This is valid for the subcaseR2 < I(X̂ ′
2; Ŷ

′
1).

Next, we consolidate (A.17) from the subcaseR2 ≥
I(X̂ ′

2; Ŷ
′
1) with (A.23) and insert the result into (A.16) to get

EC2

.

≤ exp

{

n
{

− ρI(X̂ ′
1; X̂

′
2, Ŷ

′
1)

+ 1(R2≥I(X̂ ′
2; Ŷ

′
1))
[

−I(X̂1; Ŷ1)+ρ(R2−I(X̂ ′
2; Ŷ

′
1))

+min{ρλ(R2−I(X̂2; X̂1, Ŷ1)), (R2−I(X̂2; X̂1, Ŷ1))}
]

+1(R2<I(X̂ ′
2; Ŷ

′
1))
[

1(P
X̂2Ŷ1

6=P
X̂′

2Ŷ ′
1
)
[

− I(X̂1; Ŷ1)

+min{ρλ(R2−I(X̂2; X̂1, Ŷ1)), R2−I(X̂2; X̂1, Ŷ1)}

+ R2 − I(X̂ ′
2; Ŷ

′
1)
]

+ 1(P
X̂2Ŷ1

= P
X̂′

2Ŷ ′
1
)1(R2 < I(X̂2; X̂1, Ŷ1))×

[

− I(X̂1; Ŷ1) + R2 − I(X̂2; X̂1, Ŷ1)
]

]}

}

, (A.24)

which applies to the rangeR2 < I(X̂ ′
2; X̂

′
1, Ŷ

′
1). Again,

expanding all terms against the indicators1(P
X̂2Ŷ1

6= P
X̂′

2Ŷ ′
1
),

and1(P
X̂2Ŷ1

= P
X̂′

2Ŷ ′
1
), and, as above, replacing indicators by

min{· · · } as appropriate, we obtain

EC2

.

≤ exp

{

n
{

1(P
X̂2Ŷ1

6= P
X̂′

2Ŷ ′
1
)
[

− ρI(X̂ ′
1; X̂

′
2, Ŷ

′
1)

− I(X̂1; Ŷ1) + min{ρλ(R2 − I(X̂2; X̂1, Ŷ1)),

R2 − I(X̂2; X̂1, Ŷ1)}

+ min{ρ(R2 − I(X̂ ′
2; Ŷ

′
1)), R2 − I(X̂ ′

2; Ŷ
′
1)}
]

1(P
X̂2Ŷ1

= P
X̂′

2Ŷ ′
1
)×

[

− ρI(X̂ ′
1; X̂

′
2, Ŷ

′
1) + 1(R2 ≥ I(X̂2; Ŷ1))×

[

− I(X̂1; Ŷ1) + ρ(R2 − I(X̂ ′
2; Ŷ

′
1))

+ min{ρλ(R2 − I(X̂2; X̂1, Ŷ1)),

R2 − I(X̂2; X̂1, Ŷ1)}
]

+ 1(R2 < I(X̂2; Ŷ1))×

[

− I(X̂1; Ŷ1) + R2 − I(X̂2; X̂1, Ŷ1)
]

]}

}

. (A.25)

Using the identity (proved via the chain rule)

I(X̂ ′
1; X̂

′
2, Ŷ

′
1)+I(X̂ ′

2; Ŷ
′
1) = I(X̂ ′

2; X̂
′
1, Ŷ

′
1)+I(X̂ ′

1; Ŷ
′
1)

twice, we can rewrite the term

− ρI(X̂ ′
1; X̂

′
2, Ŷ

′
1) + min{ρ(R2 − I(X̂ ′

2; Ŷ
′
1)),

R2 − I(X̂ ′
2; Ŷ

′
1)}

appearing after the indicator1(P
X̂2Ŷ1

6= P
X̂′

2Ŷ ′
1
) in (A.25) as

− ρI(X̂ ′
1; Ŷ

′
1) + min{ρ(R2 − I(X̂ ′

2; X̂
′
1, Ŷ

′
1)),

R2 − ρI(X̂ ′
2; Ŷ

′
1) − ρI(X̂ ′

2; X̂
′
1, Ŷ

′
1)}.

Similarly, we can decompose the term−ρI(X̂ ′
1; X̂

′
2, Ŷ

′
1) ap-

pearing after the indicator1(P
X̂2Ŷ1

= P
X̂′

2Ŷ ′
1
) against the indi-

cators1(R2 ≥ I(X̂2; Ŷ1) and1(R2 < I(X̂2; Ŷ1)), and use the
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above identity to combine it withρ(R2−I(X̂ ′
2; Ŷ

′
1)) appearing

after the indicator1(R2 ≥ I(X̂2; Ŷ1)). Incorporating these
steps, we can rewrite (A.25) as

EC2

.

≤ exp

{

n
{

1(P
X̂2Ŷ1

6=P
X̂′

2Ŷ ′
1
)
[

−I(X̂1; Ŷ1)−ρI(X̂ ′
1; Ŷ

′
1)

+ min{ρλ(R2 − I(X̂2; X̂1, Ŷ1)), R2 − I(X̂2; X̂1, Ŷ1)}

+ min{R2 − ρI(X̂ ′
2; Ŷ

′
1) − ρI(X̂ ′

2; X̂
′
1, Ŷ

′
1),

ρ(R2 − I(X̂ ′
2; X̂

′
1, Ŷ

′
1))}

]

+ 1(P
X̂2Ŷ1

= P
X̂′

2Ŷ ′
1
)×

[

1(R2 ≥ I(X̂2; Ŷ1))
[

− I(X̂1; Ŷ1) − ρI(X̂ ′
1; Ŷ

′
1)

+ min{ρλ(R2−I(X̂2; X̂1, Ŷ1)), R2−I(X̂2; X̂1, Ŷ1)}

+ρ(R2 − I(X̂ ′
2; X̂

′
1, Ŷ

′
1))
]

+ 1(R2 < I(X̂2; Ŷ1))
[

− I(X̂1; Ŷ1) + R2

− I(X̂2; X̂1, Ŷ1) − ρI(X̂ ′
1; X̂

′
2, Ŷ

′
1)
]

]}

}

. (A.26)

Finally, we consolidate (A.13) from the rangeR2 ≥
I(X̂ ′

2; X̂
′
1, Ŷ

′
1) with the just obtained (A.26) (for the range

R2 < I(X̂ ′
2; X̂

′
1, Ŷ

′
1)) to get

EC2

.

≤ exp

{

n
{

1(R2 ≥ I(X̂ ′
2; X̂

′
1, Ŷ

′
1))×

[

− I(X̂1; Ŷ1) − ρI(X̂ ′
1; Ŷ

′
1)

+min{ρλ(R2−I(X̂2; X̂1, Ŷ1)), (R2−I(X̂2; X̂1, Ŷ1))}

+ρλ(R2 − I(X̂ ′
2; X̂

′
1, Ŷ

′
1))
]

+ 1(R2 < I(X̂ ′
2; X̂

′
1, Ŷ

′
1))
[

1(P
X̂2Ŷ1

6=P
X̂′

2Ŷ ′
1
)×

[

−I(X̂1; Ŷ1)−ρI(X̂ ′
1; Ŷ

′
1)

+ min{ρλ(R2−I(X̂2; X̂1, Ŷ1)), R2−I(X̂2; X̂1, Ŷ1)}

+ min{R2 − ρI(X̂ ′
2; Ŷ

′
1) − ρI(X̂ ′

2; X̂
′
1, Ŷ

′
1),

ρ(R2 − I(X̂ ′
2; X̂

′
1, Ŷ

′
1))}

]

+ 1(P
X̂2Ŷ1

= P
X̂′

2Ŷ ′
1
)×

[

1(R2 ≥ I(X̂2; Ŷ1))
[

− I(X̂1; Ŷ1) − ρI(X̂ ′
1; Ŷ

′
1)

+min{ρλ(R2−I(X̂2; X̂1, Ŷ1)), R2−I(X̂2; X̂1, Ŷ1)}

+ρ(R2 − I(X̂ ′
2; X̂

′
1, Ŷ

′
1))
]

+ 1(R2 < I(X̂2; Ŷ1))
[

− I(X̂1; Ŷ1) + R2

− I(X̂2; X̂1, Ŷ1) − ρI(X̂ ′
1; X̂

′
2, Ŷ

′
1)
]

]]}

}

. (A.27)

As before, after expanding the first indicator1(R2 ≥
I(X̂ ′

2; X̂
′
1, Ŷ

′
1)) against1(P

X̂2Ŷ1
6= P

X̂′
2Ŷ ′

1
), and 1(P

X̂2Ŷ1
=

P
X̂′

2Ŷ ′
1
), and combining terms, we obtain

EC2

.

≤ exp

{

n
{

1(P
X̂2Ŷ1

6=P
X̂′

2Ŷ ′
1
)
[

−I(X̂1; Ŷ1)−ρI(X̂ ′
1; Ŷ

′
1)

+ min{ρλ(R2−I(X̂2; X̂1, Ŷ1)), R2−I(X̂2; X̂1, Ŷ1)}

+ min{R2 − ρI(X̂ ′
2; Ŷ

′
1) − ρI(X̂ ′

2; X̂
′
1, Ŷ

′
1),

ρ(R2 − I(X̂ ′
2; X̂

′
1, Ŷ

′
1)), ρλ(R2 − I(X̂ ′

2; X̂
′
1, Ŷ

′
1))}

]

+ 1(P
X̂2Ŷ1

= P
X̂′

2Ŷ ′
1
)×

[

1(R2 ≥ I(X̂2; Ŷ1))
[

− I(X̂1; Ŷ1) − ρI(X̂ ′
1; Ŷ

′
1)

+min{ρλ(R2−I(X̂2; X̂1, Ŷ1)), R2−I(X̂2; X̂1, Ŷ1)}

+min{ρ(R2−I(X̂ ′
2; X̂

′
1, Ŷ

′
1)), ρλ(R2−I(X̂ ′

2; X̂
′
1, Ŷ

′
1))}

]

+ 1(R2 < I(X̂2; Ŷ1))
[

− I(X̂1; Ŷ1) + R2

− I(X̂2; X̂1, Ŷ1) − ρI(X̂ ′
1; X̂

′
2, Ŷ

′
1)
]

]}

}

, (A.28)

where, in simplifying, we have made use of the identity

1(R2 ≥ I(X̂ ′
2; X̂

′
1, Ŷ

′
1))ρλ(R2 − I(X̂ ′

2; X̂
′
1, Ŷ

′
1))+

1(R2 < I(X̂ ′
2; X̂

′
1, Ŷ

′
1))min{R2 − ρI(X̂ ′

2; Ŷ
′
1)

− ρI(X̂ ′
2; X̂

′
1, Ŷ

′
1), ρ(R2 − I(X̂ ′

2; X̂
′
1, Ŷ

′
1))}

= min{R2 − ρI(X̂ ′
2; Ŷ

′
1) − ρI(X̂ ′

2; X̂
′
1, Ŷ

′
1),

ρ(R2 − I(X̂ ′
2; X̂

′
1, Ŷ

′
1)), ρλ(R2 − I(X̂ ′

2; X̂
′
1, Ŷ

′
1))},

along with

1(P
X̂2Ŷ1

= P
X̂′

2Ŷ ′
1
)1(R2 ≥ I(X̂ ′

2; X̂
′
1, Ŷ

′
1))

= 1(P
X̂2Ŷ1

=P
X̂′

2Ŷ ′
1
)1(R2≥I(X̂2; Ŷ1))1(R2≥I(X̂ ′

2; X̂
′
1, Ŷ

′
1)),

and finally

1(R2 ≥ I(X̂ ′
2; X̂

′
1, Ŷ

′
1))ρλ(R2 − I(X̂ ′

2; X̂
′
1, Ŷ

′
1))+

1(R2 < I(X̂ ′
2; X̂

′
1, Ŷ

′
1))ρ(R2 − I(X̂ ′

2; X̂
′
1, Ŷ

′
1))

= min{ρ(R2−I(X̂ ′
2; X̂

′
1, Ŷ

′
1)), ρλ(R2−I(X̂ ′

2; X̂
′
1, Ŷ

′
1))}.

We use (A.28) in (A.5), add over all vectorsy1, decompose
all joint-type-dependent terms appearing in (A.5), as well
as the termnH(Ŷ1) arising from the summation overy1

per type, against the indicators1(P
X̂2Ŷ1

6= P
X̂′

2Ŷ ′
1
) and

1(P
X̂2Ŷ1

= P
X̂′

2Ŷ ′
1
), and finally optimize over the types

P
X̂1X̂2Ŷ1

, P
X̂′

1X̂′
2Ŷ ′

1
to obtain:

EC1,C2(PE1)
.

≤ exp

{

n

{

− R2 + ρR1 + max

{

max
P

X̂1X̂2Ŷ1
,P

X̂′
1

X̂′
2

Ŷ ′
1

P
X̂1

=P
X̂′

1
=Q1,

P
X̂2

=P
X̂′

2
=Q2,

P
Ŷ

=P
Ŷ ′
1

P
X̂2Ŷ1

6=P
X̂′

2
Ŷ ′
1
,

[

ρλE
X̂1X̂2Ŷ1

log q1(Ŷ1|X̂1, X̂2)

+ ρλE
X̂′

1X̂′
2Ŷ ′

1
log q1(Ŷ

′
1 |X̂

′
1, X̂

′
2)

+ H(Ŷ1|X̂1)−ρI(X̂ ′
1; Ŷ

′
1)

+ min{ρλ(R2−I(X̂2; X̂1, Ŷ1)), R2−I(X̂2; X̂1, Ŷ1)}

+ min{R2 − ρI(X̂ ′
2; Ŷ

′
1) − ρI(X̂ ′

2; X̂
′
1, Ŷ

′
1),

ρ(R2−I(X̂ ′
2; X̂

′
1, Ŷ

′
1)), ρλ(R2−I(X̂ ′

2; X̂
′
1, Ŷ

′
1))}

]

;

max
P

X̂1X̂2Ŷ1
,P

X̂′
1

X̂′
2

Ŷ ′
1

P
X̂1

=P
X̂′

1
=Q1,

P
X̂2

=P
X̂′

2
=Q2,

P
X̂2Ŷ1

=P
X̂′

2
Ŷ ′
1

[

ρλE
X̂1X̂2Ŷ1

log q1(Ŷ1|X̂1, X̂2)
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+ ρλE
X̂′

1X̂′
2Ŷ ′

1
log q1(Ŷ

′
1 |X̂

′
1, X̂

′
2)

+ 1(R2 ≥ I(X̂2; Ŷ1))
[

H(Ŷ1|X̂1) − ρI(X̂ ′
1; Ŷ

′
1)

+min{ρλ(R2−I(X̂2; X̂1, Ŷ1)), R2−I(X̂2; X̂1, Ŷ1)}

+min{ρ(R2 − I(X̂ ′
2; X̂

′
1, Ŷ

′
1)),

ρλ(R2 − I(X̂ ′
2; X̂

′
1, Ŷ

′
1))}

]

+ 1(R2 < I(X̂2; Ŷ1))
[

H(Ŷ1|X̂1) + R2

− I(X̂2; X̂1, Ŷ1) − ρI(X̂ ′
1; X̂

′
2, Ŷ

′
1)
]

]}}}

(A.29)

Note that the termH(Ŷ1) mentioned above has been combined
with the term−I(X̂1; X̂2) appearing in all subcases of (A.28)
to yield theH(Ŷ1|X̂1) appearing throughout (A.29).

The expression in Theorem 1 is obtained from (A.29)
by dropping the constraintP

X̂2Ŷ1
6= P

X̂′
2Ŷ ′

1
, from the first

maximization (which, given the continuity of the underlying
terms, is not really a constraint anyway), by noting that
if, in the resulting expression, the second maximization is
attained whenR2 ≥ I(X̂2; Ŷ1), it will be dominated by
the first maximization so that the second maximization can
be restricted to the caseR2 < I(X̂2; Ŷ1), and finally by
negating the resulting exponent (and propagating the negation
as−max{· · · } = min{− · · · } throughout).

APPENDIX B
A L OWER BOUND TO ER,1

We can lower bound the maximization of (3) overρ andλ
by applying the min-max theorem twice, as follows.

First we introduce a new parameterθ and bound (3) as

ER,1 ≥ min
θ∈[0,1]

{

R2 − ρR1 + θ× (B.1)

min
(P

X̂
(1)
1

X̂
(1)
2

Ŷ
(1)
1

,

P
X̂

′(1)
1

X̂
′(1)
2

Ŷ
′(1)
1

)

∈S1(Q1,Q2)

f1

(

ρ, λ, P
X̂

(1)
1 X̂

(1)
2 Ŷ

(1)
1

, P
X̂

′(1)
1 X̂

′(1)
2 Ŷ

′(1)
1

)

+

θ min
(P

X̂
(2)
1

X̂
(2)
2

Ŷ
(2)
1

,

P
X̂

′(2)
1

X̂
′(2)
2

Ŷ
′(2)
1

)

∈S2(Q1,Q2)

f2

(

ρ, λ, P
X̂

(2)
1 X̂

(2)
2 Ŷ

(2)
1

, P
X̂

′(2)
1 X̂

′(2)
2 Ŷ

′(2)
1

)

}

(B.2)

whereθ = 1−θ and we have dropped the constraint involving
R2 from S2, resulting in a lower bound, and makingS2

convex.

Letting γ = ρλ, we claim that for fixedθ, the expres-
sion in (B.2) being minimized overθ above is convex in
(ρ, γ). This follows from the fact that for fixedP

X̂
(1)
1 X̂

(1)
2 Ŷ

(1)
1

,

P
X̂

′(1)
1 X̂

′(1)
2 Ŷ

′(1)
1

, P
X̂

(2)
1 X̂

(2)
2 Ŷ

(2)
1

, P
X̂

′(2)
1 X̂

′(2)
2 Ŷ

′(2)
1

), both f1

and f2 are affine in (ρ, γ). The only problem would
come from themax’s appearing in these expressions, but
it can be checked that these maximizations are indepen-
dent of (ρ, γ) for fixed (P

X̂
(1)
1 X̂

(1)
2 Ŷ

(1)
1

, P
X̂

′(1)
1 X̂

′(1)
2 Ŷ

′(1)
1

,

P
X̂

(2)
1 X̂

(2)
2 Ŷ

(2)
1

, P
X̂

′(2)
1 X̂

′(2)
2 Ŷ

′(2)
1

). Letting Σ = {(x, y) : x ∈

[0, 1], y ∈ [0, x]}, we can thus apply the min-max theorem of
convex analysis (twice) as follows

E∗
R,1

≥ max
(ρ,γ)∈Σ

min
θ∈[0,1]

{

R2 − ρR1 + θ×

min
(P

X̂
(1)
1

X̂
(1)
2

Ŷ
(1)
1

,

P
X̂

′(1)
1

X̂
′(1)
2

Ŷ
′(1)
1

)

∈S1(Q1,Q2)

f1

(

ρ, γ, P
X̂

(1)
1 X̂

(1)
2 Ŷ

(1)
1

, P
X̂

′(1)
1 X̂

′(1)
2 Ŷ

′(1)
1

)

+

θ min
(P

X̂
(2)
1

X̂
(2)
2

Ŷ
(2)
1

,

P
X̂

′(2)
1

X̂
′(2)
2

Ŷ
′(2)
1

)

∈S2(Q1,Q2)

f2

(

ρ, γ, P
X̂

(2)
1 X̂

(2)
2 Ŷ

(2)
1

, P
X̂

′(2)
1 X̂

′(2)
2 Ŷ

′(2)
1

)

}

= min
θ∈[0,1]

max
(ρ,γ)∈Σ

{

R2 − ρR1 + θ×

min
(P

X̂
(1)
1

X̂
(1)
2

Ŷ
(1)
1

,

P
X̂

′(1)
1

X̂
′(1)
2

Ŷ
′(1)
1

)

∈S1(Q1,Q2)

f1

(

ρ, γ, P
X̂

(1)
1 X̂

(1)
2 Ŷ

(1)
1

, P
X̂

′(1)
1 X̂

′(1)
2 Ŷ

′(1)
1

)

+

θ min
(P

X̂
(2)
1

X̂
(2)
2

Ŷ
(2)
1

,

P
X̂

′(2)
1

X̂
′(2)
2

Ŷ
′(2)
1

)

∈S2(Q1,Q2)

f2

(

ρ, γ, P
X̂

(2)
1 X̂

(2)
2 Ŷ

(2)
1

, P
X̂

′(2)
1 X̂

′(2)
2 Ŷ

′(2)
1

)

}

= min
θ∈[0,1]

max
(ρ,γ)∈Σ

min
(P

X̂
(1)
1

X̂
(1)
2

Ŷ
(1)
1

,P
X̂

′(1)
1

X̂
′(1)
2

Ŷ
′(1)
1

,

P
X̂

(2)
1

X̂
(2)
2

Ŷ
(2)
1

,P
X̂

′(2)
1

X̂
′(2)
2

Ŷ
′(2)
1

)

∈S1(Q1,Q2)×S2(Q1,Q2)

{

R2 − ρR1+

θf1

(

ρ, γ, P
X̂

(1)
1 X̂

(1)
2 Ŷ

(1)
1

, P
X̂

′(1)
1 X̂

′(1)
2 Ŷ

′(1)
1

)

+

θf2

(

ρ, γ, P
X̂

(2)
1 X̂

(2)
2 Ŷ

(2)
1

, P
X̂

′(2)
1 X̂

′(2)
2 Ŷ

′(2)
1

)

}

= min
θ∈[0,1]

min
(P

X̂
(1)
1

X̂
(1)
2

Ŷ
(1)
1

,P
X̂

′(1)
1

X̂
′(1)
2

Ŷ
′(1)
1

,

P
X̂

(2)
1

X̂
(2)
2

Ŷ
(2)
1

,P
X̂

′(2)
1

X̂
′(2)
2

Ŷ
′(2)
1

)

∈S1(Q1,Q2)×S2(Q1,Q2)

max
(ρ,γ)∈Σ

{

R2 − ρR1+

θf1

(

ρ, γ, P
X̂

(1)
1 X̂

(1)
2 Ŷ

(1)
1

, P
X̂

′(1)
1 X̂

′(1)
2 Ŷ

′(1)
1

)

+

θf2

(

ρ, γ, P
X̂

(2)
1 X̂

(2)
2 Ŷ

(2)
1

, P
X̂

′(2)
1 X̂

′(2)
2 Ŷ

′(2)
1

)

}

(B.3)

Since, as noted above, for fixed (θ, P
X̂

(1)
1 X̂

(1)
2 Ŷ

(1)
1

,

P
X̂

′(1)
1 X̂

′(1)
2 Ŷ

′(1)
1

, P
X̂

(2)
1 X̂

(2)
2 Ŷ

(2)
1

, P
X̂

′(2)
1 X̂

′(2)
2 Ŷ

′(2)
1

), bothf1 and

f2 are affine in (ρ, γ), the inner maximization in (B.3) is
attained at one of the points(ρ, γ) = {(0, 0), (1, 0), (1, 1)}.
After simplification, we obtain

E∗
R,1 ≥ min

θ∈[0,1]
min

(P
X̂

(1)
1

X̂
(1)
2

Ŷ
(1)
1

,P
X̂

′(1)
1

X̂
′(1)
2

Ŷ
′(1)
1

,

P
X̂

(2)
1

X̂
(2)
2

Ŷ
(2)
1

,P
X̂

′(2)
1

X̂
′(2)
2

Ŷ
′(2)
1

)

∈S1(Q1,Q2)×S2(Q1,Q2)

max

{

θ
[

− E
[

log q1(Ŷ
(1)
1 |X̂

(1)
1 , X̂

(1)
2 )
]

− H(Ŷ
(1)
1 |X̂

(1)
1 )+
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I(X̂
(1)
2 ; X̂

(1)
1 , Ŷ

(1)
1 ) + |I(X̂

′(1)
2 ; Ŷ

′(1)
1 ) − R2|

+
]

+

θ
[

− E
[

log q1(Ŷ
(2)
1 |X̂

(2)
1 , X̂

(2)
2 )
]

− H(Ŷ
(2)
1 |X̂

(2)
1 )+

I(X̂
(2)
2 ; X̂

(2)
1 , Ŷ

(2)
1 )

]

;

− R1 + θ
[

− E
[

log q1(Ŷ
(1)
1 |X̂

(1)
1 , X̂

(1)
2 )
]

−

H(Ŷ
(1)
1 |X̂

(1)
1 ) + I(X̂

′(1)
1 ; Ŷ

′(1)
1 )+

I(X̂
(1)
2 ; X̂

(1)
1 , Ŷ

(1)
1 ) + |I(X̂

′(1)
2 ; X̂

′(1)
1 , Ŷ

′(1)
1 ) − R2|

+
]

+

θ
[

− E
[

log q1(Ŷ
(2)
1 |X̂

(2)
1 , X̂

(2)
2 )
]

− H(Ŷ
(2)
1 |X̂

(2)
1 )+

I(X̂
′(2)
1 ; X̂

′(2)
2 , Ŷ

′(2)
1 ) + I(X̂

(2)
2 ; X̂

(2)
1 , Ŷ

(2)
1 )

]

;

− R1 + θ
[

− E
[

log q1(Ŷ
′(1)
1 |X̂

′(1)
1 , X̂

′(1)
2 )

]

−

H(Ŷ
(1)
1 |X̂

(1)
1 ) + I(X̂

′(1)
1 ; Ŷ

′(1)
1 )+

I(X̂
′(1)
2 ; X̂

′(1)
1 , Ŷ

′(1)
1 ) + |I(X̂

(1)
2 ; X̂

(1)
1 , Ŷ

(1)
1 ) − R2|

+
]

+

θ
[

− E
[

log q1(Ŷ
′(2)
1 |X̂

′(2)
1 , X̂

′(2)
2 )

]

− H(Ŷ
(2)
1 |X̂

(2)
1 )+

I(X̂
′(2)
1 ; X̂

′(2)
2 , Ŷ

′(2)
1 ) + I(X̂

(2)
2 ; X̂

(2)
1 , Ŷ

(2)
1 )

]

}

Next, we note the identities

I(X̂2; X̂1, Ŷ1) = I(X̂1; X̂2) + H(Ŷ1|X̂1) − H(Ŷ1|X̂1, X̂2)

I(X̂1; X̂2, Ŷ1) = I(X̂1; X̂2) + H(Ŷ1|X̂2) − H(Ŷ1|X̂1, X̂2)

D(P
Ŷ1|X̂1X̂2

||q1|PX̂1X̂2
) = −H(Ŷ1|X̂1, X̂2)−

E
X̂1X̂2Ŷ1

[

log q1

(

Ŷ1|X̂1, X̂2

)]

and use them, with the shorthandD(m) =
D(P

Ŷ
(m)
1 |X̂

(m)
1 X̂

(m)
2

||q1|PX̂
(m)
1 X̂

(m)
2

) and D
′(m) =

D(P
Ŷ

′(m)
1 |X̂

′(m)
1 X̂

′(m)
2

||q1|PX̂
′(m)
1 X̂

′(m)
2

), for m ∈ {1, 2},
to rewrite the bound as

E∗
R,1 ≥ min

θ∈[0,1]
min

(P
X̂

(1)
1

X̂
(1)
2

Ŷ
(1)
1

,P
X̂

′(1)
1

X̂
′(1)
2

Ŷ
′(1)
1

,

P
X̂

(2)
1

X̂
(2)
2

Ŷ
(2)
1

,P
X̂

′(2)
1

X̂
′(2)
2

Ŷ
′(2)
1

)

∈S1(Q1,Q2)×S2(Q1,Q2)

max

{

θ
[

D(1) + I(X̂
(1)
1 ; X̂

(1)
2 ) + |I(X̂

′(1)
2 ; Ŷ

′(1)
1 ) − R2|

+
]

+

θ
[

D(2) + I(X̂
(2)
1 ; X̂

(2)
2 )
]

;

− R1 + θ
[

D(1) + I(X̂
(1)
1 ; X̂

(1)
2 ) + I(X̂

′(1)
1 ; Ŷ

′(1)
1 )

+ |I(X̂
′(1)
2 ; X̂

′(1)
1 , Ŷ

′(1)
1 ) − R2|

+
]

+

θ
[

D(2) + I(X̂
(2)
1 ; X̂

(2)
2 ) + I(X̂

′(2)
1 ; X̂

′(2)
2 , Ŷ

′(2)
1 )

]

;

− R1 + θ
[

D
′(1) + I(X̂

′(1)
1 ; X̂

′(1)
2 ) + I(X̂

(1)
1 ; Ŷ

(1)
1 )+

|I(X̂
(1)
2 ; X̂

(1)
1 , Ŷ

(1)
1 ) − R2|

+
]

+

θ
[

D
′(2) + I(X̂

′(2)
1 ; X̂

′(2)
2 ) + I(X̂

(2)
1 ; X̂

(2)
2 , Ŷ

(2)
1 )

]

}

(B.4)

where in simplifying the third expression in the maximization
we have also exploited the constraintsH(Ŷ

(1)
1 ) = H(Ŷ

′(1)
1 )

andH(Ŷ
(2)
1 |X̂

(2)
2 ) = H(Ŷ

′(2)
1 |X̂

′(2)
2 ).

For R1 = 0 we can further simplify this expression. In
particular, forR1 = 0, the first term in the inner maximization
is readily seen to be always smaller than the second term.
Additionally, the second and third terms are symmetric in
the primed and non-primed joint distributions, which, together
with the readily established joint convexity of the maximum
of these two terms on the constraint set, imply that the inner
minimization over the joint types is achieved when the primed
and non-primed joint distributions are equal, in which casethe
two terms are equal. Therefore, atR1 = 0 we have

E∗
R,1 ≥ min

θ∈[0,1]
min

(P
X̂

(1)
1

X̂
(1)
2

Ŷ
(1)
1

,P
X̂

(2)
1

X̂
(2)
2

Ŷ
(2)
1

):

P
X̂

(1)
1

=P
X̂

(2)
1

=Q1,P
X̂

(1)
2

=P
X̂

(2)
2

=Q2

θ
[

D(1) + I(X̂
(1)
1 ; X̂

(1)
2 )+

I(X̂
(1)
1 ; Ŷ

(1)
1 ) + |I(X̂

(1)
2 ; X̂

(1)
1 , Ŷ

(1)
1 ) − R2|

+
]

+

θ
[

D(2) + I(X̂
(2)
1 ; X̂

(2)
2 ) + I(X̂

(2)
1 ; X̂

(2)
2 , Ŷ

(2)
1 )

]

(B.5)

or

E∗
R,1 ≥ min

{

min
P

X̂1X̂2Ŷ1
:

P
X̂1

=Q1,P
X̂2

=Q2

[

D + I(X̂1; X̂2) + I(X̂1; Ŷ1)

+ |I(X̂2; X̂1, Ŷ1) − R2|
+
]

;

min
P

X̂1X̂2Ŷ1
:

P
X̂1

=Q1,P
X̂2

=Q2

[

D + I(X̂1; X̂2) + I(X̂1; X̂2, Ŷ1)
]

}

(B.6)

whereD = D(P
Ŷ1|X̂1X̂2

||q1|PX̂1X̂2
).

Simplifying EB,1 at R1 = 0 gives

EB,1 = max

{

min
P

X̂1X̂2Ŷ1
:

P
X̂1

=Q1,P
X̂2

=Q2

[

D + I(X̂1; X̂2) + I(X̂1; Ŷ1)
]

;

min

{

min
P

X̂1X̂2Ŷ1
:

P
X̂1

=Q1,P
X̂2

=Q2

[

D + I(X̂1; X̂2)+

+ |I(X̂1; Ŷ1) + I(X̂2; X̂1, Ŷ1) − R2|
+
]

;

min
P

X̂1X̂2Ŷ1
:

P
X̂1

=Q1,P
X̂2

=Q2

[

D + I(X̂1; X̂2) + I(X̂1; X̂2, Ŷ1)
]

}}

(B.7)

which is seen to be no bigger than the above lower bound on
E∗

R,1, since |I(X̂2; X̂1, Ŷ1) − R2|
+ ≥ 0, I(X̂1; X̂2, Ŷ1) ≥

I(X̂1; Ŷ1), and I(X̂1; Ŷ1) + |I(X̂2; X̂1, Ŷ1) − R2|
+ ≥

|I(X̂1; Ŷ1) + I(X̂2; X̂1, Ŷ1) − R2|
+.
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Another application of the lower bound (B.4) is in deter-
mining the set of rate pairsR1, R2 for which E∗

R,1 > 0.
Let (X̂1, X̂2) be independent with marginal distributionsQ1

and Q2 and Ŷ1 be the result of(X̂1, X̂2) passing through
the channelq1. We shall argue that ifR1 < I(X̂1; Ŷ1) +
|I(X̂2; X̂1, Ŷ1)−R2|

+ = I(X̂1; Ŷ1)+ |I(X̂2; Ŷ1|X̂1)−R2|
+.

andR1 < I(X̂1; X̂2, Ŷ1) = I(X̂1; Ŷ1|X̂2) then the expression
(B.4) must be greater than 0. Indeed, for the expression
(B.4) to equal 0, we see from the first term in the inner
maximum that the minimizingθ and joint distributions must
satisfy one of the following: case 1:θ = 1, D(1) = 0,
and I(X̂

(1)
1 ; X̂

(1)
2 ) = 0; case 2:θ = 0, D(2) = 0, and

I(X̂
(2)
1 ; X̂

(2)
2 ) = 0; or case 3:0 < θ < 1, D(1) = D(2) = 0,

and I(X̂
(1)
1 ; X̂

(1)
2 ) = I(X̂

(2)
1 ; X̂

(2)
2 ) = 0. If case 1 holds

then (X̂
(1)
1 , X̂

(1)
2 , Ŷ

(1)
1 ) necessarily have the same joint dis-

tribution as (X̂1, X̂2, Ŷ1), in which case, we see from the
third term in the maximum in (B.4) thatR1 ≥ I(X̂1; Ŷ1) +
|I(X̂2; X̂1, Ŷ1) − R2|

+. Similarly, if case 2 holds then it
follows that(X̂(2)

1 , X̂
(2)
2 , Ŷ

(2)
1 ) have the same joint distribution

as(X̂1, X̂2, Ŷ1), in which case, it follows again from the third
term in the maximum thatR1 ≥ I(X̂1; X̂2, Ŷ1). Finally, if case
3 holds then both(X̂(1)

1 , X̂
(1)
2 , Ŷ

(1)
1 ) and (X̂

(2)
1 , X̂

(2)
2 , Ŷ

(2)
1 )

have the same distribution as(X̂1, X̂2, Ŷ1), in which case,
after writingR1 = θR1 + θR1, we see again that eitherR1 ≥
I(X̂1; Ŷ1) + |I(X̂2; X̂1, Ŷ1) − R2|

+ or R1 ≥ I(X̂1; X̂2, Ŷ1)
must hold. Thus, the three cases together establish the above
claim that if R1 < I(X̂1; Ŷ1) + |I(X̂2; Ŷ1|X̂1) − R2|

+ and
R1 < I(X̂1; Ŷ1|X̂2) then the expression (B.4), and hence
E∗

R,1, must be greater than 0. It can be checked that this region
is equivalent to

{R1 < I(X̂1; Ŷ1)} ∪
{

{R1 + R2 < I(Ŷ1; X̂1, X̂2)}

∩ {R1 < I(X̂1; Ŷ1|X̂2)
}

which is represented in Fig. 1 in Section IV. It is shown in [11]
that for the ensemble of constant composition codes comprised
of i.i.d. codewords uniformly distributed over the typesQ1

andQ2, the exponential decay rate of the average probability
of error for user 1 must necessarily be zero for rate pairs
outside of this region, even for optimum, maximum likelihood
decoding.
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