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Abstract

Universally achievable error exponents pertaining to certain families of channels
(most notably, discrete memoryless channels (DMC’s)), and various ensembles of ran-
dom codes, are studied by combining the competitive minimax approach, proposed by
Feder and Merhav, with Chernoff bound and Gallager’s techniques for the analysis of
error exponents. In particular, we derive a single-letter expression for the largest, uni-
versally achievable fraction & of the optimum error exponent pertaining to the optimum
ML decoding. Moreover, a simpler single-letter expression for a lower bound to & is
presented. To demonstrate the tightness of this lower bound, we use it to show that
¢ =1, for the binary symmetric channel (BSC), when the random coding distribution
is uniform over: (i) all codes (of a given rate), and (ii) all linear codes, in agreement
with well-known results. We also show that £ = 1 for the uniform ensemble of system-
atic linear codes, and for that of time—varying convolutional codes in the bit-error-rate
sense. For the latter case, we also show how the corresponding universal decoder can be
efficiently implemented using a slightly modified version of the Viterbi algorithm which
employs two trellises.

Index Terms: error exponent, universal decoding, generalized likelihood ratio test,
channel uncertainty, competitive minimax, Viterbi algorithm, maximum mutual infor-
mation decoding.
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1 Introduction

In many real-life situations, encountered in digital coded communication systems, channel
variability and uncertainty prohibit the use of the optimum maximum likelihood (ML)
decoder, and so, universal decoders, independent of the unknown channel parameters, are
sought.

The topic of universal coding and decoding for unknown channels has received con-
siderable attention in the last three decades. In [5], Goppa offered the mazimum mutual
information (MMI) decoder, which decides in favor of the code vector with maximum em-
pirical mutual information with the channel output. Goppa showed that for DMC’s, MMI
decoding achieves capacity. Csiszar and Korner [2] also explored the universal decoding
problem for DMC’s with finite input and output alphabet. They showed that the random
coding error exponent associated with a uniform random coding distribution over a type
class achieves the optimum error exponent. Csiszér [1] proved that for any channel within
the class of DMC’s with additive noise, and the uniform random coding distribution over
linear codes, the optimum error exponent is achievable by a decoder minimizing the noise
empirical entropy, universally for all the channels in the class. Ziv [12] explored the univer-
sal decoding problem for finite state channels with finite input and output alphabets, for
which the next channel state is a deterministic (but unknown) function of the channel cur-
rent state and current inputs and outputs. For codes governed by a uniform random coding
over a given set, he proved that a decoder based on the Lempel-Ziv algorithm asymptoti-
cally achieves the error exponent associated with ML decoding. In [6], Ziv and Lapidoth
proved that the latter decoder is universal for a wider class of finite-state channels. In [3],
Feder and Lapidoth found sufficient conditions for families of channels, to have universal
decoders that asymptotically achieve the random coding error exponent associated with ML
decoding.

Universal coding and decoding were explored also with regard to the generalized likeli-
hood ratio test (GLRT). In this approach, each message is scored according to the maximum
likelihood (over the parameter space) of the channel output vector given the message, and
a decision is made in favor of the message that attains the highest maximum likelihood.
Although provably optimum in certain asymptotic situations [11], [2, p. 165, Theorem 5.2],
there are cases where the GLRT is strictly suboptimum [6, Sect. III, pp. 1754-1755], [4,



Appendix].

The competitive minimax criterion, first presented in [4], is an attempt for a general
methodological approach to the problem of universal decoding. According to this approach,
the criterion is the minimum (over all decision rules) of the maximum (over all channels in
the family) of the ratio between the error probability associated with a given channel and
given decision rule, and the error probability of the ML decoder for that channel, raised
to some power £ € [0, 1] (cf. eq. (2) below). The largest power & = £* such that the value
of this minimax ratio does not grow exponentially with the block length, is the maximum
universally achievable fraction of the ML error exponent.

The main contribution of this paper is in deriving a single-letter expression to £*, in

terms of the rate R and a general random coding distribution, for fairly general families
of channels and ensembles of random codes. While in previous works the universality was
proved for certain channel models (e.g. finite—state channels, etc.) and random coding
distributions (e.g. uniform distribution over a given type class, etc.), this work deals with
general families of DMC’s (cf. Sect. II) and general random coding distributions (cf. eq.
(7)). We should note that a similar technique can be used to broaden the result for £* to
other channel families, e.g. Markov channels, finite state channels, etc.
In addition, a single—letter expression for a lower bound to £* is presented, which is simpler
to work with, and is believed to be tight. This lower bound is true also for random coding
distribution over ensembles of linear code and systematic linear codes. The tightness of this
lower bound is demonstrated for the case of the BSC. For this model, we show that £* =1,
when the random coding distribution is uniform over all codes and over all linear codes, in
agreement with well-known results. We also show that £ = 1 for the ensemble of systematic
linear codes, and for that of time—varying convolutional codes in the bit-error-rate sense.
Using the fact that in the case of the BSC, the minimax decoding metric degenerates to a
simpler metric, we propose an efficient implementation based on a slightly modified version
of the Viterbi algorithm.

The outline of the paper is as follows. In Section II, we establish the notation that will
be used throughout the paper and provide a formal definition of the universal decoding
problem. In Section III, the main results are stated and discussed. Section IV contains
a detailed proof of the single-letter expression for £* will be provided. In Section V, the

tightness of the lower bound to £* is demonstrated for the case of the BSC with an unknown



crossover probability. In Section VI, we prove that for the ensemble of time-varying convo-
lutional codes and the BSC with an unknown crossover probability, the minimax decoder
achieves the same bit error exponent as the ML decoder, which is used when the parameter

is known.

2 Notation and Problem Definition

Throughout this paper, scalar random variables (RV’s) will be denoted by capital letters,
their sample values will be denoted by the respective lower case letters, and their alphabets
will be denoted by the respective calligraphic letters. A similar convention will apply to
random vectors of dimension N and their sample values, which will be denoted with same
symbols in the bold face font. The set of all N—vectors with components taking values in a
certain alphabet, will be denoted as the same alphabet superscripted by N.

Information theoretic quantities like entropies, conditional entropies, and mutual informa-
tions, will be denoted following the usual conventions of the information theory literature,
e.g., HX), HX|Y), I(X;Y), and so on. With a slight abuse of notation, when we wish
to emphasize the dependence of the entropy on the underlying probability distribution P,
we denote it by H(P).

The mutual information between the input and the output of the channel

{Py (y|lx),z € X,y € Y}, when the input is governed by @, will be denoted by

B N o Py (y|z)
IG(Q)_gg}Q( ) Po (ylz)1 S oer @ (2) Py (y]z)

(1)

and the capacity of the channel will be denoted by Cy = maxg Iy (Q).

The number of occurrences of a letter a € X in a vector € X'V will be denoted by Ng(a).
The empirical distribution of & will be denoted by Py = {Pg(a) = Ng(a)/N, a € X}. The
type class of x is defined as Ty = {cc’ 1Py = P;c} and Hg(X) = — > ,cx Pr (a)In Pz (a)
will denote the entropy of a random variable (RV) X, with distribution Pg. Similarly, the
number of occurrences of a letter pair (a,b) € X' x Y in the vector pair (x,y) will be denoted
by Ngy(a,b), Pry = {Pry(a,b) = Ngy(a,b)/N, (a,b) € X x Y} will denote the joint
empirical distribution of (z,y), Txy = {:L", y P:L",y' = Pwy} will stand for the joint type
class of (z,y), and Hgy(X,Y) = — >, pexxy Py (a,b) In Pry (a,b) will denote the joint
entropy of RV’s (X, Y') with joint distribution Pgy. We will use Ty = {az’ : Paz’y = ngy}

to denote the conditional type class of  given y, Pgjy (a[b) = Nxy(a,b)/Ny(b), (a,b) €

4



X x ), to denote the conditional empirical distribution related to (a,b) € X x Y, and
Hyy(X|Y) = =3, pexxy Pry (a,b) In Pyjy (a[b) to denote the conditional entropy of X
given Y, induced by the joint distribution Pxy. The empirical mutual information between
RV’s X and Y with joint distribution Pgy will be denoted by Ipy(X;Y) = Hg(X) —
Hgy(X[Y).
The expectation of a function F(X,Y), where X and Y are RV’s distributed according to
the empirical distribution of & and vy, will be denoted by

Exy{F(X,Y)} = > Pgy(a,b)F(a,b).

a€X be)

The notation Eg {F(X)} will be used for the expectation of a function F(X), where the
random vector X is governed by Q.
The Hamming distance between two vectors & and y will be denoted by d(x,vy), and its
normalization by N will be denoted by 6(x,y). For a finite set A, |A| will stand for its
cardinality. The divergence between two probability measures P and () over an alphabet U
will be denoted by D (P||Q) = > ,cyy P (u) In %, where 0In0 and 0In J are defined as 0,
and Pln g for P > 0 is defined as oo. For two positive sequences {Ay}n>1 and {By}n>1,
the notation Ay = By will express the fact that {Ax}n>1 and {By}ny>1 are of the same
exponential order, i.e.,

lim %m (Ay/By) = 0.

N—oo

Consider a DMC with a finite input alphabet X, a finite output alphabet ), and single
letter transition probabilities {Py (y|z),z € X,y € Y}, where 6 is an unknown parameter
vector, taking values in some set ©. The channel is fed by an input vector of length N,
x € XN and generates an output vector y € YV according to Py(y|x) = [T~ Ps(yilz:). A
rate-R block code of length N consists of M = eN® N-vectors &, € XN, 0<m < M —1,
representing M different messages. A decoder € is a partition of YV into M regions,
Qo, 1, ..., 271, such that if y falls into £2,,,, a decision is made in favor of message m.

Given a code C, the competitive minimax criterion [4] is defined as

Pr (©]6)

[PE*(H)]E}’ 0<¢&<1, (2)

A .
SN = min max
Q 0eo

where Pg (20) = & > M—4 > yeqe, Po(ylTm) is the error probability related to a decoder
1 for a given value of 6, and Py, (§) = ming Pg(€]#) is the ML decoding error probability

when 6 is known.



The ratio Pg (|6)/[Pg* (0)]¢ designates the loss in error probability, caused by using a
universal decoder which is ignorant of #, relative to the optimal ML decoding for that 6.
The parameter & can be interpreted as the fraction of the optimal error exponent to which
the universal decoder error exponent is compared. In order to minimize this loss uniformly
over all ©, a decoder © which minimizes the worst case of that ratio (i.e., its maximum), is
sought.

As Sy addresses the ratio between the error probabilities, it corresponds to the differ-
ence between the error exponents related to these errors. It is well known that for most
channels, the decoding error decays exponentially with the block length N. Therefore, if
the value of Sy, for a decision rule ) achieved by (2), grows sub—exponentially with N,
ie., limy_ oo % In Sy = 0, it means that, uniformly over ©, the error probability associated
with 2 decays with an exponential rate which is at least a fraction £ of the error exponent
rate of Pg* (6).

In [4], the following decision rule has been shown to be asymptotically optimal in the

minimax sense for a given &:

Qm = {y’f(wmyy) > f(wm’v y)? vm/ 7é m} (3)

with ties broken arbitrarily, where

f(xvy) = Ieneaé))(fQ(way)’ (4)
folwy) 2 L In By (yle) + €57 (6), o)

and E*(0) stands for the asymptotic exponent associated with Py, (#). A decoder 2, defined
by (3), will be called the minimaz decoder hereafter.

A natural question that may arise, at this point, is with regard to the choice of the
free parameter . As mentioned above, the main guideline proposed in [4] is to seek the
maximum value £* of £ such that Sy would still grow sub—exponentially with N.

In the random coding regime, the error probabilities at the numerator and the denomi-
nator of (2) are replaced by the corresponding average error probabilities, i.e.,

P (Q0) }

Py O ©)

= A .
SN = minmax
Q 06

and the decoder (3) is used, with E*(#) being replaced by E(#), the random coding error

exponent associated with Py (6).



The main purpose of this paper is to translate the above-mentioned guideline for the

choice of £ into a concrete single—letter formula for the random coding regime.

3 Statement of Results

In this section, by evaluating the exponential order of Sy, we derive a formula for £*, the
largest value of ¢ for which Sy is sub—exponential in N. Moreover, an expression for the
lower bound to £* is also derived, and its tightness is demonstrated for the BSC model and

for several ensembles of random codes.

3.1 General codes

We begin with a few definitions. For every positive integer N, let Q@ be a random coding

distribution for N—vectors, of the following form:

~ Qn(Tx)

Qn(z) = Wa (7)

i.e., uniform distribution for all the vectors within the same type class. Of course,

> QN (Tz) =1.

Ty
Now, let
1
An(Pz) = -+ nQn(Tx),

and let A% (P) be an extension of the function Ay (Pg) that is defined over the continuum
of probability distributions over X (rather than just the set of rational probability distri-
butions with denominator N). We next define the class Q of sequences of random coding
distributions {@Qx} as follows: A sequence of random coding distributions {Qx }n>1 is said
to belong to the class Q if there exists such an extension A} (P) that converges, as N — oo,
to a certain non—negative functional A*(P), uniformly over all probability distributions {P}
over X.

It is easy to see that the class Q essentially covers all random coding distributions that
are customarily used (and much more). In particular, to approximate a random coding
distribution which is uniform within a small neighborhood of one type class — correspond-
ing to a probability distribution Py, and which vanishes elsewhere, we set A*(P) = 0

for every P in that neighborhood of Py, and A*(P) = oo elsewhere. For the case where



Q is iid., A*(P) = D(P||Q). In particular, if Q(x) = 1/|X|Y for all z € XV, then
A*(P)=In|X| — H(P).
Given a joint distribution Pxy, a real «, and a value of € O, let
A0, a, Pxy) 2 I(X;Y)+ A" (Z Py(b)PXY(-\b)) —aEln Py(Y|X), (8)
bey

where E{-} is the expectation and I(X;Y") is the mutual information w.r.t. a generic joint
distribution Pxy (a,b) = Py (b)Px|y(alb) of the RV’s (X,Y).
Next, for distributions Py, Py |y and Px/|y, two parameters 0, 0 € ©,andreals0 < p <1

and s > 0, define:
A
B(‘ga0,7PYaPX|Y7PX/\Y75ap) = A(ea 1 —sp, PXY) tp- A(elasva’Y) - H(Y)7 (9)

where H(Y') is the entropy of Y induced by Py. Finally, let

€ (R) = minminmaxqmin max min Bw’0/7PY’PX|Y’PX/|Y78’p)_pR
Pxy 6'€© 0€0 0<p<1 Pyiy (1 —ps)Ex(0) + psEr(0) ’

0<s<1/p
. B(979I7PY7PXY7PX’|Ya87p)_pR}
max max min

0€O 0Zp<1 Pyry (1= ps)Ex(0) + psEL(Y')
s>1/p

Our main result, in this section, is the following;:

Theorem 1 Consider a sequence of ensembles of codes, where each codeword is drawn
independently, under a distribution Qn, and the sequence {Qn}n>1 is a member of the

class Q. Then,
1. For every £ < &*(R), limy_00 %lngN <0.

2. There exists a sequence of encoders {Cn}y~y and minimaz decoders {Qn '}y, with
& =¢&*(R), for which:
liminf |~ In Pp (x|0)] > ¢ - B (0)
uint |~y i P (10| 2

uniformly over 6 € ©.

3. For every & > £* (R), imy_ oo % InSy > 0.



The proof of Theorem 1 appears in Section IV.

We now pause to discuss Theorem 1 and some of its aspects.
The theorem suggests a conceptually simple strategy for universal decoding: Given R and
the sequence {Qn}n>1, first, compute £* (R) using eq. (10). This may require some non-
trivial optimization procedures, but it has to be done only once. It should be mentioned that
if closed—form analytic expression does not seem available, the computation can be carried
out at least numerically, since this is a single-letter expression. Once * (R) has been
computed, apply the minimax decoding rule with £ = £* (R) and the theorem guarantees
that the resulting random coding error exponent associated with the decoder is as specified
in the second item of that theorem. Moreover, the third item of the theorem implies that in
the random coding regime, £* (R) is the largest fraction of E*(€) that is uniformly achievable
by a universal decoder.

As mentioned earlier, when @ is uniform i.i.d., A*(P) = In|X| — H(X) (where X is

governed by P), and therefore
A(0,a,Pxy) = In|X|—H(X|Y)—aEInPy(Y|X). (11)

This observation will be used in Section V which deals with the BSC model, as well as in
Section A.1 of the Appendix (ensembles of linear and systematic linear codes), as they both
assume a binary i.i.d. random coding distribution.

The theorem is interesting, of course, only when £* (R) > 0, which is the case in many
situations, at least as long as R is not too large. It should be pointed out that the exponential
rate £* (R) - E*(0), guaranteed by Theorem 1, is only a lower bound to the real exponential
rate (as the minimax criterion is aimed to consider all §# € ©), and that true exponential
rate, at some points in ©, might be larger.

As mentioned above, the exact formula for £*, given in eq. (10), includes many opti-
mizations and hence might be complicated for calculation. Therefore, we next present a
simpler expression for a lower bound to £*, denoted by &7 5 (R), which we believe is tight
at least for several families of channels. Another motivation for presenting & 5 (R) is that
it holds also for ensembles of linear and systematic linear codes, as we will shall in the next
subsection. The expression for £} 5 (R) will be derived from £* (R) by: (i) avoiding the inner

maximization between two terms in (10) by choosing the left term, and (ii) interchanging



between the minimization over Py|y and the maximization over A and p, i.e:

* A . . . . 3(07H/aPY7PX|Y7PX’|Y7)\HO)_pR
& p(R) = minminmin max min min

R 0S60€0 ospst Fxy Pyny (1= ) B (0) +Ap- E;(0)

(12)

As &7 g (R) is a lower bound to £*, it is obvious to see that parts 1 and 2 of Theorem 1 hold

for it as well.

3.2 Linear codes

We next provide a variation of £} 5 (R) for ensembles of linear codes and systematic linear
codes. Prior to that, we first define these ensembles. A linear code is defined by mapping
each of the M = 2% binary information (row) vectors wmy,, 0 < m < M — 1, of length K,

into its corresponding code (row) vector vy, of length N, in the following way:
VUm = UnGDve, m=01,... M—1,

where G is a binary generator matrix of dimension K x N and wvg is an additive vector of
length N. The @ operation denotes a summation modulo 2 and the multiplication between
Um and G is conducted over the field GF(2). A systematic linear code is defined in the
same manner, with the restriction that the left K x K block of G (the systematic part
of G) forms the identity matrix (thus, the first K bits of each code vector, v,,, form the
corresponding information vector, w.my).

We now consider a random coding distribution, which is i.i.d. over the ensemble of linear
codes (or systematic linear codes), for which the elements of G (or G, the non-systematic

part of G, in the case of systematic linear codes) and vg are drawn independently using a

11
22

uniform single-letter distribution Q@* = { } (fair coin tossing). We also define the family
of the binary-input, output-symmetric (BIOS) channels, as channels with a binary input
alphabet X (70” and ”1”), an output alphabet ) (possibly infinite), where the transition
probabilities satisfy P(y|0) = P(—y|1),Vy € ), for a well defined operation ”—” (note that
the definition of symmetry can be used as long as each y € ) satisfies that —y € ) as
well). For example, the BSC, when mapping ”0” — +1 and ”1” — —1, is a BIOS channel.
The additive Gaussian channel with two antipodal input letters, 1 and xs, is also a BIOS
channel.

The following theorem is stated with regard to codes governed by the above mentioned

ensembles and transmitted via a BIOS channel:
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Theorem 2 Consider the sequence of ensembles of linear or systematic linear codes, where
the elements of G (or G’) and vo are drawn independently by fair coin tossing. Let {Py,0 €
©} be a family of BIOS DMC’s. Then, the lower bound &5 5 (R) of eq. (12), continues to
hold, with A*(P) =1n2 — H(P).

Theorem 2 is proved in Section A.1 of the Appendix.

The single-letter expression derivation for &} 5 (R) is carried out (see Section A.1 of
the Appendix) using the same techniques as in Gallager’s classical work, which are tight
in the random coding sense. We therefore believe that the achievable lower bounds to the
real exponential rates are tight as well. To demonstrate the tightness of the lower bounds
suggested in (12) (for general codes) and in Theorem 2 (for linear and systematic linear

codes), we have the following lemma:

Lemma 1 Consider the family of BSC’s parameterized by the crossover probability 6. Then,
&1 5 (R) =1 and hence £* (R) = 1, in the following cases:

(i) The ensemble of all codes with Qn(x) = 27N for all x.

(ii) The ensemble of linear codes and systematic linear codes, as in Theorem 2, with

A*(P) =102 — H(P).

Lemma 1 is proved in Section V.

It should be mentioned that proving that under the BSC model £* = 1 is universally
achievable by random coding over general codes and linear codes is by no means new, as
it was already proved and discussed in [1]. Nevertheless, it demonstrates the tightness of
&1 g (R). However, to the best of our knowledge, the same result regarding ensembles of

systematic linear codes has not been proved yet and is first shown here.
3.3 Convolutional codes

For the special case of the BSC mentioned above, we now introduce the following result,
related to ensembles of time-varying convolutional codes, when the minimax decoding is
used. Prior to that, we first define this ensemble and the bit error exponent related to it.
A convolutional code of rate b/n (b, n — positive integers) and constraint length Kb is
defined as one for which at each time instant ¢ > 0, the code vector of length n, vy, is

obtained by
min{¢,K—1}

ve= Y. u_;G5 Do, (13)
=0

11



where u¢_; is a binary information row vector of length b at time ¢t — j, G;,0 < j < K —1,
are binary matrices with b rows and n columns each, and vg is a vector of length n.

Let us now consider a code C, governed by i.i.d. random coding over the ensemble of
time-varying convolutional codes, whose code vector of time instant ¢t > 0, v, is obtained

by
min{t,K—1}

Vg = Z ut_ng- ©® ’03, (14)
7=0

where at each time instant ¢, the elements of G;, 0<j<K-1and 'vé are drawn indepen-
dently using the uniform single-letter distribution {%, %}

The average bit error probability, W, associated with a sequence of decoders Qg =
{Qk n}x_; of block length N and constraint length K, and averaged over the ensemble of

time-varying convolutional codes, is defined as the expected relative frequency of bit errors

in the decoded information stream, i.e.

Py(Qk) = limsup Py(Qk, ). (15)

N—o0

The bit error exponent associated with a sequence of decoders Q = {Qx}%_, is defined as

1 -
Ep(Q2) = —lim sup 17 In Py (Qk). (16)

K—oo
Theorem 3 Consider the sequence of ensembles of time-varying convolutional codes of
rate b/n and constraint length Kb (with K — o), described as in the previous paragraph,
and assume a family of BSC’s parameterized by the crossover probability 6.
The achievable bit error exponent (as defined in (16)) using the minimaz decoder is equal

to the one when 0 is known and the ML decoder is used.

The proof of this theorem is based on the following observation:
Under the BSC model with an unknown crossover probability 6, the minimax decision rule

(as defined in (3)) is equivalent to a decision rule, denoted by A, and defined as:
Am = {ylp(@m, y) < p(xnv.y), ¥m' #m}, (17)
with ties broken arbitrarily, where
p(x,y) = min {d(z,y),1 - i(z,y)} . (18)

As mentioned in Section II, §(x,y) denotes the normalized Hamming distance between x

and y. This equivalence is proved in Section A.7 of the Appendix. We should note that

12



for this case, the minimax decoder coincides with the MMI decoder as well. Based on
this equivalence, the full proof of Theorem 3 is given in Section VII. We also introduce an
efficient implementation of minimax decoding, based on a slightly modified version of the
Viterbi algorithm. This is done by applying the Viterbi algorithm twice: first for minimum
Hamming distance, and then for maximum Hamming distance. This process results in two
survivors and the selection between them is done in favor of the one whose normalized

Hamming metric is more distant from % (the one with the minimal p).

4 Proof of Theorem 1

We first observe that for a DMC, {Py (y|x) ,x € X,y € YV}, and for each vector pair (x,y),
the minimax metric for a given 0, fy(x,y), depends on  and y only via their joint empirical

distribution:
fol, y) = By In Py(Y|X) + EE(0). (19)

We, therefore, conclude that the value of 6 maximizing fp(x,y) also depends on x
and y only via their joint empirical distribution. Let ©p denote the subset of ©® with
values of 6 that achieve maxy fy(x,y) = f(x,y) as (x,y) exhaust XN x YV. In the
decoding process, maximization over § can be achieved only by points in ©p. Since the

XIY] then

number of joint empirical distributions of (x,y) is upper bounded by (N + 1)
On] < (N 4+ 1)FIM a5 well.

As a first step, we assume given channel input and output vectors, & and y, respectively.
Considering a random coding distribution, @)y, we exponentially evaluate the probability

of having another codeword x’ that is preferred by the minimax decoder over x. This

probability will be denoted by a(x,y).

a(z,y) = On{f(X'y)> f(z,y)}
— Qv { puax Jo(X'9) = o)}

0'cOnN

= pax Qn {fo (X', y) = (= y)}

N
= max Qu {ZIHPH'(?MX{) > —NEE[(0) + N - f(w,y)}

/
0'cON =1

(b) N
= i Ay | X! * (0! . _
= o min B, lexp{s[glnpg (yZ]XZ)—i—NfET(G)]}] exp {—sN f(z,y))

13



= max min Fg eSNfG’(X,vy) e sNf(@Y) (20)
0'cOy s>0 N ’

where (a) is true since

Jnax QN {fo(X",y) > f(z,y)}

IN

QN {GI’%%}I{V fo (X' y) > f(m,y)}

= QN{ U f9’(X,7y)2f(m7y)}

0'cOnN

< Z QN {fa/(Xlay) > f(may)}

0'cOn
= [0 gnax Qn {fo(X",y) > fl@w)}, ()
'€On
and in (b) we used the Cheroff bound, which is tight in the exponential sense.

By using the method of types, it is proved in Section A.3 of the Appendix that for any

real a,

Fo, eNafu X)) - eN[agE:(e)—minpwly A(G,a,Pmy)]7 (22)

where the function A(f, o, P,y ) is defined as in (8).

Using this observation, we can continue to evaluate a(x,y) as follows:

a@,y) = max minexp{N[s¢E;(#) — min A(0',5, Py )]} - oxp {~sN (@)}
= x|y
_ . N * (! : /
= er,rel%irggem{ N[ 8€Er(9)+PI;1}r;A(9,8,Pm/y)+8f(w,y)]}
2 : _ /
= er,ré%iglzlgexr){ N[G(G,S,ﬁ,Pmy)]}- (23)

Therefore, the probability that the decoder will prefer any of the other M — 1 codevectors

rather than the transmitted codevector & can be evaluated as follows:

1—(1- a(ac,y))M_1 = min{l, N a(z,y)}

= min{l, max minexp{—N[G(H,,S,f,Pmy) - R]}}

0'cOn s>0

= max minexp{—N‘ max p|G(0,s,&, Ppy) — R]}

0'eOp s>0 0<p<1
J— 3 _ . / —
= Joax OglplgleXp{ N -[pG(0',s,&, Pry) pR]}, (24)
s>0

where the equivalence in (a) (see [9], Section V, and [8], Section A.2 p. 109-110) implies

that the union bound in the random coding error exponent is tight.
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Now, we will evaluate Sy, the average of the minimax criterion over the ensemble of

codebooks governed by a random coding distribution, for the minimax decoder defined in

(3):

= %aeaé{{ NEE: (0 Z Qn(x Z Py (y|x) {1 — (1 —a(z, y))M 1}}

Sy = max
6co

TexN YyeynN

= max

Z QN Z Nfe(w Y) max min exp{ [p G(Q,,S,E,Pwy) — pR]}}

0cO 0'€O N 0<p<1
xexN YyeyN V%
(a)
= max Qn(Tx) ‘Tym‘ Z.Y) max min
0co 0'€O N 0<p<1
TmyCXNXyN 520
. —Npminp A(0',s,P_y )
o NpsEER(O') |, x|y Y ~Npsf(@y) . NoR

. _ * .
S~ {e NAY(Pp) . NHay(VIX) [gngx eNfe(ac,w} s min max
€ c 0<p<1
Ty N N 5§0 =1y

* —NpA(0',s,P_y. ) —ps
eNPSEE (') Y .| max eV (T.Y) . eNPR
0"cON
@ —NpA(0',s,P
- ; —NA* NH Y|X * (! pA(0',s,P_ 1 )
= luax max min max {e NA*(Pg) JNHxy (YIX) Nps¢E;(60) z'y
€O 0<p<1
TY N OSSPty

1—ps
max No(@.Y) NPR
0cON

= pax max Or%%ll Ignzjtz{eXP{ [—A"(Pg) + Hay (Y|X) + psSEX(9)

1—ps
—pA(0, 5, Pyry) + pR]} {max eNfe(iE,y)] }

0cON

11>

/
Pry 06 01%%11 Jgi?};{e}(p {N (T, Py, Pajy, Pty 5,0, R)}

1—ps
[max eNfe(a37y)] }7 (25)
[USISIN

where in (a) we switched to a summation over the joint empirical types of  and y (which
is legitimate since both fp(x,y) and G(¢',s,&, Pry) depend on = and y via their joint
empirical distribution), and in (b), we used the convergence assumption of the random
coding distributions within the class Q to claim that AN (Pgx) — A*(Pg) as N — oo

independently of Pg, and also united the optimizations over # and 6”.
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We should observe that:
1—ps
min max {exp {N . T(Hl,Py,Pa;\yanl‘y,S,p,f,R)} {max eNfe(%y)] } —

0<p<1 P _, (USSIN
>0 TY

o . . / —
= mln{ Inin - max max eXp{N [T(9,Py,Px\y,quyvs,p,f,R) + fo(z,y)(1 — ps)
0<s<1/p Ty

. . /
JInin Ignﬁ;w; Jnin eXp{N [T(H s Py, Prjy, P 80,6, R) + fo(®,y)

(
1—ps
s>1/p Tl
(

—
S
N

0cON 0<p<1 P w|y7

)]
= min{ max min max exp{N [T(@’,Py,Pw‘y,P 1aps > 0 & R) + fo(x,y)(1 — ps)
0<s<1/p z'y

)

( }}
. . / —_

Jin (%1%11 Ig;f,iz eXP{N [T(H s Pys Parjys Pty 80,6 R) + fo(2,y)(1 = ps }
s>1/p

|

(26)

>

i i N -T(0,0", Py, Ppiy. P
mln{grggi Join - wax eXp{ (0,0', Py, Pyy, qu,s,p,f,R)},
0<s<1/p TIY

0cON 0<p<1 P_,

min min max exp {N . T(G,@',Py,wa,Px/‘y,s,p,ﬁ, R)}}, (27)
s>1/p LY

where in (a), two interchanges are made: one between the minimization over p and s
and the maximization over # in the left term of the outer minimization, and one between

the maximization over Pﬁ?’ly and the minimization over 6 in the right term of the outer

minimization. The first interchange is justified in the Appendix, Section A.2. The second
interchange is possible since the term to be optimized is a product of two exponential
terms, one depends on szly and one depends on 6, therefore the optimizations can be
done independently.

Consequently, we conclude that:

)

— . . . T /
Sy = ?ﬁ;ﬁ%’;mm{%& Join - max exp{N-T(&@,Py,P:c|y7Pm/|y,s,p7£,R)
0<s<1/p T1Y

in mi N -T(0,6', Py, Pgy, P
erélér}v o?pl?l Ignf/ix exp{ (0,0", Py, T|Y> $'|y737Pava)}
s>1/p T1Y

= gl;;;re%ﬁmin{eXp{N-gggi JInin  max T(0,0', Py, Pxjy, Pys gy 50,6, B)

14
0<s<1/p T1Y

—_—— =~ = =

. . 7 /
exp{N GIéléI]{] (glpl§n1 Ignz,LX T(979 ,Py, P£U|y7Px/|y7 CNNS R)}
s>1/p T1Y
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. . . s /
= eXp{N-r}%;e{ggimln{gggi Jnin - max 16,6, Py, Prjy, Py 5:0,€ R),
0<s<1/p T1Y

0cON 0<p<1 P_,

min min max T(G,G/,Py,wa,Px/y,s,p,f,R)}}.
s>1/p LY

(28)

Now,

T(ea 0,7 Py, Pm|y7pm’|ya 57P)€7 R) =

= —AN(Pr) + Hy(Y) = Iy (X3 Y) + psSEL(0') — pA(0', 5, Ppry )
+(1 = ps) Exy In Py(Y|X) + (1 — ps)EES(0) + pR

= _A(97 1 — ps, PIE’y) - pA(0/7 S, Pl',y) + Hy(Y) + png:(el)
+(1 = ps)EE;(0) + pR

= —B(0,0, Py, Pxjy, Py 5, p) + psEEL(0) + (1= ps)SEL(0) + pR,

(29)

where the function B(6,0', Py, Py, Pwlly, s, p) is defined as in (9).
Therefore, in order for Sy to grow sub—exponentially with IV, we seek the maximal &
such that:
max max min {max min max T(G,O',Py,wa,Px/‘y, s, 0, &, R),

Ppqy 0'cOn 0€EON 0<p<1 P _,
Y 0<s<1/p LY

. . 7 / <
Join min max 70,0 ,Py,Pm|y,Pm/|y,s,p,§,R)} <0 (30)
s>1/p Y

As the empirical distributions become dense in continuum of probability distributions as
N — o0, and since the function T(G, ¢, Py, Pry, P:L"\y’ s, p,&, R) is continuous in Py, Py
and PCE’I Y it is equivalent to perform the above optimizations over continuous distributions
rather than empirical distributions. The same token can be used in order to broaden the
maximization space for 6 and 0’ from Oy to ©. Thus, the condition becomes:

maxmax min {max min  max T'(0), 0', Py, Px|y, Px|y, 5,0, &, R),

Px, 6'cO 0€© 0<p<1 Py,
0<s<1/p =~

. . s /
min orél,%ll pax T(0,0', Py, Px|y, Pxrjy, 8,05 &, R)} <0  (31)
s>1/p
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In other words, a maximal £ is sought such that:

VPx,, V0 € ©

: T /
IQHGaé( 0?321 g}f}l};T(eae’Pyv-PX\yaPquas?pagaR) <0 (32)
0<s<1/p

or

IaIélél 012%11 g}lgl); T(ea 9/7 Pya PX\ya PX’|y> s, p,¢&, R) <0 (33)
s>1/p

An equivalent condition is:

VPx,, V60 € ©

B(ea0/>Py7PX\y1PX’|yvs7p) - IOR

< mi i 34
§S iy max min G S Ee(0) + psE (0) (34)
0<s<1/p
or
B(6,6, P,. Px(,, Pxri. 5, p) — pR
¢ < max max min ( 2 Pty Py 8.0) = p (35)
0€© 0<p<1 Py, (1 — ps)Ex(0) + psEx(0)
s>1/p
Therefore,
B(6.0', P,, Py, Pxi, 5, p) — pR
& (R) = minminmax{min max min ( v Pty Pxry 8.0) = p ,
Px, 0/cO 0€0 0<p<1 Py, (1 —ps)Ex(0) + psEx(0")

0<s<1/p

. B(979/7Py7PX|y7PX’\y7S7p)_IOR
maXx max min

szl/p

5 Example - the BSC

In this section, we demonstrate that for the special case of BSC with an unknown crossover
probability, and a uniform random coding distribution, £} 5(R) = 1 and hence {*(R) = 1,
in agreement with well known results [1].

Consider the lower bound (12) and choose the uniform single-letter random coding
distribution Q* = {%,% )
Now, the value of A(0, a, Pxy) is (see (11)):

A(0,a,Pxy) = In2—-H(X|Y)—aEInPy(Y|X) (37)
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Therefore,

min A(f,«, Pxy) = In2—max{H(X|Y)+aFlnP(Y|X)} (38)

Px |y Px |y
In addition, for the case of BSC with an unknown crossover probability, 6, we have (see [7],

Section VI):

max{H(X|V) + aEmPy(Y|X)} = In[(1—0)"+06°]

Px |y
2 V(9,a) (39)
From these two observations, we conclude that:
min A(f,a, Pxy) = In2-V(0,a) (40)
Pxy
Using (9), we get:
¢ p(R) = min min max min min A(0,1 = Ap, Pxy) + pA(', A\, Pxry) — H(Y) — pR
LB Py 00'€® o0<p<1 Px|y Pxiy (L=Xp)-EX0)+ \p- Ex(0)
0<A<1/p
_ _ (14+p)In2-V(0,1— X p) —pV(¢',\) — H(Y) — pR
T B ece acen (1= p) - B2 (0) + \p- EX(0)
Y OSXSﬁ/p P T P r
1 In2 — 1- — ! —H(Y) —
2 Jun mex min e (1V(i’ ) EAp(L) f];(e ’E?\)(G’) ek
/ 0<p<1 — . F* . x
= Ogj\pfl/p y 1Y r P T
) pln2 —V(0,1— \p) — pV(¢',\) — pR
= min max — — o . (41)
0,0'cO 05’51/,0 (I—=Xp)-Ex(0)+ Ap- Ex(0")

Now, the random coding error exponent associated with ML decoding, E(#), to which
the minimax decoding error exponent is compared, is achieved for the BSC model by the

following optimization (see [10, Sect. 3.1, 3.2 and 3.4]):

E’(#) = max max{—ln Z [ Z - Py ( y|x)1+p}1+p_pR}

0=p=l ye{01} ze{0.1}
G —— {pn2—(1+p)ln[(1 —0)T + 9%} ~ R}
0<p<
1
- orélffl{pIHQ_(1+p)V<9 1—|—p> _pR}

(max, (0, p), (42)

1>

where in (a), the inner maximization is achieved by taking Q* = {1, 3} ([10, Sect. 3.4]).

Let us now define p' = and p” = X — 1, and rewrite the numerator of (41) as follows:

_Ap
1-XAp
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pln2—V(0,1—X\p) — pV (6',\) — pR =

B 1 , 1
= pln2—V<9,1+p,>—pV(0,1+p,/>—pR

_ / / 1 /

/! /! / 1 /!
)\p[p ln2(1+p)V<9 1+p)pR}
= (=) E: (0.0) +Xp-E (¢, ")

1
— (1-)p)-E, (9, 1 fpkp) + - B, (e’, - 1) . (43)

Finally, we get that

(L= Ap) - Er(6,1255) + Ap- En(0/, 1 — 1)

{rp(R) > min  max T — . (44)
0,0'cO Os\pggf/p (L—=Xp)-Ex(0)+ Xp- EX(0)

Now, by choosing A = where p is the achiever of E}(0') = maxo<,<1 E (¢, p), and

1+7

p = m(l + p), where p is the achiever of Ef(6) = maxg<,<1 Er(0,p) (observing that

%ﬁ(l + p) < 1, therefore this choice is feasible), we get that both the numerator and the
denominator of (44) equal to (1 — A\p) - E(0,p) + Ap - E.(¢,p), and so, &5 5 (R) = 1.
We should note that for the BSC model, the same conclusion (i.e., £&* = 1) holds also for

linear codes and systematic linear codes (as the optimal random coding distribution that

was used is Q* = {3, 1} (see (42)).

6 Proof of Theorem 3

First, consider a given channel output related to the entire transmitted sequence of infor-
mation. Without loss of generality, the all-zero message will be assumed to be transmitted.
Let us now consider a segment of length K 41, [ > 0, of the transmitted information vector,
and any other incorrect path diverging from it at node j and emerging at node j + K + [
(note that the minimum length of a diverging path is K since after a non-zero vector is
inserted to the encoder, K — 1 zero vectors are needed in order to return to the all-zero
state).

We observe that the information sequence related to such an incorrect path has the

following structure (we ignore the values of the information sequence outside the range
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(J, i+ K+1-1)):

Uj, Uj41,--- ’LL'_HO... 0
7 %7 ) s g+l Y )
K-1

where all of the vectors are of length b.

In order for the incorrect path to diverge exactly from node j to node j + K + [, u; and
wj4i can be any of the 2° — 1 non-zero vectors (thus, there are (2° — 1)2 possibilities for
their values), and each of the [ — 1 information vectors w1, ..., uj4;—1 can be any binary
vector of length b, with the restriction of no more than K — 2 consecutive all-zero vectors
(thus, there are less than 2°¢—1) possibilities for their values). Therefore, the number of

such incorrect paths, denoted by M, is upper-bounded by
2
M < (2” - 1) 2b(-1) < (2” - 1) i (45)

We next upper bound the probability that an incorrect path is preferred by the minimax
decoder (minimizing the metric p) over the correct path, and then average this probability
over the ensemble of time—varying convolutional codes.

We will use Vj = [vj,Vj41, ..., Vj+K+1—1] to denote the code vector of length N = n(K+1)
that corresponds to the correct all-zeros path, while Vj’ and Vj” will be used to denote code
vectors that correspond to other incorrect paths. The notation V; will be used for the
complement vector of V;. A segment of length NV of the corresponding channel output will

be denoted by Y, and Q* will be used to denote the random coding distribution.
Pr{p(V},Y;) < p(V;, Y;)|0} =

= > V)P {p(V].Y;) < p(V;, Y5)|6}

V-,Vf
9 9N S e p(VLYy) < oV, V)
Vi vy
= 2V 3 Pefmin {5V, ¥5),1 - 6V, ¥5)} < min (8(V;, %), 1 - 6(V;. ¥5)}}
ViV
= 272 3 Pr{[8(V/, ¥5) < min {8(V5, ¥5), 1 - 6(V;, ¥5)}
V,V’
U[ Y;) < min {6(V;,Y;), 1 5(‘/371?)}}}
2 Y pfs(vY) < 0V ) sV V) < 6V )
Vi vy
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—
IN>

272NN Pr{6(V],YG) < 6(V;, V) b+ 27 3 S Pr{a(V], YG) < 0(V;, ) |

VV’ VV’

S 2SS Pe{0(V],YG) < 6(V;, Y) F 427 S ST Pe{a(V)LYg) < 6V, ) )
7 V, V; ‘/J//
= 2.2V S Pe{a(V],Y;) < 6(V;, X))

l4
ViV

< 2:27N3 NS RV R V;)
V; v} Y

0 {zy: [Z % Pg(y]v)] 2}N

= o~ NReo(@) (46)

)

—
=

where ) IHZ[Z \/mr.

In (a) we used the fact that both V; and Vj' can attain each of their 2V possible values
equiprobably and independently. This claim for V; (which corresponds to the all-zero path)
can be justified due to the fact that the elements of G;, 0<j<K-1land v(t) are repeatedly
randomized at each time instant (see (14)). Therefore, V 0 <i < K + [, vj4; = vg“, thus
each one of these vectors is likely to attain each of its 2™ values equiprobably. This claim for
Vj’ (which correspond to the incorrect path) can be justified since u; and w4, are non-zero
and wj41,...,uj4;—1 cannot include more than K — 2 consecutive all-zero vectors. Thus,
each code vector of v’ it 0 <1< K + [ is formed by the modulo-2 sum of 'UH_z with at
least one of the rows of G(J)+z, G{‘H G "Hl and is therefore likely to attain each of its
" values with equal probability as well and independently with the other code vectors (this
fact is dealt in details in [10, Sect. 5.1]). (b) is true since we switched into looser conditions
inside each event in the probability term. In (¢) we used the union bound. In (d) we used
the fact that observing §(V;,Y;), when summing up over all of Vj’s possible values, is
equivalent to observing §(V}, Yj) (since in both cases, each of the 2V values of the vector is
covered by the summation). In (e) we used the Bhattacharyya bound for the pairwise error
probability when using ML decision rule, and (f) is true since the channel is memoryless.
We proved that the probability that other code segment would be preferred by the

minimax decoder over the correct segment, when averaged over the ensemble of time-varying
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convolutional codes, is upper bounded by twice the bound achieved for ML decoder in [10].
Thus, it is exponentially of the same order. The subsequent steps in deriving an upper
bound to the bit error exponent for rates R < Ry (Q*) are identical to that of ML decoder
(see [10, Sect. 5.1]) and the final result is the same.

Therefore, it was proved that when using the minimax decoder, the achievable exponent
for bit error probability is no less than when the channel parameter is known and the ML
decoder is used. The same error exponent was proved to be achievable for rates up to
Ryo (Q7).

In order to extend the average upper bound for the bit error probability to rates higher
than Ry (Q*), we will use a slightly different technique.
First, we upper bound 7 4(j), the probability that a branch in the minimax based decoding
path will occur by any one of the other possible paths, starting at node j and reemerging
after K + [ branches. We should observe, as mentioned in (45), that the number of such
diverging paths satisfies M < (2b — 1) 2%l The code segments associated with these M

incorrect paths will be denoted by Vj(l), cees V'(M), respectively.

J
me(j) =
= Pr{31<i<M:p(V)Y5) < p(V5,¥5) }
= Pr{31<i<Mmin {5V, ¥)),1- 6V, ¥;)} < min {8(V;, ¥5),1 - 8(V;, ¥5)}}
= Pr{31<i< MoV, Y;) < min {8(V;, ¥5),1- 8V, Y3) U
6(V§),¥5) < min {8(V3,Y;),1 - 8(V5, ¥5)} }
(a) . .
< Pr{31<i< MoV Yy <ovi vy oV ) < 6(v;, ) )
(b) .
< Pr{31<i< MoV Yg) <8V ¥y} +
Pr{31<i<M:3(V{,¥;) <o(V;,¥5)}
(c)
<

oM VoL 7p oy — (i) L 1P
S RV [ 3 B V) e |+ S PG V) T [ R V) ] (an)
Y: i=1 Y. i=1
J J
where (a) is true since we increased the right terms of the two inequalities, and thus increased
the probability for union of these two events, in (b), the union bound was used, and in (c),
we used the Gallager bound for the error probability when using the ML decision rule. This

error was used for each of the two error probabilities.
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We now move to upper bound the average of m4(j) over the ensemble of time-varying

colvolutional codes:

me(j) =

> S)

IN

—
O
~

—~
=

where

ZQ_N Z Z 2_NM7Tl,9(j)

V; (1) (M)
Y %
S S o NpylvyTe S Y 2
Y; Vj v O
J J

M . L M ) )
HZPMM(”)W}H [ZP@(Y}]VE.Z))WF]
i i=1

1=

—_

M .
S 27Vp, (Y;|V;) T DY 27NM{ZP9(Y7"V}(1))ﬁ}P

-V V(l) ‘/J(M) i=1

&3 M

Q.

=M
sM

29— NPQ Y’V 1+p {Z Z ) Z 2—NMP9(}fj’V;’(i))ﬁ}ﬂ7 0<p<1

oM .1 1P
EDIPIERENADEDND Z 2Ny V)R ]" 0<p<t
Y; V; i=1 V'('i)

[\]
aun

2b >2blpZZQ NP@ Y|V 1+p|:z 9= NPQ(Y’V('L))HP} , 0<p<1

j
2 (2 —1) 2 33 2N By(vy(vy) }Hp, 0<p<1
Y, V;
b bl -N EIRTEY
2. (20— 1) 2" L 3OS 27N By (yfo) 7 | . 0<p<1
y v
(21) _ 1) 2blpef(K+l)nE9’0(p,{%,%})’ 0<p<l, (48)

Eoo(p,Q 1nz[22 NPy (y[v) 1+p}

In (a), we sum over all possible code vectors associated with the different paths in the

trellis. As explained earlier, each code vector can attain all of its 2%V values equiprobably

and independently with the other code vectors. In (b), we used the result from (47). (c¢) is

true since examining Py (YJng’)), 1 <4 < M, when summing up over all of Vj(l), e

(M)
Vi

possible values, is equivalent to the examination of Pg(Yj|Vj(i))7 1<i< M. In (d), we
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bound ourselves to 0 < p < 1 and use Jensen’s inequality. (e) is true since for a fixed
1, Pg(Yj|Vj(i)) depends only on Vj(i), and is enumerated for the 2V =1 pogsibilities of
Vj(l), - Vj(i_l), Vj(H_l), . Vj(M). In (f), we upper bound M by <2b — 1) 2% and (g) is
true since the BSC is memoryless.

As in the above proof for rates up to Ry (Q*) , the subsequent steps in deriving an
upper bound to the bit error exponent for rates Ry (Q*) < R < Cy for the minimax
decoder are identical to that of ML decoder (see [10, Sect. 5.1]) and the final result is the
same. This completes the proof that the achievable exponent for bit error probability of

the minimax decoder is equal to that of the ML decoder, for all rates up to capacity.

A. Appendix

A.1 Proof of eq. (12) for ensembles of Linear and Systematic Linear Codes

In this section, we examine the performance of the minimax decoding rule with respect to
uniform i.i.d. random coding over ensembles of linear codes and systematic linear codes.
We will prove that for a family of BIOS channels, the same single-letter formula for the
lower bound to the achievable fraction £* is obtained, with uniform i.i.d. random coding
distribution Q* = {1, 1} (ie. A*(P) =In2— H(P)).

Using Gallager’s techniques, we first upper bound the decoding error probability given

that the m-th message was sent for a given 6 in the following way:

P, (Q16) = Y Polylom)1{3m' #m: max fo(vme.y) > max fyr(vm.y)}
0'eON 0"cO
YyeynN
= Z Py(y|lvm)1 {EIG' Im’ #m: fo (v, y) > G;Inax fgu('vm,y)}
Yyeyn
@ Z Py(y|vm) m%X I{Elm #m: for (U, y) >0}r/n%x f@//(’l}m,y)}
YyeyN ©
— Z Py(y|vy,) max I{Elm' #+m: Jo (V- y) > 1}
YN 6'eON maxgreoy for(Vm,Y)
(b) eN o (Vms YY) Al
<
< ygN P(ylom) nax r?;{}[ %Zm(maxg,,% ~Nwm) | 49

where p > 0 and A > 0 are free parameters.
(a) is true since if we denote with A(f) an event dependent on # € Oy, and denote with C'
a constant, then

1{30 € Oy : A(6) > C} = max 1{A(6) > C}.

25



(b) is true since if we denote with f1(m’) and fa(m) two non-negative functions of m’ and

m respectively, then (using Gallager’s technique)

1<{3m’ ‘fl(m/)>1 < mi 7€f1(ml) i
{m*m'h(m) 21psmin| S (Yo ) |

p>0 Lm/#m

Based on (49), we now develop an upper bound to the minimax criterion related to a specific

linear code (i.e., specific values of G and wvg, thus denoted by Sy (ve, G)):

P (Q06) . PE (€6)
< gy X 3 O Rl e
m= OyeyN P50
N for (VYY) N\ P
m/#m maXG//69 eNfG”(vmvy)
1 Nfo(v .
= max Z s(UmY) max min
6O {M m=0 yeyN 6'cOnN ;;0
N for (Vv Y) A
m/#m ma.XguegN eNfaﬂ('Umyy)
P
{ 5 eN/\fof(Umuy)}
@ 15 Nfo(Um,Y) . m/#m
< Vi Z (maxe 0 m’y) max min v
m=0 yeyN 00N 0'eOn ) (maX(a//e@N eNfg//('vm,y)>
b M—-1 B o
(S) i Z max min{[max eNf9(vmvy)}l )\p|: Z eN)\fel(’Umuy)] }
M = Y 0'eOn ;gg 6O N T
(o) 1 M—-1 . N1 “
S ar Z max min max<ie P)f&(vm7 Z e fel 'l)m/7’y)
M=o Yyeyn 7w 0§§2§01/p PeON m'£m
1 M-l
@ i emgx gm%x min {eN(l)‘P)fG(vmv { Z eN Mol Umuy)] }
/ >
m=0 yeyn "N TS Nogiiol/p m/#m

50)

The passages (a)—(d) are explained as follows: In (a) we used the fact that the maximum of
an expectation is no greater than the expectation of the maximum and changed the maxi-
mization of 6 to be over ©x. (b) is true since 6 and #” maximize two identical expressions,

and therefore can be united. In (¢) we restricted the range of the optimization to 1—Ap > 0
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(= X <1/p). In (d) we used the fact that for given v,,, y and 6’

min max{eN(l_/\p)f"(vm’y){ Z eNAfe/(Um'v’y)]p } =

p>0 9€®N

0<A<1/p m#m
P
max  min {eN(l—Ap)fe(’Um,y){Z eNAfel('Um’uy)} } (51)
6cOnN p>0 ;
0<A<1/p m/F#m

This interchange between the minimization over A and p and the maximization over 6 is
justified in the Appendix, Section A.2.

Prior to deriving the single-letter formula for the lower bound to &*, we first present

the following claim:

Lemma 2 When a linear code is used for a BIOS channel and minimax decoding is used,

the error probability for the m-th message is equal for all0 < m < M — 1.

This lemma is proved in Section A.4 of the Appendix.
Based on this observation, we can assume, without loss of generality, that ug = 0 was

transmitted, and then the upper bound to Sy can be expressed as:

M—1
SN (vo,G) < max max min {eN(17A)fe(V0Y) [Z eV vm,y)} }

00N /€6y p>0 —

Yey 0<A<1/p m=1

(52)

In the following subsections, we will use the same technique to derive two upper bounds
on the minimax criterion, one for the ensemble of linear codes and one for the ensemble of

systematic linear codes.
Linear Codes

By averaging Sy over the ensemble of linear codes:

SN @) o-(K+1)N Z SN (vo, G

—~

’U(),G
rM—1 e
< o (KE+LN Z max max min < eN1=A)fe(Vo,Y) N Mo (Vm,Y
N 96@1\[ 9’6@1\7 p>0 —
v9,G Yy 0<A<1/p Lm=1 .

—
ot
w

~

SN LA S S S S {N(l—xp)fe(vo,y) _]\glemfgf(vm,y)_p}

>0
Vo, G yEYN 0cON 0/'eO N 0<§\<1/P Lm=1
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—
8]
=

< Z Z Z min
yEYN 96@]\7 9’6@]\7 Ogizgol/p
M-1 P
{2—(K+1)N Z <6N(1—>\p)f9(1?07y) Z eNAfor (Vm,Y) )}
'UO,G m=1
(d) 9 )
< |On] ngx max —min
€ ' >0
yeyn N Nogigl/p
M—1 p
{2N ZBN(lfAP)fG(Umy)Q*KN Z [ Z eNMo (Vm,Y) } (54)
Vo G Lm=1
(e) 2 .
< O] fnax max min
/ 0<p<l
yeyn "IN TE N o0<aZ1/p
M-1 P
{Q—NZeN(l—Aﬂ)fe(’UO,y) [Q—KNZ Z eN/\fgf(Um,y)] }
Vo G m=1
= ey max max min
/ 0<p<1
yey v SONTEEN A,
M-1 P
e e Spae g
Vo m=1 G
W lOn? max max min
/ 0<p<1
yey N conoe Nogf\pfl/p
p
{2N ZBN(P)\P)fe(’UO,y) l(M —1)27N Z eNAf"’(v’y)l }
Vo v
< ]G)N|2 nax max min
€ 'e 0<p<l
yeyn N NogApgl/p
p
{MP [QNzeN(l)\P)fe(’U,y)} ) lgN ZGN)‘fe' ('U,:y)l }7
v o

(55)

where the steps (a)—(f) are as follows: The equality in (a) is obtained by averaging over
2(K+DN equiprobable values of vg and G. (b) and (d) follow from the fact that for a

non-negative function f(6), non-negative function f(6),

juax f(6) < ee%v f(6) < 10| - max f(9). (56)

(c) is true since an expectation of a minimum is upper-bounded by the minimum of the

expectation. In (e), we limit the optimization over p to 0 < p < 1 and use Jensen’s
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inequality. In (f), we used the following equivalence for the two inner summations:

M-1
3 N Omy) = (3 — 1)2(KDN 3 Ny (0Y), (57)
m=1 G v

This equivalence is proved in Section A.5 of the Appendix.

From (19), we conclude that the term inside the summation in (55) is identical for all
y’s of the same type class. Thus, the summation can be conducted over types. Using (22),
we continue to upper bound Sy in the following way (note that the function A(0, o, Pry)

used here corresponds to a binary i.i.d. random coding distribution, as specified in (11)):

_ (9
Sy < |@N]22max max min
0cON /€Oy 0<p<1
Ty 0<A<1/p

{eNpReNHy(Y)eN [(1—Ap)£Ei‘ (9)—minpm|y A(0,1-Ap,Pry)

N
e

ApEEF(0") _p.minpm,ly A(@’,A,Pw/y)] }

0cON /€Oy  0<p<1

= |9N]22max max min
Ty 0<A<1/p

exp{N[pR + Hy(Y) + (1= Ap)EEZ(0) — min A(0,1 — Ap, Pry)
Priy

* / . /
+APEEL () — p- PIEE/ A0 ,A,Px/y)]}}

A
INS

|9N!2 (N + 1)|y| max max max min
Pfy 0cON 0/cON 0<p<1
0<A<1/p

{exp{NloR + Hy(v) + (1= M)EEL(6) - in A(0,1 =29, Pry)

FNEED) = gin A0 P}
\

= |On]* (N 4+ 1P exp{ N - max max max min max max
P, 0eON 0'cOn 0<p<1 P, P
Yy Y g

0<A<1/p 'y

(PR + Hy(Y) + (1 - A)EE?(6) — A0, 1~ Ap, Pay)
FAPEENO) — p- A, Pw,y)]}, (58)

where in (a) we upper bound |Ty| by N Hy ()

, and in (b) we upper bound the summation
of the functional over Ty by the product of the maximal value (achieved by a specific

distribution Py) with (N + 1)l which is an upper bound to the number of type classes
{Ty}.
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As explained earlier, we seek the maximal ¢ such that Sy grows sub—exponentially with
N. To this end, we can ignore the factor |©y|* (N 4 1) in (58), as it grows polynomially
with N. Moreover, as mentioned in Section V, the optimizations can be conducted over
continuous distributions and over the entire parameter space, @. Thus, a maximal £ is

sought, such that (using (9)):

max max min max max [pR—i—(l Ap)EET (0 )—}—Ap&Eﬁ(G’)—B(G,0',Py,PX|y,PX/|y,)\,p)} <0.

Py 99’6@ 0<p<L1 PX\YPX’\Y
0<)\<1/p

(59)
An equivalent condition to (59) is

VPy,V@,@’E@,H()Spgl,og)\gl/p VPle,Vpxl‘y
pR+ (1 - )‘p)gE:(e) +)‘p£E:(‘9/) - B(070,7PYaPX|Y7PX’\Y7)‘7:0) <0

or,

VPy,VG,G'G@,HOSpSl,OS)\gl/p VPle,VPX/‘Y

B(9,¢ PY7PX|Y7PX/|Y7)‘ p) — pR
(L= Ap) - EX(6) + Ap - EX(0')

£ <

Consequently, for ensembles of linear codes and BIOS channels, the lower bound to &* is

the same as in (12), with a uniform i.i.d. random coding distribution, Q* = {%, %}

Systematic Linear Codes

A similar technique will be used now to achieve identical results for the ensemble of sys-
tematic linear codes.

By averaging Sy over this ensemble:

—

§N 2 2_K(N_K)2_NZZSN(U0,G
K(N-K)o—N .
. ZZ 2 g g
Vo yey N 0<A<1/p

{emmp)fe(vo,y)

M-1 P
3 eNAfef('Um:y)] }

m=1
(b) 9
< O] max max min
0eON 0/cON 0<p<l
Yyey N 0<A<1/p
M—1 p
{2—1\’261\7(1 Ap) fo(V0,Y) [2 K(N-K) ZeN’\f"’(Um’y }
Vo m=1 G
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p
© oy max max  min {2—N26N<1—Ap)fe<vo,y> 2—<N—K>Zemf9/<fv,y>] }
o O 20 U 2
p
@ ’(—)N‘Q el’ngx HI/H%X min {Q_NZeN(l_)‘p)fﬂ(v(Ly) Mz_NzeN)‘fG’(vvy)] }
yey v "ONTEON BE, S o v
= |ex/? nax max min {Mp
€ ‘e 0<p<1
yey N N N oa<i/p
’ p
9N N N-A)fo(0.Y)] [9=N §™ NAfy (V' Y) }
S )

v
(60)

The equality in (a) is obtained by averaging over 25 (N=K) and 2V equiprobable values of vg

and G (the non-systematic part of G), respectively. (b) is obtained by taking identical steps

as done for ensemble of linear codes in the previous subsection (see the inequalities between

(53) and (54)). In (¢), we used the following equivalence for the two inner summations:

M-1
Z Z eNAMo (VmY) — o(K-1)(N-K) Z eNA o (VY) (61)
m=1 G (%

This equivalence is proved in Section A.6 of the Appendix. In (d), we used the equality
M = 2K,

Finally, the upper bound to Sy achieved in (60) is identical to the one related to
ensembles of linear codes (see (55)), and therefore the final lower bound to £* for the
case of systematic linear codes is also identical to (12) with uniform ii.d. random coding

. . . 11
distribution, Q* = {5, 5}.

A.2 Proof of eq. (26) and eq. (51)

Let 6* maximize fyp(vm,y), and let F'(A, p) be a nonnegative function. Then,

min  max{ eVIAoUmY) P\ p) ) =
p>0 96@]\]
0<A<1/p

— mln {eN(l_Ap)fQ* (Umvy) . F(>\’ p)}
>0
0<A<1/p
max min {GN(l—/\p)fe(vm,y) . F()\,p)}

96@1\] p>0
0<A<1/p

IN

min max {eN(lAp)fo('Um’y) . F()\’ p) }7 (62)
p>0 0cO N
0<A<1/p
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where (a) is true since the value of the function for a specific 8* in © is always upper—
bounded by the maximization of the function over § € ©y. Thus, all inequalities must be

achieved with equalities.
A.3 Proof of eq. (22)

For a € ® and y € YV, we exponentially evaluate E[e’ O‘f"(m’y)] , where the average is

_ On(Tx)

calculated over the ensemble of random coding distribution of the form: Qx(x) Tpl

(as described in (22)):

BNl X Y] = 3 Q)o@
xrexhN

2 Z Tm|y QN(cc)eNO‘f9(m’y)
Tm‘yCXN

—
S
=

e_NA?V(Pw)

T Nafe(,Y)
Z Ty T €
Tm‘yCXN

(b) e NA*(Pp)—én) x.
s Z Tely Tl eNafo( y)’ (63)
Tw‘yCXN T

where €y — 0 as N — oo independently of Pg.

We should note that (a) is true since fp(x,y) depends on & and y only via their joint
empirical distribution and the summation can be conducted over types instead, and since
the average is calculated for a given y, we sum over Tgy- In (b) we used the convergence
assumption for the random coding distributions withing the class Q.

Thus, we continue to evaluate E[eN/6(®.Y)] as follows:

(a)
E[eNafe(iB,y)] - Z exp{N[—Imy(X; Y) — A*(P:B) + Oéfé’(ma y)]}
Tm‘yCXN

= exp{N- x| Loy (X:¥) = A (Po) + afy(a y)l}

< exp{N- x|~y (X:Y) = A'(Py)

+abzyIn Py(Y|X) + o E;(0)]}

exp{ N[agE} (6) - i {T2y (X;Y)

+A"(Pg) — abigyln By(Y[X)}]}

eN[agE;: (0)—minpg o) A(0,0,Py)] 7 (64)
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where in (a), we used the facts that ‘Ta”y‘ = N Hry X onq T = eNHz(X) | (b) is true
since the summation of the functional over Ty C X N is lower bounded by its maximal
value (achieved by a specific distribution Ppgy), and upper bounded by the product of its
maximal value with (N 4 1)I*IVl. Tn (¢), we expressed the minimax metric in terms of the

joint empirical distribution as described in (19).

A.4 Proof of Lemma 2

In this section, we prove that when a linear code is used for a BIOS channel and the minimax
decision rule is used (denoted by ), the error probability for the m-th message (of length

N), vm = (Umo, - - -, Um(n—1)), is the same for all m, that is,
P, (Q0)=Pg(Q8) for 0<m<M-—1. (65)

Considering a binary input channel, we denote the channel crossover probabilities for a
single letter as  Py(ylv =0) 2 Pyo(y) and Pp(ylv =1) 2 Py1(y).

If the channel is also output symmetric then,

Ppi(y) = Poo(—y), Vyel

The error probability for the m-th message using minimax decoding is:

Pg, (210) = > Pa(ylvm)
YeAn®
= Z H Poo(yn) H Py 1(yn)
YEARC Nvmn=0 N:Vmn=1
- Z H P@,O(yn) H P970(7yn)7
YEARC Nvmn=0 N:Vmn=1

(66)
where
ApS = : max ilnP/( |V ) + EEX(0) ¢ > max ilnPu( |vm) + EEX(0)
m y: o N 0’ Y| Uy r = 1 N 60" \Y|Um r )
for some m’;«ém}
N-1
= . In Py n|Um/n N E* ! >
{y m;;tX{%n o (n|vmm) + NE T(G)}_

N-1
max { Z In Pyrr (Yn|Vmn) + NgE;f(G")} ,  for some m' # m}

1"
0 n=0
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v t: vypt=0 t: V=0 t: vpp=1

V=0 Uty =1 V=0
> I Pyaly) + NEEN(O) | >

t: vpe=1

Uyt =

I%%X{ S Ppoly) + > WPy + Y. InPory(y) +

t: v =0 t: vyt =0 t: vpp=1
V,,1:=0 V=1 V,,14=0
> InPprg(ye) + N{E:(H")}, for some m' # m}

it

= {y : IIIGEILX{ Z In PG’,O(yt) + Z In PH’,O(_yt) + Z In PH’,O(yt) +

t: vy =0 t: vy =0 t: vpr=1
Uyt =0 Uty =1 Uyt =0
> I Pyo(—ye) + NEEN(O)} =

t: vpe=1

V=1

Y%%X{ S Ppoly) + D> WmPprg(ye) + Y. InPoro(—ye) +

t: vy =0 t: vt =0 t: vpp=1
V,,1:=0 V=1 V,,1:=0
Z In Py o(—ye) + NfE;k(G")}, for some m' # m} (67)

)

Using the following transformation to dummy variables

Yn, V1 Umn=0
Zn =18 —Yn, VN Upp=1

we get that
Pg, (f10) = > II Poolz) [ Poolzn)
ZeAn nivmn=0 n:Vmnp=1
N—1
= > 11 Poolzn), (68)
zeA ¢ n=0
where

AnS = {z:maz}x{ Z In Py o(2) + Z In Py o(—2¢) + Z In Py o(—2¢) +

t: vy t=0 t: vy e=0 t: vpp=1

V,,14=0 V=1 V,,1:=0
> W Pyg(a) + NEE} (@)} >
t: vpe=1
vm/tzl
I%%X{ Z In Pg//,o(zt) + Z In PG”,O(Zt) + Z In Pg//70(2t) +
t: vy =0 t: vy =0 t: vppe=1
V¢ =0 Uty =1 Uyt =0
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Z In Py o(2) + NfE:(G")}, for some m' # m}

t: vpe=1

Ut =1
= {z : mz}x{ Z In Py o(2p) + Z In Py o(—24) + NfE;f(g/)} >
4 PUmp=U,, 1, VMg F V1
né%x{ S mPro(m)+ > InPygl(z) + NEB(O") ),
POmMmp=Vp, 1 @ VUmg7F V! g
for some m' # m} (69)

Now, on the one hand, (68) and (69) describe Pg,, (f|0) and A,,°, respectively, for each
0 <m < M — 1. On the other hand, we should note that the terms for Pg,(f|f) and A¢®
(describing the case where vg = 0 is transmitted) are obtained by assigning m = 0 in (66)
and (67). By doing that, the result terms coincide with (68) and (69), respectively (which,
as mentioned before, correspond to the m-th message). This observation completes the

proof.

A.5 Proof of eq. (57)

First, by the way of constructing the linear code, we know that:
Vit = Uny G O vy, Yo<m <M-1 (70)

Since 1 < m/ < M — 1 implies wny # 0, then for each information vector in this set there is
at least one index ¢ for which w,,; = 1. Consequently, the construction of each code vector

Uy, 1 <m/ < M — 1, can be written in the following way:

Uy = Uy G B v = g; D [Z "U«m’jgj} ® o,
J#i

where g; stands for the i-th row in G.

Therefore:

M—1 M—1
Z ZEN)\fQ/(vm’:y) Z Z Zexp{Nfgl(gi D [Z Um/jgj} @van))‘}

m'=1 G m'=1G\g; 9i J#

= sz_:l Z ZeNfG’(vvy)/\
m'=1G\g; Y
M

—
S
=

-1
D(K=DN § Ny (042
=1 v

m/
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= (M —1)2(K-DN ZeNfG’(U’y))‘,
v
(71)
where (a) is true since for fixed values of m’, G\g; (in the outer summations) and v, the

row vector, which is denoted by v, is fixed, causing g; to sum up over all the binary vectors

of length N.
A.6 Proof of eq. (61)

In this section, we prove the equality, which is given in (61), and used in (60).

First, by the way of constructing a systematic linear code:

Vymy = Uy G D vg

K
= {Um'; > um’ig'i} ® vo
i=1
N-K K g

= [um,;m} ® [m;Zum,igi} Pvg, YO<m' <M-1, (72
i=1

where g; stands for the i’th row in G (the non-systematic part of G).
We observe that for 1 < m/ < M — 1, uny # 0. Thus, for each information vector in this
set there’s at least one index ¢ for which w,,,; = 1. Consequently, the construction of each

code vector vy, 1 < m/ < M — 1, can be written in the following way:

K
V) = [um/;g"i} @ {0...0;Zum/jg~j] ©® wvo.
J#
Therefore:
M-1 M-1
Z Z eNfg/('Um’vy))‘ = Z Z Zexp{Nfg/([um/;g"i] D {0 .05 Zum’jgj] D ’U07y))‘}
m'=1 ¢ m=16ng, 9 i

T

s
3
|FM

[y

N ([umf ;gi]@’v,y) A

&M

Q
b
Q

0 g i)
G\g,"=" 9
© Z ZeNfg,(v,y)A
G\g, “
_ 2([(—1)(N—K)z:eNfg/(U,y)/\7 (73)
v
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where (a) is true since for fixed values of m/, G\g] (in the outer summations) and vg, the
row vector, which is denoted by v, is fixed. In (b), m’ = 0 was added to the summation, and
since the inner term in the summation is always non-negative the result cannot get smaller.
(¢) is true since for a fixed v, summing up over 0 < m’ < M —1 and g; is equivalent to the

summation over all the possibilities for a vector of length N.

A.7 Equivalence between decision rules - ) and A

In this section, we prove the equivalence between the minimax decision rule, {2, maximizing
the metric f(x,y) (as defined in (3)), and a decision rule A, minimizing p(x,y) (as defined
n (17)). We will prove that for a given output y € Y, each x1,x2 € X satisfy:

f(x1,y) > f(z2,y) <= p(z1,9) < p(x2,Y). (74)

First, we should note that f(x,y) satisfies:

fzy) = max folz,y)
= s {5 In Pyl + NEE0)]}
(a) orgeaé{]if {d(w,y) Inf+ (N —d(x,y))In(l—0)+ N§Eff(0)} }
- 0@%{ y)In0 + (1 - d(z,y))In (1 - 0) + £E;(0) |

0<0<1

(a,
max fy (3(@,y)), 0<d(z,y) <1
— ()

), 0<d(x,y) <1 (75)
In (a), we used the following representation for the BSC transition probability:
Py(y|z) = 04TY) (1 — g)N—-dZTY)

We conclude that the value of f(x,y) is equal for all code vectors with the same (normalized)
Hamming distance from y, and therefore can be defined as f(d(x,y)), 0<d(z,y) < 1.
Next, we now prove that f(x,y) has the same value for a code vector  and its comple-

ment, T:

f@y) = [f((=Z,y)

= f(l_é(w7y>)
= Jax fo(l —d(z,y))
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_ 02%{(1 — §(z,y))In 0 + 6(z,y)In (1 — 0) + §E;“(9)}

= max{(1—0(x,y)ln(1—0)+d(x,y)Ind+EE(1—0)
0<6<1

2 max {1~ 6(@y))In (1 -0) + 6z, y) 0 + EB7(0)}

= max f3(d(z,y))

0<0<1

= f((z,y))
= flxy). (76)

In (a), we changed the variable in the maximization, § = 1 —, and (b) is true since for the
BSC model the ML error exponent, E7(6), is symmetric around 6 = 1 (see (42)).

Using the fact that both f(d(x,y)) and p(d(x,y)) are equal for §(x,y) and 1 —d(x,y),
it is sufficient to prove (74) for x1 and xa satisfying 6(x1,y) < % and d(x2,y) < % (and
thus p(z1,y) = 6(x1,y) , p(w2,y) = 6(x2,y) ).

In the rest of the proof, we will denote d(x1,y) 25 , 0(x2,y) 2 5. It is therefore

sufficient to show that
1
f(51)2f(52)<:>0§51§52§§, (77)

This equivalence will be shown in two steps:

First, we note that 0 < §; < dy < % satisfy that V0 < 6 <

01 1n <1i‘}0) d2 In (1 0 9> (78)

By adding In (1 — 0) + £E7(6) to both sides of (78) we get:

N[

511n(&>+1n(1— 0) + EE*(0 )—Hn 1—0) + EE(0) (79)

or
0lnf+(1—=061)In(1—0)+EES(0) > d2Inb+ (1 —d2)In(1—60)+EES(H). (80)
This inequality is true for the values of #, which maximize the both sides of (80). i.e.:

max {011n6 + (1 —61)In(1—0)+EE(0)} >

0<6<7
max {82100+ (1 — 6)In (1 — 0) + EE(0)} (81)
0<9<7
or
max fp (01) = max fy(d2). (82)
0<6<3 0<6<3

38



In order to complete the proof, one must broaden the maximization ranges over 6 in (82)
into 0 < # < 1. In order to justify that this broadening is possible, we present the following
observation:

Each 0 < 6§ < % satisfy that V% <6 <1

51n (&) <(1-6)In <1f0> . (83)

By adding In (1 — 0) + £E(0) to both sides of (83) we get:
4 * 4 *
5in (1_9) (1= 0)+€E0) < (1—0)In (1_9) Fin(l—0)+EEN0)  (84)
or

O+ (1—-0)In(1—-0)+EE:(0) <oln(1—0)+ (1 —9)In0 + EES(H). (85)

Using the fact that for the BSC model the ML error exponent, Ef(6), is symmetric around

0 = % (see (42)), we can rewrite (85) as:
dlnf+(1—-0)In(1—0)+EEA) <dIn(1—0)+(1—0)Inf+EE(1—0) (86)
or

Jo(6(z,y)) < fig (0(x,y)). (87)

The meaning of (87) is that when 0 < § < %, for each % <0 <1, fop(6) is always upper
bounded by f1_¢ (6) where 0 < 1—6 < % Thus, maximization of fy (0) over 0 < § < 1 is
obviously accomplished by 6 in [O, %]

Therefore, (82) finally becomes:

Bex, fo(61) > Lax fo (02) (88)
thus,
1
0<h<h<s & f(61) > f(82), (89)

and the proof is complete.
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