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Abstract

We investigate the problem of scanning and prediction (“scandiction”, for short) of multi-
dimensional data arrays. This problem arises in several aspects of image and video processing,
such as predictive coding, for example, where an image is compressed by coding the error
sequence resulting from scandicting it. Thus, it is natural to ask what is the optimal method
to scan and predict a given image, what is the resulting minimum prediction loss, and whether
there exist specific scandiction schemes which are universal in some sense.

Specifically, we investigate the following problems: First, modeling the data array as a
random field, we wish to examine whether there exists a scandiction scheme which is inde-
pendent of the field’s distribution, yet asymptotically achieves the same performance as if this
distribution was known. This question is answered in the affirmative for the set of all spatially
stationary random fields and under mild conditions on the loss function. We then discuss the
scenario where a non-optimal scanning order is used, yet accompanied by an optimal predictor,
and derive bounds on the excess loss compared to optimal scanning and prediction.

This paper is the first part of a two-part paper on sequential decision making for multi-

dimensional data. It deals with clean, noiseless data arrays. The second part deals with noisy
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data arrays, namely, with the case where the decision maker observes only a noisy version of

the data, yet it is judged with respect to the original, clean data.

Index Terms-Universal scanning, Scandiction, Sequential decision making, Multi-dimensional

data, Random Field, Individual image.

1 Introduction

Consider the problem of sequentially scanning and predicting a multidimensional data array,
while minimizing a given loss function. Particularly, at each time instant ¢, 1 <t < |B|, where
|B| is the number of sites (“pixels”) in the data array, the scandictor chooses a site to be
visited, denoted by W, and gives a prediction, Fi, for the value at that site. Both W; and F}
may depend of the previously observed values - the values at sites ¥y to W;_;. It then observes
the true value, zy,, suffers a loss l(zy,, F;), and so on. The goal is to minimize the cumulative
loss after scandicting the entire data array.

The problem of sequentially predicting the next outcome of a one-dimensional sequence (or
any data array with a fixed, predefined, order), x, based on the previously observed outcomes,
x1,%9,...,%—1, is well studied. The problem of prediction in multidimensional data arrays (or
when reordering of the data is allowed), however, has received far less attention. Apart from
the on-line strategies for the sequential prediction of the data, the fundamental problem of
scanning it should be considered. We refer to the former problem as the prediction problem,
where no reordering of the data is allowed, and to the latter as the scandiction problem.

The scandiction problem mainly arises in image compression, where various methods of
predictive coding are used (e.g., [1]). In this case, the encoder may be given the freedom
to choose the actual path over which it traverses the image, and thus it is natural to ask
which path is optimal in the sense of minimal cumulative prediction loss (which may result in
maximal compression). The scanning problem also arises in other areas of image processing,
such as one-dimensional wavelet [2] or median [3] processing of images, where one seeks a
space-filling curve which facilitates the one-dimensional signal processing of multidimensional
data, digital halftoning [4], where a space filling curve is sought in order to minimize the
effect of false contours, and pattern recognition [5], where it is shown that under certain
conditions, the Bayes risk as well as the optimal decision rule are unchanged if instead of
the original multidimensional classification problem one transforms the data using a measure-

preserving space-filling curve and solves a simpler one-dimensional problem. More applications



can be found in multidimensional data query [6], [7] and indexing [8], where multidimensional
data is stored on a one-dimensional storage device, hence a locality-preserving space-filling
curve is sought in order to minimize the number of continuous read operations required to
access a multidimensional object, and rendering of three-dimensional graphics [9], [10], where
a rendering sequence which minimizes the number of cache misses is required.

The above applications have already been considered in the literature, and the benefits
of not-trivial scanning orders have been proved (see [11], or [12] and [13] which we discuss
later). Yet, the scandiction problem may have applications that go beyond image scanning
alone. For example, consider a robot processing various types of products in a warehouse.
The robot identifies a product using a bar-code or an RFID, and processes it accordingly.
If the robot could predict the next product to be processed, and prepare for that operation
while commuting to the product (e.g., prepare an appropriate writing-head and a message to
be written), then the total processing time could be smaller compared to preparing for the
operation only after identifying the product. Since different sites in the warehouse my be
correlated in terms of the various products stored in them, it is natural to ask what is the
optimal path to scan the entire warehouse in order to achieve minimum prediction error and
thus minimal processing time.

In [14], a specific scanning method was suggested by Lempel and Ziv for the lossless com-
pression of multidimensional data. It was shown that the application of the incremental parsing
algorithm of [15] on the one dimensional sequence resulting from the Peano-Hilbert scan yields
a universal compression algorithm with respect to all finite-state scanning and encoding ma-
chines. These results where later extended in [16] to the probabilistic setting, where it was
shown that this algorithm is also universal for any stationary Markov random field [17]. Using
the universal quantization algorithm of [18], the existence of a universal rate-distortion encoder
was also established. Additional results regarding lossy compression of random fields (via pat-
tern matching) were given in [19] and [20]. For example, in [20], Kontoyiannis considered a
lossy encoder which encodes the random field by searching for a D-closest match in a given
database, and then describing the position in the database.

While the algorithm suggested in [14] is asymptotically optimal, it may not be the optimal
compression algorithm for real life images of sizes such as 256 x 256 or 512 x 512. In [12],
Memon et. al. considered image compression with a codebook of block scans. Therein, the
authors sought a scan which minimizes the zero order entropy of the difference image, namely,

that of the sequence of differences between each pixel and its preceding pixel along the scan.



Since this problem is computationally expensive, the authors aimed for a suboptimal scan
which minimizes the sum of absolute differences. This scan can be seen as a minimum spanning
tree of a graph whose vertices are the pixels in the image and whose edges weights represent
the differences (in gray levels) between each pixel and its adjacent neighbors. Although the
optimal spanning tree can be computed in linear time, encoding it may yield a total bit rate
which is higher than that achieved with an ordinary raster scan. Thus, the authors suggested
to use a codebook of scans, and encode each block in the image using the best scan in the
codebook, in the sense of minimizing the total loss.

Lossless compression of images was also discussed by Dafner et. al. in [13]. In this work, a
context-based scan which minimizes the number of edge crossing in the image was presented.
Similarly to [12], a graph was defined and the optimal scan was represented through a minimal
spanning tree. Due to the bit rate required to encode the scan itself the results fall short
behind [14] for two-dimensional data, yet they are favorable when compared to applying the
algorithm in [14] to each frame in a three-dimensional data (assuming the context-based scans
for each frame in the algorithm of [13] are similar).

Note that although the criterion chosen by Memon et. al. in [12], or by Dafner et. al. in [13],
which is to minimize the sum of cumulative (first order) prediction errors or edge crossings,
is similar to the criterion defined in this work, there are two important differences. First, the
weights of the edges of the graph should be computed before the computation of the optimal
(or suboptimal) scan begins, namely, the algorithm is not sequential in the sense of scanning
and prediction in one pass. Second, the weights of the edges can only represent prediction
errors of first order predictors (i.e., context of length one), since the prediction error for longer
context depends on the scan itself - which has not been computed yet. In the context of lossless
image coding it is also important to mention the work of Memon et. al. in [21], where common
scanning techniques (such as raster scan, Peano-Hilbert and random scan) were compared in
terms of minimal cumulative conditional entropy given a finite context (note that for unlimited
context the cumulative conditional entropy does not depend on the scanning order, as will be
elaborated on later). The image model was assumed to be an isotropic Gaussian random
filed. Surprisingly, the results of [21] show that context-based compression techniques based
on limited context may not gain by using Hilbert scan over raster scan. Note that under a
different criterion, cumulative squared prediction error, the raster scan is indeed optimal for
Gaussian fields, as it was shown later in [22], which we discuss next.

The results of [14] and [16] considered a specific, data independent scan of the data set.



Furthermore, even in the works of Memon et. al. [12] or Dafner et. al. [13], where data dependent
scanning was considered, only limited prediction methods (mainly, first order predictors) were
discussed, and the criterion used was minimal total bit rate of the encoded image. However,
for a general predictor, loss function and random field (or individual image), it is not clear
what is the optimal scan. This more general scenario was discussed in [22], where Merhav
and Weissman formally defined the notion of a scandictor, a scheme for both scanning and
prediction, as well as that of scandictability, the best expected performance on a data array.
The main result in [22] is the fact that if a stochastic field can be represented autoregressively
(under a specific scan ¥) with a maximum-entropy innovation process, then it is optimally
scandicted in the way it was created (i.e., by the specific scan ¥ and its corresponding optimal
predictor).

While defining the yardstick for analyzing the scandiction problem, the work in [22] leaves
many open challenges. As the topic of prediction is rich and includes elegant solutions to
various problems, seeking analogous results in the scandiction scenario offers plentiful research
objectives.

In Section 3, we consider the case where one strives to compete with a finite set F of
scandictors. Specifically, assume that there exists a probability measure ) which governs the
data array. Of course, given the probability measure () and the scandictor set, one can compute
the optimal scandictor in the set (in some sense which will be defined later). However, we are
interested in a universal scandictor, which scans the data independently of @), and yet achieves
essentially the same performance as the best scandictor in F (see [23] for a complete survey of
universal prediction). The reasoning behind the actual choice of the scandictor set F is similar
to that common in the filtering and prediction literature (e.g., [24] and [25]). On the one hand,
it should be large enough to cover a wide variety of random fields, in the sense that for each
random field in the set, at least one scandictor is sufficiently close to the optimal scandictor
corresponding to that random field. On the other hand, it should be small enough to compete
with, at an acceptable cost of redundancy.

At first sight, in order to compete successfully with a finite set of scandictors, i.e., construct
a universal scandictor, one may try to use known algorithms for learning with expert advice,
e.g., the exponential weighting algorithm suggested in [26] or the work which followed it. In this
algorithm, each expert is assigned a weight according to its past performance. By decreasing
the weight of poorly performing experts, hence preferring the ones proved to perform well

thus far, one is able to compete with the best expert, having neither any a priori knowledge



on the input sequence nor which expert will perform the best. However, in the scandiction
problem, as each of the experts may use a different scanning strategy, at a given point in time
each scanner might be at a different site, with different sites as its past. Thus, it is not at all
guaranteed that one can alternate from one expert to the other. The problem is even more
involved when the data is an individual image, as no statistical properties of the data can be
used to facilitate the design or analysis of an algorithm. In fact, the first result in Section
3 is a negative one, stating that indeed in the individual image scenario (or under expected
minimum loss in the stochastic scenario), it is not possible to successfully compete with any two
scandictors on any individual image. This negative result shows that the scandiction problem
is fundamentally different and more challenging than the previously studied problems, such as
prediction and compression, where competition with an arbitrary finite set of schemes in the
individual sequence setting is well known to be an attainable goal. However, in Theorem 4 of
Section 3, we show that for the class of spatially stationary random fields, and subject to mild
conditions on the prediction loss function, one can compete with any finite set of scandictors
(under minimum expected loss). Furthermore, in Theorem 8, our main result in this section,
we introduce a universal scandictor for any spatially stationary random field. Section 3 also
includes almost surely analogues of the above theorems for mixing random fields and basic
results on cases where universal scandiction of individual images is possible.

In Section 4, we derive upper bounds on the excess loss incurred when non-optimal scanners
are used, with optimal prediction schemes. Namely, we consider the scenario where one cannot
use a universal scandictor (or the optimal scan for a given random field), and instead uses an
arbitrary scanning order, accompanied by the optimal predictor for that scan. In a sense, the
results of Section 4 can be used to assess the sensitivity of the scandiction performance to the
scanning order. Furthermore, in Section 4 we also discuss the scenario where the Peano-Hilbert
scanning order is used, accompanied by an optimal predictor, and derive a bound on the excess
loss compared to optimal finite state scandiction, which is valid for any individual image and
any bounded loss function. Section 5 includes a few concluding remarks and open problems.

In [27], the second part of this two-part paper, we consider sequential decision making
for moisy data arrays. Namely, the decision maker observes a noisy version of the data, yet,
it is judged with respect to the clean data. As the clean data is not available, two distinct
cases are interesting to consider. The first, scanning and filtering, is when Yy, is available
in the estimation of Xy,, i.e., F; depends on Yy, to Yy,, where {Y'} is the noisy data. The

second, noisy scandiction, is when the noisy observation at the current site is not available



to the decision maker. In both cases, the decision maker cannot evaluate its performance
precisely, as l(zy,, F;) cannot be computed. Yet, many of the results for noisy scandiction
are extendable from the noiseless case, similarly as results for noisy prediction were extended
from results for noiseless prediction [28]. The scanning and filtering problem, however, poses
new challenges and requires the use of new tools and techniques. Thus, in [27], we formally
define the best achievable performance in these cases, derive bounds on the excess loss when
non-optimal scanners are used and present universal algorithms. A special emphasis is given
on the cases of binary random fields corrupted by a binary memoryless channel and real-valued

fields corrupted by Gaussian noise.

2 Problem Formulation

The following notation will be used throughout this paper.! Let A denote the alphabet, which
is either discrete or the real line. Let Q = AZ" denote the space of all possible data arrays in
Z%. Although the results in this paper are applicable to any d > 1, for simplicity, we assume
from now on that d = 2. The extension to d > 2 is straightforward. A probability measure @)
on ) is stationary if it is invariant under translations 7;, where for each z € Q and i,j € Z2,
7i(x); = xj+; (namely, stationarity means shift invariance). Denote by M(Q2) and Mg(2)
the spaces of all probability measures and stationary probability measures on €2, respectively.
Elements of M(Q), random fields, will be denoted by upper case letters while elements of €2,
individual data arrays, will be denoted by the corresponding lower case.

Let V denote the set of all finite subsets of Z?. For V € V, denote by Xy the restrictions
of the data array X to V. For i € Z?, X; is the random variable corresponding to X at site
i. Let R be the set of all rectangles of the form V = Z2 N ([m1, ma] x [n1,n2]). As a special
case, denote by V,, the square {0,...,n — 1} x {0,...,n — 1}. For V C Z2, let the interior
diameter of V' be

R(V) 2 sup{r : Je s.t. B(e,r) C V), (1)

where B(e, ) is a closed ball (under the 1-norm) of radius r centered at ¢. Throughout, log(-)

will denote the natural logarithm, and entropies will be measured in nats.

Definition 1 ([22]). A scandictor for a finite set of sites B € V is the following pair (¥, F'):

° {\I/t}l:ill is a sequence of measurable mappings, ¥; : A""! — B determining the site to

'For easy reference, we try to follow the notation of [22] whenever possible.
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Figure 1: A graphical representation of the scandiction process. A scandictor (W, F') first chooses
an initial site Wy. It then gives its prediction for the value at that site, F;. After observing the
true value at Wy, it suffers a loss l(xy,, F1), chooses the next site to be visited, Wq(zy,), gives its

prediction for the value at that site, Fy(zy,), and so on.

be visited at time ¢, with the property that
{\Ijl,\IIQ(x\Ijl),Wg(x\Ijl7$\Ij2)...,\I]‘B‘ (‘T‘I’lﬂ""$‘l’\3|_1>} =B, VFL‘GAB, (2)

° {Ft}@l is a sequence of measurable predictors, where for each ¢, F} : A" +— D deter-
mines the prediction for the site visited at time ¢ based on the observations at previously

visited sites, and D is the prediction alphabet.

We allow randomized scandictors, namely, scandictors such that {\Ilt}yjl or {Ft}ltill can be
chosen randomly from some set of possible functions. At this point, it is important to note
that scandictors for infinite data arrays are not considered in this paper. Definition 1, and the
results to follow, consider only scandictors for finite sets of sites, ones which can be viewed
merely as a reordering of the sites in a finite set B. We will consider, though, the limit as the
size of the array tends to infinity. A scandictor, such that there exists a finite set of sites B,
for which there is no deterministic finite point in time by which all sites in B are scanned, is
not included in the scope of Definition 1. Figure 1 includes a graphical representation of the
scandiction process.

Denote by Ly r)(7v,) the camulative loss of (¥, F') over wy,,, that is

[Vl

L(\II,F) (an) = Zl (l"IfmFt(x‘I’lv ce 7:17\1%71))’ (3)
t=1



where [ : A x D — [0,00) is a given loss function. Throughout this paper, we assume that
I(+,-) is non-negative and bounded by [l;,q: < co. The scandictability of a source @ € M ()
on B €V is defined by

1
U(l = inf Fo,.—L X 4
(1,@QB) w it Fos T . (XB), (4)

where @ p is the marginal probability measure of X restricted to B and S(B) is the set of all
possible scandictors for B. The scandictability of @ € M(Q) is defined by

U(.Q) = lim U(LQv,). (5)

By [22, Theorem 1], the limit in (5) exists for any @ € Mg(€2) and, in fact, for any sequence
{B,} of elements of R for which R(B,,) — oo we have

U(LQ) = lim U(.Qp,) = inf U(Qx) (6)

2.1 Finite-Set Scandictability

It will be constructive to refer to the finite set scandictability as well. Let F = {F,} be a
sequence of finite sets of scandictors, where for each n, |F,| = A < oo, and the scandictors
in F,, are defined for the finite set of sites V,,. A possible scenario is one in which one has
a set of “scandiction rules”, each of which defines a unique scanner for each n, but all these
scanners comply with the same rule. In this case, F = {F,} can also be viewed as a finite set
F which includes sequences of scandictors. For example, |F,| = 2 for all n, where for each
n, Fy includes one scandictor which scans the data row-wise and one which scans the data
column-wise. We may also consider cases in which |F,| increases with n (but remains finite
for every finite n). For Q € Mg(Q2) and F = {F,,}, we thus define the finite set scandictability

of  as the limit

1

A
Ur(1,Q) 2 1i in Eo, — Logm(Xv ), 7
7(1,Q) A G Eov. .7 (Xv,) (7)

if it exists. Observe that the sub-additivity property of the scandictability as defined in [22],
which was fundamental for the existence of the limit in (5), does not carry over verbatim to
finite set scandictability. This is for the following reason. Suppose (¥, F') € S is the optimal
scandictor for Xy and (¥, F') € S is optimal for Xy (assume V NU = (). When scanning
Xvyuu, one may not be able to apply (¥, F') for Xy and then (W', F') for Xy, as this scandictor
might not be in S. Hence, we seek a universal scheme which competes successfully (in a sense
soon to be defined) with a sequence of finite sets of scandictors {F,}, even when the limit in

(7) does not exist.



3 Universal Scandiction

The problem of universal prediction is well studied, with various solutions to both the stochastic
setting as well as the individual. In this section, we study the problem of universal scandiction.
Notwithstanding strongly related to its prediction analogue, we first show that this problem
is fundamentally different in several aspects, mainly due to the enormous degree of freedom
in choosing the scanning order. Particularly, we first give a negative result, stating that while
in the prediction problem it is possible to compete with any finite number of predictors and
on every individual sequence, in the scandiction problem one cannot even compete with any
two scandictors on a given individual data array. Nevertheless, we show that in the setting
of stationary random fields, and under the minimum expected loss criterion, it is possible to
compete with any finite set of scandictors. We then show that the set of finite-state scandictors
is capable of achieving the scandictability of any spatially stationary source. In Theorem 8§,
our main result in this section, we give a universal algorithm which achieves the scandictability

of any spatially stationary source.

3.1 A Negative Result on Scandiction

Assume both the alphabet A and the prediction space D are [0, 1]. Let [ be any non-degenerated
loss function, in the sense that prediction of a bernoulli sequence under it results in a positive
expected loss. As an example, squared or absolute error can be kept in mind, though the
result below applies to many other loss functions. The following theorem asserts that in the
individual image scenario, it is not possible to compete successfully with any two arbitrary
scandictors (it is possible, though, to compete with some scandictor sets, as proved in Section

3.6).

Theorem 2. Let A= D = [0,1] and assume [ is a non-degenerated loss function. There exist
two scandictors (U, F)y and (¥, F)q for V,, such that for any scandictor (¥, F') for V,, there

exists xy;,, for which

Ly py(zy,) —min{ Ly py, (2v,), Ly, p), (Tv,) } = (Vo). (8)

In words, there exist two scandictors such that for any third scandictor, there exists an
individual image for which the redundancy when competing with the two scandictors does not
vanish. Theorem 2 marks a fundamental difference between the case where reordering of the

data is allowed, e.g., scanning of multidimensional data or even reordering of one-dimensional
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data, and the case where there is one natural order for the data. For example, using the
exponential weighting algorithm discussed earlier, it is easy to show that in the prediction
problem (i.e., with no scanning), it is possible to compete with any finite set of predictors
under the above alphabets and loss functions. Thus, although the scandiction problem is
strongly related to its prediction analogue, the numerous scanning possibilities result in a
substantially richer and more challenging problem.

Theorem 2 is a direct application of the lemma below.

Lemma 3. Let A= D = [0, 1] and assume l is a non-degenerated loss function. There exist a
random field Xy, and two scandictors (¥, F')1 and (U, F)s for V,, such that for any scandictor
(U, F) for Vy,

ELwy r)(Xv,) — Emin{ Ly r), (Xv,), Ly, ), (Xv,) } = O(|Va]). 9)

Lemma 3 gives another perspective on the difference between the scandiction and prediction
scenarios. The lemma asserts that when ordering of the data is allowed, one cannot achieve
a vanishing redundancy with respect to the expected value of the minimum among a set of
scandictors. This should be compared to the prediction scenario (no reordering), where one
can compete successfully not only with respect to the minimum of the expected losses of all
the predictors, but also with respect to the expected value of the minimum (for example, see
[29, Corollary 1]). The main result of this section, however, is that for any stationary random
field and under mild conditions on the loss function, one can compete successfully with any

finite set of scandictors when the performance criterion is the minimum expected loss.

Proof. (Lemma 3) Let Yy, be a random field such that Y (1,1) is distributed uniformly on
[0,1], and Yy, \ Y(1,1) =Y (1,2),...,Y(1,n),Y(2,1),Y(2,2),...,Y(n,n) are simply the first
n? — 1 bits in the binary representation of Y'(1,1) (ordered row-wise). Note that Yy, \ Y(1,1)
are i.i.d. unbiased bits, yet conditioned on Y (1, 1), they are deterministic and known. Assume
now that Xy, is a random cyclic shift of Yy, , in the same row-wise order Yy;, was created.
For concreteness, we assume the squared error loss function. In this case, it is easy to
identify the constant of the ©(-) expression in (8). However, the computations below are
easily generalized to other non-degenerated loss functions. We first show that the expected
cumulative squared error of any scandictor on Xy, is at least (n? + 1)/8, as the expected
number of steps until the real valued site is located is (n? 4 1)/2, with a loss of 1/4 until that
time. More specifically, let J be the random number of cyclic shifts, that is, J is uniformly

distributed on {0,1,...,n? — 1}. For fixed j, let G be the random index such that ¥ is the
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real-valued X (i.e., G is the time the real valued random variable is located by the scanner

U). Let ¢s denote the Bayes envelope associated with the squared error loss, i.e.,

¢s(p) = qgﬁ][(l —p)@® +plg—1)%. (10)

For any scandictor (U, F'), we have,

ELwy r)(Xy,) = EJE{Z i(Xq\I;i_l))Qj
=1
G 2
= EJE{Z Fi(Xyi™h) 1) + Z (Xqu Fi(Xy!" )) J
i=1 i=G+1
G 2
> E{Z - F(Xy ) J}
221
> EJE{Z@ (Xu, | Xy, ))j}
=1
- EJE{G¢S (X\Ih*l)) }
1
= 1E{G)
2
_ " ;1. (11)

On the other hand, consider the expected minimum of the losses of the following two scan-
dictors: (¥, F); which scandicts Xy, row-wise from X(1,1) to X(n,n), and (¥, F)y which
scandicts Xy, row-wise from X (n,n) to X(1,1). Using the same method as in (11), it is
possible to show that this expected loss is smaller than n?/16 +o0(n?), as the expected number
of steps until the first locates the real-valued site is (n? + 1)2/(4n?), after which zero loss
is incurred. This is since once the real-valued site is located, the rest of the values can be
calculated by the predictor by cyclic shifting the binary representation of the real-valued pixel.

This completes the proof. ]

Proof. (Theorem 2) By Lemma 3, there exists a stochastic setting under which the expected
minimum of the losses of two scandictors is smaller than the expected loss of any single
scandictor. Thus, for any scandictor there exists an individual image on which it cannot

compete successfully with the two scandictors. O
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3.2 Universal Scandiction With Respect to Arbitrary Finite
Sets

As mentioned in Section 1, straightforward implementation of the exponential weighting algo-
rithm is not feasible, since one may not be able to alternate from one expert to the other at
wish. However, the exponential weighting algorithm was found useful in several lossy source
coding works such as Linder and Lugosi [30], Weissman and Merhav [31], Gyorgy et. al. [32]
and the derivation of sequential strategies for loss functions with memory [33], all of which
confronted a similar problem. A common method used in these works, is the alternation of
experts only once every block of input symbols, necessary to bear the price of this change (e.g.,
transmitting the description of the chosen quantizer [30]-[32]). Thus, although the difficulties
in these examples differ from those we confront here, the solution suggested therein, which is
to persist on using the same expert for a significantly long block of data before alternating it,
was found useful in our universal scanning problem.

Particularly, we divide the data array into smaller blocks and alternate scandictors only
each time a new block of data is to be scanned. Unlike the case of sequential prediction dealt
with in [33], here the scandictors must be restarted each time a new block is scanned, as it is
not at all guaranteed that all the scandictors scan the data in the same (or any) block-wise
order (i.e., it is not guaranteed that a scandictor for V,, divides the array to sub-blocks of size
m x m and scans each of them separately). Hence, in order to prove that it is possible to
compete with the best scandictor at each stage n, we go through two phases. In the first,
we prove that an exponential weighting algorithm may be used to compete with the best
scandictor among those operating in a block-wise order. This part of the proof will refer to
any given data array (deterministic scenario). In the second phase, we use the stationarity of
the random field to prove that a block-wise scandictor may perform essentially as well as one
scanning the data array as a whole. The following theorem stands at the basis of our results,
establishing the existence of a universal scandictor which competes successfully with any finite

set of scandictors.

Theorem 4. Let X be a stationary random field with a probability measure Q. Let F = {F,}
be an arbitrary sequence of scandictor sets, where F, is a set of scandictors for V,, and |F,| =
A < oo for all n. Then, there exists a sequence of scandictors {(¥, F),}, where (¥, F), is a

scandictor for V,, independent of Q, for which

o 1 . . 1
liminf B, E WL(@, #, (Xv,) < liminf W Eqy, WL(\II,F) (Xv,.) (12)
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for any Q € Mg(R), where the inner expectation in the l.h.s. of (12) is due to the possible
randomization in (U, F),.

“individual image” type of result, which will

Before we prove Theorem 4, let us discuss an
later be the basis of the proof. Let zy, denote an individual n x n data array. For m < n,
define K 2 (%] —1. We divide zy, into K2 blocks of size m x m and 2K + 1 blocks of possibly
smaller size. Denote by x%, 0 < i < (K + 1)2 — 1 the 4’th block under some fixed scanning
order of the blocks. Since we will later see that this scanning order is irrelevant in this case,
assume from now on that it is a (continuous) raster scan from the upper left corner. That is,
the first line of blocks is scanned left to right, the second line is scanned right to left, and so
on. We will refer to this scan simply as “raster scan”.

As mentioned, the suggested algorithm scans the data in zy;, block-wise, that is, it does not
apply any of the scandictors in F,, only scandictors from F,,. Omitting m for convenience,
denote by L;; the cumulative loss of (U, F'); € Fy, after scanning i blocks, where (¥, F'); is
restarted after each block, namely, it scans each block separately and independently of the
other blocks. Note that L;; = f;l Lj(2!) and that for i = 0, L;; = 0 for all j. Since we
assumed the scandictors are capable of scanning only square blocks, for the 2K + 1 possibly

smaller (and not square) blocks the loss may be l,,4, throughout. For n > 0, and any 4 and j,

define

Py (LY ) = i (13)
i \J Jifj=1) = W,
where A = |F,,,|. We offer the following algorithm for a block-wise scan of the data array

x. For each 0 < i < (K + 1)? — 1, after scanning i blocks of data, the algorithm computes
P, ( j \{Lj,i}?zl) for each j. It then randomly selects a scandictor according to this distribution,
independently of its previous selections, and uses this scandictor as its output for the (i 4 1)-st
block. Namely, the universal scandictor (\f/, F )n, promised by Theorem 4, is the one which
divides the data to blocks, performs a raster scan of the data block-wise, and uses the above
algorithm to decide which scandictor out of F,, to use for each block.

It is clear that both the block size and the number of blocks should tend to infinity with
n in order to achieve meaningful results. Thus, we require the following: a. m = m(n)
tends to infinity, but strictly slower than n, i.e., m(n) = o(n). b. m(n) is an integer-valued
monotonically increasing function, such that for each K € Z there exists n such that m(n) = K.
The results are summarized in the following two propositions, the first of which asserts that
for m(n) = o(n), vanishing redundancy is indeed possible, while the second asserts that under

slightly stronger requirements on m(n), this is also true in the a.s. sense (with respect to the
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random selection of the scandictors in the algorithm).

Proposition 5. Let Lqy4(zy;,) be the cumulative loss of the proposed algorithm on wv,, and
denote by Ealg (xv;,) its expected value, where the expectation is with respect to the randomized
scandictor selection of the algorithm. Let Ly, denote the cumulative loss of the best scandictor

in Fm, operating block-wise on xvy,. Assume |Fp| = A. Then, for any zv,,

Latg(#v,) — Lunin(av,) < m(n)(n + m(n))y/log Alyg. (14)

Proposition 6. Assume m(n) = o (n1/3). Then, for any image xv, , the difference between

the normalized cumulative loss of the proposed algorithm and that of the best scandictor in Fp,,
operating block-wise, converges to 0 with probability 1 with respect to the randomized scandictor

selection of the algorithm.

The proofs of Propositions 5 and 6 are rather technical and are based on the very same
methods used in [34] and [33]. See Appendices A.1 and A.2 for the details.

On the more technical side, note that the suggested algorithm has “finite horizon,” that
is, one has to know the size of the image in order to divide it to blocks, and only then can
the exponential weighting algorithm be used. It is possible to extend the algorithm to infinite
horizon. The essence of this generalization is in dividing the infinite image into blocks of
exponentially growing size?, and to apply the finite horizon algorithm for each block. We may

now proceed to the proof of Theorem 4.

Proof of Theorem /. Since the result of Proposition 5 applies to any individual data array, it

certainly applies after taking the expectation with respect to ). Therefore,

1 - 1 m(n
EQvn ﬁLalg - EQVn ﬁme < T(L)lmag; 2log A. (15)

However, remember that we are not interested in competing with Eq,, n%me, as this is the

performance of the best block-wise scandictor. We wish to compete with the best scandictor

2For example, take four blocks of size [ x [, then three of size 21 x 2, and so on.
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operating on the entire data array Xy, , that is, on the whole image of size n x n. We have

1 1 (K+1)2
Q""ﬁme - EQV’LE (v, F?m} mn) i1 LX)
1 (K+1)?
< min  Eo, — Li(X?
(U,F);€Fp(m) Qv 2 ; i(X7)
(a) 1 2 0
< min  — - |K“Eq, L;j(X")
(U,F);€Fpminy T
+2Km(n)(n — Km(n))lnaz + (n — Km(n))%mm
. 1 m(n)
< E Li(X% +2—" 16
- (w,pﬁ-}?}w Qv m(n)2 X+ n (16)

where (a) follows from the stationarity of @, the assumption that each (¥, F); operates in the
same manner on each m(n) x m(n) block, no matter what its coordinates are, and the fact
that each (¥, F'); may incur maximal loss on non-square rectangles. From (15) and (16), we

have

1= 1 m(n) m(n)
EQVn Lalg < EQVn m( )QL] (m(n))(XO) + 2Tlma1’ + Tlma:c V 2log A

= EQV7Lnl(1WLj*( (n ))(X0)+O< 7(1 ) /o g)\> (17)

where (W, F') j(m(n)) is the scandictor achieving the minimum in (16). Finally, by our assump-

tions on {m(n)}, we have

) 1- _ 1 on . m(k)
Jnf {Eka kzLalg} Inf {EQVk W%*(m(k))(X )+ = lmas(2+ v/2log A)}

IN

: 1 m(n
< inf {EQVk (k)QLJ (m (k))(XO)} + 7(1)lmax(2+ v 2log \)

k>n
: 1 m(n
< égg {EQVk ?Lj*(k) (Xvk)} + 7(l)lmax(2 +v/2log ). (18)

Taking the limit as n — oo and using the fact that m(k)/k — 0 together with the arbitrariness
of k, gives:
1 1
hm mf EQV —5 Layg < hm 1nf EQV — Lje(ny(Xv,,), (19)

which completes the proof of (12). O

It is evident from (14) and (18) that although the results of Theorem 4 and Proposition
5 are formulated for fixed A < oo (the cardinality of the scandictor set), these results hold

for the more general case of A = A\(n), as long as the redundancy vanishes, i.e., as long as

m(n) = o(n) and A(n) is such that %vlog)\ — 0 when n — oo. The requirement that
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n2
A(n) = o(e m<">2> still allows very large scandictor sets, especially when m(n) grows slowly

with n. Furthermore, it is evident from equation (17) that whenever the redundancy vanishes,
the statement of Theorem 4 is valid with lim sup as well ,i.e.,

1 1
I Eg, E——L = (Xy,) <li in_ Eg, — L. (Xv,)- 20
imsup Eqy, B (0, ), (Xva) < limsup W Eov, (w.F)(Xv,) (20)

3.3 Finite-State Scandiction

Consider now the set of finite-state scandictors, very similar to the set of finite-state encoders
described in [14]. At time ¢t = 1, a finite-state scandictor starts at an arbitrary initial site ¥y,
with an arbitrary initial state sgp € S and gives F'(sp) as its prediction for xg,. Only then it
observes zy,. After observing zy,, it computes its next state, s;, according to s; = g(si—1, xw,)

and advances to the next site, zy according to ;11 = U; + d(s;), where g : S x A +— S

i1
is the next state function and d : S +— B is the displacement function, B C Z? denoting
a fixed finite set of possible relative displacements. It then gives its prediction F'(s;) to the
value xy, ,. Similarly to [14], we assume the alphabet A includes an additional “End of File”
(EoF) symbol to mark the image edges. The following lemma and the theorem which follows

establish the fact that the set of finite-state scandictors is indeed rich enough to achieve the

scandictability of any stationary source, yet not too rich to compete with.

Lemma 7. Let Fg = {(V, F);} be the set of all finite-state scandictors with at most S states.
Then, for any Q € Mg(Q),

That is, the scandictability of any spatially stationary source is asymptotically achieved with

finite-state scandictors.

Proof. Take B = V,;, and let (¥, F),, be the achiever of the infimum in (4). That is,

1

1
Eq, —<Lg m (X < inf Eg, —L Xv,,). 22
QVm m2 (\I/,F)m( Vtm) — (\II,F)IQS(Vm) QVm m2 (‘II,F)( V;n) ( )

Since V, is a rectangle of size m x m, the scandictor (¥, F),, is certainly implementable
with a finite-state machine having S(m) < oo states. In other words, since V;, is finite, any
scanning rule ¥, : A"! — B and any prediction rule F; : A*"! +— A can be implemented with
a finite-state machine having at most S(m) = A™ x m? states, where in a straightforward
implementation A™ states are required to account for all possible inputs and m? states are

required to implement a counter.
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Now, for an n X n image (assuming now that m divides n, as dealing with the general case
can be done in the exact same way as (16)), we take (¥, F”),, to be the scandictor which scans
the image in the block-by-block raster scan described earlier, applying (¥, F'),, to each m x m
block. Namely, ¥ scans all the blocks in the first m lines left-to-right until it reaches an EoF
symbol, then moves down m lines, scans all the blocks right-to-left until an EoF is reached,
and so on. The predictor F’ simply implements F for each block separately, i.e., it resets to its
initial values at the beginning of each block. It is clear that the scanner ¥’ is implementable
with a finite-state machine having S(m) = S(m) + 2 < oo states and thus (', F’) € Fs(m)-

From the stationarity of (), we have

1 1
inf E — L X < i E, —L X
(W FES(W) 2 (v.r)X) < (\I/,Fr)rggﬂm 2 @ (Xre)
1
EQVn EL(‘I;/’F’/)TL (XVn)
1
= EQVmWL(\IJ,F)m(X%n)

IN

< (@,Figg(vm) Qvin 12 (\IJ,F)( Vi) (23)

Taking the limits limsup,,_, ., and liminf,, ., by (6), we have

1
l < 1 i E —L X
Ul,Q) < im sup (‘IijI)nGlgs(m) Qv 73 w7 (Xv,)

1
B (\I/,Figsmn) QVim 12 w,r)(Xv,,) (24)

and

1
[,Q) < liminf min  Eg, —5Lw.m(X
U(l,@) < limin w ity Favis (w.7)(Xv,)

1
B (\If,F)Helswm) QVim 2 w7 (Xv;,) (25)

The proof is completed (including the existence of the limit in the Lh.s. of (21)) by tak-

ing m to infinity, applying (6), and remembering that Uz (I, Q) is monotone in S, thus the

oo
m=1

{Urs (1, Q)}51)- O

convergence of the sub-sequence {U. ]—'S(m)<l, Q) implies the convergence of the sequence

In words, Lemma, 7 asserts that for any m, finite-state machines attain the m x m Bayesian
scandictability for any stationary random field. Note that the reason such results are accom-
plishable with FSMs is their ability to scan the entire data, block by block, with a machine
having no more than S(m) states, regardless of the size of the complete data array. The

number of the states depends only on the block size.
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3.4 A Universal Scandictor for Any Stationary Random Field

We now show that a universal scandictor which competes successfully with all finite-state
machines of the form given in the proof of Lemma 7, does exist and can, in fact, be implemented
using the exponential weighting algorithm. In order to show that we assume that the alphabet
A is finite and the prediction space D is either finite or bounded (such as the |D| — 1 simplex
of probability measures on D). In the latter case we further assume that [(x, F') is Lipschitz in
its second argument for all x, i.e, there exists a constant ¢ such that for all x, F' and € we have
|l(z, F)—Il(xz,F +¢)| < cle|]. The following theorem establishes, under the above assumptions,

the existence of a universal scandictor for all stationary random fields.

Theorem 8. Let X be a stationary random field over a finite alphabet A and a probability
measure Q. Let the prediction space D be either finite or bounded (with l(x, F') then being
Lipschitz in its second arqument). Then, there exists a sequence of scandictors {(V, F),},

independent of Q, for which
) 1
Jim EQvnEmL(qz,F)n(Xvn) =U(l,Q) (26)

for any Q € Mg(QQ), where the inner expectation in the l.h.s. of (26) is due to the possible

randomization in (¥, F)y,.

Proof. Assume first that the range D of the predictors {F}} is finite. Consider the exponential
weighting algorithm described in the proof of Theorem 4, where at each m(n) x m(n) block the
algorithm computes the cumulative loss of every possible scandictor for an m(n) x m(n) block,
then chooses the best scandictor (according to the exponential weighting regime described

therein) as its output for the next block. By (17), we have

1 - 1

E — Ly < i E I x0 0 m(n) loz \ 97
W 279 S g o B8 i) ()2 (w,r)(X7) + <n Viegh], (27

where S(V,,,(,,)) is the set of all possible scandictors on m(n) x m(n) and A is the size of that
set. Since A = X (m(n)), all that is left to check is that the O <@\/log A) expression indeed
decays to zero as n tends to infinity.

Indeed, the number of possible scanners for a field B over an alphabet A is

|B|

(w2 v a m B = T8I -0

k=0
< (BHA”, (28)
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while the number of possible predictors is

|B|
H{Ft =1 F A e DH = H ’D“Alk
k=1
< |D|IEIAIET, (29)

!
logk! __ 1,

Thus, using the Stirling approximation, log k! ~ klogk, in the sense that limy .. Flogk —

we have

mfzn)\/log)\

IN

m(n) \/1og [( (n)2N)IAIm 2 | pm(n)?|Am(m? =1

%

") | S2AAP O () o () + (2| AP0 log D)

m(n)

Q

VIAPC? log m(n), (30)

which decays to zero as n — oo for any m(n) = o(v/logn). Namely, for m(n) = o(y/logn),
equation (27) results in
1 : 1 0
hm 1nf EQV — Latg < lim inf min Eq 5 Lw,m) (X)), (31)

n—co (W,F)ES(Vpmm) ™ m(n)

and

1 1
lim sup F, L < limsu mi E ——L X0, 32
P By ot S TRSP B, ) Fme Gz P00 32

Since m(n) — oo asn — oo, by [22] the limit lim,, Mg ) €S (Vi) EQVm<n> WL(‘IGF) (X0)
exists and equals the scandictability of the source, U(l, Q). However, by definition, U(l, Q) is

the best achievable scandiction performance for the source (), hence,

1
lim inf EQv Lag > U(1,Q), (33)
which results in
1
Jm Egy —5 Lag = U(l, Q). (34)

For the case of infinite (but bounded) range D, similarly to [25], we use the fact that the

loss function [ is Lipschitz and take an e-approximation of D. We thus have

_ _ 1
Vn ﬁLalg = i Eqy, 2L(‘1’1F)(X0)

Eq (U, F)ES (Vi (n)) m(n) m(n)
+ em(n)?e (m(n)) + O (mé’n)\/ log )\> (35)

for some constant ¢. Choosing € (m(n)) = W results in |D| = im(n)*, hence @\/log)\
still decays to zero for any m(n) = O(y/logn) and (34) is still valid. O
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Note that the proof of Theorem 8 does not use the well established theory of universal
prediction. Instead, the exponential weighting algorithm is used for all possible scans (within
a block) as well as all possible predictors. This is since important parts of the work on predic-
tion in the probabilistic scenario include some assumption on the stationarity of the measure
governing the process, such as stationarity or asymptotically mean stationarity [35].> In the
scandiction scenario, however, the properties of the output sequence are not easy to determine,
and it is possible, in general, that the output sequence is not stationary or ergodic even if the
input data array is. Thus, although under certain assumptions, one can use a single universal

predictor, applied to any scan in a certain set of scans, this is not the case in general.

3.5 Universal Scandiction for Mixing Random Fields

The proof of Theorem 4 established the universality of (\i/, F ), under the expected cumula-
tive loss criterion. In order to establish its universality in the (J-a.s. sense, we examine the

conditions on the measure @) such that the following equality holds.

lim > Lj(a') = Eq,, L;(X°) Q-a.s. (36)

To this end, we briefly review the conditions for the individual ergodic theorem for general
dynamical systems given in [37], specialized for Z2. Let {A,} be a sequence of subsets of Z2.
For each n, the set A,, is the set of sites over which the arithmetical average is taken. Let AAB
denote the symmetric difference between the sets A and B, AU B~ AN B, and remember that
Ti(T)j = Tjpi
Condition 1 ([37, E1']). For all i € Z2,

lim |Ap AT (An)|

w4,

=0. (37)
Condition 2 ([37, E3"]). There exists a constant C < oo such that for all n,
hik=i—j, ij €A <CilA, (39)

Condition 3 ([37, E4]). There exists a sequence of measurable sets {M,,} such that,

hminf]k:k:wrj, i€ An,j € M,

=(Cy < . (39)
n—00 |Mn|

By [37, Theorem 6.1'], if the sequence {A,} satisfies conditions 1-3, then, for any stationary

random field X with E|X(| < oo, we have,

li !
m —
n—oo ‘An‘

> Xi=E{X|T} Q-as., (40)

i€AR

3An important exception is the Kalman filter [36, Section 7.7].
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where @ is the measure governing X and Z is the o-algebra of invariant sets of €2, that is,
AcTiff ;(A)=A foralliecZ% (41)

If @ is ergodic, namely, for each A € Z, Q(A) € {0,1}, then E{Xy|Z} is deterministic and
equals FXj.

Clearly, since L; (2%) depends on a set of m? sites, with the average in taken over the sets
Ap={i:i=m-j,j € Vk}, (36) may not hold, even if @ is ergodic, as, for example, Condition
1 is not satisfied.* These two obstacles can be removed by defining an alternative random field,
X, over the set of sites m - 2% = {j : j = m-i,i € Z?}, where X; equals L;(X*) and X* is the
corresponding m x m block of X. Note that since the loss function () is bounded and m is
finite, E|Xo| < co. It is not hard to see that conditions 1-3 are now satisfied (with the new
space being m - Z?). However, for E{Xo|Z,,} to be deterministic, where Z,, is the o-algebra

of m-invariant sets,
AT, iff rj(A)=A forall j=i-m,icZ? (42)

it is required that Z,, is the trivial o-algebra. In other words, block ergodicity of @ is required.
We now show that if the measure @ is strongly mixing, then it is block-ergodic for any

finite block size. For A, B € Z?, define

a?(4,B) = sup{|QUNV) = QU)Q(V)|,U € o(Xa),V € o(Xp)}, (43)

where o(Xp) is the smallest sigma algebra generated by Xp. Let aaQb(k) denote the strong

mixing coefficient [38, Sec. 1.7] of the random field @
o, (k) = sup{a®(A, B),|A| < a,|B| < b,d(A, B) > k}, (44)

where d is a metric on Z2 and d(A, B) is the distance between the closest points, i.e., d(A, B) =
min;e4 jep d(i,j). Assume now that @ is strongly mixing in the sense that for all a,b €

NU {o0}, agb(k) — 0 as k — oo. It is easy to see that Q(A) € {0,1} for all A € Z,,. Indeed,

1R (4) N 4) ~ Qi (A)QA) =0, (45)

however, since A is m-invariant, 7;.,(4) = A and thus Q(A4) = Q(A)2. Hence Q is m-block
ergodic for each m (i.e., totally ergodic).
The following theorem asserts that under the assumption that the random field @) is strongly

mixing, the results of Theorem 4 apply in the a.s. sense as well.

4In fact, Tempelman’s work [37] also includes slightly weaker conditions, but neither are satisfied in the current

setting.
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Theorem 9. Let X be a stationary strongly mixing random field with a probability measure
Q. Let F = {F,} be a sequence of finite sets of scandictors and assume that Ur(l,Q) exists.
Then, if the universal algorithm suggested in the proof of Theorem 4 uses a fized block size m,

we have

lim inf —— ’V ‘ Lag(Xv,) SUF(,Q) +0(m) Q —a.s. (46)

for any such Q and some d(m) such that §(m) — 0 as m — oo.

Proof. For each xv,, we have,

1 . (k2
Wme(M) = Wilw %;relfm ; Lj(z)
K2
B !Vlnl @ B, z; Lj(a") + 2Km(n — Km)lmaa + (0 — Km)*lnaq
1 &

Sl w0 B, Te7 2 TG 2 e .
By Proposition 5,

Wi'Ealg(xv") : Ii!Lmin(xV") " W\/@ l:n/%x- (48)
Thus,

liminf —Lqg(zy;,) < lminf —— Ly (zy,)

1 1 & .
< i o B, 7 25
1 1 = .
< A \P}I?nlrel}_mhgriloréf e Zl L;(xh). (49)

Since K — oo as n — 00, by the block ergodicity of ) and the fact that for finite m and each
(¥, F); € Fin, Lj(X) is a bounded function, it follows that

K2
oo 1 i
hnnilorgf e g Lj(z') = EQVij(XO) Q —a.s. (50)

Finally, since Uz(l, Q)) exists, there exists d(m) such that §(m) — 0 as m — oo and we have

liminf — \V | Lag(zv,) <U£(1,Q)+6(m) Q —a.s. (51)
The fact that Lgg(zv, ) converges to Lgg(zv;,) a.s. is clear from the proof of Proposition 6. [

Very similar to Theorem 9, we also have the following corollary.

23



Corollary 10. Let X be a stationary strongly mizing random field over a finite alphabet A and
a probability measure Q. Let the prediction space D be either finite or bounded (with l(x, F)
then being Lipschitz in its second argument). Then, there exists a sequence of scandictors

{(V, F),}, independent of Q, for which

lim inf VLLGZQ(XVH) <UWLQ) +d(m) Q—as. (52)

for any such Q and some 6(m) such that 6(m) — 0 as m — oo. Thus, when m — oo, the

performance of {(¥, F'),} equals the scandictability of the source, Q — a.s.

3.6 Universal Scandiction for Individual Images

The proofs of Theorems 4 and 9 relied on the stationarity, or the stationarity and mixing
property, of the random field X (respectively). In the proof of Theorem 4, we used the fact
that the cumulative loss of any scandictor (¥, F) on a given block of data has the same
expected value as that on any other block. In the proof of Theorem 9, on the other hand,
the fact that the Cesaro mean of the losses on finite blocks converges to a single value, the
expected cumulative loss, was used.

When z is an individual image, however, the cumulative loss of the suggested algorithm may
be higher than that of the best scandictor in the scandictors set since restarting a scandictor
at the beginning of each block may result in arbitrarily larger loss compared to the cumulative
loss when the scandictor scans the entire data. Compared to the prediction problem, in the
scandiction scenario, if the scanner is arbitrary, then different starting conditions may yield
different scans (i.e., a different reordering of the data) and thus arbitrarily different cumulative
loss, even if the predictor attached to it is very simple, e.g., a Markov predictor. It is expected,
however, that when the scandictors have some structure, it will be possible to compete with
finite sets of scandictors in the individual image scenario.

In this subsection, we suggest a basic scenario under which universal scandiction of indi-
vidual images is possible. Further research in this area is required, though, in order to identify
larger sets of scandictors under which universality is achievable. As mentioned earlier, since
the exponential weighting algorithm used in the proofs of Theorems 4 and 9 applied only
block-wise scandictors, i.e., scandictors which scan every block of the data separately from all
other blocks, stationarity or stationarity and ergodicity of the data were required in order to
prove its convergence. Here, since the data is an individual image, we impose restrictions on

the families of scandictors in order to achieve meaningful results (this reasoning is analogous
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to that described in [23, Section I-B] for the prediction problem). The first restriction is that
the scanners with which we compete are such that the actual path taken by each scanner when
it is applied in a block-wise order has some kind of an overlap (in a sense which will be defined
later) with the path taken when it is applied to the whole image. The second restriction is
that the predictors are Markovian of finite order (i.e., the prediction depends only on the last k&
symbols seen, for some finite k). Note that the first restriction does not restrict us to compete
only with scandictors which operate in a block-wise order, only requires that the excess loss
induced when the scandictors operate in a block-wise order, compared to operating on the
entire image, is not too large, if, in addition, the predictor is Markovian.

The following definition, and the results which follow, make the above requirements precise.
For two scanners U and U’ for the data array xp, define Np g(zp, ¥, ¥’) as the number of
sites in B such that their immediate past (context of unit length) under ¥ is contained in the

context of length K under ¥, namely,
Npk(zp, U, ¥) = {1 <i<|B|:Jicjpecx (Vi Vi1) = (U5, 0 _) 1} (53)

Note that in the above definition, a “context” of size w for a site in B refers to the set of w sites
which precede it in the discussed scan, and not their actual values. When {¥,} is a sequence
of scanners, where W, is a scanner for V,,, it will be interesting to consider the number of sites
in B C V,,, where B is an nj X nj rectangle, n; < mng, such that their immediate past under

U, (applied to V,,,) is contained in the context of length K under ¥,,, (applied to B), that is

NB7K(xB7\I]n27 \I/nl) = ’{1 <i< ’B| : EI1§j§|VnQ|,k§K (\Ilm,i? \Pm,i—l) = (q/nhjv \Ijnh]'*k)}’ )
(54)
where W, ; is the i’'th site the scanner V¥, visits. The following proposition is proved in

Appendix A.3.

Proposition 11. Consider two scanners ¥ and V' for B such that for any individual image

T we have
NB,K(xB7 llla \I],)
| B

—1—o(|B)). (55)
Then, for any xg,
L(\l//7FK7U,0Pi) (-TB) < L(\P,Fwyopt)(xB) + 0(|B’)(K + 1)w_1lmaxa (56)

where for each scandictor (U, F-°Pt) FW-°Pt denotes the optimal w-order Markov predictor for

the scan V.
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Note that in order to satisfy the condition in (55) for any array xp, it is likely (but not
a compulsory) that both ¥ and ¥’ are data-independent scans. However, they need not be
identical. If, for example, ¥ is a raster scan from left to right, and ¥’ applies the same left to
right scan, but with a different ordering of the rows, then the condition is satisfied for any xp.
The result of Proposition 11 yields the following corollary, which gives sufficient conditions
on the scandictors sets under which a universal scandictor for any individual image exists. The

proof can be found in Appendix A.4.

Corollary 12. Let {F,}, |Fn| = X < 00, be a sequence of scandictor sets, where

Fn = {(TL FY), (92, F?),..., (¥}, FN} is a set of scandictors for V,,. Assume that the pre-
dictors are Markov of finite order w, the prediction space D is finite, and that there exists
m(n) = o(n) (yet m(n) — oo as n — 0o) such that for all 1 <1i < X\, n, and xy, we have

NBm(n)v < m(n) ? \IJZ \Ij:n(n)>
m(n)?

=1-o0(m(n)?), (57)

2
where B, is any one of the L n J sub-blocks of size m(n) xm(n) of V,,. Then, there exists

a sequence of scandictors {(¥, F),} such that for any image x

1
B int By, (ov) < pnind min L o) %)

where the expectation in the Lh.s. of (58) is due to the possible randomization in (U, F),.

Although the condition in (57) is limiting, and may not be met by many data-dependent
scans, Corollary 12 still answers on the affirmative the following basic question: do there exist
scandictor sets for which one can find a universal scandictor in the individual image scenario?
For example, by Corollary 12, if the scandictor set includes all raster-type scans (e.g., left-to-
right, right-to-left, up-down, down-up, diagonal, etc.), accompanied with Markov predictors of
finite order, then there exists a universal scandictor whose asymptotic normalized cumulative
loss is less or equal than that of the best scandictor in the set, for any individual image z. The
condition in (57) is also satisfied for some well-known “self-similar” space filling curves, such

as the Sierpinski or Lebesgue curves [39].

4 Bounds on the Excess Scandiction Loss for Non-

Optimal Scanners

While the results of Section 3 establish the existence of a universal scandictor for all stationary

random fields and bounded loss function (under the terms of Theorem 8), it is interesting to
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investigate, from both practical and theoretical reasons, what is the excess scandiction loss
when non-optimal scanners are used. l.e., in this section we answer the following question:
Suppose that, for practical reasons for example, one uses a non-optimal scanner, accompanied
with the optimal predictor for that scan. How large is the excess loss incurred by this scheme
with respect to optimal scandiction?

For the sake of simplicity, we consider the scenario of predicting the next outcome of a
binary source, with D = [0, 1] as the prediction space. Hence, [ : {0,1} x [0,1] — R is the loss
function. Furthermore, we assume deterministic scanner (though data-dependent, of course).
The generalization to randomized scanners is cumbersome but straightforward.

Let ¢; denote the Bayes envelope associated with [, i.e.,

¢1(p) = min [(1 —p)l(0,q) + pl(1,q)]- (59)
qE[O,l]
We further define
@ = min 1max lahy(p) + B — du(p)], (60)

where hy(p) is the binary entropy function. Thus ¢ is the error in approximating ¢;(p) by the
best affine function of hy(p). For example, when [ is the Hamming loss function, denoted by
lg, we have ¢,, = 0.08 and when [ is the squared error, denoted by Iy, ¢, = 0.0137. For the
log loss, however, the expected instantaneous loss equals the conditional entropy, hence the
expected cumulative loss coincides with the entropy, which is invariant to the scan, and we
have ¢, = 0. To wit, the scan is inconsequential under log loss.

Although the definitions of ¢;(p) and € refer to the binary scenario, the results below
(Theorem 13 and Propositions 14 and 15) hold for larger alphabets, with ¢; defined as in (60),
with the maximum ranging over the simplex of all distributions on the alphabet, and h(p)
(replacing hy(p)) and ¢;(p) denoting the entropy and Bayes envelope of the distribution p,
respectively.

Let ¥ be any (possibly data dependent) scan, and let EQB%'L(\IJ’FOM(XB) denote the
expected normalized cumulative loss in scandicting Xp with the scan ¥ and the optimal
predictor for that scan, under the loss function [. Remembering that U(l,Qp) denotes the
scandictability of Xp w.r.t the loss function [, namely, U(l,@Qp) = infy EQBﬁL(%Fopt)(XB),

our main result in this section is the following.

Theorem 13. Let Xp be an arbitrarily distributed binary field. Then, for any scan W,

1
Eqp @L(\I/,F"Pt)(XB) - U(l,QB)| < 2e. (61)
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That is, the excess loss incurred by applying any scanner ¥, accompanied with the optimal
predictor for that scan, with respect to optimal scandiction is not larger than 2¢;.

To prove Theorem 13, we first introduce a prediction result (i.e., with no data reordering)
on the error in estimating the cumulative loss of a predictor under a loss function [ with the
best affine function of the entropy. We then generalize this result to the multi-dimensional

case.

Proposition 14. Let X™ be an arbitrarily distributed binary n-tuple and let EL?pt(X”) denote
the expected cumulative loss in predicting X™ with the optimal distribution-dependent scheme

for the loss function l. Then,

1 1
a—H(X"™) + 6 = EELEW(X”) < e, (62)

where oy and [ are the achievers of the minimum in (60).
Proof. Let oy and f3; be the achievers of the minimum in (60). We have,

1 1
o —H(X") + 1 - EELE’pt(X”)

DM

t=1 gt

|—auP(aila' ") log P(arfa' ™) + Plagl’™")8 = Plarla' = )iz, F{P'(2'7))] ‘

(i)

%Z Z P(xt_l) [oqhb(P(-|xt_1)) + Bl - ¢l(P("xt_1))] '

t=1 gt—1
< ;Z 37 PG oo (P ) + = 61(PC )|
< ii ; Pz max |aghy (p) + 5 — ¢u(p)|
= max \nglhb(P) + 61— du(p)|
= €, (63)
where (a) is by the definition of ¢;(-) and the optimality of F/?* with respect to I. O

The following proposition is the generalization of Proposition 14 to the multi-dimensional

case.

Proposition 15. Let Xg be an arbitrarily distributed binary random field. Then, for any scan

v

1 1
OélEH(XB) + 06— Eqp @L(\IJ,FOW)(XB) < €, (64)
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where oy and [y are the achievers of the minimum in (60).

For data-independent scans, the proof follows the proof of Proposition 14 verbatim by ap-
plying it to the reordered | B|-tuple Xy, . .. ; Xw 5, and remembering that H(Xp)=H(Xg,,... s Xw ).

For data-dependent scans, the proof is similar, but requires more caution.

Proof of Proposition 15. Let a; and (3 be the achievers of the minimum in (60). For a given
data array zp, V1, Vo(zg,),. .., \I/|B|(a:‘II|B\—1) are fixed, and merely reflect a reordering of zp

as a | B|-tuple. Thus,

1 1
a;—H(Xp)+ B — Eg, @L(W,Fopt)(XB)

| B
1 |B|
- @Z _alp('rB) lOgP(xB) — P(JZB)Zl(x\l,“FtOpt(x‘I’t—l)) +ﬂl
B t=1
1 ‘B‘ |B|
= |ig 2 | ~oeP @) 3 _log Plaw|e™ ) = Pleg) ) Uwwe, B (@) | +
i t=1 =1
1 |B|
|37 2o X0 Plom)( — wlow Plaw )+~ Gas EPG )|
t=1 xp

Fix t = tg in the sum over t. Consider all data arrays xp such that for a specific scanner ¥

we have
{\111,\1/2(:6\1,1), Ty (2 ,xq,tr?)} = I(D), (66)

where I(V) C B is a fixed set of sites, and (zy,,...,2y, ) = a, for some a € {0, 1}o=1 In
this case, ¥;(x¥%0-1) is also fixed, and since the term in the parentheses of (65) depends only

on I, a and zy, , we have

2P ( — aylog P(wy, [o"07") + B — U(ww,,, Ft%pt(wq“o*l)))

mn

=Y Plar=a) > Plaw,le=a)( - ailog Ploe,,|or = a) + 6 — Uze,,, B (@) ).
1,a xq;toe{o,l}
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Consequently,

Qg

1 1
@H(XB) + 61— Eqy @L(\II,FOW)(XB)

|B|

TP

tlIa

> Plowler=a)( —arlog Plww,far = ) + 6 — e, F{™(2)))

zy, €{0,1}
|B|
|B\ ZZP a) |aghy(P(-|xr = a)) + B — ¢1(P(|xr = a))
t=1 I.a
| B
ZZP rr=a max|ozzhb( )+ 61 — du(p)]
t=1 I,a
= max |yl (p) + B — ¢u(p)]
. (68)

It is now easy to see why Theorem 13 holds.
Proof of Theorem 13. The proof is a direct application of Proposition 15, as for any scan ¥,
1
EQB @L(\P,FOP’&)(XB) - lj'(l7 QB)

o 1 o
S ’@H(XB) —|— ﬁl — EQBEL(\PaFOPt)(XB) + "Bl’H(XB) +/Bl - U(Z7QB)

S 26[. (69)
O

At this point, a few remarks are in order. For the bound in Theorem 13 to be tight, the
following conditions should be met. First, equality is required in (64) for both the scan ¥
and the optimal scan (which achieves U(l,@p)). It is not hard to see that for a given scan VU,
equality in (64) is achieved if and only if P(-|z¥*-1) = p for all z¥*-1, where p is a maximizer
of (60). However, for (61) to be tight, it is also required that

Q]

@H(Xm — 6+ U(,Qp), (70)

1
7HX —FEo.—L ooty (XB) = —
B] (XB)+ 05 Qg (w,7ort)(XB)

so the triangle inequality is held with equality. Namely, it is required that under the scan
¥, for example, P(-|zY+-1) = p for all 2¥¢—1, where p is such that oyhy(p) + B3 — di(p) = €,

yet under the optimal scan, say ¥/, P(-]a:qjéfl) = p/ for all 2¥¢-1, where p/ is such that
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athy(p') + 61— ¢1(p') = —¢. Clearly this is not always the case, and thus, generally, the bound
in Theorem 13 is not tight. Indeed, although under a different setting (individual images),
in subsection 4.1 we derive a tighter upper bound on the excess loss for the specific case of
Hamming loss. Using this bound, it is easy to see that the 0.16 bound given here (as ¢, = 0.08
for Hamming loss) is only a worst case, and typically much tighter bounds on the excess loss
apply, depending on the image compressibility. For example, consider a 1st order symmetric
Markov chain with transition probability 1/4. Scanning this source in the trivial (sequential)
order results in an error rate of 1/4. By [22], this is indeed the optimal scanning order for this
source, as it can be represented as an autoregressive process whose innovation process has a
maximum entropy distribution with respect to the Hamming distance. The “odds-then-evens”
scan®, however, which was proved useful for this source but with larger transition probabilities
(larger than 1/2, [22]), results in an error rate of 5/16, which is 1/16 away from the optimum.

It is not hard to show that different transition probabilities result in lower excess loss.

4.1 Individual Images and the Peano-Hilbert Scan

In this subsection, we seek analogous results for the individual image scenario. Namely, the
data array zp has no stochastic model. A scandictor (¥, F'), in this case, wishes to minimize
the cumulative loss over xy,,, that is, Ly ry(7y,) as defined in (3).

In this setting, although one can easily define an empirical probability measure, the in-
variance of the entropy H(X™) to the reordering of the components, which stood at the heart
of Theorem 13, does not hold for any reordering (scan) and any finite n. Thus, we limit the
possible set of scanners to that of the finite state machines discussed earlier. Moreover, in
the sequel, we do not bound the difference in the scandiction losses of any two scandictors
from that set, only that between the Peano-Hilbert scan (which is asymptotically optimal for
compression of individual images [14]) and any other finite state scanner (both accompanied
with an optimal Markov predictor), or between two scans (finite state or not) for which the
FS compressibility of the resulting sequence is the same.

We start with several definitions. Let Wp be a scanner for the data array xp. Let x|1B|

be the sequence resulting from scanning zp with Wp. Fix k < |B| and for any s € {0, 1}*+!

°An “odds-then-evens” scanner for a one-dimensional vector z7, first scans all the sites with an odd index, in an

ascending order, then all the sites with an even index.
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define the empirical distribution of order k£ + 1 as

. 1 _ :
P&f;l(s): |B|_k‘{k‘<1§\B|:xi_k:s}’. (71)

The distributions of lower orders, and the conditional distribution are derived from P\I]f;l(s),

ie., for s’ € {0,1}* and z € {0,1} we define
PEHL (') = PEYN([S,00) + PEH ([, 1)) (72)
and -

pk—H ZES, = ~
vo 1) = TpEi)

: (73)

where 0/0 is defined as 1/2 and [-,-] denotes string concatenation.® Let I:I\If,';l (X|X*) be the
empirical conditional entropy of order k, i.e.,

AN XxF) == S BEtLs) ST PE(als)log PR (als). (74)
s€{0,1}k z€{0,1}

Finally, denote by F¥°Pt the optimal k-th order Markov predictor, in the sense that it minimizes
the expected loss with respect to ]?’ql‘j;lu) and x'lB|. The following proposition is the individual

image analogue of Proposition 15.

Proposition 16. Let zp be any data array. Let ﬁL(\I,Bka,opt)(mB) denote the normalized
cumulative loss of the scandictor (U g, F*¥°PY) where U is any (data dependent) scan and

Fkort s the optimal k-th order Markov predictor with respect to ¥ and . Then,

. 1 kl
OélH\IflJ;I(X|Xk) + 6 — @L(\I]B,Fk’opt)(xB) <e+ |ETI’ (75)
where oy and [y are the achievers of the minimum in (60).
Since xp is an individual image, a:llBl = Up(xp) is fixed. In that sense, the proof resembles

that of Proposition 14 and we write z; for the value of x at the t-th site ¥p visits. On the
other hand, since the order of the predictor, k, is fixed, we can use 15&“,;1() and avoid the
summation over the time index ¢. The complete details can be found in Appendix A.5.

The bound in Proposition 16 differs from the one in Proposition 15 for two reasons. First,
it is only asymptotic due to the O(k/|B|) term. Second, the empirical entropy ﬁ’\f,j;l (X]X*)

is not invariant to the scanning order. This is a profound difference between the random and

. ~ PETL (! R L
®Note that defining P‘f;l(x\s’)7 s' € {0,1}* as Fup (02D is not consistent since generally Py (s') # P\I’T;l([s’, o)+

15\11‘;3(5’)
Pgi([s',1]).
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the individual settings, and, in fact, is at the heart of [14]. In the random setting, the chain
rule for entropies implies invariance of the entropy rate to the scanning order. This fact does
not hold for a k-th order empirical distribution of an individual image, hence the usage of the
Peano-Hilbert scanning order.” Consequently, we cannot directly compare between any two
scans. Nevertheless, Proposition 16 has the following two interesting applications, given by
Proposition 17 and Corollary 18.

For ¥ = {V,}, where ¥, is a scan for V,,, and an infinite individual image = define

1
L% (z) = limsup WL(\IJ'{“Fk,opt)(an) (76)
and
Ly(x) = k]im L% (x). (77)

Proposition 17 relates the asymptotic cumulative loss of any sequence of finite state scans
U to that resulting from the Peano-Hilbert sequence of scans, establishing the Peano-Hilbert

sequence as an advantageous scanning order for any loss function.

Proposition 17. Let x be any individual image. Let PH denote the Peano-Hilbert sequence of
scans. Then, for any sequence of finite state scans ¥ and any loss function l : {0,1} x [0,1] —
R,

Lpg(xz) < Ly(z) + 2¢. (78)

Before we prove Proposition 17, define the asymptotic k-th order empirical conditional

entropy under {V¥,} as

HEY () = lim sup f[i‘:l(X\Xk) (79)
n—oo
and further define
Hy(z) = lim HE(2). (80)
k—o00

The existence of E[\p({l}) is established later in the proof of Proposition 17, where it is also
shown that this limit equals limy_, o limsup,,_, %PAI\’I“,” (X*). By [15, Theorem 3], the latter
limit is no other than the asymptotic finite state compressibility of z under the sequence of

scans ¥, namely,

1.
lim limsup%H]\f,n(Xk) = p(¥(x))

k—oo n—oo

= lim limsup pp() (Yn(2v,,)), (81)

$70  n—oo
where pp(s)(27) is the minimum compression ratio for z7 over the class of all finite state

encoders with at most s states [15, eq. (1)-(4)]. We may now introduce the following corollary.

"Yet, the Peano-Hilbert is by no means the only optimal scan. We Elaborate on this issue later in this section.
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Corollary 18. Let Uy and Uy be any two sequences of scans such that Hy, (x) = Hy, () (in
particular, if both W1 and Wo are finite state sequences of scans they result in the same finite

state compressibility). Then,
L, () — Ly, (z)| < 2¢. (82)

for any loss function : {0,1} x [0,1] — R.

For a given sequence of scans ¥, the set of scanning sequences ¥’ satisfying Hy (z) = Hy (2)
is larger than one might initially think. For example, a close look at the definition of finite
state compressibility given in [15] shows that the finite state encoders defined therein allow
limited scanning schemes, as an encoder might read a large data set before its output for that
data set is given. Thus, a legitimate finite state encoder in the sense of [15] may reorder
the data in a block (of bounded length, as the number of states is bounded) before actually
encoding it. Consequently, for any individual sequence x one can define several permutations
having the same finite state compressibility. In the multidimensional scenario this sums up to
saying that for each scanning sequence ¥ there exist several different scanning sequences ¥’

for which Hy(z) = Hy ().

Proof of Proposition 17. For each n, ¥, is a scanner for V,,. Thus, by Proposition 16, we have

1 kl
a Hy ™ (X X5) + 6 — AR L, pronty(@v,)| < €@+ |$a|$7 (83)
n
Taking the limsup as n — oo yields
oy lim sup f[@‘:l(X\Xk) + 6 — L (x)| < . (84)
n—oo

For a stationary source, it is well known (e.g., [40, Theorem 4.2.1]) that limy_, H (X X*1)

exists and in fact

lim H(Xg| X} = h

Jim Jim - H(XT). (85)
To this end, we show that the same holds for empirical entropies. We start by showing that
lim sup,,_, I;T\]f,j:l (X|X*) is a decreasing sequence in k. Since conditioning reduces the entropy,
it is clear that ﬁff,il(X|Xk) < lﬁI\’f,::l(X\Xk_l), where both are calculated using P\’Ii:l()
However, the above may not be true when fll\f,:l(X\Xk_l) is replaced by fI]\f,n(X]Xk_l), as

the later is calculated using 15\113”() Nevertheless, using a simple counting argument, it is not

too hard to show that for every k, 0 < j < k and s € {0,1}?, where 0 < i < j, we have

ktl—j - . kt1—j
T AL < A

Pk‘—f—l N
v, <3> |Vn’ —k

IN

(86)
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Thus, by the continuity of the entropy function, we have

lim sup ﬁ'f,‘:l(X]Xk) < limsup I:L’I“,‘:1 (X|Xx*1

n—oo n—oo
= limsup H§ (X|X*1), (87)
n—oo

hence limsup,,_, ., H. ff,n (X|X*=1Y is decreasing in k. Since it is a non negative sequence, Hy (z)

as defined in (80) exists and we have
aHy(z) + 8 — Ly(z)| < a. (88)

We now show that indeed Hy(z) equals p(¥(z)) for every sequence of finite state scans ¥,
hence when U is a sequence of finite state scans the results of [14] can be applied. The method
is similar to that in [40, Theorem 4.2.1]), with an adequate handling of empirical entropies.

By (86),

k
1. 1 n ,
limsup - Hy, (X*) = limsup Y Hy (X3 X{)
1 k
— 7 g Jyi—1
= llisogpk;H\’yn(Xxle )- (89)

But the sequence limsup,,_, ﬁfpn (X;|Xi71) converges to Hy(z) as i — oo, thus its Cesaro
mean converges to the same limit and we have

1 -
Hy(z) = lim limsup%H\lf,n(Xk)

—0 n—oo

= p(¥(x)). (90)

Consider now the Peano-Hilbert sequence of finite state scans, denoted by PH. Let p(x)
denote the (finite state) compressibility of x as defined in [14, eq. (4)]. For any other sequence

of finite state scans ¥ we have

~

HPH(x)

AN
)
—~

8
~—

I
3
&

(91)

where the first inequality is by [14, eq. (9) and (16)] and the second is straightforward from
the definition of p(x). Finally,

—
S)
~

Leu(z) < -+ B +aHpp(z)
< g+ P+ aHg ()
(b)
< 2¢+ L@(x), (92)
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where (a) and (b) result from the application of (88) to the sequences PH and WU respectively.
O

The proof of Corollary 18 is straightforward, using (88) for both ¥; and ¥y and the triangle

inequality.

4.1.1 Hamming Loss

The bound in Proposition 17 is valid for any loss function { : {0,1} x [0,1] — R. When [ is

the Hamming loss, the resulting bound is
LH amming Hamming
PI (x) < Ly (z) 4+ 0.16, (93)

for any other finite state sequence of scans, namely, a uniform bound, regardless of the com-
pressibility of z. However, using known bounds on the predictability of a sequence (under
Hamming loss) in terms of its compressibility can yield a tighter bound.

In [41], Feder, Merhav and Gutman proved that for any next-state function g € G5, where

Gy is the set of all possible next state functions with s states, and for any sequence 7

(g, zy) < %p(g,fff),
plg,2t) = hyt(plg,at)), (94)

where (g, ) (p(g,-)) is the best possible prediction (compression) performance when the next

state function is g. Consequently, for any two finite-state scans ¥} and W2 for zy; ,

min (9. V(@) ~ min ulo, V3 (ay;)

g€Gs
1 1 g1 2
< min 5p(g, Un(@v,)) — min by~ (p(g, ¥ (av,,))
L. - .
— 5 i oo, Vo) — iy min ol W) ) (9)

Taking ¥. to be the Peano-Hilbert scan, the results of [14] imply that

i U < mi U 96
;Ielgip(g, PH("EVn))—grglcip(g n(Zv,)) + €ns (96)

for any finite-state scan V¥,,, where €, ; satisfies lim,_ limsup,,_, €55 = 0. Hence,

min p(g, Ypu(zy,)) — min u(g, ¥(zy,))

9€Gss geGs
1 _ )
< 5 i ol Wpov) " (i o0, Wr(e) = o) (90

Taking the limits limsup,,_,., and then s — oo implies the following proposition.
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Proposition 19. Let x be any individual image. Let PH denote the Peano-Hilbert sequence
of scans. Then, under the Hamming loss function, for any sequence of finite state scans ¥ we

have

Lon(r) < Lu(w) + 3p(x) — by (o(e)), (98)

where p(x) is the compressibility of the individual image x.

In other words, the specific scandictor composed of the Peano-Hilbert scan followed by the
optimal predictor, adheres to the same asymptotic bounds (on predictability in terms of the
compressibility) as the best finite-state scandictor. Figure 2 plots the function %p - h;l(p).
The maximum possible loss is 0.16, similar to the bound given in Proposition 17, yet this value
is achieved only when the image’s FS compressibility is around 0.75 bits/symbol. For images
which are highly compressible, for example, when p < 0.1 the resulting excess loss is smaller

than 0.04.

Upper bound on the redundancy in using the Peano—Hilbert scan.
0.18 T T T T T T T

0.5p - h_l(p): the maximum possible redundancy

1 1 1 1 1
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
p: the compressibility of the image

-0.02 L L L I

Figure 2: A plot of 3p — h™!(p). The maximum redundancy is not higher than 0.16 in worst case,

but will be much lower for more compressible arrays.

5 Conclusion

In this paper, we formally defined finite set scandictability, and showed that there exists a
universal algorithm which successfully competes with any finite set of scandictors when the

random field is stationary. Moreover, the existence of a universal algorithm which achieves the
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scandictability of any spatially stationary random field was established. We then considered
the scenario where non-optimal scanners are used, and derived a bound on the excess loss in
that case, compared to optimal scandiction.

It is clear that the scandiction problem is even more intricate than its prediction analogue.
For instance, very basic results in the prediction scenario do not apply to the scandiction case
in a straightforward way, and, in fact, are still open problems. To name a few, consider the
case of universal scandiction of individual images, briefly discussed in Section 3.6. Although
the question whether there exists a universal scandictor which competes successfully with any
finite set of scandictors on any individual image was answered negatively in Section 3.1, it is
interesting to discover interesting sets of scandictors for which universal scandiction is possible.
The sequential prediction literature also includes an elegant result [41] on the asymptotic
equivalence between finite state and Markov predictors. We conjecture that this equivalence
does not hold in the multi-dimensional scenario for any individual image. Finally, the very
basic problem of determining the optimal scandictor for a given random field X with a known
probability measure @, is still unsolved in the general case.

It is also interesting to consider the problems of scanning and prediction, as well as fil-
tering, in a noisy environment. These problems are intimately related to various problems in
communications and image processing, such as filtering and denoising of images and video. As

mentioned in Section 1, these problems are the subject of [27].

A Appendixes

A.1 Proof of Proposition 5

For the sake of simplicity, we suppress the dependence of m(n) in n. Define W; = E;‘Zl e i,

We have
A
log——— = log Z e M2 —Jog A\
j=1

> log max e M2 —log )
j

= —nminL; g2 —logA
J

= _anin - log A (99)
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Moreover,

log Wit _ log Z?zl e~ Lt Li)
Wi Z?/:1 e it
A
= log Z P; (j‘{Lj,i}])":1> e Li(@)
=1
A 472 2
< P (UL ) Lytat) + T ma (100)
=1

where the last inequality follows from the extension to Hoeffding’s inequality given in [33] and

the fact that —nL;(2?) is in the range [—7m?lmaq, 0. Thus,

(K+1)2-1
log L(KH)Q = Z log Wina
Wo i=0 Wi
(K+1)2-1 )

IN

. 7 m4l72ﬂax772(K + 1)2
x> ZP (IHEsi 1)) o) + 5

mA e’ (K + 1)

= —nLug+ S (101)
Finally, from (99) and (101), we have
_ 1 42 K +1)?
Lalg — Lpin < OgA + m lmax ( + )
n 8
272 2
log A N m lmaxnén +m) ' (102)
n

The bound in (14) easily follows after optimizing the right hand side of (102) with respect to

n.

A.2 Proof of Proposition 6

Let 6(n) be some sequence satisfying 6(n) — 0 as n — co. Define the sets

Ay = {w , Latglovi) ;QL”“'”(”W") > 5(n2)} , (103)

where (£2, P) is the probability space. We wish to show that

n—o0

P <limsup An> =0, (104)

that is, P(A, i.0.) = 0. Let (¥, F); be the scandictor chosen by the algorithm for the k + 1
block, z*. Define

Zk = Lew ), (%) = E{ L ), ML | (105)
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where the expectation is with respect to Py (j\{LM};‘:l). Namely, the actual randomization
in Zj is in the choice of (¥, F)y. Thus, {Z;} are clearly independent, and adhere to the
following Chernoff-like bound [33, eq. 33]

(K+1)2 2(K + 1)262
P Zip > (K +1)% | <ex {—} 106
; k ( ) p (m2lmax)2 ( )
for any € > 0. Note that
(K+1)?
Z Zy = Lalg(x\/n) - Lalg(an)ﬁ (107)
k=1

thus, together with eq. (14), we have

P <Lalg(xvn) — Linin(zv,) > (K + 1)% +m(n + m)\/log)\l"\%z)

< exp{—ml)Q;Q}. (108)

(m2 lmax)

Set
(K 4 1)%€ 4+ m(n + m)/Tog Almaz
5(n) = - V2 (109)

Clearly 6(n) — 0 as n — oo for any m(n) = o(n) satisfying m(n) — oco. For the summability
of the r.h.s. of (108) we further require that m(n) = o (n'/3). The proposition then follows
directly by applying the Borel-Cantelli lemma.

A.3 Proof of Proposition 11

We show, by induction on w, that the number of sites in B for which the context of size w (in
terms of sites in B) under the scan ¥ is not contained in the context of size Kw under the
scan U’ is at most o(|B|)(K + 1)¥~!. This proves the proposition, as the cumulative loss of
(W!, FEwopty is no larger than o(|B|)(K + 1)~ !,,q, on these sites, and is at least as small as
that of (U, F*°P!) on all the rest |B| — o(|B|)(K + 1)V~ ! sites.

For w = 1 this is indeed so, by our assumption on ¥ and ¥’ - i.e., (55). We say that a site
in B satisfies the context-condition with length w — 1 if its context of size i — 1, 1 < i < w,
under the scan ¥ is contained in its context of size K (i — 1) under the scan ¥'. Assume
that the number of sites in B which do not satisfy the context-condition with length w — 1
is at most o(|B|)(K + 1)*~2. We wish to lower bound the number of sites in B for which
the context-condition with length w is satisfied. A sufficient condition is that the context-
condition with length w — 1 is satisfied for both the site itself and its immediate past under

W. If the context-condition with length w — 1 is satisfied for a site, its immediate past under
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VU is contained in its past of length K under W’. Thus, if the context-condition of length w — 1
is satisfied for a given site, and for all K preceding sites under ¥’, then it is also satisfied for
length w. In other words, each site in B which does not satisfy the context-condition with
length w — 1 results in at most K + 1 sites (itself and K more sites) which do not satisfy the
context-condition with length w. Hence, if our inductive assumption is satisfied for w — 1,
the number of sites in B which do not satisfy the context-condition with length w is at most

o(|B|)(K + 1)“"2(K + 1), which completes the proof.

A.4 Proof of Proposition 12

The proof is a direct application of Propositions 5 and 11. For each n, define the scandictors

set

|Kw

Foo = (WL PR, (wh, FR0), (], pReIPITT

), ...

jlare

(02, pEwly (g2 pKw2y (g2 pEwlD

Kw
(i, PR, (0, FR02), (), PReIPITE (110)

. |A‘Kw
where {F K“”Z}L]Z‘l is the set of all Markov predictors of order Kw.® Applying the results

of Proposition 5 to {F,}, we have, for any image = and all n,

. w lmax
EL(\i/,F)n (zv,) — min Ly F) (zv,) <m(n) (n+m(n))4/log )\|DUA|K ok (111)

(\II7F)€-7:—m(n)

where miny per, ) Ly, r)(2v;,) is the cumulative loss of the best scandictor in 7,y oper-

ating block-wise on zvy;,. However, by Proposition 11, for any 1 <17 < A,  and n,

2
. we n
min EL(\I]in/(n)’FKw,j)(an) < EL(\I,%FZ-)(:EVR) +o0 (m(n)2) (K+1) Y e {J .

1<j<| D1 m(n)
(112)
Note that
min Ly py(zy,) = min min EL i Kw,i) (TV,
(U, F)EF () ) IsisAi<i<|p|lalXe ¥y (@)

2
s i {EL(\IJ:;,Fi)(wvn) +0 (m(n)*) (K + 1) lmas {mr(ln)J }

2
. w— n
T wRer, ELw,p)(zv,) + o0 (m(n)?) (K + 1) s LTL(TL)J '

(113)

8 Alternatively, one can use one universal predictor which competes successfully with all the Markov predictors of

that order.
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Thus, together with (111), we have

EL(@,ﬁ)n(fUVn)_ min_ ELw r)(zv,)

(V,F)eFn

2
< m(n) (n+m(n)) \/log )\|D||A|K”lm\/“§"” + 0 (m(n)?) (K + 1) e {m?n)J . (114)

which completes the proof since |D|,|A|, K and w are finite.

A.5 Proof of Proposition 16

Similar to the proof of Proposition 14, we have,

2 1
alH’\f,zl (X|Xk) + Bl - EL(‘I’B,F’VWW)(:EB)

IN

k | B
A 1 B -
alH’\f;Jjgl(X‘Xk) + 06— E Zl(mt7Fk,opt(x7i 1)) + Z l(xt,Fk’OPt(-Ti_]lg))
t=1 t=k+1
aH P (X XP) + 6, —
1 & i L
kopt(pt=1yy _ (1 = ) _~ kopt [ t—1
@ZK%,F Prx1)) (1 |B\> Bk Z (e, PP (2171))
=1 t=k+1
k1 k 1 dl k,opt  t—1 klmax
Iy (XIXS) 4 B = rgr—p D Hew PP (@i2)| + 5 (115)
t=k+1

Since the order of the predictor is fixed, we can use the definition of ]5&"’,;1(5) ans sum over

s € {0,1}**1 instead of ¢. Thus,

<

:€l+

2 1
alHl‘i:/—gl(X|Xk) + /Bl - 7L(\IJB7Fk,opt)(xB)

| Bl
'y M klmax
OézHl\f/;l(X|Xk)+ﬂl— Z qui;l(s)l(skﬂ,Fk’Opt(Slf)) + B
s€{0,1}k+1
> PN XD PEGls) (—adlog PYals) + i~ U, FE ()
s'€{0,1}¥ z€{0,1}
_l_klmax
| Bl
A A > klmax
> PR (anha(PEL (1) + 61— (PN (1) ) |+
s'€{0,1}*
Hk+1/ ./ klmaw
Z Py (s )mgX|Oélhb(P) + 61— ¢u(p)| + IB|
s'e{0,1}*
klmax
Lmazr (116)
|B|
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